1
|
Hadzima M, Faucher FF, Blažková K, Yim JJ, Guerra M, Chen S, Woods EC, Park KW, Šácha P, Šubr V, Kostka L, Etrych T, Majer P, Konvalinka J, Bogyo M. Polymer-Tethered Quenched Fluorescent Probes for Enhanced Imaging of Tumor-Associated Proteases. ACS Sens 2024; 9:3720-3729. [PMID: 38941307 PMCID: PMC11287742 DOI: 10.1021/acssensors.4c00912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/30/2024] [Accepted: 06/12/2024] [Indexed: 06/30/2024]
Abstract
Fluorescence-based contrast agents enable real-time detection of solid tumors and their neovasculature, making them ideal for use in image-guided surgery. Several agents have entered late-stage clinical trials or secured FDA approval, suggesting they are likely to become the standard of care in cancer surgeries. One of the key parameters to optimize in contrast agents is molecular size, which dictates much of the pharmacokinetic and pharmacodynamic properties of the agent. Here, we describe the development of a class of protease-activated quenched fluorescent probes in which a N-(2-hydroxypropyl)methacrylamide copolymer is used as the primary scaffold. This copolymer core provides a high degree of probe modularity to generate structures that cannot be achieved with small molecules and peptide probes. We used a previously validated cathepsin substrate and evaluated the effects of length and type of linker, as well as the positioning of the fluorophore/quencher pair on the polymer core. We found that the polymeric probes could be optimized to achieve increased overall signal and tumor-to-background ratios compared to the reference small molecule probe. Our results also revealed multiple structure-activity relationship trends that can be used to design and optimize future optical imaging probes. Furthermore, they confirm that a hydrophilic polymer is an ideal scaffold for use in optical imaging contrast probes, allowing a highly modular design that enables efficient optimization to maximize probe accumulation and overall biodistribution properties.
Collapse
Affiliation(s)
- Martin Hadzima
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Flemingovo n. 2, Praha 6 16610, Czech Republic
- Department
of Organic Chemistry, Faculty of Science, Charles University, Albertov 6, Praha 2 12800, Czech Republic
| | - Franco F. Faucher
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
- Department
of Pathology, School of Medicine, Stanford
University, Stanford, California 94305, United States
| | - Kristýna Blažková
- Department
of Pathology, School of Medicine, Stanford
University, Stanford, California 94305, United States
| | - Joshua J. Yim
- Department
of Pathology, School of Medicine, Stanford
University, Stanford, California 94305, United States
| | - Matteo Guerra
- Department
of Pathology, School of Medicine, Stanford
University, Stanford, California 94305, United States
| | - Shiyu Chen
- Department
of Pathology, School of Medicine, Stanford
University, Stanford, California 94305, United States
| | - Emily C. Woods
- Department
of Pathology, School of Medicine, Stanford
University, Stanford, California 94305, United States
| | - Ki Wan Park
- Department
of Pathology, School of Medicine, Stanford
University, Stanford, California 94305, United States
| | - Pavel Šácha
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Flemingovo n. 2, Praha 6 16610, Czech Republic
| | - Vladimír Šubr
- Institute
of Macromolecular Chemistry, Czech Academy
of Sciences, Heyrovského
n. 2, Praha 6 16206, Czech Republic
| | - Libor Kostka
- Institute
of Macromolecular Chemistry, Czech Academy
of Sciences, Heyrovského
n. 2, Praha 6 16206, Czech Republic
| | - Tomáš Etrych
- Institute
of Macromolecular Chemistry, Czech Academy
of Sciences, Heyrovského
n. 2, Praha 6 16206, Czech Republic
| | - Pavel Majer
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Flemingovo n. 2, Praha 6 16610, Czech Republic
| | - Jan Konvalinka
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Flemingovo n. 2, Praha 6 16610, Czech Republic
| | - Matthew Bogyo
- Department
of Pathology, School of Medicine, Stanford
University, Stanford, California 94305, United States
| |
Collapse
|
2
|
Zamani MR, Hadzima M, Blažková K, Šubr V, Ormsby T, Celis-Gutierrez J, Malissen B, Kostka L, Etrych T, Šácha P, Konvalinka J. Polymer-based antibody mimetics (iBodies) target human PD-L1 and function as a potent immune checkpoint blocker. J Biol Chem 2024; 300:107325. [PMID: 38685532 PMCID: PMC11154707 DOI: 10.1016/j.jbc.2024.107325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/09/2024] [Accepted: 04/19/2024] [Indexed: 05/02/2024] Open
Abstract
