1
|
Wen H, Deng H, Li B, Chen J, Zhu J, Zhang X, Yoshida S, Zhou Y. Mitochondrial diseases: from molecular mechanisms to therapeutic advances. Signal Transduct Target Ther 2025; 10:9. [PMID: 39788934 PMCID: PMC11724432 DOI: 10.1038/s41392-024-02044-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/28/2024] [Accepted: 10/31/2024] [Indexed: 01/12/2025] Open
Abstract
Mitochondria are essential for cellular function and viability, serving as central hubs of metabolism and signaling. They possess various metabolic and quality control mechanisms crucial for maintaining normal cellular activities. Mitochondrial genetic disorders can arise from a wide range of mutations in either mitochondrial or nuclear DNA, which encode mitochondrial proteins or other contents. These genetic defects can lead to a breakdown of mitochondrial function and metabolism, such as the collapse of oxidative phosphorylation, one of the mitochondria's most critical functions. Mitochondrial diseases, a common group of genetic disorders, are characterized by significant phenotypic and genetic heterogeneity. Clinical symptoms can manifest in various systems and organs throughout the body, with differing degrees and forms of severity. The complexity of the relationship between mitochondria and mitochondrial diseases results in an inadequate understanding of the genotype-phenotype correlation of these diseases, historically making diagnosis and treatment challenging and often leading to unsatisfactory clinical outcomes. However, recent advancements in research and technology have significantly improved our understanding and management of these conditions. Clinical translations of mitochondria-related therapies are actively progressing. This review focuses on the physiological mechanisms of mitochondria, the pathogenesis of mitochondrial diseases, and potential diagnostic and therapeutic applications. Additionally, this review discusses future perspectives on mitochondrial genetic diseases.
Collapse
Affiliation(s)
- Haipeng Wen
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
| | - Hui Deng
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Bingyan Li
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Junyu Chen
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Junye Zhu
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Xian Zhang
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Shigeo Yoshida
- Department of Ophthalmology, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011, Japan
| | - Yedi Zhou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China.
| |
Collapse
|
2
|
Chen Y, Wei X, Ci X, Ji Y, Zhang J. Dysregulation of mitochondria, apoptosis and mitophagy in Leber's hereditary optic neuropathy with MT-ND1 3635G>A mutation. Gene 2024; 930:148853. [PMID: 39147111 DOI: 10.1016/j.gene.2024.148853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/14/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
Leber's hereditary optic neuropathy (LHON) is a maternal inherited disorder, primarily due to mitochondrial DNA (mtDNA) mutations. This investigation aimed to assess the pathogenicity of m.3635G>A alteration known to confer susceptibility to LHON. The disruption of electrostatic interactions among S110 of the MT-ND1 and the side chain of E4, along with the carbonyl backbone of M1 in the NDUFA1, was observed in complex I of cybrids with m.3635G>A. This disturbance affected the complex I assembly activity by changing the mitochondrial respiratory chain composition and function. In addition, the affected cybrids exhibited notable deficiencies in complex I activities, including impaired mitochondrial respiration and depolarization of its membrane potential. Apoptosis was also stimulated in the mutant group, as witnessed by the secretion of cytochrome c and activation of PARP, caspase 3, 7, and 9 compared to the control. Furthermore, the mutant group exhibited decreased levels of autophagy protein light chain 3, accumulation of autophagic substrate P62, and impaired PINK1/Parkin-dependent mitophagy. Overall, the current study has confirmed the crucial involvement of the alteration of the m.3635G>A gene in the development of LHON. These findings contribute to a deeper comprehension of the pathophysiological mechanisms underlying LHON, providing a fundamental basis for further research.
Collapse
Affiliation(s)
- Yingqi Chen
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Xiaoyang Wei
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Xiaorui Ci
- Attardi Institute of Mitochondrial Biomedicine, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yanchun Ji
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310058, China; Institute of Genetics, Zhejiang University, School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Juanjuan Zhang
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Attardi Institute of Mitochondrial Biomedicine, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
3
|
Jin L, Gan D, He W, Wu N, Xiang S, Wei Y, Eriani G, Ji Y, Guan M, Wang M. Mitochondrial tRNA Glu 14693A > G Mutation, an "Enhancer" to the Phenotypic Expression of Leber's Hereditary Optic Neuropathy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401856. [PMID: 39264244 PMCID: PMC11538713 DOI: 10.1002/advs.202401856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 08/12/2024] [Indexed: 09/13/2024]
Abstract
Leber's hereditary optic neuropathy (LHON), a maternally inherited ocular disease, is predominantly caused by mitochondrial DNA (mtDNA) mutations. Mitochondrial tRNA variants are hypothesized to amplify the pathogenic impact of three primary mutations. However, the exact mechanisms remained unclear. In the present study, the synergistic effect of the tRNAGlu 14693A > G and ND6 14484T > C mutations in three Chinese families affected by LHON is investigated. The m.14693A > G mutation nearly abolishes the pseudouridinylation at position 55 of tRNAGlu, leading to structural abnormalities, decreased stability, aberrant mitochondrial protein synthesis, and increased autophagy. In contrast, the ND6 14484T > C mutation predominantly impairs complex I function, resulting in heightened apoptosis and virtually no induction of mitochondrial autophagy compared to control cell lines. The presence of dual mutations in the same cell lines exhibited a coexistence of both upregulated cellular stress responses to mitochondrial damage, indicating a scenario of autophagy and mutation dysregulation within these dual-mutant cell lines. The data proposes a novel hypothesis that mitochondrial tRNA gene mutations generally lead to increased mitochondrial autophagy, while mutations in genes encoding mitochondrial proteins typically induce apoptosis, shedding light on the intricate interplay between different genetic factors in the manifestation of LHON.
Collapse
MESH Headings
- Optic Atrophy, Hereditary, Leber/blood
- Optic Atrophy, Hereditary, Leber/diagnosis
- Optic Atrophy, Hereditary, Leber/genetics
- RNA, Transfer, Glu/genetics
- RNA, Mitochondrial/genetics
- Mutation
- NADH Dehydrogenase/genetics
- RNA Stability/genetics
- Apoptosis/genetics
- Mitophagy/genetics
- Cell Line
- Visual Acuity/genetics
- Genome, Mitochondrial/genetics
- DNA Mutational Analysis
- Humans
- Male
- Child, Preschool
- Child
- Age of Onset
Collapse
Affiliation(s)
- Lihao Jin
- Center for Genetic Medicinethe Fourth Affiliated Hospital of School of Medicineand International School of MedicineInternational institutes of MedicineZhejiang UniversityYiwu322000China
- Division of Medical Genetics and GenomicsThe Children's HospitalZhejiang University School of Medicine and National Clinical Research Center for Child HealthHangzhou310058China
- Institute of GeneticsZhejiang University International School of MedicineHangzhou310058China
| | - Dingyi Gan
- Center for Genetic Medicinethe Fourth Affiliated Hospital of School of Medicineand International School of MedicineInternational institutes of MedicineZhejiang UniversityYiwu322000China
- Division of Medical Genetics and GenomicsThe Children's HospitalZhejiang University School of Medicine and National Clinical Research Center for Child HealthHangzhou310058China
- Institute of GeneticsZhejiang University International School of MedicineHangzhou310058China
| | - Wentao He
- Center for Genetic Medicinethe Fourth Affiliated Hospital of School of Medicineand International School of MedicineInternational institutes of MedicineZhejiang UniversityYiwu322000China
- Division of Medical Genetics and GenomicsThe Children's HospitalZhejiang University School of Medicine and National Clinical Research Center for Child HealthHangzhou310058China
- Institute of GeneticsZhejiang University International School of MedicineHangzhou310058China
| | - Na Wu
- Center for Genetic Medicinethe Fourth Affiliated Hospital of School of Medicineand International School of MedicineInternational institutes of MedicineZhejiang UniversityYiwu322000China
- Institute of GeneticsZhejiang University International School of MedicineHangzhou310058China
| | - Shuchenlu Xiang
- Center for Genetic Medicinethe Fourth Affiliated Hospital of School of Medicineand International School of MedicineInternational institutes of MedicineZhejiang UniversityYiwu322000China
- Institute of GeneticsZhejiang University International School of MedicineHangzhou310058China
| | - Yinsheng Wei
- Center for Genetic Medicinethe Fourth Affiliated Hospital of School of Medicineand International School of MedicineInternational institutes of MedicineZhejiang UniversityYiwu322000China
- Division of Medical Genetics and GenomicsThe Children's HospitalZhejiang University School of Medicine and National Clinical Research Center for Child HealthHangzhou310058China
- Institute of GeneticsZhejiang University International School of MedicineHangzhou310058China
| | - Gilbert Eriani
- Architecture et Réactivité de l'ARNUPR9002 Centre National de la Recherche ScientifiqueUniversité de StrasbourgInstitut de Biologie Moléculaire et Cellulaire2 allée Konrad RoentgenStrasbourg67084France
| | - Yanchun Ji
- Division of Medical Genetics and GenomicsThe Children's HospitalZhejiang University School of Medicine and National Clinical Research Center for Child HealthHangzhou310058China
- Institute of GeneticsZhejiang University International School of MedicineHangzhou310058China
| | - Min‐Xin Guan
- Center for Genetic Medicinethe Fourth Affiliated Hospital of School of Medicineand International School of MedicineInternational institutes of MedicineZhejiang UniversityYiwu322000China
- Division of Medical Genetics and GenomicsThe Children's HospitalZhejiang University School of Medicine and National Clinical Research Center for Child HealthHangzhou310058China
- Institute of GeneticsZhejiang University International School of MedicineHangzhou310058China
| | - Meng Wang
- Center for Genetic Medicinethe Fourth Affiliated Hospital of School of Medicineand International School of MedicineInternational institutes of MedicineZhejiang UniversityYiwu322000China
- Division of Medical Genetics and GenomicsThe Children's HospitalZhejiang University School of Medicine and National Clinical Research Center for Child HealthHangzhou310058China
- Institute of GeneticsZhejiang University International School of MedicineHangzhou310058China
| |
Collapse
|
4
|
Wang S, Xu CY, Zhu Y, Ding W, Hu J, Xu B, Guo Y, Liu X. A rare transcript homozygous variants in CLRN1(USH3A) causes Usher syndrome type 3 in a Chinese family. Orphanet J Rare Dis 2024; 19:349. [PMID: 39304915 DOI: 10.1186/s13023-024-03348-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 09/02/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Usher syndrome type 3 (USH3) is an autosomal recessive inherited disorder caused by pathogenic variants in the CLRN1 gene. OBJECT To evaluate the genotype-phenotype correlation of Usher syndrome type 3 (USH3) in a deaf-blind Chinese family of 3 generations with 2 patients. METHODS We collected blood samples and clinical data from all of the pedigree family members. Genomic DNA was isolated from peripheral leukocytes using standard method. Targeted next generation sequencing and Sanger sequencing were performed to find the pathogenic variants in this family. Digital PCR and plasmid overexpression assay were used to verify the pathogenicity of variant sites in different transcripts. RESULTS All patients developed bilateral sensorineural hearing loss (SHL), progressive vision loss and nyctalopia. NGS of genes for Usher syndrome, deafness and retinal dystrophy identified a locus mutation in CLRN1 that caused completely different amino acid changes in different transcripts[CLRN1:c.474T > A(P.Cys158Ter) at NM_001256819.2 or c.302T > A(p.Val101Asp) at NM_174878.3], and plasmid overexpression experiments confirmed that the c.474T > A(P.Cys158Ter, NM_001256819.2) was a pathogenic variant which has never been associated with Usher syndrome in China, and the transcript of this mutation was not the version commonly found worldwide. CONCLUSIONS The CLRN1c.474T > A(NM_001256819.2) mutation is the causative variant in the Chinese family with USH3. The pathogenicity of different transcripts should be particularly considered in pathogenicity analysis.
