1
|
Colinet M, Chiver I, Bonafina A, Masset G, Almansa D, Di Valentin E, Twizere JC, Nguyen L, Espuny-Camacho I. SARS-CoV2 infection triggers inflammatory conditions and astrogliosis-related gene expression in long-term human cortical organoids. Stem Cells 2025; 43:sxaf010. [PMID: 40103011 PMCID: PMC12121356 DOI: 10.1093/stmcls/sxaf010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 02/18/2025] [Indexed: 03/20/2025]
Abstract
SARS-CoV2, severe acute respiratory syndrome coronavirus 2, is frequently associated with neurological manifestations. Despite the presence of mild to severe CNS-related symptoms in a cohort of patients, there is no consensus whether the virus can infect directly brain tissue or if the symptoms in patients are a consequence of peripheral infectivity of the virus. Here, we use long-term human stem cell-derived cortical organoids to assess SARS-CoV2 infectivity of brain cells and unravel the cell-type tropism and its downstream pathological effects. Our results show consistent and reproducible low levels of SARS-CoV2 infection of astrocytes, deep projection neurons, upper callosal neurons, and inhibitory neurons in 6 months of human cortical organoids. Interestingly, astrocytes showed the highest infection rate among all infected cell populations which led to changes in their morphology and upregulation of SERPINA3, CD44, and S100A10 astrogliosis markers. Further, transcriptomic analysis revealed overall changes in expression of genes related to cell metabolism, astrogliosis and, inflammation and further, upregulation of cell survival pathways. Thus, local and minor infectivity of SARS-CoV2 in the brain may induce widespread adverse effects and lead to the resilience of dysregulated neurons and astrocytes within an inflammatory environment.
Collapse
Affiliation(s)
- Mathilde Colinet
- Laboratory of Molecular Regulation of Neurogenesis, GIGA Institute, University of Liège, Liège 4000, Belgium
| | - Ioana Chiver
- Laboratory of Molecular Regulation of Neurogenesis, GIGA Institute, University of Liège, Liège 4000, Belgium
| | - Antonela Bonafina
- Laboratory of Molecular Regulation of Neurogenesis, GIGA Institute, University of Liège, Liège 4000, Belgium
| | - Gérald Masset
- Laboratory of Molecular Regulation of Neurogenesis, GIGA Institute, University of Liège, Liège 4000, Belgium
| | - Daniel Almansa
- Laboratory of Molecular Regulation of Neurogenesis, GIGA Institute, University of Liège, Liège 4000, Belgium
| | - Emmanuel Di Valentin
- GIGA Viral Vector Platform, GIGA Institute, University of Liège, Liège 4000, Belgium
| | - Jean-Claude Twizere
- Laboratory of Viral Interactomes, Unit of Molecular Biology of Diseases, GIGA Institute, University of Liège, Liège 4000, Belgium
| | - Laurent Nguyen
- Laboratory of Molecular Regulation of Neurogenesis, GIGA Institute, University of Liège, Liège 4000, Belgium
- WELBIO Department, WEL Research Institute, Wavre 1300, Belgium
| | - Ira Espuny-Camacho
- Laboratory of Molecular Regulation of Neurogenesis, GIGA Institute, University of Liège, Liège 4000, Belgium
- GIGA HIPS, GIGA Institute, University of Liège, Liège 4000, Belgium
| |
Collapse
|
2
|
Fraser BJ, Wilson RP, Ferková S, Ilyassov O, Lac J, Dong A, Li YY, Seitova A, Li Y, Hejazi Z, Kenney TMG, Penn LZ, Edwards A, Leduc R, Boudreault PL, Morin GB, Bénard F, Arrowsmith CH. Structural basis of TMPRSS11D specificity and autocleavage activation. Nat Commun 2025; 16:4351. [PMID: 40348740 PMCID: PMC12065894 DOI: 10.1038/s41467-025-59677-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 05/01/2025] [Indexed: 05/14/2025] Open
Abstract
Transmembrane Protease, Serine-2 (TMPRSS2) and TMPRSS11D are human proteases that enable SARS-CoV-2 and Influenza A/B virus infections, but their biochemical mechanisms for facilitating viral cell entry remain unclear. We show these proteases spontaneously and efficiently cleave their own zymogen activation motifs, activating their broader protease activity on cellular substrates. We determine TMPRSS11D co-crystal structures with a native and an engineered activation motif, revealing insights into its autocleavage activation and distinct substrate binding cleft features. Leveraging this structural data, we develop nanomolar potency peptidomimetic inhibitors of TMPRSS11D and TMPRSS2. We show that a broad serine protease inhibitor that underwent clinical trials for TMPRSS2-targeted COVID-19 therapy, nafamostat mesylate, was rapidly cleaved by TMPRSS11D and converted to low activity derivatives. In this work, we develop mechanistic insights into human protease viral tropism and highlight both the strengths and limitations of existing human serine protease inhibitors, informing future drug discovery efforts targeting these proteases.
