1
|
McMillan CL, Corner AV, Wijesundara DK, Choo JJ, Pittayakhajonwut D, Poredi I, Parry RH, Bindra GK, Bruce KL, Khromykh AA, Fernando GJ, Dapremont L, Young PR, Muller DA. Skin patch delivery of a SARS-CoV-2 spike DNA vaccine produces broad neutralising antibody responses. Heliyon 2025; 11:e42533. [PMID: 40034315 PMCID: PMC11872540 DOI: 10.1016/j.heliyon.2025.e42533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 01/09/2025] [Accepted: 02/06/2025] [Indexed: 03/05/2025] Open
Abstract
The ongoing SARS-CoV-2 pandemic continues to be a major health burden globally, especially in resource-limited areas. Continued research into more effective and accessible vaccines is required to reduce the burden of disease. Here, we use an emerging vaccine delivery system, the high-density microarray patch (HD-MAP) to deliver a plasmid DNA vaccine (Delta 6P) encoding for the SARS-CoV-2 spike protein. HD-MAP delivery of this vaccine resulted in robust IgG responses in mice against multiple domains of the spike protein. The cellular response to vaccination was also measured, and comparative analysis showed that relative to intramuscular vaccination, HD-MAP vaccination elicited spike-specific CD4+ T and CD8+ T cell responses that were largely comparable, but the number of polyfunctional CD4+ T cells was higher in the HD-MAP group. Collectively, this work suggests that HD-MAP delivery of the Delta 6P vaccine is effective against SARS-CoV-2, warranting further investigation.
Collapse
Affiliation(s)
- Christopher L.D. McMillan
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, QLD, 4072, Australia
| | - Andrea V. Corner
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | | | - Jovin J.Y. Choo
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | | | - Indrajeet Poredi
- BioNet-Asia, Hi-Tech Industrial Estate, 81 Moo 1, Baan-Lane, Bang Pa-In, Ayutthaya, 13160, Thailand
| | - Rhys H. Parry
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Guneet K. Bindra
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Kimberley L. Bruce
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Alexander A. Khromykh
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, QLD, 4072, Australia
| | - Germain J.P. Fernando
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
- Vaxxas Biomedical Facility, Brisbane, QLD, 4007, Australia
| | | | - Paul R. Young
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, QLD, 4072, Australia
| | - David A. Muller
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, QLD, 4072, Australia
| |
Collapse
|
2
|
Wang Y, Xia B, Gao Z. A comprehensive review of current insights into the virulence factors of SARS-CoV-2. J Virol 2025; 99:e0204924. [PMID: 39878471 PMCID: PMC11852741 DOI: 10.1128/jvi.02049-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025] Open
Abstract
The evolution of SARS-CoV-2 pathogenicity has been a major focus of attention. However, the determinants of pathogenicity are still unclear. Various hypotheses have attempted to elucidate the mechanisms underlying the evolution of viral pathogenicity, but a definitive conclusion has yet to be reached. Here, we review the potential impact of all proteins in SARS-CoV-2 on the viral pathogenic process and analyze the effects of their mutations on pathogenicity evolution. We aim to summarize which virus-encoded proteins are crucial in influencing viral pathogenicity, defined as disease severity following infection. Mutations in these key proteins, which are the virulence factors in SARS-CoV-2, may be the driving forces behind the evolution of viral pathogenicity. Mutations in the S protein can impact viral entry and fusogenicity. Mutations in proteins such as NSP2, NSP5, NSP14, and ORF7a can alter the virus's ability to suppress host protein synthesis and innate immunity. Mutations in NSP3, NSP4, NSP6, N protein, NSP5, and NSP12 may alter viral replication efficiency. The combined effects of mutations in the S protein and NSP6 can significantly reduce viral replication. In addition, various viral proteins, including ORF3a, ORF8, NSP4, Spike protein, N protein, and E protein, directly participate in the inflammatory process. Mutations in these proteins can modulate the levels of inflammation following infection. Collectively, these viral protein mutations can influence SARS-CoV-2 pathogenicity by impacting viral immune evasion, replication capacity, and the level of inflammation mediated by infection. In conclusion, the evolution of SARS-CoV-2 pathogenicity is likely determined by multiple virulence factors.
Collapse
Affiliation(s)
- Yi Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bingqing Xia
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhaobing Gao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Madewell ZJ, Graff NE, Lopez VK, Rodriguez DM, Wong JM, Maniatis P, Medina FA, Muñoz JL, Briggs-Hagen M, Adams LE, Rivera-Amill V, Paz-Bailey G, Major CG. Longitudinal analysis of SARS-CoV-2 IgG antibody durability in Puerto Rico. Sci Rep 2024; 14:30743. [PMID: 39730470 DOI: 10.1038/s41598-024-80465-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/19/2024] [Indexed: 12/29/2024] Open
Abstract
Understanding the dynamics of antibody responses following vaccination and SARS-CoV-2 infection is important for informing effective vaccination strategies and other public health interventions. This study investigates SARS-CoV-2 antibody dynamics in a Puerto Rican cohort, analyzing how IgG levels vary by vaccination status and previous infection. We assess waning immunity and the distribution of hybrid immunity with the aim to inform public health strategies and vaccination programs in Puerto Rico and similar settings. We conducted a prospective, longitudinal cohort study to identify SARS-CoV-2 infections and related outcomes in Ponce, Puerto Rico, from June 2020-August 2022. Participants provided self-collected nasal swabs every week and serum every six months for RT-PCR and IgG testing, respectively. IgG reactivity against nucleocapsid (N) antigens, which generally indicate previous infection, and spike (S1) and receptor-binding domain (RBD) antigens, which indicate history of either infection or vaccination, was assessed using the Luminex Corporation xMAP® SARS-CoV-2 Multi-Antigen IgG Assay. Prior infection was defined by positive RT-PCRs, categorized by the predominant circulating SARS-CoV-2 variant at the event time. Demographic information, medical history, and COVID-19 vaccination history were collected through standardized questionnaires. Of 882 participants included in our analysis, 34.0% experienced at least one SARS-CoV-2 infection, with most (78.7%) occurring during the Omicron wave (December 2021 onwards). SARS-CoV-2 antibody prevalence increased over time, reaching 98.4% by the final serum collection, 67.0% attributable to vaccination alone, 1.6% from infection alone, and 31.4% from both. Regardless of prior infection status, RBD and S1 IgG levels gradually declined following two vaccine doses. A third dose boosted these antibody levels and showed a slower decline over time. N-antibody levels peaked during the Omicron surge and waned over time. Vaccination in individuals with prior SARS-CoV-2 infection elicited the highest and most durable antibody responses. N or S1 seropositivity was associated with lower odds of a subsequent positive PCR test during the Omicron period, with N antibodies showing a stronger association. By elucidating the differential decay of RBD and S1 antibodies following vaccination and the complexities of N-antibody response following infection, this study in a Puerto Rican cohort strengthens the foundation for developing targeted interventions and public health strategies.
Collapse
Affiliation(s)
- Zachary J Madewell
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, San Juan, Puerto Rico.
| | - Nathan E Graff
- Coronavirus and Other Respiratory Viruses Division, Centers for Disease Control and Prevention, Atlanta, Georgia
- Eagle Health Analytics, San Antonio, Texas, USA
| | - Velma K Lopez
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, San Juan, Puerto Rico
| | - Dania M Rodriguez
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, San Juan, Puerto Rico
| | - Joshua M Wong
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, San Juan, Puerto Rico
| | - Panagiotis Maniatis
- Division of Bacterial Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Freddy A Medina
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, San Juan, Puerto Rico
| | - Jorge L Muñoz
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, San Juan, Puerto Rico
| | - Melissa Briggs-Hagen
- Coronavirus and Other Respiratory Viruses Division, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Laura E Adams
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, San Juan, Puerto Rico
| | | | - Gabriela Paz-Bailey
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, San Juan, Puerto Rico
| | - Chelsea G Major
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, San Juan, Puerto Rico
| |
Collapse
|
4
|
O'Neil PT, Swint‐Kruse L, Fenton AW. Rheostatic contributions to protein stability can obscure a position's functional role. Protein Sci 2024; 33:e5075. [PMID: 38895978 PMCID: PMC11187868 DOI: 10.1002/pro.5075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024]
Abstract
Rheostat positions, which can be substituted with various amino acids to tune protein function across a range of outcomes, are a developing area for advancing personalized medicine and bioengineering. Current methods cannot accurately predict which proteins contain rheostat positions or their substitution outcomes. To compare the prevalence of rheostat positions in homologs, we previously investigated their occurrence in two pyruvate kinase (PYK) isozymes. Human liver PYK contained numerous rheostat positions that tuned the apparent affinity for the substrate phosphoenolpyruvate (Kapp-PEP) across a wide range. In contrast, no functional rheostat positions were identified in Zymomonas mobilis PYK (ZmPYK). Further, the set of ZmPYK substitutions included an unusually large number that lacked measurable activity. We hypothesized that the inactive substitution variants had reduced protein stability, precluding detection of Kapp-PEP tuning. Using modified buffers, robust enzymatic activity was obtained for 19 previously-inactive ZmPYK substitution variants at three positions. Surprisingly, both previously-inactive and previously-active substitution variants all had Kapp-PEP values close to wild-type. Thus, none of the three positions were functional rheostat positions, and, unlike human liver PYK, ZmPYK's Kapp-PEP remained poorly tunable by single substitutions. To directly assess effects on stability, we performed thermal denaturation experiments for all ZmPYK substitution variants. Many diminished stability, two enhanced stability, and the three positions showed different thermal sensitivity to substitution, with one position acting as a "stability rheostat." The differences between the two PYK homologs raises interesting questions about the underlying mechanism(s) that permit functional tuning by single substitutions in some proteins but not in others.