Collapse
Affiliation(s)
- Suyang Wang
- Department of Otolaryngology-Head and Neck Surgery, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Lanzhou, Gansu, 730030, PR China
- Department of Otolaryngology-Head and Neck Surgery, Maternal and Child Health Hospital of Gansu Province, Lanzhou, China
| | - Chen Yang Xu
- Department of Otolaryngology-Head and Neck Surgery, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Lanzhou, Gansu, 730030, PR China
| | - Yiming Zhu
- Department of Otolaryngology-Head and Neck Surgery, Gansu Provincial Hospital, Lanzhou, Gansu Province, China
| | - Wenjuan Ding
- Department of Otolaryngology-Head and Neck Surgery, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Lanzhou, Gansu, 730030, PR China
| | - Jieyu Hu
- Department of Otolaryngology-Head and Neck Surgery, Maternal and Child Health Hospital of Gansu Province, Lanzhou, China
| | - Baicheng Xu
- Department of Otolaryngology-Head and Neck Surgery, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Lanzhou, Gansu, 730030, PR China
| | - Yufen Guo
- Department of Otolaryngology-Head and Neck Surgery, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Lanzhou, Gansu, 730030, PR China.
| | - Xiaowen Liu
- Department of Otolaryngology-Head and Neck Surgery, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Lanzhou, Gansu, 730030, PR China.
- Department of Otolaryngology-Head and Neck Surgery, Maternal and Child Health Hospital of Gansu Province, Lanzhou, China.
| |
Collapse
|
5
|
Zhang J, Li W, Liu Z, Chen Y, Wei X, Peng L, Xu M, Ji Y. Defective post-transcriptional modification of tRNA disrupts mitochondrial homeostasis in Leber's hereditary optic neuropathy. J Biol Chem 2024; 300:107728. [PMID: 39214298 PMCID: PMC11421333 DOI: 10.1016/j.jbc.2024.107728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/31/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
Leber's Hereditary Optic Neuropathy (LHON) is a rare, maternally inherited eye disease, predominantly due to the degeneration of retinal ganglion cells (RGCs). It is associated with a mitochondrial DNA (mtDNA) point mutation. Our previous study identified that the m.15927G > A homoplasmic mutation damaged the highly conserved base pairing (28C-42G) in anticodon stem of tRNAThr, caused deficient t6A modification and significantly decreased efficiency in aminoacylation and steady-state levels of tRNAThr, and led to mitochondrial dysfunction. Meanwhile, mechanisms underlying mtDNA mutations regulate intracellular signaling related to mitochondrial and cellular integrity are less explored. Here, we manifested that defective nucleotide modification induced by the m.15927G > A mutation interfered with the expression of nuclear genes involved in cytoplasmic proteins essential for oxidative phosphorylation system (OXPHOS), thereby impacting the assemble and integrity of OXPHOS complexes. As a result of these mitochondrial dysfunctions, there was an imbalance in mitochondrial dynamics, particularly distinguished by an increased occurrence of mitochondrial fission. Excessive fission compromised the autophagy process, including the initiation phase, formation, and maturation of autophagosomes. Both Parkin-mediated mitophagy and receptor-dependent mitophagy were significantly impaired in cybrids haboring the m.15927G > A mutation. These changes facilitated intrinsic apoptosis, as indicated by increased cytochrome c release and elevated levels of apoptosis-associated proteins (e.g., BAK, BAX, cleaved caspase 9, cleaved caspase 3, and cleaved PARP) in the mutant cybrids. This study demonstrates that the m.15927G > A mutation contributes to LHON by dysregulating OXPHOS biogenesis, aberrant quality control, increased autophagy, inhibited mitophagy, and abnormal apoptosis.
Collapse
MESH Headings
- Optic Atrophy, Hereditary, Leber/metabolism
- Optic Atrophy, Hereditary, Leber/genetics
- Optic Atrophy, Hereditary, Leber/pathology
- Humans
- Mitochondria/metabolism
- Mitochondria/genetics
- Mitochondria/pathology
- Mitophagy
- Homeostasis
- RNA Processing, Post-Transcriptional
- DNA, Mitochondrial/metabolism
- DNA, Mitochondrial/genetics
- Oxidative Phosphorylation
- RNA, Transfer, Thr/metabolism
- RNA, Transfer, Thr/genetics
- Mitochondrial Dynamics
- Apoptosis
- Point Mutation
- Autophagy
- Ubiquitin-Protein Ligases/metabolism
- Ubiquitin-Protein Ligases/genetics
Collapse
Affiliation(s)
- Juanjuan Zhang
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China; Attardi Institute of Mitochondrial Biomedicine, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Wenxu Li
- Attardi Institute of Mitochondrial Biomedicine, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhen Liu
- Attardi Institute of Mitochondrial Biomedicine, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yingqi Chen
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaoyang Wei
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lu Peng
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Man Xu
- Attardi Institute of Mitochondrial Biomedicine, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China; Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yanchun Ji
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
6
|
Yu L, Chen Z, Zhou X, Teng F, Bai QR, Li L, Li Y, Liu Y, Zeng Q, Wang Y, Wang M, Xu Y, Tang X, Wang X. KARS Mutations Impair Brain Myelination by Inducing Oligodendrocyte Deficiency: One Potential Mechanism and Improvement by Melatonin. J Pineal Res 2024; 76:e12998. [PMID: 39087379 DOI: 10.1111/jpi.12998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/08/2024] [Accepted: 07/19/2024] [Indexed: 08/02/2024]
Abstract
It is very crucial to investigate key molecules that are involved in myelination to gain an understanding of brain development and injury. We have reported for the first time that pathogenic variants p.R477H and p.P505S in KARS, which encodes lysyl-tRNA synthetase (LysRS), cause leukoencephalopathy with progressive cognitive impairment in humans. The role and action mechanisms of KARS in brain myelination during development are unknown. Here, we first generated Kars knock-in mouse models through the CRISPR-Cas9 system. Kars knock-in mice displayed significant cognitive deficits. These mice also showed significantly reduced myelin density and content, as well as significantly decreased myelin thickness during development. In addition, Kars mutations significantly induced oligodendrocyte differentiation arrest and reduction in the brain white matter of mice. Mechanically, oligodendrocytes' significantly imbalanced expression of differentiation regulators and increased capase-3-mediated apoptosis were observed in the brain white matter of Kars knock-in mice. Furthermore, Kars mutations significantly reduced the aminoacylation and steady-state level of mitochondrial tRNALys and decreased the protein expression of subunits of oxidative phosphorylation complexes in the brain white matter. Kars knock-in mice showed decreased activity of complex IV and significantly reduced ATP production and increased reactive oxygen species in the brain white matter. Significantly increased percentages of abnormal mitochondria and mitochondrion area were observed in the oligodendrocytes of Kars knock-in mouse brain. Finally, melatonin (a mitochondrion protectant) significantly attenuated mitochondrion and oligodendrocyte deficiency in the brain white matter of KarsR504H/P532S mice. The mice treated with melatonin also showed significantly restored myelination and cognitive function. Our study first establishes Kars knock-in mammal models of leukoencephalopathy and cognitive impairment and indicates important roles of KARS in the regulation of mitochondria, oligodendrocyte differentiation and survival, and myelination during brain development and application prospects of melatonin in KARS (or even aaRS)-related diseases.