Collapse
Affiliation(s)
- Bryan J Fraser
- Structural Genomics Consortium Toronto, Toronto, ON, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
| | - Ryan P Wilson
- Structural Genomics Consortium Toronto, Toronto, ON, Canada
| | - Sára Ferková
- Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
- Department of Radiology, University of British Columbia, Vancouver, BC, Canada
| | | | - Jackie Lac
- Structural Genomics Consortium Toronto, Toronto, ON, Canada
| | - Aiping Dong
- Structural Genomics Consortium Toronto, Toronto, ON, Canada
| | - Yen-Yen Li
- Structural Genomics Consortium Toronto, Toronto, ON, Canada
| | - Alma Seitova
- Structural Genomics Consortium Toronto, Toronto, ON, Canada
| | - Yanjun Li
- Structural Genomics Consortium Toronto, Toronto, ON, Canada
| | - Zahra Hejazi
- Structural Genomics Consortium Toronto, Toronto, ON, Canada
| | - Tristan M G Kenney
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Linda Z Penn
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Aled Edwards
- Structural Genomics Consortium Toronto, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Richard Leduc
- Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
- Department of Radiology, University of British Columbia, Vancouver, BC, Canada
| | - Pierre-Luc Boudreault
- Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
- Department of Radiology, University of British Columbia, Vancouver, BC, Canada
| | - Gregg B Morin
- Canada's Michael Smith Genome Sciences Centre, Vancouver, BC, Canada.
- British Columbia Cancer Research Institute, Vancouver, BC, Canada.
- University of British Columbia, Vancouver, BC, Canada.
| | - François Bénard
- British Columbia Cancer Research Institute, Vancouver, BC, Canada.
- University of British Columbia, Vancouver, BC, Canada.
| | - Cheryl H Arrowsmith
- Structural Genomics Consortium Toronto, Toronto, ON, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
- Princess Margaret Cancer Centre, Toronto, ON, Canada.
| |
Collapse
|
3
|
Baby K, Vithalkar MP, Dastidar SG, Mukhopadhyay C, Hamdy R, Soliman SSM, Nayak Y. Exploring TMPRSS2 Drug Target to Combat Influenza and Coronavirus Infection. SCIENTIFICA 2025; 2025:3687892. [PMID: 40297833 PMCID: PMC12037250 DOI: 10.1155/sci5/3687892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 04/02/2025] [Indexed: 04/30/2025]
Abstract
Respiratory viral infections, including influenza and coronaviruses, present significant health risks worldwide. The recent COVID-19 pandemic highlights the urgent need for novel and effective antiviral agents. The host cell protease, transmembrane serine protease 2 (TMPRSS2), facilitates viral pathogenesis by playing a critical role in viral invasion and disease progression. This protease is coexpressed with the viral receptors of angiotensin-converting enzyme 2 (ACE2) for SARS-CoV-2 in the human respiratory tract and plays a significant role in activating viral proteins and spreading. TMPRSS2 activates the coronavirus spike (S) protein and permits membrane fusion and viral entry by cleaving the virus surface glycoproteins. It also activates the hemagglutinin (HA) protein, an enzyme necessary for the spread of influenza virus. TMPRSS2 inhibitors can reduce viral propagation and morbidity by blocking viral entry into respiratory cells and reducing viral spread, inflammation, and disease severity. This review examines the role of TMPRSS2 in viral replication and pathogenicity. It also offers potential avenues to develop targeted antivirals to inhibit TMPRSS2 function, suggesting a possible focus on targeted antiviral development. Ultimately, the review seeks to contribute to improving public health outcomes related to these viral infections.