Immune checkpoint blockade (ICB) using monoclonal antibodies against programmed cell death protein 1 (PD-1) or programmed death-ligand 1 (PD-L1) is the treatment of choice for cancer immunotherapy. However, low tissue permeability, immunogenicity, immune-related adverse effects, and high cost could be possibly improved using alternative approaches. On the other hand, synthetic low-molecular-weight (LMW) PD-1/PD-L1 blockers have failed to progress beyond in vitro studies, mostly due to low binding affinity or poor pharmacological characteristics resulting from their limited solubility and/or stability. Here, we report the development of polymer-based anti-human PD-L1 antibody mimetics (α-hPD-L1 iBodies) by attaching the macrocyclic peptide WL12 to a N-(2-hydroxypropyl)methacrylamide copolymer. We characterized the binding properties of iBodies using surface plasmon resonance, enzyme-linked immunosorbent assay, flow cytometry, confocal microscopy, and a cellular ICB model. We found that the α-hPD-L1 iBodies specifically target human PD-L1 (hPD-L1) and block the PD-1/PD-L1 interaction in vitro, comparable to the atezolizumab, durvalumab, and avelumab licensed monoclonal antibodies targeting PD-L1. Our findings suggest that iBodies can be used as experimental tools to target hPD-L1 and could serve as a platform to potentiate the therapeutic effect of hPD-L1-targeting small molecules by improving their affinity and pharmacokinetic properties.
Collapse
Affiliation(s)
- Mohammad Reza Zamani
- Faculty of Science, Department of Cell Biology, Charles University, Prague, Czech Republic; Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Martin Hadzima
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic; Faculty of Science, Department of Organic Chemistry, Charles University, Prague, Czech Republic
| | - Kristýna Blažková
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Vladimír Šubr
- Department of Biomedical polymers, Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Tereza Ormsby
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Javier Celis-Gutierrez
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Université, INSERM, CNRS, Marseille, France
| | - Bernard Malissen
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Université, INSERM, CNRS, Marseille, France
| | - Libor Kostka
- Department of Biomedical polymers, Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Tomáš Etrych
- Department of Biomedical polymers, Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Pavel Šácha
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic.
| | - Jan Konvalinka
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic; Faculty of Science, Department of Biochemistry, Charles University, Prague, Czech Republic.
| |
Collapse
|
3
|
Hadzima M, Faucher F, Blažková K, Yim JJ, Guerra M, Chen S, Woods EC, Park KW, Šácha P, Šubr V, Kostka L, Etrych T, Majer P, Konvalinka J, Bogyo M. Polymer-tethered quenched fluorescent probes for enhanced imaging of tumor associated proteases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.06.592849. [PMID: 38766164 PMCID: PMC11100723 DOI: 10.1101/2024.05.06.592849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Fluorescence-based contrast agents enable real-time detection of solid tumors and their neovasculature, making them ideal for use in image-guided surgery. Several agents have entered late-stage clinical trials or secured FDA approval, suggesting they are likely to become standard of care in cancer surgeries. One of the key parameters to optimize in contrast agent is molecular size, which dictates much of the pharmacokinetic and pharmacodynamic properties of the agent. Here, we describe the development of a class of protease-activated quenched fluorescent probes in which a N-(2-hydroxypropyl)methacrylamide copolymer is used as the primary scaffold. This copolymer core provides a high degree of probe modularity to generate structures that cannot be achieved with small molecules and peptide probes. We used a previously validated cathepsin substrate and evaluated the effects of length and type of linker as well as positioning of the fluorophore/quencher pair on the polymer core. We found that the polymeric probes could be optimized to achieve increased over-all signal and tumor-to-background ratios compared to the reference small molecule probe. Our results also revealed multiple structure-activity relationship trends that can be used to design and optimize future optical imaging probes. Furthermore, they confirm that a hydrophilic polymer is an ideal scaffold for use in optical imaging contrast probes, allowing a highly modular design that enables efficient optimization to maximize probe accumulation and overall biodistribution properties.