Collapse
Affiliation(s)
- Lijia Yu
- Department of Neurology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhilin Chen
- Department of Neurology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaolong Zhou
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Fei Teng
- Department of Neurology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qing-Ran Bai
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Lixi Li
- Department of Neurology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yunhong Li
- Department of Neurology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Ying Liu
- Department of Neurology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Neurology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Qiyu Zeng
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yong Wang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Meihua Wang
- Department of Neurology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Neurosurgery & Neurocritical Care, Huashan Hospital Affiliated to Fudan University, Shanghai, China
| | - Yaling Xu
- Department of Neurology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaohui Tang
- Department of Neurology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xijin Wang
- Department of Neurology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Orlova SY, Ruzina MN, Emelianova OR, Sergeev AA, Chikurova EA, Orlov AM, Mugue NS. In Search of a Target Gene for a Desirable Phenotype in Aquaculture: Genome Editing of Cyprinidae and Salmonidae Species. Genes (Basel) 2024; 15:726. [PMID: 38927661 PMCID: PMC11202958 DOI: 10.3390/genes15060726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Aquaculture supplies the world food market with a significant amount of valuable protein. Highly productive aquaculture fishes can be derived by utilizing genome-editing methods, and the main problem is to choose a target gene to obtain the desirable phenotype. This paper presents a review of the studies of genome editing for genes controlling body development, growth, pigmentation and sex determination in five key aquaculture Salmonidae and Cyprinidae species, such as rainbow trout (Onchorhynchus mykiss), Atlantic salmon (Salmo salar), common carp (Cyprinus carpio), goldfish (Carassius auratus), Gibel carp (Carassius gibelio) and the model fish zebrafish (Danio rerio). Among the genes studied, the most applicable for aquaculture are mstnba, pomc, and acvr2, the knockout of which leads to enhanced muscle growth; runx2b, mutants of which do not form bones in myoseptae; lepr, whose lack of function makes fish fast-growing; fads2, Δ6abc/5Mt, and Δ6bcMt, affecting the composition of fatty acids in fish meat; dnd mettl3, and wnt4a, mutants of which are sterile; and disease-susceptibility genes prmt7, gab3, gcJAM-A, and cxcr3.2. Schemes for obtaining common carp populations consisting of only large females are promising for use in aquaculture. The immobilized and uncolored zebrafish line is of interest for laboratory use.
Collapse
Affiliation(s)
- Svetlana Yu. Orlova
- Laboratory of Molecular Genetics, Russian Federal Research Institute of Fisheries and Oceanography, 105187 Moscow, Russia; (S.Y.O.)
| | - Maria N. Ruzina
- Laboratory of Molecular Genetics, Russian Federal Research Institute of Fisheries and Oceanography, 105187 Moscow, Russia; (S.Y.O.)
| | - Olga R. Emelianova
- Laboratory of Molecular Genetics, Russian Federal Research Institute of Fisheries and Oceanography, 105187 Moscow, Russia; (S.Y.O.)
- Department of Biological Evolution, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Alexey A. Sergeev
- Laboratory of Molecular Genetics, Russian Federal Research Institute of Fisheries and Oceanography, 105187 Moscow, Russia; (S.Y.O.)
| | - Evgeniya A. Chikurova
- Laboratory of Molecular Genetics, Russian Federal Research Institute of Fisheries and Oceanography, 105187 Moscow, Russia; (S.Y.O.)
| | - Alexei M. Orlov
- Laboratory of Oceanic Ichthyofauna, Shirshov Institute of Oceanology, Russian Academy of Sciences, 117218 Moscow, Russia
- Laboratory of Behavior of Lower Vertebrates, Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, 119071 Moscow, Russia
- Department of Ichthyology, Dagestan State University, 367000 Makhachkala, Russia
| | - Nikolai S. Mugue
- Laboratory of Molecular Genetics, Russian Federal Research Institute of Fisheries and Oceanography, 105187 Moscow, Russia; (S.Y.O.)
- Laboratory of Genome Evolution and Speciation, Institute of Developmental Biology Russian Academy of Sciences, 117808 Moscow, Russia
| |
Collapse
|
8
|
Antolínez-Fernández Á, Esteban-Ramos P, Fernández-Moreno MÁ, Clemente P. Molecular pathways in mitochondrial disorders due to a defective mitochondrial protein synthesis. Front Cell Dev Biol 2024; 12:1410245. [PMID: 38855161 PMCID: PMC11157125 DOI: 10.3389/fcell.2024.1410245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/09/2024] [Indexed: 06/11/2024] Open
Abstract
Mitochondria play a central role in cellular metabolism producing the necessary ATP through oxidative phosphorylation. As a remnant of their prokaryotic past, mitochondria contain their own genome, which encodes 13 subunits of the oxidative phosphorylation system, as well as the tRNAs and rRNAs necessary for their translation in the organelle. Mitochondrial protein synthesis depends on the import of a vast array of nuclear-encoded proteins including the mitochondrial ribosome protein components, translation factors, aminoacyl-tRNA synthetases or assembly factors among others. Cryo-EM studies have improved our understanding of the composition of the mitochondrial ribosome and the factors required for mitochondrial protein synthesis and the advances in next-generation sequencing techniques have allowed for the identification of a growing number of genes involved in mitochondrial pathologies with a defective translation. These disorders are often multisystemic, affecting those tissues with a higher energy demand, and often present with neurodegenerative phenotypes. In this article, we review the known proteins required for mitochondrial translation, the disorders that derive from a defective mitochondrial protein synthesis and the animal models that have been established for their study.
Collapse
Affiliation(s)
- Álvaro Antolínez-Fernández
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, Madrid, Spain
- Departamento de Bioquímica, Universidad Autónoma de Madrid, Madrid, Spain
| | - Paula Esteban-Ramos
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, Madrid, Spain
- Departamento de Bioquímica, Universidad Autónoma de Madrid, Madrid, Spain
| | - Miguel Ángel Fernández-Moreno
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, Madrid, Spain
- Departamento de Bioquímica, Universidad Autónoma de Madrid, Madrid, Spain
| | - Paula Clemente
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, Madrid, Spain
- Departamento de Bioquímica, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
9
|
Chen X, Meng F, Chen C, Li S, Chou Z, Xu B, Mo JQ, Guo Y, Guan MX. Deafness-associated tRNA Phe mutation impaired mitochondrial and cellular integrity. J Biol Chem 2024; 300:107235. [PMID: 38552739 PMCID: PMC11046301 DOI: 10.1016/j.jbc.2024.107235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/06/2024] [Accepted: 03/18/2024] [Indexed: 04/23/2024] Open
Abstract
Defects in mitochondrial RNA metabolism have been linked to sensorineural deafness that often occurs as a consequence of damaged or deficient inner ear hair cells. In this report, we investigated the molecular mechanism underlying a deafness-associated tRNAPhe 593T > C mutation that changed a highly conserved uracil to cytosine at position 17 of the DHU-loop. The m.593T > C mutation altered tRNAPhe structure and function, including increased melting temperature, resistance to S1 nuclease-mediated digestion, and conformational changes. The aberrant tRNA metabolism impaired mitochondrial translation, which was especially pronounced by decreases in levels of ND1, ND5, CYTB, CO1, and CO3 harboring higher numbers of phenylalanine. These alterations resulted in aberrant assembly, instability, and reduced activities of respiratory chain enzyme complexes I, III, IV, and intact supercomplexes overall. Furthermore, we found that the m.593T > C mutation caused markedly diminished membrane potential, and increased the production of reactive oxygen species in the mutant cell lines carrying the m.593T > C mutation. These mitochondrial dysfunctions led to the mitochondrial dynamic imbalance via increasing fission with abnormal mitochondrial morphology. Excessive fission impaired the process of autophagy including the initiation phase, formation, and maturation of the autophagosome. In particular, the m.593T > C mutation upregulated the PARKIN-dependent mitophagy pathway. These alterations promoted an intrinsic apoptotic process for the removal of damaged cells. Our findings provide critical insights into the pathophysiology of maternally inherited deafness arising from tRNA mutation-induced defects in mitochondrial and cellular integrity.