Collapse
Affiliation(s)
- Pierce T. O'Neil
- Department of Biochemistry and Molecular BiologyThe University of Kansas Medical CenterKansasUSA
| | - Liskin Swint‐Kruse
- Department of Biochemistry and Molecular BiologyThe University of Kansas Medical CenterKansasUSA
| | - Aron W. Fenton
- Department of Biochemistry and Molecular BiologyThe University of Kansas Medical CenterKansasUSA
| |
Collapse
|
5
|
Wang D, Huot M, Mohanty V, Shakhnovich EI. Biophysical principles predict fitness of SARS-CoV-2 variants. Proc Natl Acad Sci U S A 2024; 121:e2314518121. [PMID: 38820002 PMCID: PMC11161772 DOI: 10.1073/pnas.2314518121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 04/19/2024] [Indexed: 06/02/2024] Open
Abstract
SARS-CoV-2 employs its spike protein's receptor binding domain (RBD) to enter host cells. The RBD is constantly subjected to immune responses, while requiring efficient binding to host cell receptors for successful infection. However, our understanding of how RBD's biophysical properties contribute to SARS-CoV-2's epidemiological fitness remains largely incomplete. Through a comprehensive approach, comprising large-scale sequence analysis of SARS-CoV-2 variants and the identification of a fitness function based on binding thermodynamics, we unravel the relationship between the biophysical properties of RBD variants and their contribution to viral fitness. We developed a biophysical model that uses statistical mechanics to map the molecular phenotype space, characterized by dissociation constants of RBD to ACE2, LY-CoV016, LY-CoV555, REGN10987, and S309, onto an epistatic fitness landscape. We validate our findings through experimentally measured and machine learning (ML) estimated binding affinities, coupled with infectivity data derived from population-level sequencing. Our analysis reveals that this model effectively predicts the fitness of novel RBD variants and can account for the epistatic interactions among mutations, including explaining the later reversal of Q493R. Our study sheds light on the impact of specific mutations on viral fitness and delivers a tool for predicting the future epidemiological trajectory of previously unseen or emerging low-frequency variants. These insights offer not only greater understanding of viral evolution but also potentially aid in guiding public health decisions in the battle against COVID-19 and future pandemics.
Collapse
Affiliation(s)
- Dianzhuo Wang
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA02138
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA02138
| | - Marian Huot
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA02138
- École Polytechnique, Institut Polytechnique de Paris, Palaiseau91128, France
| | - Vaibhav Mohanty
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA02138
- Harvard/MIT MD-PhD Program, Harvard Medical School, Boston, MA02115
- Massachusetts Institute of Technology, Cambridge, MA02139
| | - Eugene I. Shakhnovich
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA02138
| |
Collapse
|
6
|
Wang D, Huot M, Mohanty V, Shakhnovich EI. Biophysical principles predict fitness of SARS-CoV-2 variants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.23.549087. [PMID: 37577536 PMCID: PMC10418099 DOI: 10.1101/2023.07.23.549087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
SARS-CoV-2 employs its spike protein's receptor binding domain (RBD) to enter host cells. The RBD is constantly subjected to immune responses, while requiring efficient binding to host cell receptors for successful infection. However, our understanding of how RBD's biophysical properties contribute to SARS-CoV-2's epidemiological fitness remains largely incomplete. Through a comprehensive approach, comprising large-scale sequence analysis of SARS-CoV-2 variants and the discovery of a fitness function based on binding thermodynamics, we unravel the relationship between the biophysical properties of RBD variants and their contribution to viral fitness. We developed a biophysical model that uses statistical mechanics to map the molecular phenotype space, characterized by binding constants of RBD to ACE2, LY-CoV016, LY-CoV555, REGN10987, and S309, onto a epistatic fitness landscape. We validate our findings through experimentally measured and machine learning (ML) estimated binding affinities, coupled with infectivity data derived from population-level sequencing. Our analysis reveals that this model effectively predicts the fitness of novel RBD variants and can account for the epistatic interactions among mutations, including explaining the later reversal of Q493R. Our study sheds light on the impact of specific mutations on viral fitness and delivers a tool for predicting the future epidemiological trajectory of previously unseen or emerging low frequency variants. These insights offer not only greater understanding of viral evolution but also potentially aid in guiding public health decisions in the battle against COVID-19 and future pandemics.
Collapse
Affiliation(s)
- Dianzhuo Wang
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA
| | - Marian Huot
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA
- Ecole Polytechnique, Institut Polytechnique de Paris
| | - Vaibhav Mohanty
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA
- Harvard-MIT MD-PhD Program and Program in Health Sciences and Technology, Harvard Medical School, Boston, MA and Massachusetts Institute of Technology, Cambridge, MA
| | | |
Collapse
|
7
|
Zhang L, Li J. Molecular Dynamics Simulations on Spike Protein Mutants Binding with Human β Defensin Type 2. J Phys Chem B 2024; 128:415-428. [PMID: 38189674 DOI: 10.1021/acs.jpcb.3c05460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Human β defensin type 2 (hBD-2), a cationic cysteine-rich peptide secreted from the human innate immune system, can bind Spike-RBD at the same site as receptor ACE2, thus blocking viral entry into ACE2-expressing cells. In order to find out the impact of CoV-2 mutations on hBD-2's antiviral activity, it is important to investigate the binding and interaction of hBD-2 with RBD mutants. All-atom molecular dynamics simulations were conducted on typical RBD mutants, including N501Y, E484K, P479S, T478I, S477N, N439K, K417N, and N501Y-E484K-K417N, binding with hBD-2. Starting from the stable binding structure of hBD-2 and wt-RBD and ClusPro and HADDOCK docking-predicted initial structures, the RBD variants bound with hBD-2 simulations were set up, and NAMD simulations were conducted. Based on the structure and dynamics analysis, it was found that most RBD variants can still form a similar number of hydrogen bonds with hBD-2, in addition to having a similar-sized buried surface area (BSA) and a similar binding interface to the RBD wildtype. However, the RBD triple mutant formed a less stable binding structure with hBD-2 than other variants. Additionally, the free energy perturbation (FEP) method was applied to calculate the contribution of key mutant residues to the binding and the free energy change caused by the mutations. The result shows that N439K, K417N, and the trimutation increase the binding free energy of RBD with hBD-2; thus, RBD should bind less stably with hBD-2. E484K decreases the binding free energy, thus it should bind more stably with hBD-2, while N501Y, S477N, T478I, and P479S almost do not change the binding free energy with hBD-2. The MM-GBSA method predicted the binding interaction energy which shows that the trimutant should be able to escape the binding with hBD-2 but N501Y should not. The result can provide insight into understanding the functional mechanism of hBD-2 combating SARS-CoV-2 mutants.
Collapse
Affiliation(s)
- Liqun Zhang
- Chemical Engineering Department, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Jadeson Li
- Newton North High School, 457 Walnut Street, Newton, Massachusetts 02460, United States
| |
Collapse
|
8
|
Li K, Huntwork RHC, Horn GQ, Abraha M, Hastie KM, Li H, Rayaprolu V, Olmedillas E, Feeney E, Cronin K, Schendel SL, Heise M, Bedinger D, Mattocks MD, Baric RS, Alam SM, Ollmann Saphire E, Tomaras GD, Dennison SM. Cryptic-site-specific antibodies to the SARS-CoV-2 receptor binding domain can retain functional binding affinity to spike variants. J Virol 2023; 97:e0107023. [PMID: 38019013 PMCID: PMC10746274 DOI: 10.1128/jvi.01070-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/05/2023] [Indexed: 11/30/2023] Open
Abstract
IMPORTANCE Multiple SARS-CoV-2 variants of concern have emerged and caused a significant number of infections and deaths worldwide. These variants of concern contain mutations that might significantly affect antigen-targeting by antibodies. It is therefore important to further understand how antibody binding and neutralization are affected by the mutations in SARS-CoV-2 variants. We highlighted how antibody epitope specificity can influence antibody binding to SARS-CoV-2 spike protein variants and neutralization of SARS-CoV-2 variants. We showed that weakened spike binding and neutralization of Beta (B.1.351) and Omicron (BA.1) variants compared to wildtype are not universal among the panel of antibodies and identified antibodies of a specific binding footprint exhibiting consistent enhancement of spike binding and retained neutralization to Beta variant. These data and analysis can inform how antigen-targeting by antibodies might evolve during a pandemic and prepare for potential future sarbecovirus outbreaks.