Collapse
Affiliation(s)
- Krishnaprasad Baby
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Megh Pravin Vithalkar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Somasish Ghosh Dastidar
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Chiranjay Mukhopadhyay
- Manipal Institute of Virology, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
- Department of Microbiology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
- Centre for Emerging and Tropical Diseases, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Rania Hamdy
- Research Institute for Science and Engineering (RISE), University of Sharjah, Sharjah 27272, UAE
| | - Sameh S. M. Soliman
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, UAE
- College of Pharmacy, University of Sharjah, P.O. Box 27272, Sharjah, UAE
| | - Yogendra Nayak
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| |
Collapse
|
4
|
Oliva J, Ruffin M, Calmel C, Gibeaud A, Pizzorno A, Gaudin C, Chardonnet S, de Almeida Bastos V, Rosa-Calatrava M, Soulé A, Emad A, Rousseau S, Corvol H, Terrier O, Guillot L. Divergent responses to SARS-CoV-2 infection in bronchial epithelium with pre-existing respiratory diseases. iScience 2025; 28:111999. [PMID: 40104058 PMCID: PMC11914195 DOI: 10.1016/j.isci.2025.111999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/04/2024] [Accepted: 02/07/2025] [Indexed: 03/20/2025] Open
Abstract
Pre-existing respiratory diseases may influence coronavirus disease (COVID-19) susceptibility and severity. However, the molecular mechanisms underlying the airway epithelial response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection severity in patients with chronic respiratory diseases remain unelucidated. Using an in vitro model of differentiated primary bronchial epithelial cells, we aimed to investigate the molecular mechanisms of SARS-CoV-2 infection in pre-existing cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD). Our study revealed reduced susceptibility of CF and COPD airway epithelia to SARS-CoV-2, relative to that in healthy controls. Mechanistically, reduced transmembrane serine protease 2 (TMPRSS2) activity potentially contributed to this resistance of CF epithelium. Upregulated complement and inflammatory pathways in CF and COPD epithelia potentially primed the antiviral state prior to infection. Analysis of a COVID-19 patient cohort validated our findings, correlating specific inflammatory markers (IP-10, SERPINA1, and CFB) with COVID-19 severity. This study elucidates SARS-CoV-2 pathogenesis and identifies potential biomarkers for clinical monitoring.
Collapse
Affiliation(s)
- Justine Oliva
- CIRI, Centre International de Recherche en Infectiologie, Team VirPath, Université de Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France
| | - Manon Ruffin
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), 75012 Paris, France
| | - Claire Calmel
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), 75012 Paris, France
| | - Aurélien Gibeaud
- CIRI, Centre International de Recherche en Infectiologie, Team VirPath, Université de Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France
| | - Andrés Pizzorno
- CIRI, Centre International de Recherche en Infectiologie, Team VirPath, Université de Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France
- Virnext, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France
- International Research Laboratory RespiVir France - Canada, Centre de Recherche en Infectiologie, Faculté de Médecine RTH Laennec 69008 Lyon, Université Claude Bernard Lyon 1, Université de Lyon, INSERM, CNRS, ENS de Lyon, France, Centre Hospitalier Universitaire de Québec - Université Laval, Québec, QC G1V 4G2, Canada
| | - Clémence Gaudin
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), 75012 Paris, France
| | - Solenne Chardonnet
- Sorbonne Université, INSERM, UMS PASS, Plateforme Post-génomique de la Pitié-Salpêtrière (P3S), 75013 Paris, France
| | - Viviane de Almeida Bastos
- Sorbonne Université, INSERM, UMS PASS, Plateforme Post-génomique de la Pitié-Salpêtrière (P3S), 75013 Paris, France
| | - Manuel Rosa-Calatrava
- CIRI, Centre International de Recherche en Infectiologie, Team VirPath, Université de Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France
- Virnext, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France