Collapse
Affiliation(s)
- Xiaowan Chen
- Department of Otolaryngology-Head and Neck Surgery, Lanzhou University First Hospital, Lanzhou, Gansu, China; Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, Zhejiang, China
| | - Feilong Meng
- Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, Zhejiang, China; Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chao Chen
- Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, Zhejiang, China; Center for Mitochondrial Biomedicine, The Fourth Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shujuan Li
- Department of Otolaryngology-Head and Neck Surgery, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Zhiqiang Chou
- Department of Otolaryngology-Head and Neck Surgery, Lanzhou University First Hospital, Lanzhou, Gansu, China
| | - Baicheng Xu
- Department of Otolaryngology-Head and Neck Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Jun Q Mo
- Department of Pathology, Rady Children's Hospital, University of California School of Medicine, San Diego, California, USA
| | - Yufen Guo
- Department of Otolaryngology-Head and Neck Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Min-Xin Guan
- Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, Zhejiang, China; Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Center for Mitochondrial Biomedicine, The Fourth Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Zhejiang Provincial Lab of Genetics and Genomics, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
10
|
He Y, Zhu G, Li X, Zhou M, Guan MX. Deficient tRNA posttranscription modification dysregulated the mitochondrial quality controls and apoptosis. iScience 2024; 27:108883. [PMID: 38318358 PMCID: PMC10838789 DOI: 10.1016/j.isci.2024.108883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 10/26/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
Mitochondria are dynamic organelles in cellular metabolism and physiology. Mitochondrial DNA (mtDNA) mutations are associated with a broad spectrum of clinical abnormalities. However, mechanisms underlying mtDNA mutations regulate intracellular signaling related to the mitochondrial and cellular integrity are less explored. Here, we demonstrated that mt-tRNAMet 4435A>G mutation-induced nucleotide modification deficiency dysregulated the expression of nuclear genes involved in cytosolic proteins involved in oxidative phosphorylation system (OXPHOS) and impaired the assemble and integrity of OXPHOS complexes. These dysfunctions caused mitochondrial dynamic imbalance, thereby increasing fission and decreasing fusion. Excessive fission impaired the process of autophagy including initiation phase, formation, and maturation of autophagosome. Strikingly, the m.4435A>G mutation upregulated the PARKIN dependent mitophagy pathways but downregulated the ubiquitination-independent mitophagy. These alterations promoted intrinsic apoptotic process for the removal of damaged cells. Our findings provide new insights into mechanism underlying deficient tRNA posttranscription modification regulated intracellular signaling related to the mitochondrial and cellular integrity.
Collapse
Affiliation(s)
- Yunfan He
- Center for Mitochondrial Biomedicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
- Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, Zhejiang, China
- Center for Genetic Medicine, Zhejiang University International Institute of Medicine, Yiwu, Zhejiang, China
| | - Gao Zhu
- Center for Mitochondrial Biomedicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
- Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, Zhejiang, China
- Center for Genetic Medicine, Zhejiang University International Institute of Medicine, Yiwu, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Hangzhou, Zhejiang, China
| | - Xincheng Li
- Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, Zhejiang, China
| | - Mi Zhou
- Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, Zhejiang, China
| | - Min-Xin Guan
- Center for Mitochondrial Biomedicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
- Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, Zhejiang, China
- Center for Genetic Medicine, Zhejiang University International Institute of Medicine, Yiwu, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Hangzhou, Zhejiang, China
- Key Lab of Reproductive Genetics, Ministry of Education of PRC, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
11
|
Matveeva A, Watters O, Rukhadze A, Khemka N, Gentile D, Perez IF, Llorente-Folch I, Farrell C, Lo Cacciato E, Jackson J, Piazzesi A, Wischhof L, Woods I, Halang L, Hogg M, Muñoz AG, Dillon ET, Matallanas D, Arijs I, Lambrechts D, Bano D, Connolly NMC, Prehn JHM. Integrated analysis of transcriptomic and proteomic alterations in mouse models of ALS/FTD identify early metabolic adaptions with similarities to mitochondrial dysfunction disorders. Amyotroph Lateral Scler Frontotemporal Degener 2024; 25:135-149. [PMID: 37779364 DOI: 10.1080/21678421.2023.2261979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 09/10/2023] [Indexed: 10/03/2023]
Abstract
OBJECTIVE Sporadic and familial amyotrophic lateral sclerosis (ALS) is a fatal progressive neurodegenerative disease that results in loss of motor neurons and, in some patients, associates with frontotemporal dementia (FTD). Apart from the accumulation of proteinaceous deposits, emerging literature indicates that aberrant mitochondrial bioenergetics may contribute to the onset and progression of ALS/FTD. Here we sought to investigate the pathophysiological signatures of mitochondrial dysfunction associated with ALS/FTD. METHODS By means of label-free mass spectrometry (MS) and mRNA sequencing (mRNA-seq), we report pre-symptomatic changes in the cortices of TDP-43 and FUS mutant mouse models. Using tissues from transgenic mouse models of mitochondrial diseases as a reference, we performed comparative analyses and extracted unique and common mitochondrial signatures that revealed neuroprotective compensatory mechanisms in response to early damage. RESULTS In this regard, upregulation of both Acyl-CoA Synthetase Long-Chain Family Member 3 (ACSL3) and mitochondrial tyrosyl-tRNA synthetase 2 (YARS2) were the most representative change in pre-symptomatic ALS/FTD tissues, suggesting that fatty acid beta-oxidation and mitochondrial protein translation are mechanisms of adaptation in response to ALS/FTD pathology. CONCLUSIONS Together, our unbiased integrative analyses unveil novel molecular components that may influence mitochondrial homeostasis in the earliest phase of ALS.
Collapse
Affiliation(s)
- Anna Matveeva
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Orla Watters
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- SFI FutureNeuro Research Centre, Dublin 2, Ireland
| | - Ani Rukhadze
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Niraj Khemka
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Debora Gentile
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Ivan Fernandez Perez
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Irene Llorente-Folch
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Cliona Farrell
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | | | - Joshua Jackson
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Antonia Piazzesi
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Lena Wischhof
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Ina Woods
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Luise Halang
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Marion Hogg
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- SFI FutureNeuro Research Centre, Dublin 2, Ireland
- Department of Biosciences, Nottingham Trent University, Clifton Campus, Nottingham, UK
| | - Amaya Garcia Muñoz
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin 4, Belfield, Ireland
| | - Eugène T Dillon
- Mass Spectrometry Resource, Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - David Matallanas
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin 4, Belfield, Ireland
| | - Ingrid Arijs
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium, and
- VIB Center for Cancer Biology, Leuven, Belgium
| | - Diether Lambrechts
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium, and
- VIB Center for Cancer Biology, Leuven, Belgium
| | - Daniele Bano
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Niamh M C Connolly
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Jochen H M Prehn
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- SFI FutureNeuro Research Centre, Dublin 2, Ireland
| |
Collapse
|
12
|
Morshedzadeh F, Ghanei M, Lotfi M, Ghasemi M, Ahmadi M, Najari-Hanjani P, Sharif S, Mozaffari-Jovin S, Peymani M, Abbaszadegan MR. An Update on the Application of CRISPR Technology in Clinical Practice. Mol Biotechnol 2024; 66:179-197. [PMID: 37269466 PMCID: PMC10239226 DOI: 10.1007/s12033-023-00724-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 03/13/2023] [Indexed: 06/05/2023]
Abstract
The CRISPR/Cas system, an innovative gene-editing tool, is emerging as a promising technique for genome modifications. This straightforward technique was created based on the prokaryotic adaptive immune defense mechanism and employed in the studies on human diseases that proved enormous therapeutic potential. A genetically unique patient mutation in the process of gene therapy can be corrected by the CRISPR method to treat diseases that traditional methods were unable to cure. However, introduction of CRISPR/Cas9 into the clinic will be challenging because we still need to improve the technology's effectiveness, precision, and applications. In this review, we first describe the function and applications of the CRISPR-Cas9 system. We next delineate how this technology could be utilized for gene therapy of various human disorders, including cancer and infectious diseases and highlight the promising examples in the field. Finally, we document current challenges and the potential solutions to overcome these obstacles for the effective use of CRISPR-Cas9 in clinical practice.
Collapse
Affiliation(s)
- Firouzeh Morshedzadeh
- Department of Genetics, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Ghanei
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Malihe Lotfi
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Morteza Ghasemi
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Mohsen Ahmadi
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Parisa Najari-Hanjani
- Department of Medical Genetics, Faculty of Advanced Technologies in Medicine, Golestan University of Medical Science, Gorgan, Iran
| | - Samaneh Sharif
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sina Mozaffari-Jovin
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Peymani
- Department of Genetics, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Mohammad Reza Abbaszadegan
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
13
|
Hu JL, Hsu CC, Hsiao YJ, Lin YY, Lai WY, Liu YH, Wang CL, Ko YL, Tsai ML, Tseng HC, Chien Y, Yang YP. Leber's hereditary optic neuropathy: Update on the novel genes and therapeutic options. J Chin Med Assoc 2024; 87:12-16. [PMID: 38016117 DOI: 10.1097/jcma.0000000000001031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2023] Open
Abstract
A maternal inheritance disorder called Leber's hereditary optic neuropathy (LHON) is the most common primary mitochondrial deoxyribonucleic acid (DNA) disorder. In most studies, there are more male patients than female patients, which contradicts the usual pattern in mitochondrial hereditary diseases. This suggests that nuclear DNA (nDNA) may influence the degeneration of retinal ganglion cells (RGCs) in LHON. The primary cause of this is dysfunction in complex I of the electron transport chain, leading to ineffective adenosine triphosphate (ATP) production. In addition to MT-ND4 or MT-ND1 mutations, genes such as PRICKLE3 , YARS2 , and DNAJC30 , which come from nDNA, also play a role in LHON. These three genes affect the electron chain transport differently. PRICKLE3 interacts with ATP synthase (complex V) at Xp11.23, while YARS2 is a tyrosyl-tRNA synthetase 2 involved in mitochondria . DNAJC30 mutations result in autosomal recessive LHON (arLHON). Understanding how genes impact the disease is crucial for developing new treatments. Idebenone has been approved for treating LHON and has shown safety and efficacy in clinical trials. Mesenchymal stem cell-based therapy has also emerged as a potential treatment for LHON by transferring mitochondria into target cells. Gene therapy research focuses on specific gene mutations, and the wild-type ND4 gene target in the adeno-associated viruses (AAV) vector has shown promise in clinical trials as a potential treatment for LHON.