Collapse
Affiliation(s)
- Kan Li
- Center for Human Systems Immunology, Duke University, Durham, North Carolina, USA
- Department of Surgery, Duke University, Durham, North Carolina, USA
| | - Richard H. C. Huntwork
- Center for Human Systems Immunology, Duke University, Durham, North Carolina, USA
- Department of Surgery, Duke University, Durham, North Carolina, USA
| | - Gillian Q. Horn
- Center for Human Systems Immunology, Duke University, Durham, North Carolina, USA
- Department of Surgery, Duke University, Durham, North Carolina, USA
| | - Milite Abraha
- Center for Human Systems Immunology, Duke University, Durham, North Carolina, USA
- Department of Surgery, Duke University, Durham, North Carolina, USA
| | - Kathryn M. Hastie
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Haoyang Li
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Vamseedhar Rayaprolu
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Eduardo Olmedillas
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Elizabeth Feeney
- Center for Human Systems Immunology, Duke University, Durham, North Carolina, USA
- Department of Surgery, Duke University, Durham, North Carolina, USA
| | - Kenneth Cronin
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
| | - Sharon L. Schendel
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Mark Heise
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, USA
| | | | - Melissa D. Mattocks
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Ralph S. Baric
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - S. Munir Alam
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
- Department of Pathology, Duke University, Durham, North Carolina, USA
| | - Erica Ollmann Saphire
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Georgia D. Tomaras
- Center for Human Systems Immunology, Duke University, Durham, North Carolina, USA
- Department of Surgery, Duke University, Durham, North Carolina, USA
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
- Department of Integrative Immunobiology, Duke University, Durham, North Carolina, USA
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
| | - S. Moses Dennison
- Center for Human Systems Immunology, Duke University, Durham, North Carolina, USA
- Department of Surgery, Duke University, Durham, North Carolina, USA
| |
Collapse
|
9
|
Upadhyay V, Panja S, Lucas A, Patrick C, Mallela KMG. Biophysical evolution of the receptor-binding domains of SARS-CoVs. Biophys J 2023; 122:4489-4502. [PMID: 37897042 PMCID: PMC10719049 DOI: 10.1016/j.bpj.2023.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/20/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023] Open
Abstract
With hundreds of coronaviruses (CoVs) identified in bats that can infect humans, it is essential to understand how CoVs that affected the human population have evolved. Seven known CoVs have infected humans, of which three CoVs caused severe disease with high mortalities: severe acute respiratory syndrome (SARS)-CoV emerged in 2002, Middle East respiratory syndrome-CoV in 2012, and SARS-CoV-2 in 2019. SARS-CoV and SARS-CoV-2 belong to the same family, follow the same receptor pathway, and use their receptor-binding domain (RBD) of spike protein to bind to the angiotensin-converting enzyme 2 (ACE2) receptor on the human epithelial cell surface. The sequence of the two RBDs is divergent, especially in the receptor-binding motif that directly interacts with ACE2. We probed the biophysical differences between the two RBDs in terms of their structure, stability, aggregation, and function. Since RBD is being explored as an antigen in protein subunit vaccines against CoVs, determining these biophysical properties will also aid in developing stable protein subunit vaccines. Our results show that, despite RBDs having a similar three-dimensional structure, they differ in their thermodynamic stability. RBD of SARS-CoV-2 is significantly less stable than that of SARS-CoV. Correspondingly, SARS-CoV-2 RBD shows a higher aggregation propensity. Regarding binding to ACE2, less stable SARS-CoV-2 RBD binds with a higher affinity than more stable SARS-CoV RBD. In addition, SARS-CoV-2 RBD is more homogenous in terms of its binding stoichiometry toward ACE2 compared to SARS-CoV RBD. These results indicate that SARS-CoV-2 RBD differs from SARS-CoV RBD in terms of its stability, aggregation, and function, possibly originating from the diverse receptor-binding motifs. Higher aggregation propensity and decreased stability of SARS-CoV-2 RBD warrant further optimization of protein subunit vaccines that use RBD as an antigen by inserting stabilizing mutations or formulation screening.
Collapse
Affiliation(s)
- Vaibhav Upadhyay
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Sudipta Panja
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Alexandra Lucas
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Casey Patrick
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Krishna M G Mallela
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
| |
Collapse
|
10
|
Rucker G, Qin H, Zhang L. Structure, dynamics and free energy studies on the effect of point mutations on SARS-CoV-2 spike protein binding with ACE2 receptor. PLoS One 2023; 18:e0289432. [PMID: 37796794 PMCID: PMC10553274 DOI: 10.1371/journal.pone.0289432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 09/11/2023] [Indexed: 10/07/2023] Open
Abstract
The ongoing COVID-19 pandemic continues to infect people worldwide, and the virus continues to evolve in significant ways which can pose challenges to the efficiency of available vaccines and therapeutic drugs and cause future pandemic. Therefore, it is important to investigate the binding and interaction of ACE2 with different RBD variants. A comparative study using all-atom MD simulations was conducted on ACE2 binding with 8 different RBD variants, including N501Y, E484K, P479S, T478I, S477N, N439K, K417N and N501Y-E484K-K417N on RBD. Based on the RMSD, RMSF, and DSSP results, overall the binding of RBD variants with ACE2 is stable, and the secondary structure of RBD and ACE2 are consistent after the point mutation. Besides that, a similar buried surface area, a consistent binding interface and a similar amount of hydrogen bonds formed between RBD and ACE2 although the exact residue pairs on the binding interface were modified. The change of binding free energy from point mutation was predicted using the free energy perturbation (FEP) method. It is found that N501Y, N439K, and K417N can strengthen the binding of RBD with ACE2, while E484K and P479S weaken the binding, and S477N and T478I have negligible effect on the binding. Point mutations modified the dynamic correlation of residues in RBD based on the dihedral angle covariance matrix calculation. Doing dynamic network analysis, a common intrinsic network community extending from the tail of RBD to central, then to the binding interface region was found, which could communicate the dynamics in the binding interface region to the tail thus to the other sections of S protein. The result can supply unique methodology and molecular insight on studying the molecular structure and dynamics of possible future pandemics and design novel drugs.
Collapse
Affiliation(s)
- George Rucker
- Chemical Engineering Department, Tennessee Technological University, Cookeville, TN, United States of America
| | - Hong Qin
- Computer Science Department, University of Tennessee Chattanooga, Chattanooga, TN, United States of America
| | - Liqun Zhang
- Chemical Engineering Department, University of Rhode Island, Kingston, RI, United States of America
| |
Collapse
|
11
|
Liu Y, Kumblathan T, Joyce MA, Tyrrell DL, Tipples G, Pang X, Li XF, Le XC. Multiplex Assays Enable Simultaneous Detection and Identification of SARS-CoV-2 Variants of Concern in Clinical and Wastewater Samples. ACS MEASUREMENT SCIENCE AU 2023; 3:258-268. [PMID: 37600458 PMCID: PMC10152402 DOI: 10.1021/acsmeasuresciau.3c00005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 08/22/2023]
Abstract
The targeted screening and sequencing approaches for COVID-19 surveillance need to be adjusted to fit the evolving surveillance objectives which necessarily change over time. We present the development of variant screening assays that can be applied to new targets in a timely manner and enable multiplexing of targets for efficient implementation in the laboratory. By targeting the HV69/70 deletion for Alpha, K417N for Beta, K417T for Gamma, and HV69/70 deletion plus K417N for sub-variants BA.1, BA.3, BA.4, and BA.5 of Omicron, we achieved simultaneous detection and differentiation of Alpha, Beta, Gamma, and Omicron in a single assay. Targeting both T478K and P681R mutations enabled specific detection of the Delta variant. The multiplex assays used in combination, targeting K417N and T478K, specifically detected the Omicron sub-variant BA.2. The limits of detection for the five variants of concern were 4-16 copies of the viral RNA per reaction. Both assays achieved 100% clinical sensitivity and 100% specificity. Analyses of 377 clinical samples and 24 wastewater samples revealed the Delta variant in 100 clinical samples (nasopharyngeal and throat swab) collected in November 2021. Omicron BA.1 was detected in 79 nasopharyngeal swab samples collected in January 2022. Alpha, Beta, and Gamma variants were detected in 24 wastewater samples collected in May-June 2021 from two major cities of Alberta (Canada), and the results were consistent with the clinical cases of multiple variants reported in the community.
Collapse
Affiliation(s)
- Yanming Liu
- Division
of Analytical and Environmental Toxicology, Department of Laboratory
Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Teresa Kumblathan
- Division
of Analytical and Environmental Toxicology, Department of Laboratory
Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Michael A. Joyce
- Li
Ka Shing Institute of Virology, Department
of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry,
University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - D. Lorne Tyrrell
- Li
Ka Shing Institute of Virology, Department
of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry,
University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Graham Tipples
- Li
Ka Shing Institute of Virology, Department
of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry,
University of Alberta, Edmonton, Alberta T6G 2E1, Canada
- Provincial
Laboratory for Public Health, Alberta Precision Laboratories, University of Alberta Hospitals, 8440-112 Street, Edmonton, Alberta T6G 2J2, Canada
| | - Xiaoli Pang
- Provincial
Laboratory for Public Health, Alberta Precision Laboratories, University of Alberta Hospitals, 8440-112 Street, Edmonton, Alberta T6G 2J2, Canada
- Department
of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Xing-Fang Li
- Division
of Analytical and Environmental Toxicology, Department of Laboratory
Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - X. Chris Le
- Division
of Analytical and Environmental Toxicology, Department of Laboratory
Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| |
Collapse
|
12
|
López-Astacio RA, Adu OF, Goetschius DJ, Lee H, Weichert WS, Wasik BR, Frueh SP, Alford BK, Voorhees IEH, Flint JF, Saddoris S, Goodman LB, Holmes EC, Hafenstein SL, Parrish CR. Viral Capsid, Antibody, and Receptor Interactions: Experimental Analysis of the Antibody Escape Evolution of Canine Parvovirus. J Virol 2023; 97:e0009023. [PMID: 37199627 PMCID: PMC10308881 DOI: 10.1128/jvi.00090-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/23/2023] [Indexed: 05/19/2023] Open
Abstract
Canine parvovirus (CPV) is a small nonenveloped single-stranded DNA virus that causes serious diseases in dogs worldwide. The original strain of the virus (CPV-2) emerged in dogs during the late 1970s due to a host range switch of a virus similar to the feline panleukopenia virus that infected another host. The virus that emerged in dogs had altered capsid receptor and antibody binding sites, with some changes affecting both functions. Further receptor and antibody binding changes arose when the virus became better adapted to dogs or to other hosts. Here, we used in vitro selection and deep sequencing to reveal how two antibodies with known interactions select for escape mutations in CPV. The antibodies bound two distinct epitopes, and one largely overlapped the host receptor binding site. We also generated mutated antibody variants with altered binding structures. Viruses were passaged with wild-type (WT) or mutated antibodies, and their genomes were deep sequenced during the selective process. A small number of mutations were detected only within the capsid protein gene during the first few passages of selection, and most sites remained polymorphic or were slow to go to fixation. Mutations arose both within and outside the antibody binding footprints on the capsids, and all avoided the transferrin receptor type 1 binding footprint. Many selected mutations matched those that have arisen in the natural evolution of the virus. The patterns observed reveal the mechanisms by which these variants have been selected in nature and provide a better understanding of the interactions between antibody and receptor selections. IMPORTANCE Antibodies protect animals against infection by many different viruses and other pathogens, and we are gaining new information about the epitopes that induce antibody responses against viruses and the structures of the bound antibodies. However, less is known about the processes of antibody selection and antigenic escape and the constraints that apply in this system. Here, we used an in vitro model system and deep genome sequencing to reveal the mutations that arose in the virus genome during selection by each of two monoclonal antibodies or their mutated variants. High-resolution structures of each of the Fab:capsid complexes revealed their binding interactions. The wild-type antibodies or their mutated variants allowed us to examine how changes in antibody structure influence the mutational selection patterns seen in the virus. The results shed light on the processes of antibody binding, neutralization escape, and receptor binding, and they likely have parallels for many other viruses.