- International Research Laboratory RespiVir France - Canada, Centre de Recherche en Infectiologie, Faculté de Médecine RTH Laennec 69008 Lyon, Université Claude Bernard Lyon 1, Université de Lyon, INSERM, CNRS, ENS de Lyon, France, Centre Hospitalier Universitaire de Québec - Université Laval, Québec, QC G1V 4G2, Canada
- Centre de Recherche en Infectiologie, Centre Hospitalier Universitaire de Québec, Université Laval, Québec, QC G1V 4G2, Canada
| | - Antoine Soulé
- Department of Electrical and Computer Engineering, McGill University, Montréal, QC, Canada
| | - Amin Emad
- Department of Electrical and Computer Engineering, McGill University, Montréal, QC, Canada
- Mila, Québec AI Institute, Montréal, QC, Canada
| | - Simon Rousseau
- The Meakins-Christie Laboratories at the Research Institute of the McGill University Health Centre Research Institute, Department of Medicine, Faculty of Medicine, McGill University, Montréal, QC, Canada
| | - Harriet Corvol
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), 75012 Paris, France
- Pneumologie Pédiatrique, APHP, Hôpital Trousseau, 75012 Paris, France
| | - Olivier Terrier
- CIRI, Centre International de Recherche en Infectiologie, Team VirPath, Université de Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France
| | - Loïc Guillot
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), 75012 Paris, France
| |
Collapse
|
5
|
Neerukonda SN, Vassell R, Lusvarghi S, Liu S, Akue A, Kukuruga M, Wang TT, Weiss CD, Wang W. Characterization of spike S1/S2 processing and entry pathways of lentiviral pseudoviruses bearing seasonal human coronaviruses NL63, 229E, and HKU1 spikes. Microbiol Spectr 2025; 13:e0280824. [PMID: 39873512 PMCID: PMC11878054 DOI: 10.1128/spectrum.02808-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 12/16/2024] [Indexed: 01/30/2025] Open
Abstract
Although much has been learned about the entry mechanism of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), many details of the entry mechanisms of seasonal human coronaviruses (HCoVs) remain less well understood. In the present study, we used 293T cell lines stably expressing angiotensin converting enzyme (ACE2), aminopeptidase N (APN), or transmembrane serine protease 2 (TMPRSS2), which support high-level transduction of lentiviral pseudoviruses bearing spike proteins of seasonal HCoVs, HCoV-NL63, -229E, or -HKU1, respectively, to compare spike processing and virus entry pathways among these viruses. Our results showed that the entry of HCoV-NL63, -229E, and -HKU1 pseudoviruses into cells is sensitive to endosomal acidification inhibitors (chloroquine and NH4Cl), indicating entry via the endocytosis route. Although TMPRSS2 expression on target cell surface was required for HCoV-HKU1 spike-mediated entry and cell-cell fusion, we found that only the serine protease domain of TMPRSS2 and not the serine protease activity of TMPRSS2 was required for viral entry via endocytic route. However, the serine protease activity of TMPRSS2 and a furin processing site (RKRR) at the S1/S2 junction were essential for efficient HCoV-HKU1 spike-mediated cell-cell fusion. Additionally, we show that dibasic and monobasic arginine residues at the S1/S2 junctions of spike proteins of HCoV-NL63 and -229E are essential for virus entry, but multi-basic furin processing site at the S1/S2 junction was dispensable for HCoV-HKU1 viral entry. Our findings highlight features of the entry mechanisms of seasonal HCoVs that may support the development of novel treatment strategies.IMPORTANCEDetails of the entry mechanisms of seasonal human coronaviruses (HCoVs) remain to be fully explored. To investigate spike-mediated virus entry of HCoV-NL63, -229E, and -HKU1 CoVs, we employed 293T cells that stably express angiotensin converting enzyme (ACE2), aminopeptidase N (APN), or transmembrane serine protease 2 (TMPRSS2) to study entry mechanisms of pseudoviruses bearing spike proteins of HCoV-NL63, -229E, and -HKU1, respectively. We found that HCoV-NL63, -229E, and -HKU1 pseudoviruses entered cells via the endocytic route independently of cellular serine protease activity and therefore likely depended on endosomal cathepsin activity. Furthermore, we showed that arginine amino acids in S1/S2 junctions of HCoV-NL63 and -229E spikes were essential for entry but not essential for HCoV-HKU1 entry. Our results provide new insights into the S1/S2 junctional residues, cellular receptors, and protease requirements for seasonal HCoV pseudovirus entry into cells that may support the development of novel inhibitors.