Collapse
Affiliation(s)
- Jui-Lin Hu
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Chih-Chien Hsu
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Yu-Jer Hsiao
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Yi-Ying Lin
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Wei-Yi Lai
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Yu-Hao Liu
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Chia-Lin Wang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Yu-Ling Ko
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Ming-Long Tsai
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Huan-Chin Tseng
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Yueh Chien
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Yi-Ping Yang
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| |
Collapse
|
14
|
Tyynismaa H. Disease models of mitochondrial aminoacyl-tRNA synthetase defects. J Inherit Metab Dis 2023; 46:817-823. [PMID: 37410890 DOI: 10.1002/jimd.12652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 06/12/2023] [Accepted: 06/30/2023] [Indexed: 07/08/2023]
Abstract
Mitochondrial aminoacyl-tRNA synthetases (mtARS) are enzymes critical for the first step of mitochondrial protein synthesis by charging mitochondrial tRNAs with their cognate amino acids. Pathogenic variants in all 19 nuclear mtARS genes are now recognized as causing recessive mitochondrial diseases. Most mtARS disorders affect the nervous system, but the phenotypes range from multisystem diseases to tissue-specific manifestations. However, the mechanisms behind the tissue specificities are poorly understood, and challenges remain in obtaining accurate disease models for developing and testing treatments. Here, some of the currently existing disease models that have increased our understanding of mtARS defects are discussed.
Collapse
Affiliation(s)
- Henna Tyynismaa
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
15
|
Kalotay E, Klugmann M, Housley GD, Fröhlich D. Recessive aminoacyl-tRNA synthetase disorders: lessons learned from in vivo disease models. Front Neurosci 2023; 17:1182874. [PMID: 37274208 PMCID: PMC10234152 DOI: 10.3389/fnins.2023.1182874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/17/2023] [Indexed: 06/06/2023] Open
Abstract
Protein synthesis is a fundamental process that underpins almost every aspect of cellular functioning. Intriguingly, despite their common function, recessive mutations in aminoacyl-tRNA synthetases (ARSs), the family of enzymes that pair tRNA molecules with amino acids prior to translation on the ribosome, cause a diverse range of multi-system disorders that affect specific groups of tissues. Neurological development is impaired in most ARS-associated disorders. In addition to central nervous system defects, diseases caused by recessive mutations in cytosolic ARSs commonly affect the liver and lungs. Patients with biallelic mutations in mitochondrial ARSs often present with encephalopathies, with variable involvement of peripheral systems. Many of these disorders cause severe disability, and as understanding of their pathogenesis is currently limited, there are no effective treatments available. To address this, accurate in vivo models for most of the recessive ARS diseases are urgently needed. Here, we discuss approaches that have been taken to model recessive ARS diseases in vivo, highlighting some of the challenges that have arisen in this process, as well as key results obtained from these models. Further development and refinement of animal models is essential to facilitate a better understanding of the pathophysiology underlying recessive ARS diseases, and ultimately to enable development and testing of effective therapies.
Collapse
Affiliation(s)
- Elizabeth Kalotay
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Matthias Klugmann
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
- Research Beyond Borders, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Gary D. Housley
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Dominik Fröhlich
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
16
|
López-Soldado I, Torres AG, Ventura R, Martínez-Ruiz I, Díaz-Ramos A, Planet E, Cooper D, Pazderska A, Wanic K, O'Hanlon D, O'Gorman DJ, Carbonell T, Ribas de Pouplana L, Nolan JJ, Zorzano A, Hernández-Alvarez MI. Decreased expression of mitochondrial aminoacyl-tRNA synthetases causes downregulation of OXPHOS subunits in type 2 diabetic muscle. Redox Biol 2023; 61:102630. [PMID: 36796135 PMCID: PMC9958393 DOI: 10.1016/j.redox.2023.102630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/26/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
Type 2 diabetes mellitus (T2D) affects millions of people worldwide and is one of the leading causes of morbidity and mortality. The skeletal muscle (SKM) is one of the most important tissues involved in maintaining glucose homeostasis and substrate oxidation, and it undergoes insulin resistance in T2D. In this study, we identify the existence of alterations in the expression of mitochondrial aminoacyl-tRNA synthetases (mt-aaRSs) in skeletal muscle from two different forms of T2D: early-onset type 2 diabetes (YT2) (onset of the disease before 30 years of age) and the classical form of the disease (OT2). GSEA analysis from microarray studies revealed the repression of mitochondrial mt-aaRSs independently of age, which was validated by real-time PCR assays. In agreement with this, a reduced expression of several encoding mt-aaRSs was also detected in skeletal muscle from diabetic (db/db) mice but not in obese ob/ob mice. In addition, the expression of the mt-aaRSs proteins most relevant in the synthesis of mitochondrial proteins, threonyl-tRNA, and leucyl-tRNA synthetases (TARS2 and LARS2) were also repressed in muscle from db/db mice. It is likely that these alterations participate in the reduced expression of proteins synthesized in the mitochondria detected in db/db mice. We also document an increased iNOS abundance in mitochondrial-enriched muscle fractions from diabetic mice that may inhibit aminoacylation of TARS2 and LARS2 by nitrosative stress. Our results indicate a reduced expression of mt-aaRSs in skeletal muscle from T2D patients, which may participate in the reduced expression of proteins synthesized in mitochondria. An enhanced mitochondrial iNOS could play a regulatory role in diabetes.
Collapse
Affiliation(s)
- Iliana López-Soldado
- Department de Bioquímica i Biomedicina Molecular, Facultat de Biología, 08028, Spain; Institut de Biomedicina de la Universitat de Barcelona IBUB, Barcelona, Spain
| | - Adrian Gabriel Torres
- Institute for Research in Biomedicine (IRB Barcelona), the Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Raúl Ventura
- Department de Bioquímica i Biomedicina Molecular, Facultat de Biología, 08028, Spain; Institut de Biomedicina de la Universitat de Barcelona IBUB, Barcelona, Spain
| | - Inma Martínez-Ruiz
- Department de Bioquímica i Biomedicina Molecular, Facultat de Biología, 08028, Spain; Institut de Biomedicina de la Universitat de Barcelona IBUB, Barcelona, Spain
| | - Angels Díaz-Ramos
- Institute for Research in Biomedicine (IRB Barcelona), the Barcelona Institute of Science and Technology, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Spain
| | - Evarist Planet
- Institute for Research in Biomedicine (IRB Barcelona), the Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Diane Cooper
- National Institute for Cellular Biotechnology, 3U Diabetes Partnership & School of Health and Human Performance, Dublin City University, Dublin, Ireland
| | - Agnieszka Pazderska
- Metabolic Research Unit, St James's Hospital, and Trinity College, Dublin, Ireland
| | - Krzysztof Wanic
- Metabolic Research Unit, St James's Hospital, and Trinity College, Dublin, Ireland
| | - Declan O'Hanlon
- Metabolic Research Unit, St James's Hospital, and Trinity College, Dublin, Ireland
| | - Donal J O'Gorman
- National Institute for Cellular Biotechnology, 3U Diabetes Partnership & School of Health and Human Performance, Dublin City University, Dublin, Ireland
| | - Teresa Carbonell
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, 08028, Barcelona, Spain
| | - Lluís Ribas de Pouplana
- Institute for Research in Biomedicine (IRB Barcelona), the Barcelona Institute of Science and Technology, Barcelona, Spain
| | - John J Nolan
- Metabolic Research Unit, St James's Hospital, and Trinity College, Dublin, Ireland
| | - Antonio Zorzano
- Department de Bioquímica i Biomedicina Molecular, Facultat de Biología, 08028, Spain; Institute for Research in Biomedicine (IRB Barcelona), the Barcelona Institute of Science and Technology, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Spain.
| | - María Isabel Hernández-Alvarez
- Department de Bioquímica i Biomedicina Molecular, Facultat de Biología, 08028, Spain; Institut de Biomedicina de la Universitat de Barcelona IBUB, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Spain.