Collapse
Affiliation(s)
- Robert A. López-Astacio
- James A. Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Oluwafemi F. Adu
- James A. Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Daniel J. Goetschius
- Department of Biochemistry and Molecular Biology, Penn State University, University Park, Pennsylvania, USA
| | - Hyunwook Lee
- Department of Biochemistry and Molecular Biology, Penn State University, University Park, Pennsylvania, USA
| | - Wendy S. Weichert
- James A. Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Brian R. Wasik
- James A. Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Simon P. Frueh
- James A. Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
- Department for Veterinary Sciences, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Brynn K. Alford
- James A. Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Ian E. H. Voorhees
- James A. Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Joseph F. Flint
- James A. Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Sarah Saddoris
- James A. Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Laura B. Goodman
- James A. Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Edward C. Holmes
- Sydney Institute for Infectious Diseases, School of Medical Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Susan L. Hafenstein
- Department of Biochemistry and Molecular Biology, Penn State University, University Park, Pennsylvania, USA
| | - Colin R. Parrish
- James A. Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| |
Collapse
|
13
|
Rozak H, Nihonyanagi S, Myalitsin A, Roy S, Ahmed M, Tahara T, Rzeznicka II. Adsorption of SARS-CoV-2 Spike (N501Y) RBD to Human Angiotensin-Converting Enzyme 2 at a Lipid/Water Interface. J Phys Chem B 2023; 127:4406-4414. [PMID: 37171105 DOI: 10.1021/acs.jpcb.3c00832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The receptor binding domain (RBD) of spike proteins plays a crucial role in the process of severe acute respiratory syndrome corona virus 2 (SARS-CoV-2) attachment to the human angiotensin-converting enzyme 2 (ACE2). The N501Y mutation and later mutations introduced extra positive charges on the spike RBD and resulted in higher transmissibility, likely due to stronger binding with the highly negatively charged ACE2. Consequently, many studies have been devoted to understanding the molecular mechanism of spike protein binding with the ACE2 receptor. Most of the theoretical studies, however, have been done on isolated proteins. ACE2 is a transmembrane protein; thus, it is important to understand the interaction of spike proteins with ACE2 in a lipid matrix. In this study, the adsorption of ACE2 and spike (N501Y) RBD at a lipid/water interface was studied using the heterodyne-detected vibrational sum frequency generation (HD-VSFG) technique. The technique is a non-linear optical spectroscopy which measures vibrational spectra of molecules at an interface and provides information on their structure and orientation. It is found that ACE2 is effectively adsorbed at the positively charged 1,2-dipalmitoyl-3-trimethylammonium-propane (DPTAP) lipid monolayer via electrostatic interactions. The adsorption of ACE2 at the DPTAP monolayer causes a reorganization of interfacial water (D2O) from the D-down to the D-up orientation, indicating that the originally positively charged DPTAP interface becomes negatively charged due to ACE2 adsorption. The negatively charged interface (DPTAP/ACE2) allows further adsorption of positively charged spike RBD. HD-VSFG spectra in the amide I region show differences for spike (N501Y) RBD adsorbed at D2O, DPTAP, and DPTAP/ACE2 interfaces. A red shift observed for the spectra of spike RBD/DPTAP suggests that spike RBD oligomers are formed upon contact with DPTAP lipids.
Collapse
Affiliation(s)
- Harison Rozak
- College of Engineering, Shibaura Institute of Technology, Saitama City, Saitama 337-8570, Japan
| | - Satoshi Nihonyanagi
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Anton Myalitsin
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- ANVOS Analytics Co., 4-168 Motomachi, Naka-ku, Yokohama, Kanagawa 231-0861, Japan
| | - Subhadip Roy
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Mohammed Ahmed
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Tahei Tahara
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Izabela I Rzeznicka
- College of Engineering, Shibaura Institute of Technology, Saitama City, Saitama 337-8570, Japan
| |
Collapse
|
14
|
López-Astacio RA, Adu OF, Goetschius DJ, Lee H, Weichert WS, Wasik BR, Frueh SP, Alford BK, Voorhees IE, Flint JF, Saddoris S, Goodman LB, Holmes EC, Hafenstein SL, Parrish CR. Viral capsid, antibody, and receptor interactions: experimental analysis of the antibody escape evolution of canine parvovirus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.18.524668. [PMID: 36711712 PMCID: PMC9882321 DOI: 10.1101/2023.01.18.524668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Canine parvovirus (CPV) is a small non-enveloped single-stranded DNA virus that causes serious diseases in dogs worldwide. The original strain of the virus (CPV-2) emerged in dogs during the late-1970s due to a host range switch of a virus similar to the feline panleukopenia virus (FPV) that infected another host. The virus that emerged in dogs had altered capsid receptor- and antibody-binding sites, with some changes affecting both functions. Further receptor and antibody binding changes arose when the virus became better adapted to dogs or to other hosts. Here, we use in vitro selection and deep sequencing to reveal how two antibodies with known interactions select for escape mutations in CPV. The antibodies bind two distinct epitopes, and one largely overlaps the host receptor binding site. We also engineered antibody variants with altered binding structures. Viruses were passaged with the wild type or mutated antibodies, and their genomes deep sequenced during the selective process. A small number of mutations were detected only within the capsid protein gene during the first few passages of selection, and most sites remained polymorphic or were slow to go to fixation. Mutations arose both within and outside the antibody binding footprints on the capsids, and all avoided the TfR-binding footprint. Many selected mutations matched those that have arisen in the natural evolution of the virus. The patterns observed reveal the mechanisms by which these variants have been selected in nature and provide a better understanding of the interactions between antibody and receptor selections. IMPORTANCE Antibodies protect animals against infection by many different viruses and other pathogens, and we are gaining new information about the epitopes that induce antibody responses against viruses and the structures of the bound antibodies. However, less is known about the processes of antibody selection and antigenic escape and the constraints that apply in this system. Here, we use an in vitro model system and deep genome sequencing to reveal the mutations that arise in the virus genome during selection by each of two monoclonal antibodies or their engineered variants. High-resolution structures of each of the Fab: capsid complexes revealed their binding interactions. The engineered forms of the wild-type antibodies or mutant forms allowed us to examine how changes in antibody structure influence the mutational selection patterns seen in the virus. The results shed light on the processes of antibody binding, neutralization escape, and receptor binding, and likely have parallels for many other viruses.
Collapse
|
15
|
Nag A, Dasgupta A, Sengupta S, Lai TK, Acharya K. An in-silico pharmacophore-based molecular docking study to evaluate the inhibitory potentials of novel fungal triterpenoid Astrakurkurone analogues against a hypothetical mutated main protease of SARS-CoV-2 virus. Comput Biol Med 2023; 152:106433. [PMID: 36565483 PMCID: PMC9767885 DOI: 10.1016/j.compbiomed.2022.106433] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/21/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND The main protease is an important structural protein of SARS-CoV-2, essential for its survivability inside a human host. Considering current vaccines' limitations and the absence of approved therapeutic targets, Mpro may be regarded as the potential candidate drug target. Novel fungal phytocompound Astrakurkurone may be studied as the potential Mpro inhibitor, considering its medicinal properties reported elsewhere. METHODS In silico molecular docking was performed with Astrakurkurone and its twenty pharmacophore-based analogues against the native Mpro protein. A hypothetical Mpro was also constructed with seven mutations and targeted by Astrakurkurone and its analogues. Furthermore, multiple parameters such as statistical analysis (Principal Component Analysis), pharmacophore alignment, and drug likeness evaluation were performed to understand the mechanism of protein-ligand molecular interaction. Finally, molecular dynamic simulation was done for the top-ranking ligands to validate the result. RESULT We identified twenty Astrakurkurone analogues through pharmacophore screening methodology. Among these twenty compounds, two analogues namely, ZINC89341287 and ZINC12128321 showed the highest inhibitory potentials against native and our hypothetical mutant Mpro, respectively (-7.7 and -7.3 kcal mol-1) when compared with the control drug Telaprevir (-5.9 and -6.0 kcal mol-1). Finally, we observed that functional groups of ligands namely two aromatic and one acceptor groups were responsible for the residual interaction with the target proteins. The molecular dynamic simulation further revealed that these compounds could make a stable complex with their respective protein targets in the near-native physiological condition. CONCLUSION To conclude, Astrakurkurone analogues ZINC89341287 and ZINC12128321 can be potential therapeutic agents against the highly infectious SARS-CoV-2 virus.