Collapse
Affiliation(s)
- Sabari Nath Neerukonda
- Office of Vaccine Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Russell Vassell
- Office of Vaccine Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Sabrina Lusvarghi
- Office of Vaccine Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Shufeng Liu
- Office of Vaccine Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Adovi Akue
- Office of Vaccine Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Mark Kukuruga
- Office of Vaccine Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Tony T. Wang
- Office of Vaccine Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Carol D. Weiss
- Office of Vaccine Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Wei Wang
- Office of Vaccine Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
6
|
Verhulst E, De Bruyn M, Berckmans P, Sim Y, Augustyns K, Pintelon I, Berg M, Van Wielendaele P, Lambeir A, Sterckx YG, Nelissen I, De Meester I. Human Transmembrane Serine Protease 2 (TMPRSS2) on Human Seminal Fluid Extracellular Vesicles Is Proteolytically Active. J Extracell Vesicles 2025; 14:e70061. [PMID: 40091430 PMCID: PMC11911546 DOI: 10.1002/jev2.70061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/03/2025] [Accepted: 02/12/2025] [Indexed: 03/19/2025] Open
Abstract
Human transmembrane serine protease 2 (TMPRSS2) has garnered substantial interest due to its clinical significance in various pathologies, notably its pivotal role in viral entry into host cells. The development of effective strategies to target TMPRSS2 is a current area of intense research and necessitates a consistent source of active TMPRSS2 with sufficient stability. Here, we comprehensively characterised human seminal-fluid extracellular vesicles (SF-EVs, also referred to as prostasomes), bearing a native source of surface-exposed, enzymatically active TMPRSS2 as demonstrated by high-sensitivity flow cytometry and a fluorometric activity assay. Additionally, we recombinantly produced human TMPRSS2 ectodomain in mammalian cells adopting a directed activation strategy. We observed comparable catalytic parameters and inhibition characteristics for both native SF-EV-associated and recombinant TMPRSS2 when exposed to serine protease inhibitor Nafamostat mesylate. Leveraging these findings, we developed a robust in vitro biochemical assay based on these SF-EVs for the screening of TMPRSS2-targeting compounds. Our results will accelerate the discovery and advancement of efficacious therapeutic approaches targeting TMPRSS2 and propel further exploration into the biological role of SF-EV-associated active TMPRSS2.
Collapse
Affiliation(s)
- Emile Verhulst
- Laboratory of Medical Biochemistry, Faculty of Pharmaceutical, Biomedical and Veterinary SciencesUniversity of AntwerpWilrijkBelgium
| | - Michelle De Bruyn
- Laboratory of Medical Biochemistry, Faculty of Pharmaceutical, Biomedical and Veterinary SciencesUniversity of AntwerpWilrijkBelgium
| | | | - Yani Sim
- Laboratory of Medical Biochemistry, Faculty of Pharmaceutical, Biomedical and Veterinary SciencesUniversity of AntwerpWilrijkBelgium
| | - Koen Augustyns
- Laboratory of Medicinal Chemistry, Faculty of Pharmaceutical, Biomedical and Veterinary SciencesUniversity of AntwerpWilrijkBelgium
- Infla‐Med Centre of ExcellenceUniversity of AntwerpWilrijkBelgium
| | - Isabel Pintelon
- Laboratory of Cell Biology and Histology, Faculty of Pharmaceutical, Biomedical and Veterinary SciencesUniversity of AntwerpWilrijkBelgium
- Antwerp Centre for Advanced Microscopy (ACAM), Faculty of Pharmaceutical, Biomedical and Veterinary SciencesUniversity of AntwerpWilrijkBelgium
| | - Maya Berg
- Infla‐Med Centre of ExcellenceUniversity of AntwerpWilrijkBelgium
| | - Pieter Van Wielendaele
- Laboratory of Medical Biochemistry, Faculty of Pharmaceutical, Biomedical and Veterinary SciencesUniversity of AntwerpWilrijkBelgium
| | - Anne‐Marie Lambeir
- Laboratory of Medical Biochemistry, Faculty of Pharmaceutical, Biomedical and Veterinary SciencesUniversity of AntwerpWilrijkBelgium
| | - Yann G.‐J. Sterckx