| |
Collapse
|
17
|
Peng GX, Mao XL, Cao Y, Yao SY, Li QR, Chen X, Wang ED, Zhou XL. RNA granule-clustered mitochondrial aminoacyl-tRNA synthetases form multiple complexes with the potential to fine-tune tRNA aminoacylation. Nucleic Acids Res 2022; 50:12951-12968. [PMID: 36503967 PMCID: PMC9825176 DOI: 10.1093/nar/gkac1141] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/23/2022] [Accepted: 11/15/2022] [Indexed: 12/14/2022] Open
Abstract
Mitochondrial RNA metabolism is suggested to occur in identified compartmentalized foci, i.e. mitochondrial RNA granules (MRGs). Mitochondrial aminoacyl-tRNA synthetases (mito aaRSs) catalyze tRNA charging and are key components in mitochondrial gene expression. Mutations of mito aaRSs are associated with various human disorders. However, the suborganelle distribution, interaction network and regulatory mechanism of mito aaRSs remain largely unknown. Here, we found that all mito aaRSs partly colocalize with MRG, and this colocalization is likely facilitated by tRNA-binding capacity. A fraction of human mitochondrial AlaRS (hmtAlaRS) and hmtSerRS formed a direct complex via interaction between catalytic domains in vivo. Aminoacylation activities of both hmtAlaRS and hmtSerRS were fine-tuned upon complex formation in vitro. We further established a full spectrum of interaction networks via immunoprecipitation and mass spectrometry for all mito aaRSs and discovered interactions between hmtSerRS and hmtAsnRS, between hmtSerRS and hmtTyrRS and between hmtThrRS and hmtArgRS. The activity of hmtTyrRS was also influenced by the presence of hmtSerRS. Notably, hmtSerRS utilized the same catalytic domain in mediating several interactions. Altogether, our results systematically analyzed the suborganelle localization and interaction network of mito aaRSs and discovered several mito aaRS-containing complexes, deepening our understanding of the functional and regulatory mechanisms of mito aaRSs.
Collapse
Affiliation(s)
| | | | - Yating Cao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Shi-Ying Yao
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Qing-Run Li
- CAS Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Xin Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - En-Duo Wang
- Correspondence may also be addressed to En-Duo Wang. Tel: +86 21 5492 1241; Fax: +86 21 5492 1011;
| | - Xiao-Long Zhou
- To whom correspondence should be addressed. Tel: +86 21 5492 1247; Fax: +86 21 5492 1011;
| |
Collapse
|
18
|
Jia Z, Meng F, Chen H, Zhu G, Li X, He Y, Zhang L, He X, Zhan H, Chen M, Ji Y, Wang M, Guan MX. Human TRUB1 is a highly conserved pseudouridine synthase responsible for the formation of Ψ55 in mitochondrial tRNAAsn, tRNAGln, tRNAGlu and tRNAPro. Nucleic Acids Res 2022; 50:9368-9381. [PMID: 36018806 PMCID: PMC9458420 DOI: 10.1093/nar/gkac698] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 07/26/2022] [Accepted: 07/30/2022] [Indexed: 12/24/2022] Open
Abstract
Pseudouridine (Ψ) at position 55 in tRNAs plays an important role in their structure and function. This modification is catalyzed by TruB/Pus4/Cbf5 family of pseudouridine synthases in bacteria and yeast. However, the mechanism of TRUB family underlying the formation of Ψ55 in the mammalian tRNAs is largely unknown. In this report, the CMC/reverse transcription assays demonstrated the presence of Ψ55 in the human mitochondrial tRNAAsn, tRNAGln, tRNAGlu, tRNAPro, tRNAMet, tRNALeu(UUR) and tRNASer(UCN). TRUB1 knockout (KO) cell lines generated by CRISPR/Cas9 technology exhibited the loss of Ψ55 modification in mitochondrial tRNAAsn, tRNAGln, tRNAGlu and tRNAPro but did not affect other 18 mitochondrial tRNAs. An in vitro assay revealed that recombinant TRUB1 protein can catalyze the efficient formation of Ψ55 in tRNAAsn and tRNAGln, but not in tRNAMet and tRNAArg. Notably, the overexpression of TRUB1 cDNA reversed the deficient Ψ55 modifications in these tRNAs in TRUB1KO HeLa cells. TRUB1 deficiency affected the base-pairing (18A/G-Ψ55), conformation and stability but not aminoacylation capacity of these tRNAs. Furthermore, TRUB1 deficiency impacted mitochondrial translation and biogenesis of oxidative phosphorylation system. Our findings demonstrated that human TRUB1 is a highly conserved mitochondrial pseudouridine synthase responsible for the Ψ55 modification in the mitochondrial tRNAAsn, tRNAGln, tRNAGlu and tRNAPro.
Collapse
Affiliation(s)
| | | | | | - Gao Zhu
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xincheng Li
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yunfan He
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Liyao Zhang
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiao He
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Huisen Zhan
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Mengquan Chen
- Department of Lab Medicine, Wenzhou Hospital of Traditional Chinese Medicine, Wenzhou, Zhejiang, China
| | - Yanchun Ji
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China,Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Meng Wang
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China,Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Min-Xin Guan
- To whom correspondence should be addressed. Tel: +571 88206916; Fax: +571 88982377;
| |
Collapse
|
19
|
Ji Y, Zhang J, Liang M, Meng F, Zhang M, Mo JQ, Wang M, Guan MX. Mitochondrial tRNA variants in 811 Chinese probands with Leber's hereditary optic neuropathy. Mitochondrion 2022; 65:56-66. [PMID: 35623556 DOI: 10.1016/j.mito.2022.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/26/2022] [Accepted: 05/22/2022] [Indexed: 11/27/2022]
Abstract
Leber's hereditary optic neuropathy (LHON) is the maternal inheritance of eye disorder. LHON-linked mitochondrial DNA (mtDNA) mutations affect the ND1, ND4 or ND6 genes encoding essential subunits of complex I. However, the role of mitochondrial tRNA defects in the pathogenesis of LHON is poorly understood. In this report, Sanger sequence analysis of 22 mitochondrial tRNA genes identified 139 variants in a cohort of 811 Han Chinese probands and 485 control Chinese subjects. Among these, 32 (4 known and 28 novel/putative) tRNA variants in 69 probands may contribute to pathogenesis of LHON, as these exhibited (1) present in <1% of controls; (2) evolutionary conservation; (3) potential and significance of structural and functional modifications. Such variants may have potentially compromised structural and functional aspects in the processing of tRNAs, structure stability, tRNA charging, or codon-anticodon interactions during translation. These 32 variants presented either singly or with multiple mutations, with the primary LHON-linked ND1 3640G>A, ND4 11778G>A or ND6 14484T>C mutations in the probands. The thirty-eight pedigrees carrying only one of tRNA variants exhibited relatively low penetrances of LHON, ranging from 5.7% to 42.9%, with an average of 19%. Strikingly, the average penetrances of optic neuropathy among 33 Chinese families carrying both a known/putative tRNA variant and a primary LHON-associated mtDNA mutation were 40.1%. These findings suggested that mitochondrial tRNA variants represent a significant causative factor for LHON, accounting for 8.75% cases in this cohort. These new insights may lead to beneficial applications in the pathophysiology, disease management, and genetic counseling of LHON.
Collapse
Affiliation(s)
- Yanchun Ji
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310058, China; Institute of Genetics, Zhejiang University, School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Juanjuan Zhang
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Min Liang
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Feilong Meng
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310058, China; Institute of Genetics, Zhejiang University, School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Minglian Zhang
- Department of Ophthalmology, Hebei Provincial Eye Hospital, Xingtai, Hebei 051730, China
| | - Jun Q Mo
- Department of Pathology, Rady Children's Hospital, University of California at San Diego School of Medicine, San Diego, California 92123, USA
| | - Meng Wang
- Institute of Genetics, Zhejiang University, School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Min-Xin Guan
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310058, China; Institute of Genetics, Zhejiang University, School of Medicine, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Zhejiang University, Hangzhou, Zhejiang 310058, China; Division of Mitochondrial Biomedicine, Joint Institute of Genetics and Genome Medicine between Zhejiang University and University of Toronto, Hangzhou, Zhejiang, China.
| |
Collapse
|
20
|
Liang M, Ji C, Zhang L, Wang X, Hu C, Zhang J, Zhu Y, Mo JQ, Guan MX. Leber's hereditary optic neuropathy (LHON)-associated ND6 14 484 T > C mutation caused pleiotropic effects on the complex I, RNA homeostasis, apoptosis and mitophagy. Hum Mol Genet 2022; 31:3299-3312. [PMID: 35567411 DOI: 10.1093/hmg/ddac109] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/25/2022] [Accepted: 05/09/2022] [Indexed: 11/12/2022] Open
Abstract
Leber's hereditary optic neuropathy (LHON) is a maternally inherited eye disease due to mitochondrial DNA (mtDNA) mutations. LHON-linked ND6 14 484 T > C (p.M64V) mutation affected structural components of complex I but its pathophysiology is poorly understood. The structural analysis of complex I revealed that the M64 forms a nonpolar interaction Y59 in the ND6, Y59 in the ND6 interacts with E34 of ND4L, and L60 of ND6 interacts with the Y114 of ND1. These suggested that the m.14484 T > C mutation may perturb the structure and function of complex I. Mutant cybrids constructed by transferring mitochondria from lymphoblastoid cell lines of one Chinese LHON family into mtDNA-less (ρo) cells revealed decreases in the levels of ND6, ND1 and ND4L. The m.14484 T > C mutation may affect mitochondrial mRNA homeostasis, supported by reduced levels of SLIRP and SUPV3L1 involved in mRNA degradation and increasing expression of ND6, ND1 and ND4L genes. These alterations yielded decreased activity of complex I, respiratory deficiency, diminished mitochondrial ATP production and reduced membrane potential, and increased production of reactive oxygen species in the mutant cybrids. Furthermore, the m.14484 T > C mutation promoted apoptosis, evidenced by elevating Annexin V-positive cells, release of cytochrome c into cytosol, levels in apoptotic proteins BAX, caspases 3, 7, 9 and decreasing levels in anti-apoptotic protein Bcl-xL in the mutant cybrids. Moreover, the cybrids bearing the m.14484 T > C mutation exhibited the reduced levels of autophagy protein LC3, increased levels of substrate P62 and impaired PINK1/Parkin-dependent mitophagy. Our findings highlighted the critical role of m.14484 T > C mutation in the pathogenesis of LHON.