Collapse
Affiliation(s)
- Anish Nag
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore, Karnataka, India
| | - Adhiraj Dasgupta
- Department of Botany, University of Calcutta, Kolkata, West Bengal, India
| | - Sutirtha Sengupta
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore, Karnataka, India
| | - Tapan Kumar Lai
- Department of Chemistry, Vidyasagar Metropolitan College, Kolkata, West Bengal, India
| | - Krishnendu Acharya
- Department of Botany, University of Calcutta, Kolkata, West Bengal, India.
| |
Collapse
|
16
|
Benazraf A, Arkin IT. Exhaustive mutational analysis of severe acute respiratory syndrome coronavirus 2 ORF3a: An essential component in the pathogen's infectivity cycle. Protein Sci 2023; 32:e4528. [PMID: 36468608 PMCID: PMC9795539 DOI: 10.1002/pro.4528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/15/2022] [Accepted: 11/21/2022] [Indexed: 12/07/2022]
Abstract
Detailed knowledge of a protein's key residues may assist in understanding its function and designing inhibitors against it. Consequently, such knowledge of one of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)'s proteins is advantageous since the virus is the etiological agent behind one of the biggest health crises of recent times. To that end, we constructed an exhaustive library of bacteria differing from each other by the mutated version of the virus's ORF3a viroporin they harbor. Since the protein is harmful to bacterial growth due to its channel activity, genetic selection followed by deep sequencing could readily identify mutations that abolish the protein's function. Our results have yielded numerous mutations dispersed throughout the sequence that counteract ORF3a's ability to slow bacterial growth. Comparing these data with the conservation pattern of ORF3a within the coronavirinae provided interesting insights: Deleterious mutations obtained in our study corresponded to conserved residues in the protein. However, despite the comprehensive nature of our mutagenesis coverage (108 average mutations per site), we could not reveal all of the protein's conserved residues. Therefore, it is tempting to speculate that our study unearthed positions in the protein pertinent to channel activity, while other conserved residues may correspond to different functionalities of ORF3a. In conclusion, our study provides important information on a key component of SARS-CoV-2 and establishes a procedure to analyze other viroporins comprehensively.
Collapse
Affiliation(s)
- Amit Benazraf
- Department of Biological ChemistryThe Alexander Silberman Institute of Life Sciences, The Hebrew University of JerusalemJerusalemIsrael
| | - Isaiah T. Arkin
- Department of Biological ChemistryThe Alexander Silberman Institute of Life Sciences, The Hebrew University of JerusalemJerusalemIsrael
| |
Collapse
|
17
|
Rombel‐Bryzek A, Miller A, Witkowska D. Thermodynamic analysis of the interactions between human ACE2 and spike RBD of Betacoronaviruses (SARS-CoV-1 and SARS-CoV-2). FEBS Open Bio 2022; 13:174-184. [PMID: 36416453 PMCID: PMC9808565 DOI: 10.1002/2211-5463.13525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 11/11/2022] [Accepted: 11/22/2022] [Indexed: 11/24/2022] Open
Abstract
There are many scientific reports on the interaction of the SARS-CoV-2 virus S protein (and its RBD) with the human ACE2 receptor protein. However, there are no reliable data on how this interaction differs from the interaction of the receptor binding domain of SARS-CoV-1 with ACE2, in terms of binding strength and changes in reaction enthalpy and entropy. Our studies have revealed these differences and the impact of zinc ions on this interaction. Intriguingly, the binding affinity of both RBDs (of SARS-CoV-1 and of SARS-CoV-2) to the ACE2 receptor protein is almost identical; however, there are some differences in the entropic and enthalpic contributions to these interactions.
Collapse
|
18
|
Seth P, Sarkar N. A comprehensive mini-review on amyloidogenesis of different SARS-CoV-2 proteins and its effect on amyloid formation in various host proteins. 3 Biotech 2022; 12:322. [PMID: 36254263 PMCID: PMC9558030 DOI: 10.1007/s13205-022-03390-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 09/30/2022] [Indexed: 11/21/2022] Open
Abstract
Amyloidogenesis is the inherent ability of proteins to change their conformation from native state to cross β-sheet rich fibrillar structures called amyloids which result in a wide range of diseases like Parkinson's disease, Alzheimer's disease, Finnish familial amyloidosis, ATTR amyloidosis, British and Danish dementia, etc. COVID-19, on the other hand is seen to have many similarities in symptoms with other amyloidogenic diseases and the overlap of these morbidities and symptoms led to the proposition whether SARS-CoV-2 proteins are undergoing amyloidogenesis and whether it is resulting in or aggravating amyloidogenesis of any human host protein. Thus the SARS-CoV-2 proteins in infected cells, i.e., Spike (S) protein, Nucleocapsid (N) protein, and Envelope (E) protein were tested via different machinery and amyloidogenesis in them were proven. In this review, we will analyze the pathway of amyloid formation in S-protein, N-protein, E-protein along with the effect that SARS-CoV-2 is creating on various host proteins leading to the unexpected onset of many morbidities like COVID-induced Acute Respiratory Distress Syndrome (ARDS), Parkinsonism in young COVID patients, formation of fibrin microthrombi in heart, etc., and their future implications.
Collapse
Affiliation(s)
- Prakriti Seth
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha 769008 India
| | - Nandini Sarkar
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha 769008 India
| |
Collapse
|
19
|
Bhadane R, Salo-Ahen OMH. High-Throughput Molecular Dynamics-Based Alchemical Free Energy Calculations for Predicting the Binding Free Energy Change Associated with the Selected Omicron Mutations in the Spike Receptor-Binding Domain of SARS-CoV-2. Biomedicines 2022; 10:2779. [PMID: 36359299 PMCID: PMC9687918 DOI: 10.3390/biomedicines10112779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/17/2022] [Accepted: 10/25/2022] [Indexed: 11/10/2023] Open
Abstract
The ongoing pandemic caused by SARS-CoV-2 has gone through various phases. Since the initial outbreak, the virus has mutated several times, with some lineages showing even stronger infectivity and faster spread than the original virus. Among all the variants, omicron is currently classified as a variant of concern (VOC) by the World Health Organization, as the previously circulating variants have been replaced by it. In this work, we have focused on the mutations observed in omicron sub lineages BA.1, BA.2, BA.4 and BA.5, particularly at the receptor-binding domain (RBD) of the spike protein that is responsible for the interactions with the host ACE2 receptor and binding of antibodies. Studying such mutations is particularly important for understanding the viral infectivity, spread of the disease and for tracking the escape routes of this virus from antibodies. Molecular dynamics (MD) based alchemical free energy calculations have been shown to be very accurate in predicting the free energy change, due to a mutation that could have a deleterious or a stabilizing effect on either the protein itself or its binding affinity to another protein. Here, we investigated the significance of five spike RBD mutations on the stability of the spike protein binding to ACE2 by free energy calculations using high throughput MD simulations. For comparison, we also used conventional MD simulations combined with a Molecular Mechanics-Generalized Born Surface Area (MM-GBSA) based approach, and compared our results with the available experimental data. Overall, the alchemical free energy calculations performed far better than the MM-GBSA approach in predicting the individual impact of the mutations. When considering the experimental variation, the alchemical free energy method was able to produce a relatively accurate prediction for N501Y, the mutant that has previously been reported to increase the binding affinity to hACE2. On the other hand, the other individual mutations seem not to have a significant effect on the spike RBD binding affinity towards hACE2.
Collapse
Affiliation(s)
- Rajendra Bhadane
- Structural Bioinformatics Laboratory, Faculty of Science and Engineering, Biochemistry, Åbo Akademi University, FI-20520 Turku, Finland
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Pharmacy, Åbo Akademi University, FI-20520 Turku, Finland
| | - Outi M. H. Salo-Ahen
- Structural Bioinformatics Laboratory, Faculty of Science and Engineering, Biochemistry, Åbo Akademi University, FI-20520 Turku, Finland
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Pharmacy, Åbo Akademi University, FI-20520 Turku, Finland
| |
Collapse
|
20
|
Mannsverk S, Bergholm J, Palanisamy N, Ellström P, Kaden R, Lindh J, Lennerstrand J. SARS-CoV-2 variants of concern and spike protein mutational dynamics in a Swedish cohort during 2021, studied by Nanopore sequencing. Virol J 2022; 19:164. [PMID: 36258215 PMCID: PMC9579623 DOI: 10.1186/s12985-022-01896-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 09/08/2022] [Accepted: 10/05/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Since the beginning of the COVID-19 pandemic, new variants of significance to public health have emerged. Consequently, early detection of new mutations and variants through whole-genome sequencing remains crucial to assist health officials in employing appropriate public health measures. METHODS We utilized the ARTIC Network SARS-CoV-2 tiled amplicon approach and Nanopore sequencing to sequence 4,674 COVID-19 positive patient samples from Uppsala County, Sweden, between week 15 and 52 in 2021. Using this data, we mapped the circulating variants of concern (VOC) in the county over time and analysed the Spike (S) protein mutational dynamics in the Delta variant throughout 2021. RESULTS The distribution of the SARS-CoV-2 VOC matched the national VOC distribution in Sweden, in 2021. In the S protein of the Delta variant, we detected mutations attributable to variants under monitoring and variants of interest (e.g., E484Q, Q613H, Q677H, A222V and Y145H) and future VOC (e.g., T95I and Y144 deletion, which are signature mutations in the Omicron variant). We also frequently detected some less well-described S protein mutations in our Delta sequences, that might play a role in shaping future emerging variants. These include A262S, Q675K, I850L, Q1201H, V1228L and M1237I. Lastly, we observed that some of the Delta variant's signature mutations were underrepresented in our study due to artifacts of the used bioinformatics tools, approach and sequencing method. We therefore discuss some pitfalls and considerations when sequencing SARS-CoV-2 genomes. CONCLUSION Our results suggest that genomic surveillance in a small, representative cohort can be used to make predictions about the circulating variants nationally. Moreover, we show that detection of transient mutations in currently circulating variants can give valuable clues to signature mutations of future VOC. Here we suggest six such mutations, that we detected frequently in the Delta variant during 2021. Lastly, we report multiple systematic errors that occurred when following the ARTIC Network SARS-CoV-2 tiled amplicon approach using the V3 primers and Nanopore sequencing, which led to the masking of some of the important signature mutations in the Delta sequences.