Collapse
Affiliation(s)
- Martin Hadzima
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 16610, Praha 6, Czech Republic
- Department of Organic Chemistry, Faculty of Science, Charles University, Albertov 6, 12800, Praha 2, Czech Republic
| | - Franco Faucher
- Department of Chemistry, Stanford University, Stanford, California, 94305, United States
- Department of Pathology, School of Medicine, Stanford University, Stanford, California, 94305, United States
| | - Kristýna Blažková
- Department of Pathology, School of Medicine, Stanford University, Stanford, California, 94305, United States
| | - Joshua J. Yim
- Department of Pathology, School of Medicine, Stanford University, Stanford, California, 94305, United States
| | - Matteo Guerra
- Department of Pathology, School of Medicine, Stanford University, Stanford, California, 94305, United States
| | - Shiyu Chen
- Department of Pathology, School of Medicine, Stanford University, Stanford, California, 94305, United States
| | - Emily C. Woods
- Department of Pathology, School of Medicine, Stanford University, Stanford, California, 94305, United States
| | - Ki Wan Park
- Department of Pathology, School of Medicine, Stanford University, Stanford, California, 94305, United States
| | - Pavel Šácha
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 16610, Praha 6, Czech Republic
| | - Vladimír Šubr
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského n. 2, 16206, Praha 6, Czech Republic
| | - Libor Kostka
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského n. 2, 16206, Praha 6, Czech Republic
| | - Tomáš Etrych
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského n. 2, 16206, Praha 6, Czech Republic
| | - Pavel Majer
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 16610, Praha 6, Czech Republic
| | - Jan Konvalinka
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 16610, Praha 6, Czech Republic
| | - Matthew Bogyo
- Department of Pathology, School of Medicine, Stanford University, Stanford, California, 94305, United States
| |
Collapse
|
4
|
Sansee A, Kostka L, Marcalíková A, Kudláčová J, Sedlák F, Kotrchová L, Šácha P, Etrych T, Kielar F. Iridium-based Polymeric Multifunctional Imaging Tools for Biochemistry. Chempluschem 2024; 89:e202300647. [PMID: 38217401 DOI: 10.1002/cplu.202300647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/15/2024]
Abstract
Herein, we report the development of a macromolecular multifunctional imaging tool for biological investigations, which is comprised of an N-(2-hydroxypropyl)methacrylamide backbone, iridium-based luminescent probe, glutamate carboxypeptidase II (GCPII) targeting ligand, and biotin affinity tag. The iridium luminophore is a tris-cyclometalated complex based on [Ir(ppy)3] with one of its 2-phenylpyridine ligands functionalized to allow conjugation. Synthesized macromolecular probes differed in the structure of the polymer and content of the iridium complex. The applicability of the developed imaging tools has been tested in flow cytometry (FACS) based assay, laser confocal microscopy, and fluorescence lifetime imaging microscopy (FLIM). The FACS analysis has shown that the targeted iBodies containing the iridium luminophore exhibit selective labelling of GCPII expressing cells. This observation was also confirmed in the imaging experiments with laser confocal microscopy. The FLIM experiment has shown that the iBodies with the iridium label exhibit a lifetime greater than 100 ns, which distinguishes them from typically used systems labelled with organic fluorophores exhibiting short fluorescence lifetimes. The results of this investigation indicate that the system exhibits interesting properties, which supports the development of additional biological tools utilizing the key components (iridium complexes, iBody concept), primarily focusing on the longer lifetime of the iridium emitter.