Collapse
Affiliation(s)
- Min Liang
- Department of Medical Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.,Attardi Institute of Mitochondrial Biomedicine, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.,Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Chun Ji
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, and National Clinic Research Center for Child Health, Hangzhou, Zhejiang 310058, China
| | - Liyao Zhang
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Xuan Wang
- Attardi Institute of Mitochondrial Biomedicine, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Cuifang Hu
- Attardi Institute of Mitochondrial Biomedicine, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Juanjuan Zhang
- Attardi Institute of Mitochondrial Biomedicine, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.,School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yiwei Zhu
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Jun Q Mo
- Department of Pathology, Rady Children's Hospital, University of California at San Diego School of Medicine, San Diego, California 92123, USA
| | - Min-Xin Guan
- Attardi Institute of Mitochondrial Biomedicine, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.,Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, and National Clinic Research Center for Child Health, Hangzhou, Zhejiang 310058, China.,Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
21
|
Fan W, Jin X, Xu M, Xi Y, Lu W, Yang X, Guan MX, Ge W. FARS2 deficiency in Drosophila reveals the developmental delay and seizure manifested by aberrant mitochondrial tRNA metabolism. Nucleic Acids Res 2021; 49:13108-13121. [PMID: 34878141 PMCID: PMC8682739 DOI: 10.1093/nar/gkab1187] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 11/08/2021] [Accepted: 11/17/2021] [Indexed: 01/16/2023] Open
Abstract
Mutations in genes encoding mitochondrial aminoacyl-tRNA synthetases are linked to diverse diseases. However, the precise mechanisms by which these mutations affect mitochondrial function and disease development are not fully understood. Here, we develop a Drosophila model to study the function of dFARS2, the Drosophila homologue of the mitochondrial phenylalanyl–tRNA synthetase, and further characterize human disease-associated FARS2 variants. Inactivation of dFARS2 in Drosophila leads to developmental delay and seizure. Biochemical studies reveal that dFARS2 is required for mitochondrial tRNA aminoacylation, mitochondrial protein stability, and assembly and enzyme activities of OXPHOS complexes. Interestingly, by modeling FARS2 mutations associated with human disease in Drosophila, we provide evidence that expression of two human FARS2 variants, p.G309S and p.D142Y, induces seizure behaviors and locomotion defects, respectively. Together, our results not only show the relationship between dysfunction of mitochondrial aminoacylation system and pathologies, but also illustrate the application of Drosophila model for functional analysis of human disease-causing variants.
Collapse
Affiliation(s)
- Wenlu Fan
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Institute of Genetics, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China.,Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Xiaoye Jin
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Institute of Genetics, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China.,Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Man Xu
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Institute of Genetics, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China.,Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Yongmei Xi
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Institute of Genetics, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Weiguo Lu
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China.,Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xiaohang Yang
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Institute of Genetics, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China.,Zhejiang Provincial Key Laboratory of Genetic and Developmental Disorders, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Min-Xin Guan
- Institute of Genetics, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China.,Zhejiang Provincial Key Laboratory of Genetic and Developmental Disorders, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Wanzhong Ge
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Institute of Genetics, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China.,Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China.,Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
22
|
Tang JX, Pyle A, Taylor RW, Oláhová M. Interrogating Mitochondrial Biology and Disease Using CRISPR/Cas9 Gene Editing. Genes (Basel) 2021; 12:1604. [PMID: 34680998 PMCID: PMC8536160 DOI: 10.3390/genes12101604] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/07/2021] [Accepted: 10/09/2021] [Indexed: 12/21/2022] Open
Abstract
Mitochondrial disease originates from genetic changes that impact human bodily functions by disrupting the mitochondrial oxidative phosphorylation system. MitoCarta is a curated and published inventory that sheds light on the mitochondrial proteome, but the function of some mitochondrially-localised proteins remains poorly characterised. Consequently, various gene editing systems have been employed to uncover the involvement of these proteins in mitochondrial biology and disease. CRISPR/Cas9 is an efficient, versatile, and highly accurate genome editing tool that was first introduced over a decade ago and has since become an indispensable tool for targeted genetic manipulation in biological research. The broad spectrum of CRISPR/Cas9 applications serves as an attractive and tractable system to study genes and pathways that are essential for the regulation and maintenance of mitochondrial health. It has opened possibilities of generating reliable cell and animal models of human disease, and with further exploitation of the technology, large-scale genomic screenings have uncovered a wealth of fundamental mechanistic insights. In this review, we describe the applications of CRISPR/Cas9 system as a genome editing tool to uncover new insights into pathomechanisms of mitochondrial diseases and/or biological processes involved in mitochondrial function.
Collapse
Affiliation(s)
- Jia-Xin Tang
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (J.-X.T.); (A.P.); (R.W.T.)
| | - Angela Pyle
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (J.-X.T.); (A.P.); (R.W.T.)
| | - Robert W. Taylor
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (J.-X.T.); (A.P.); (R.W.T.)
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE2 4HH, UK
| | - Monika Oláhová
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (J.-X.T.); (A.P.); (R.W.T.)
| |
Collapse
|
23
|
Zhang J, Ji Y, Chen J, Xu M, Wang G, Ci X, Lin B, Mo JQ, Zhou X, Guan MX. Assocation Between Leber's Hereditary Optic Neuropathy and MT-ND1 3460G>A Mutation-Induced Alterations in Mitochondrial Function, Apoptosis, and Mitophagy. Invest Ophthalmol Vis Sci 2021; 62:38. [PMID: 34311469 PMCID: PMC8322717 DOI: 10.1167/iovs.62.9.38] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Purpose To investigate the molecular mechanism underlying the Leber's hereditary optic neuropathy (LHON)-linked MT-ND1 3460G>A mutation. Methods Cybrid cell models were generated by fusing mitochondrial DNA-less ρ0 cells with enucleated cells from a patient carrying the m.3460G>A mutation and a control subject. The impact of m.3460G>A mutations on oxidative phosphorylation was evaluated using Blue Native gel electrophoresis, and measurements of oxygen consumption were made with an extracellular flux analyzer. Assessment of reactive oxygen species (ROS) production in cell lines was performed by flow cytometry with MitoSOX Red reagent. Assays for apoptosis and mitophagy were undertaken via immunofluorescence analysis. Results Nineteen Chinese Han pedigrees bearing the m.3460G>A mutation exhibited variable penetrance and expression of LHON. The m.3460G>A mutation altered the structure and function of MT-ND1, as evidenced by reduced MT-ND1 levels in mutant cybrids bearing the mutation. The instability of mutated MT-ND1 manifested as defects in the assembly and activity of complex I, respiratory deficiency, diminished mitochondrial adenosine triphosphate production, and decreased membrane potential, in addition to increased production of mitochondrial ROS in the mutant cybrids carrying the m.3460G>A mutation. The m.3460G>A mutation mediated apoptosis, as evidenced by the elevated release of cytochrome c into the cytosol and increasing levels of the apoptotic-associated proteins BAK, BAX, and PARP, as well as cleaved caspases 3, 7, and 9, in the mutant cybrids. The cybrids bearing the m.3460G>A mutation exhibited reduced levels of autophagy protein light chain 3, accumulation of autophagic substrate P62, and impaired PTEN-induced kinase 1/parkin-dependent mitophagy. Conclusions Our findings highlight the critical role of m.3460G>A mutation in the pathogenesis of LHON, manifested by mitochondrial dysfunction and alterations in apoptosis and mitophagy.