Collapse
Affiliation(s)
- Steinar Mannsverk
- Department of Medical Sciences, Section for Clinical Microbiology and Hospital Hygiene, Uppsala University, 751 85, Uppsala, Sweden
- Department of Cell and Molecular Biology, Uppsala University, 752 37, Uppsala, Sweden
| | - Julia Bergholm
- Department of Medical Sciences, Section for Clinical Microbiology and Hospital Hygiene, Uppsala University, 751 85, Uppsala, Sweden
| | | | - Patrik Ellström
- Department of Medical Sciences, Section for Clinical Microbiology and Hospital Hygiene, Uppsala University, 751 85, Uppsala, Sweden
| | - René Kaden
- Department of Medical Sciences, Section for Clinical Microbiology and Hospital Hygiene, Uppsala University, 751 85, Uppsala, Sweden
| | - Johan Lindh
- Department of Medical Sciences, Section for Clinical Microbiology and Hospital Hygiene, Uppsala University, 751 85, Uppsala, Sweden
| | - Johan Lennerstrand
- Department of Medical Sciences, Section for Clinical Microbiology and Hospital Hygiene, Uppsala University, 751 85, Uppsala, Sweden.
| |
Collapse
|
21
|
Barozi V, Edkins AL, Tastan Bishop Ö. Evolutionary progression of collective mutations in Omicron sub-lineages towards efficient RBD-hACE2: Allosteric communications between and within viral and human proteins. Comput Struct Biotechnol J 2022; 20:4562-4578. [PMID: 35989699 PMCID: PMC9384468 DOI: 10.1016/j.csbj.2022.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/06/2022] [Accepted: 08/07/2022] [Indexed: 11/23/2022] Open
Abstract
The interaction between the Spike (S) protein of SARS-CoV-2 and the human angiotensin converting enzyme 2 (hACE2) is essential for infection, and is a target for neutralizing antibodies. Consequently, selection of mutations in the S protein is expected to be driven by the impact on the interaction with hACE2 and antibody escape. Here, for the first time, we systematically characterized the collective effects of mutations in each of the Omicron sub-lineages (BA.1, BA.2, BA.3 and BA.4) on both the viral S protein receptor binding domain (RBD) and the hACE2 protein using post molecular dynamics studies and dynamic residue network (DRN) analysis. Our analysis suggested that Omicron sub-lineage mutations result in altered physicochemical properties that change conformational flexibility compared to the reference structure, and may contribute to antibody escape. We also observed changes in the hACE2 substrate binding groove in some sub-lineages. Notably, we identified unique allosteric communication paths in the reference protein complex formed by the DRN metrics betweenness centrality and eigencentrality hubs, originating from the RBD core traversing the receptor binding motif of the S protein and the N-terminal domain of the hACE2 to the active site. We showed allosteric changes in residue network paths in both the RBD and hACE2 proteins due to Omicron sub-lineage mutations. Taken together, these data suggest progressive evolution of the Omicron S protein RBD in sub-lineages towards a more efficient interaction with the hACE2 receptor which may account for the increased transmissibility of Omicron variants.
Collapse
Affiliation(s)
- Victor Barozi
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Makhanda/Grahamstown 6139, South Africa
| | - Adrienne L. Edkins
- The Biomedical Biotechnology Research Unit (BioBRU), Department of Biochemistry and Microbiology, Rhodes University, Makhanda/Grahamstown 6139, South Africa
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Makhanda/Grahamstown 6139, South Africa
| |
Collapse
|
22
|
Lan J, Chen P, Liu W, Ren W, Zhang L, Ding Q, Zhang Q, Wang X, Ge J. Structural insights into the binding of SARS-CoV-2, SARS-CoV, and hCoV-NL63 spike receptor-binding domain to horse ACE2. Structure 2022; 30:1432-1442.e4. [PMID: 35917815 PMCID: PMC9341007 DOI: 10.1016/j.str.2022.07.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 06/06/2022] [Accepted: 07/07/2022] [Indexed: 11/22/2022]
Abstract
Severe acute respiratory syndrome coronavirus (SARS-CoV), SARS-CoV-2, and human coronavirus (hCoV)-NL63 utilize ACE2 as the functional receptor for cell entry, which leads to zoonotic infection. Horses (Equus caballus) attracted our attention because the spike protein receptor-binding domains (RBDs) of SARS-CoV-2 and SARS-CoV-2-related coronaviruses bind equine ACE2 (eACE2) with high affinity. Here we show that eACE2 binds the RBDs of these three coronaviruses and also SARS-CoV-2 variants but with lower affinities compared with human ACE2 (hACE2). Structural analysis and mutation assays indicated that eACE2-H41 accounts for the lower binding affinity of eACE2 to the RBDs of SARS-CoV-2 variants (Alpha, Beta, and Gamma), SARS-CoV, and hCoV-NL63. Pseudovirus infection assays showed that the SARS-CoV-2 Delta strain (B.1.617.2) displayed a significantly increased infection efficiency in eACE2-expressing HeLa cells. Our results reveal the molecular basis of eACE2 binding to the RBDs of SARS-CoV, SARS-CoV-2, and hCoV-NL63, which provides insights into the potential animal transmission of these ACE2-dependent coronaviruses.
Collapse
Affiliation(s)
- Jun Lan
- The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
| | - Peng Chen
- Comprehensive AIDS Research Center, Beijing Advanced Innovation Center for Structural Biology, School of Medicine and Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Weiming Liu
- Department of Critical Care Medicine, Beijing Boai Hospital, China Rehabilitation Research Centre, No. 10 Jiaomen Beilu, Fengtai District, Beijing 100068, China
| | - Wenlin Ren
- Center for Infectious Disease Research, Beijing Advanced Innovation Center for Structural Biology, School of Medicine, Tsinghua University, Beijing, China
| | - Linqi Zhang
- Comprehensive AIDS Research Center, Beijing Advanced Innovation Center for Structural Biology, School of Medicine and Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Qiang Ding
- Center for Infectious Disease Research, Beijing Advanced Innovation Center for Structural Biology, School of Medicine, Tsinghua University, Beijing, China
| | - Qi Zhang
- Comprehensive AIDS Research Center, Beijing Advanced Innovation Center for Structural Biology, School of Medicine and Vanke School of Public Health, Tsinghua University, Beijing, China.
| | - Xinquan Wang
- The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China.
| | - Jiwan Ge
- The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China; Tsinghua-Peking Center for Life Sciences, Beijing, China.
| |
Collapse
|
23
|
Patrick C, Upadhyay V, Lucas A, Mallela KM. Biophysical Fitness Landscape of the SARS-CoV-2 Delta Variant Receptor Binding Domain. J Mol Biol 2022; 434:167622. [PMID: 35533762 PMCID: PMC9076029 DOI: 10.1016/j.jmb.2022.167622] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/21/2022] [Accepted: 04/29/2022] [Indexed: 12/16/2022]
Abstract
Among the five known SARS-CoV-2 variants of concern, Delta is the most virulent leading to severe symptoms and increased mortality among infected people. Our study seeks to examine how the biophysical parameters of the Delta variant correlate to the clinical observations. Receptor binding domain (RBD) is the first point of contact with the human host cells and is the immunodominant form of the spike protein. Delta variant RBD contains two novel mutations L452R and T478K. We examined the effect of single as well as the double mutations on RBD expression in human Expi293 cells, RBD stability using urea and thermal denaturation, and RBD binding to angiotensin converting enzyme 2 (ACE2) receptor and to neutralizing antibodies using isothermal titration calorimetry. Delta variant RBD showed significantly higher expression compared to the wild-type RBD, and the increased expression is due to L452R mutation. Despite their non-conservative nature, none of the mutations significantly affected RBD structure and stability. All mutants showed similar binding affinity to ACE2 and to Class 1 antibodies (CC12.1 and LY-CoV016) as that of the wild-type. Delta double mutant L452R/T478K showed no binding to Class 2 antibodies (P2B-2F6 and LY-CoV555) and a hundred-fold weaker binding to a Class 3 antibody (REGN10987), and the decreased antibody binding is determined by the L452R mutation. These results indicate that the immune escape from neutralizing antibodies, rather than increased receptor binding, is the main biophysical parameter that determined the fitness landscape of the Delta variant RBD.