Collapse
Affiliation(s)
- Anuson Sansee
- Department of Chemistry and Center of Excellence in Biomaterials, Faculty of Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Libor Kostka
- Department of Biomedicinal Polymers, Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám 2, 160 00, Prague, Czech Republic
| | - Adéla Marcalíková
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám 542/2, 160 00, Prague, Czech Republic
| | - Júlia Kudláčová
- Department of Biomedicinal Polymers, Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám 2, 160 00, Prague, Czech Republic
| | - František Sedlák
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám 542/2, 160 00, Prague, Czech Republic
- Department of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Kateřinská 32, 121 08, Prague, Czech Republic
| | - Lenka Kotrchová
- Department of Biomedicinal Polymers, Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám 2, 160 00, Prague, Czech Republic
| | - Pavel Šácha
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám 542/2, 160 00, Prague, Czech Republic
| | - Tomáš Etrych
- Department of Biomedicinal Polymers, Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám 2, 160 00, Prague, Czech Republic
| | - Filip Kielar
- Department of Chemistry and Center of Excellence in Biomaterials, Faculty of Science, Naresuan University, Phitsanulok, 65000, Thailand
| |
Collapse
|
5
|
Juračka S, Hrnčířová B, Burýšková B, Georgiev D, Dvořák P. Building the SynBio community in the Czech Republic from the bottom up: You get what you give. BIOTECHNOLOGY NOTES (AMSTERDAM, NETHERLANDS) 2022; 3:124-134. [PMID: 39416447 PMCID: PMC11446354 DOI: 10.1016/j.biotno.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 10/19/2024]
Abstract
Given its highly innovative character and potential socioeconomic impact, Synthetic Biology is often ranked among prominent research areas and national research priorities in developed countries. The global evolution of this field is proceeding by leaps and bounds but its development at the level of individual states varies widely. Despite their current satisfactory economic status, the majority of 13, mostly post-communist, countries that entered the European Union family in and after 2004 (EU13) have long overlooked the blossoming of Synthetic Biology. Their prioritized lines of research have been directed elsewhere or "Synthetic Biology" did not become a widely accepted term to encompass their bioengineering and biotechnology domains. The Czech Republic is not an exception. The local SynBio mycelium already exists but is mainly built bottom-up through the activities of several academic labs, iGEM teams, and spin-off companies. In this article, we tell their individual stories and summarize the prerequisites that allowed their emergence in the Czech academic and business environment. In addition, we provide the reader with a brief overview of laboratories, research hubs, and companies that perform biotechnology and bioengineering-oriented research and that may be included in a notional "shadow SynBio community" but have not yet adopted Synthetic Biology as a unifying term for their ventures. We also map the current hindrances for a broader expansion of Synthetic Biology in the Czech Republic and suggest possible steps that should lead to the maturity of this fascinating research field in our country.
Collapse
Affiliation(s)
- Stanislav Juračka
- Department of Experimental Biology (Section of Microbiology, Microbial Bioengineering Laboratory), Faculty of Science, Masaryk University, Brno, Czech Republic
- Member of iGEM team, Brno, Czech Republic
| | - Barbora Hrnčířová
- Department of Experimental Biology (Section of Microbiology, Microbial Bioengineering Laboratory), Faculty of Science, Masaryk University, Brno, Czech Republic
- Member of iGEM team, Brno, Czech Republic
| | - Barbora Burýšková
- Department of Experimental Biology (Section of Microbiology, Microbial Bioengineering Laboratory), Faculty of Science, Masaryk University, Brno, Czech Republic
- Member of iGEM team, Brno, Czech Republic
- Former EUSynBioS Steering Committee Member, Czech Republic
| | - Daniel Georgiev
- Department of Cybernetics, Faculty of Applied Sciences, University of West Bohemia, Pilsen, Czech Republic
- Member of iGEM team, Czech Republic
| | - Pavel Dvořák
- Department of Experimental Biology (Section of Microbiology, Microbial Bioengineering Laboratory), Faculty of Science, Masaryk University, Brno, Czech Republic
- Member of iGEM team, Brno, Czech Republic
- Former EUSynBioS Steering Committee Member, Czech Republic
| |
Collapse
|