Collapse
Affiliation(s)
- Juanjuan Zhang
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Attardi Institute of Mitochondrial Biomedicine, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yanchun Ji
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Division of Medical Genetics and Genomics, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Jie Chen
- Attardi Institute of Mitochondrial Biomedicine, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Man Xu
- Attardi Institute of Mitochondrial Biomedicine, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Guoping Wang
- Attardi Institute of Mitochondrial Biomedicine, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaorui Ci
- Attardi Institute of Mitochondrial Biomedicine, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Bing Lin
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jun Q Mo
- Department of Pathology, Rady Children's Hospital, University of California at San Diego School of Medicine, San Diego, California, United States
| | - Xiangtian Zhou
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Attardi Institute of Mitochondrial Biomedicine, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Min-Xin Guan
- Attardi Institute of Mitochondrial Biomedicine, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Division of Medical Genetics and Genomics, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China.,Zhejiang Provincial Key Laboratory of Genetic and Developmental Disorders, Hangzhou, Zhejiang, China
| |
Collapse
|
24
|
Jin X, Zhang J, Yi Q, Meng F, Yu J, Ji Y, Mo JQ, Tong Y, Jiang P, Guan MX. Leber's Hereditary Optic Neuropathy Arising From the Synergy Between ND1 3635G>A Mutation and Mitochondrial YARS2 Mutations. Invest Ophthalmol Vis Sci 2021; 62:22. [PMID: 34156427 PMCID: PMC8237128 DOI: 10.1167/iovs.62.7.22] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Purpose To investigate the mechanism underlying the synergic interaction between Leber's hereditary optic neuropathy (LHON)-associated ND1 and mitochondrial tyrosyl-tRNA synthetase (YARS2) mutations. Methods Molecular dynamics simulation and differential scanning fluorimetry were used to evaluate the structure and stability of proteins. The impact of ND1 3635G>A and YARS2 p.G191V mutations on the oxidative phosphorylation machinery was evaluated using blue native gel electrophoresis and enzymatic activities assays. Assessment of reactive oxygen species (ROS) production in cell lines was performed by flow cytometry with MitoSOX Red reagent. Analysis of effect of mutations on autophagy was undertaken via flow cytometry for autophagic flux. Results Members of one Chinese family bearing both the YARS2 p.191Gly>Val and m.3635G>A mutations exhibited much higher penetrance of optic neuropathy than those pedigrees carrying only the m.3635G>A mutation. The m.3635G>A (p.Ser110Asn) mutation altered the ND1 structure and function, whereas the p.191Gly>Val mutation affected the stability of YARS2. Lymphoblastoid cell lines harboring both m.3635G>A and p.191Gly>Val mutations revealed more reductions in the levels of mitochondrion-encoding ND1 and CO2 than cells bearing only the m.3635G>A mutation. Strikingly, both m.3635G>A and p.191Gly>Val mutations exhibited decreases in the nucleus-encoding subunits of complex I and IV. These deficiencies manifested greater defects in the stability and activities of complex I and complex IV and overproduction of ROS and promoted greater autophagy in cell lines harboring both m.3635G>A and p.191Gly>Val mutations compared with cells bearing only the m.3635G>A mutation. Conclusions Our findings provide new insights into the pathophysiology of LHON arising from the synergy between ND1 3635G>A mutation and mitochondrial YARS2 mutations.
Collapse
Affiliation(s)
- Xiaofen Jin
- Key Laboratory of Reproductive Genetics, Ministry of Education of PRC, The Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, and National Clinic Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Juanjuan Zhang
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qiuzi Yi
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, and National Clinic Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Feilong Meng
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, and National Clinic Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Jialing Yu
- Key Laboratory of Reproductive Genetics, Ministry of Education of PRC, The Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, and National Clinic Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Yanchun Ji
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, and National Clinic Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Jun Q Mo
- Department of Pathology, Rady Children's Hospital, University of California School of Medicine, San Diego, California, United States
| | - Yi Tong
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Pingping Jiang
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, and National Clinic Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Min-Xin Guan
- Key Laboratory of Reproductive Genetics, Ministry of Education of PRC, The Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, and National Clinic Research Center for Child Health, Hangzhou, Zhejiang, China.,Zhejiang Provincial Key Laboratory of Genetic and Developmental Disorders, Hangzhou, Zhejiang, China.,Zhejiang University-University of Toronto Joint Institute of Genetics and Genome Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
25
|
Mechanistic insights into mitochondrial tRNA Ala 3'-end metabolism deficiency. J Biol Chem 2021; 297:100816. [PMID: 34023389 PMCID: PMC8212662 DOI: 10.1016/j.jbc.2021.100816] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/10/2021] [Accepted: 05/19/2021] [Indexed: 12/14/2022] Open
Abstract
Mitochondrial tRNA 3’-end metabolism is critical for the formation of functional tRNAs. Deficient mitochondrial tRNA 3’-end metabolism is linked to an array of human diseases, including optic neuropathy, but their pathophysiology remains poorly understood. In this report, we investigated the molecular mechanism underlying the Leber’s hereditary optic neuropathy (LHON)-associated tRNAAla 5587A>G mutation, which changes a highly conserved adenosine at position 73 (A73) to guanine (G73) on the 3’-end of the tRNA acceptor stem. The m.5587A>G mutation was identified in three Han Chinese families with suggested maternal inheritance of LHON. We hypothesized that the m.5587A>G mutation altered tRNAAla 3’-end metabolism and mitochondrial function. In vitro processing experiments showed that the m.5587A>G mutation impaired the 3’-end processing of tRNAAla precursors by RNase Z and inhibited the addition of CCA by tRNA nucleotidyltransferase (TRNT1). Northern blot analysis revealed that the m.5587A>G mutation perturbed tRNAAla aminoacylation, as evidenced by decreased efficiency of aminoacylation and faster electrophoretic mobility of mutated tRNAAla in these cells. The impact of m.5587A>G mutation on tRNAAla function was further supported by increased melting temperature, conformational changes, and reduced levels of this tRNA. Failures in tRNAAla metabolism impaired mitochondrial translation, perturbed assembly and activity of oxidative phosphorylation complexes, diminished ATP production and membrane potential, and increased production of reactive oxygen species. These pleiotropic defects elevated apoptotic cell death and promoted mitophagy in cells carrying the m.5587A>G mutation, thereby contributing to visual impairment. Our findings may provide new insights into the pathophysiology of LHON arising from mitochondrial tRNA 3’-end metabolism deficiency.
Collapse
|
26
|
Zhang Q, He X, Yao S, Lin T, Zhang L, Chen D, Chen C, Yang Q, Li F, Zhu YM, Guan MX. Ablation of Mto1 in zebrafish exhibited hypertrophic cardiomyopathy manifested by mitochondrion RNA maturation deficiency. Nucleic Acids Res 2021; 49:4689-4704. [PMID: 33836087 PMCID: PMC8096277 DOI: 10.1093/nar/gkab228] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/17/2021] [Accepted: 03/22/2021] [Indexed: 12/18/2022] Open
Abstract
Deficient maturations of mitochondrial transcripts are linked to clinical abnormalities but their pathophysiology remains elusive. Previous investigations showed that pathogenic variants in MTO1 for the biosynthesis of τm5U of tRNAGlu, tRNAGln, tRNALys, tRNATrp and tRNALeu(UUR) were associated with hypertrophic cardiomyopathy (HCM). Using mto1 knock-out(KO) zebrafish generated by CRISPR/Cas9 system, we demonstrated the pleiotropic effects of Mto1 deficiency on mitochondrial RNA maturations. The perturbed structure and stability of tRNAs caused by mto1 deletion were evidenced by conformation changes and sensitivity to S1-mediated digestion of tRNAGln, tRNALys, tRNATrp and tRNALeu(UUR). Notably, mto1KO zebrafish exhibited the global decreases in the aminoacylation of mitochondrial tRNAs with the taurine modification. Strikingly, ablated mto1 mediated the expression of MTPAP and caused the altered polyadenylation of cox1, cox3, and nd1 mRNAs. Immunoprecipitation assay indicated the interaction of MTO1 with MTPAP related to mRNA polyadenylation. These alterations impaired mitochondrial translation and reduced activities of oxidative phosphorylation complexes. These mitochondria dysfunctions caused heart development defects and hypertrophy of cardiomyocytes and myocardial fiber disarray in ventricles. These cardiac defects in the mto1KO zebrafish recapitulated the clinical phenotypes in HCM patients carrying the MTO1 mutation(s). Our findings highlighted the critical role of MTO1 in mitochondrial transcript maturation and their pathological consequences in hypertrophic cardiomyopathy.
Collapse
MESH Headings
- Animals
- Animals, Genetically Modified
- Cardiomyopathy, Hypertrophic/genetics
- Cardiomyopathy, Hypertrophic/physiopathology
- Gene Expression Profiling
- Heart/embryology
- Heart/physiopathology
- In Situ Hybridization
- Microscopy, Electron, Transmission
- Mitochondria/enzymology
- Mitochondria/genetics
- Mitochondria/metabolism
- Mitochondria/pathology
- Mitochondrial Proteins/genetics
- Mitochondrial Proteins/metabolism
- Mutation
- Myocardium/metabolism
- Myocardium/pathology
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Oxidative Phosphorylation
- Polyadenylation/genetics
- RNA, Mitochondrial/metabolism
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Transfer RNA Aminoacylation/genetics
- Zebrafish/embryology
- Zebrafish/genetics
- Zebrafish/metabolism
- Zebrafish Proteins/genetics
- Zebrafish Proteins/metabolism
Collapse
Affiliation(s)
- Qinghai Zhang
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310058, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Lab of Genetic and Developmental Disorder, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Reproductive Genetics, Ministry of Education of PRC, The Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Xiao He
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Shihao Yao
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Tianxiang Lin
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Luwen Zhang
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Danni Chen
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Chao Chen
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Qingxian Yang
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Feng Li
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Yi-Min Zhu
- Key Laboratory of Reproductive Genetics, Ministry of Education of PRC, The Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Min-Xin Guan
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310058, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Lab of Genetic and Developmental Disorder, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Reproductive Genetics, Ministry of Education of PRC, The Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
- Joint Institute of Genetics and Genome Medicine between Zhejiang University and University of Toronto, Hangzhou, Zhejiang 310058, China
| |
Collapse
|