Collapse
Affiliation(s)
| | | | | | - Krishna M.G. Mallela
- Corresponding author at: Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, 12850 E. Montview Blvd, MS C238-V20, Aurora, CO 80045, USA
| |
Collapse
|
24
|
Bajpai P, Singh V, Chandele A, Kumar S. Broadly Neutralizing Antibodies to SARS-CoV-2 Provide Novel Insights Into the Neutralization of Variants and Other Human Coronaviruses. Front Cell Infect Microbiol 2022; 12:928279. [PMID: 35782120 PMCID: PMC9245455 DOI: 10.3389/fcimb.2022.928279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/26/2022] [Indexed: 01/16/2023] Open
Affiliation(s)
| | | | | | - Sanjeev Kumar
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| |
Collapse
|
25
|
Chakraborty C, Sharma AR, Bhattacharya M, Agoramoorthy G, Lee SS. A Paradigm Shift in the Combination Changes of SARS-CoV-2 Variants and Increased Spread of Delta Variant (B.1.617.2) across the World. Aging Dis 2022; 13:927-942. [PMID: 35656100 PMCID: PMC9116911 DOI: 10.14336/ad.2021.1117] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/17/2021] [Indexed: 12/13/2022] Open
Abstract
Since September 2020, the SARS-CoV-2 variants have gained their dominance worldwide, especially in Kenya, Italy, France, the UK, Turkey, Indonesia, India, Finland, Ireland, Singapore, Denmark, Germany, and Portugal. In this study, we developed a model on the frequency of delta variants across 28 countries (R2= 0.1497), displaying the inheritance of mutations during the generation of the delta variants with 123,526 haplotypes. The country-wise haplotype network showed the distribution of haplotypes in USA (10,174), Denmark (5,637), India (4,089), Germany (2,350), Netherlands (1,899), Sweden (1,791), Italy (1,720), France (1,293), Ireland (1,257), Belgium (1,207), Singapore (1,193), Portugal (1,184) and Spain (1,133). Our analysis shows the highest haplotype in Europe with 84% and the lowest in Australia with 0.00001%. A model of scatter plot was generated with a regression line which provided the estimated rate of mutation, including 24.048 substitutions yearly. Our study concluded that the high global prevalence of the delta variants is due to a high frequency of infectivity, supporting the paradigm shift of the viral variants.
Collapse
Affiliation(s)
- Chiranjib Chakraborty
- 1Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal 700126, India
| | - Ashish Ranjan Sharma
- 2Institute for Skeletal Aging & Orthopaedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Gangwon-do, Korea
| | | | | | - Sang-Soo Lee
- 2Institute for Skeletal Aging & Orthopaedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Gangwon-do, Korea
| |
Collapse
|
26
|
Abstract
SARS-CoV-2 infection is associated with a surprising number of morbidities. Uncanny similarities with amyloid-disease associated blood coagulation and fibrinolytic disturbances together with neurologic and cardiac problems led us to investigate the amyloidogenicity of the SARS-CoV-2 spike protein (S-protein). Amyloid fibril assays of peptide library mixtures and theoretical predictions identified seven amyloidogenic sequences within the S-protein. All seven peptides in isolation formed aggregates during incubation at 37 °C. Three 20-amino acid long synthetic spike peptides (sequence 192-211, 601-620, 1166-1185) fulfilled three amyloid fibril criteria: nucleation dependent polymerization kinetics by ThT, Congo red positivity, and ultrastructural fibrillar morphology. Full-length folded S-protein did not form amyloid fibrils, but amyloid-like fibrils with evident branching were formed during 24 h of S-protein coincubation with the protease neutrophil elastase (NE) in vitro. NE efficiently cleaved S-protein, rendering exposure of amyloidogenic segments and accumulation of the amyloidogenic peptide 194-203, part of the most amyloidogenic synthetic spike peptide. NE is overexpressed at inflamed sites of viral infection. Our data propose a molecular mechanism for potential amyloidogenesis of SARS-CoV-2 S-protein in humans facilitated by endoproteolysis. The prospective of S-protein amyloidogenesis in COVID-19 disease associated pathogenesis can be important in understanding the disease and long COVID-19.
Collapse
|
27
|
Hoter A, Naim HY. Biochemical Characterization of SARS-CoV-2 Spike RBD Mutations and Their Impact on ACE2 Receptor Binding. Front Mol Biosci 2022; 9:893843. [PMID: 35677879 PMCID: PMC9168323 DOI: 10.3389/fmolb.2022.893843] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/19/2022] [Indexed: 12/12/2022] Open
Abstract
Infection of mammalian cells by SARS-CoV-2 coronavirus requires primary interaction between the receptor binding domain (RBD) of the viral spike protein and the host cell surface receptor angiotensin-converting enzyme 2 (ACE2) glycoprotein. Several mutations in the RBD of SARS-CoV-2 spike protein have been reported for several variants and resulted in wide spread of the COVID pandemic. For instance, the double mutations L452R and E484Q present in the Indian B.1.617 variant have been suggested to cause evasion of the host immune response. The common RBD mutations N501Y and E484K were found to enhance the interaction with the ACE2 receptor. In the current study, we analyzed the biosynthesis and secretion of the RBD double mutants L452R and E484Q in comparison to the wild-type RBD and the individual mutations N501 and E484K in mammalian cells. Moreover, we evaluated the interaction of these variants with ACE2 by means of expression of the S protein and co-immunoprecipitation with ACE2. Our results revealed that the double RBD mutations L452R and E484Q resulted in a higher expression level and secretion of spike S1 protein than other mutations. In addition, an increased interaction of these mutant forms with ACE2 in Calu3 cells was observed. Altogether, our findings highlight the impact of continuous S1 mutations on the pathogenicity of SARS-CoV-2 and provide further biochemical evidence for the dominance and high transmissibility of the double Indian mutations.
Collapse
Affiliation(s)
- Abdullah Hoter
- Department of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Hassan Y. Naim
- Department of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany
- *Correspondence: Hassan Y. Naim,
| |
Collapse
|
28
|
Upadhyay V, Patrick C, Lucas A, Mallela KMG. Convergent Evolution of Multiple Mutations Improves the Viral Fitness of SARS-CoV-2 Variants by Balancing Positive and Negative Selection. Biochemistry 2022; 61:963-980. [PMID: 35511584 DOI: 10.1021/acs.biochem.2c00132] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Multiple mutations have been seen to undergo convergent evolution in SARS-CoV-2 variants of concern. One such evolution occurs in Beta, Gamma, and Omicron variants at three amino acid positions K417, E484, and N501 in the receptor binding domain of the spike protein. We examined the physical mechanisms underlying the convergent evolution of three mutations K417T/E484K/N501Y by delineating the individual and collective effects of mutations on binding to angiotensin converting enzyme 2 receptor, immune escape from neutralizing antibodies, protein stability, and expression. Our results show that each mutation serves a distinct function that improves virus fitness supporting its positive selection, even though individual mutations have deleterious effects that make them prone to negative selection. Compared to the wild-type, K417T escapes Class 1 antibodies and has increased stability and expression; however, it has decreased receptor binding. E484K escapes Class 2 antibodies; however, it has decreased receptor binding, stability, and expression. N501Y increases receptor binding; however, it has decreased stability and expression. When these mutations come together, the deleterious effects are mitigated due to the presence of compensatory effects. Triple mutant K417T/E484K/N501Y has increased receptor binding, escapes both Class 1 and Class 2 antibodies, and has similar stability and expression as that of the wild-type. These results show that the convergent evolution of multiple mutations enhances viral fitness on different fronts by balancing both positive and negative selection and improves the chances of selection of mutations together.
Collapse
Affiliation(s)
- Vaibhav Upadhyay
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Casey Patrick
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Alexandra Lucas
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Krishna M G Mallela
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| |
Collapse
|
29
|
Magazine N, Zhang T, Wu Y, McGee MC, Veggiani G, Huang W. Mutations and Evolution of the SARS-CoV-2 Spike Protein. Viruses 2022; 14:640. [PMID: 35337047 PMCID: PMC8949778 DOI: 10.3390/v14030640] [Citation(s) in RCA: 129] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/12/2022] [Accepted: 03/16/2022] [Indexed: 11/16/2022] Open
Abstract
The SARS-CoV-2 spike protein mediates target recognition, cellular entry, and ultimately the viral infection that leads to various levels of COVID-19 severities. Positive evolutionary selection of mutations within the spike protein has led to the genesis of new SARS-CoV-2 variants with greatly enhanced overall fitness. Given the trend of variants with increased fitness arising from spike protein alterations, it is critical that the scientific community understand the mechanisms by which these mutations alter viral functions. As of March 2022, five SARS-CoV-2 strains were labeled "variants of concern" by the World Health Organization: the Alpha, Beta, Gamma, Delta, and Omicron variants. This review summarizes the potential mechanisms by which the common mutations on the spike protein that occur within these strains enhance the overall fitness of their respective variants. In addressing these mutations within the context of the SARS-CoV-2 spike protein structure, spike/receptor binding interface, spike/antibody binding, and virus neutralization, we summarize the general paradigms that can be used to estimate the effects of future mutations along SARS-CoV-2 evolution.
Collapse
Affiliation(s)
- Nicholas Magazine
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70802, USA; (N.M.); (T.Z.); (M.C.M.)
| | - Tianyi Zhang
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70802, USA; (N.M.); (T.Z.); (M.C.M.)
| | - Yingying Wu
- Center of Mathematical Sciences and Applications, Harvard University, Cambridge, MA 02138, USA;
| | - Michael C. McGee
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70802, USA; (N.M.); (T.Z.); (M.C.M.)
| | - Gianluca Veggiani
- The Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada;
| | - Weishan Huang
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70802, USA; (N.M.); (T.Z.); (M.C.M.)
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
30
|
Vo GV, Bagyinszky E, An SSA. COVID-19 Genetic Variants and Their Potential Impact in Vaccine Development. Microorganisms 2022; 10:598. [PMID: 35336173 PMCID: PMC8954257 DOI: 10.3390/microorganisms10030598] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 02/28/2022] [Accepted: 03/07/2022] [Indexed: 01/18/2023] Open
Abstract
In the two years since the SARS-CoV-2 pandemic started, it has caused over 5 million deaths and 400 million infected cases, and the world continues to be on high alert for COVID-19. Among the variants of interest and concern of SARS-CoV-2, the current Omicron (B.1.1.529) and stealth Omicron (BA.2) raised serious concerns due to rapid rates of infection caused by numerous mutations in the spike protein, which could escape from the antibody-mediated neutralization and increase the risk of reinfections. Hence, this work aims to describe the most relevant mutations in the SARS-CoV-2 spike protein, discuss vaccine against variant of concerns, describe rare adverse events after COVID-19 vaccination, introduce the most available promising COVID-19 vaccine candidates, and provide few perspectives of the future variants.
Collapse
Affiliation(s)
- Giau Van Vo
- Department of Biomedical Engineering, School of Medicine, Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh City 70000, Vietnam;
- Research Center for Genetics and Reproductive Health (CGRH), School of Medicine, Vietnam National University, Ho Chi Minh City (VNU-HCM), Ho Chi Minh City 70000, Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh City 70000, Vietnam
| | - Eva Bagyinszky
- Graduate School of Environment Department of Industrial and Environmental Engineering, Gachon University, Seongnam 13120, Korea
| | - Seong Soo A. An
- Department of Bionano Technology, Gachon University, Seongnam 13120, Korea
| |
Collapse
|
31
|
Chakraborty C, Sharma AR, Bhattacharya M, Lee SS. A Detailed Overview of Immune Escape, Antibody Escape, Partial Vaccine Escape of SARS-CoV-2 and Their Emerging Variants With Escape Mutations. Front Immunol 2022; 13:801522. [PMID: 35222380 PMCID: PMC8863680 DOI: 10.3389/fimmu.2022.801522] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/05/2022] [Indexed: 01/08/2023] Open
Abstract
The infective SARS-CoV-2 is more prone to immune escape. Presently, the significant variants of SARS-CoV-2 are emerging in due course of time with substantial mutations, having the immune escape property. Simultaneously, the vaccination drive against this virus is in progress worldwide. However, vaccine evasion has been noted by some of the newly emerging variants. Our review provides an overview of the emerging variants' immune escape and vaccine escape ability. We have illustrated a broad view related to viral evolution, variants, and immune escape ability. Subsequently, different immune escape approaches of SARS-CoV-2 have been discussed. Different innate immune escape strategies adopted by the SARS-CoV-2 has been discussed like, IFN-I production dysregulation, cytokines related immune escape, immune escape associated with dendritic cell function and macrophages, natural killer cells and neutrophils related immune escape, PRRs associated immune evasion, and NLRP3 inflammasome associated immune evasion. Simultaneously we have discussed the significant mutations related to emerging variants and immune escape, such as mutations in the RBD region (N439K, L452R, E484K, N501Y, K444R) and other parts (D614G, P681R) of the S-glycoprotein. Mutations in other locations such as NSP1, NSP3, NSP6, ORF3, and ORF8 have also been discussed. Finally, we have illustrated the emerging variants' partial vaccine (BioNTech/Pfizer mRNA/Oxford-AstraZeneca/BBIBP-CorV/ZF2001/Moderna mRNA/Johnson & Johnson vaccine) escape ability. This review will help gain in-depth knowledge related to immune escape, antibody escape, and partial vaccine escape ability of the virus and assist in controlling the current pandemic and prepare for the next.
Collapse
Affiliation(s)
- Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, India
| | - Ashish Ranjan Sharma
- Institute for Skeletal Aging and Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, South Korea
| | | | - Sang-Soo Lee
- Institute for Skeletal Aging and Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, South Korea
| |
Collapse
|
32
|
Choudhary OP, Ali RK, Maulud SQ, Dhawan M, Mohammed TA. Will the next spillover pandemic be deadlier than the COVID-19?: A wake-up call. Int J Surg 2022; 97:106208. [PMID: 34995807 PMCID: PMC8730376 DOI: 10.1016/j.ijsu.2021.106208] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 11/19/2022]
Affiliation(s)
- Om Prakash Choudhary
- Department of Veterinary Anatomy and Histology, College of Veterinary Sciences and Animal Husbandry, Central Agricultural University (I), Selesih, Aizawl, 796015, Mizoram, India 07, Type IV Quarter, College of Veterinary Sciences and Animal Husbandry, Central Agricultural University (I), Selesih, Aizawl, 796015, Mizoram, India Department of Biology, College of Education, Salahaddin University, Erbil, Iraq Department of Microbiology, Punjab Agricultural University, Ludhiana, 141004, Punjab, India The Trafford Group of Colleges, Manchester, WA14 5PQ, UK Dental Basic Science Department, College of Dentistry, University of Duhok, Duhok, Iraq
| | | | | | | | | |
Collapse
|
33
|
E484K and N501Y SARS-CoV 2 spike mutants Increase ACE2 recognition but reduce affinity for neutralizing antibody. Int Immunopharmacol 2021; 102:108424. [PMID: 34915409 PMCID: PMC8641390 DOI: 10.1016/j.intimp.2021.108424] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/19/2021] [Accepted: 11/26/2021] [Indexed: 12/15/2022]
Abstract
SARS-CoV2 mutants B.1.1.7, B.1.351, and P.1 contain a key mutation N501Y. B.1.135 and P.1 lineages have another mutation, E484K. Here, we decode the effect of these two mutations on the host receptor, ACE2, and neutralizing antibody (B38) recognition. The N501Y RBD mutant binds to ACE2 with higher affinity due to improved π-π stacking and π-cation interactions. The higher binding affinity of the E484K mutant is caused due to the formation of additional hydrogen bond and salt-bridge interactions with ACE2. Both the mutants bind to the B38 antibody with reduced affinity due to the loss of several hydrogen-bonding interactions. The insights obtained from the study are crucial to interpret the increased transmissibility and reduced neutralization efficacy of rapidly emerging SARS-CoV2 VOCs.
Collapse
|
34
|
Maffei M, Montemiglio LC, Vitagliano G, Fedele L, Sellathurai S, Bucci F, Compagnone M, Chiarini V, Exertier C, Muzi A, Roscilli G, Vallone B, Marra E. The Nuts and Bolts of SARS-CoV-2 Spike Receptor-Binding Domain Heterologous Expression. Biomolecules 2021; 11:1812. [PMID: 34944456 PMCID: PMC8699011 DOI: 10.3390/biom11121812] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/27/2021] [Accepted: 11/30/2021] [Indexed: 12/23/2022] Open
Abstract
COVID-19 is a highly infectious disease caused by a newly emerged coronavirus (SARS-CoV-2) that has rapidly progressed into a pandemic. This unprecedent emergency has stressed the significance of developing effective therapeutics to fight the current and future outbreaks. The receptor-binding domain (RBD) of the SARS-CoV-2 surface Spike protein is the main target for vaccines and represents a helpful "tool" to produce neutralizing antibodies or diagnostic kits. In this work, we provide a detailed characterization of the native RBD produced in three major model systems: Escherichia coli, insect and HEK-293 cells. Circular dichroism, gel filtration chromatography and thermal denaturation experiments indicated that recombinant SARS-CoV-2 RBD proteins are stable and correctly folded. In addition, their functionality and receptor-binding ability were further evaluated through ELISA, flow cytometry assays and bio-layer interferometry.
Collapse
Affiliation(s)
- Mariano Maffei
- Evvivax Biotech, Via di Castel Romano 100, 00128 Rome, Italy;
| | - Linda Celeste Montemiglio
- Institute of Molecular Biology and Pathology (IBPM), National Research Council, c/o Department of Biochemical Sciences “Alessandro Rossi Fanelli”, Sapienza, University of Rome, P. le Aldo Moro, 5, 00185 Rome, Italy;
| | - Grazia Vitagliano
- Takis Biotech, Via di Castel Romano 100, 00128 Rome, Italy; (G.V.); (L.F.); (S.S.); (F.B.); (V.C.); (A.M.)
| | - Luigi Fedele
- Takis Biotech, Via di Castel Romano 100, 00128 Rome, Italy; (G.V.); (L.F.); (S.S.); (F.B.); (V.C.); (A.M.)
| | - Shaila Sellathurai
- Takis Biotech, Via di Castel Romano 100, 00128 Rome, Italy; (G.V.); (L.F.); (S.S.); (F.B.); (V.C.); (A.M.)
| | - Federica Bucci
- Takis Biotech, Via di Castel Romano 100, 00128 Rome, Italy; (G.V.); (L.F.); (S.S.); (F.B.); (V.C.); (A.M.)
| | | | - Valerio Chiarini
- Takis Biotech, Via di Castel Romano 100, 00128 Rome, Italy; (G.V.); (L.F.); (S.S.); (F.B.); (V.C.); (A.M.)
| | - Cécile Exertier
- Department of Biochemical Sciences “Alessandro Rossi Fanelli”, Sapienza, University of Rome, P. le Aldo Moro, 5, 00185 Rome, Italy; (C.E.); (B.V.)
| | - Alessia Muzi
- Takis Biotech, Via di Castel Romano 100, 00128 Rome, Italy; (G.V.); (L.F.); (S.S.); (F.B.); (V.C.); (A.M.)
| | - Giuseppe Roscilli
- Evvivax Biotech, Via di Castel Romano 100, 00128 Rome, Italy;
- Takis Biotech, Via di Castel Romano 100, 00128 Rome, Italy; (G.V.); (L.F.); (S.S.); (F.B.); (V.C.); (A.M.)
| | - Beatrice Vallone
- Department of Biochemical Sciences “Alessandro Rossi Fanelli”, Sapienza, University of Rome, P. le Aldo Moro, 5, 00185 Rome, Italy; (C.E.); (B.V.)
| | - Emanuele Marra
- Evvivax Biotech, Via di Castel Romano 100, 00128 Rome, Italy;
- Takis Biotech, Via di Castel Romano 100, 00128 Rome, Italy; (G.V.); (L.F.); (S.S.); (F.B.); (V.C.); (A.M.)
| |
Collapse
|