- Laboratory of Medical Biochemistry, Faculty of Pharmaceutical, Biomedical and Veterinary SciencesUniversity of AntwerpWilrijkBelgium
| | - Inge Nelissen
- Health UnitFlemish Institute for Technological ResearchMolBelgium
| | - Ingrid De Meester
- Laboratory of Medical Biochemistry, Faculty of Pharmaceutical, Biomedical and Veterinary SciencesUniversity of AntwerpWilrijkBelgium
- Infla‐Med Centre of ExcellenceUniversity of AntwerpWilrijkBelgium
| |
Collapse
|
7
|
Khan MY, Shah AU, Duraisamy N, ElAlaoui RN, Cherkaoui M, Hemida MG. Leveraging Artificial Intelligence and Gene Expression Analysis to Identify Some Potential Bovine Coronavirus (BCoV) Receptors and Host Cell Enzymes Potentially Involved in the Viral Replication and Tissue Tropism. Int J Mol Sci 2025; 26:1328. [PMID: 39941096 PMCID: PMC11818245 DOI: 10.3390/ijms26031328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/28/2025] [Accepted: 02/03/2025] [Indexed: 02/16/2025] Open
Abstract
Bovine coronavirus (BCoV) exhibits dual tissue tropism, infecting both the respiratory and enteric tracts of cattle. Viral entry into host cells requires a coordinated interaction between viral and host proteins. However, the specific cellular receptors and co-receptors facilitating BCoV entry remain poorly understood. Similarly, the roles of host proteases such as Furin, TMPRSS2, and Cathepsin-L (CTS-L), known to assist in the replication of other coronaviruses, have not been extensively explored for BCoV. This study aims to identify novel BCoV receptors and host proteases that modulate viral replication and tissue tropism. Bovine cell lines were infected with BCoV isolates from enteric and respiratory origins, and the host cell gene expression profiles post-infection were analyzed using next-generation sequencing (NGS). Differentially expressed genes encoding potential receptors and proteases were further assessed using in-silico prediction and molecular docking analysis. These analyses focused on known coronavirus receptors, including ACE2, NRP1, DPP4, APN, AXL, and CEACAM1, to identify their potential roles in BCoV infection. Validation of these findings was performed using the qRT-PCR assays targeting individual genes. We confirmed the gene expression profiles of these receptors and enzymes in some BCoV (+/-) lung tissues. Results revealed high binding affinities of 9-O-acetylated sialic acid and NRP1 to BCoV spike (S) and hemagglutinin-esterase (HE) proteins compared to ACE2, DPP4, and CEACAM1. Additionally, Furin and TMPRSS2 were predicted to interact with the BCoV-S polybasic cleavage site (RRSRR|A), suggesting their roles in S glycoprotein activation. This is the first study to explore the interactions of BCoV with multiple host receptors and proteases. Functional studies are recommended to confirm their roles in BCoV infection and replication.
Collapse
Affiliation(s)
- Mohd Yasir Khan
- Department of Computer Science, College of Digital Engineering and Artificial Intelligence, Long Island University, Brooklyn, NY 11201, USA; (M.Y.K.); (N.D.); (R.N.E.); (M.C.)
| | - Abid Ullah Shah
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, 720 Northern Boulevard, Brookville, NY 11548, USA;
| | - Nithyadevi Duraisamy
- Department of Computer Science, College of Digital Engineering and Artificial Intelligence, Long Island University, Brooklyn, NY 11201, USA; (M.Y.K.); (N.D.); (R.N.E.); (M.C.)
| | - Reda Nacif ElAlaoui
- Department of Computer Science, College of Digital Engineering and Artificial Intelligence, Long Island University, Brooklyn, NY 11201, USA; (M.Y.K.); (N.D.); (R.N.E.); (M.C.)
| | - Mohammed Cherkaoui
- Department of Computer Science, College of Digital Engineering and Artificial Intelligence, Long Island University, Brooklyn, NY 11201, USA; (M.Y.K.); (N.D.); (R.N.E.); (M.C.)
| | - Maged Gomaa Hemida
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, 720 Northern Boulevard, Brookville, NY 11548, USA;
| |
Collapse
|
8
|
Jin Z, Zhang Y, Chen W, Li H, Shi L, Wang D, Zhu R, Zhang C. Intracellular autoactivation and surface location of hepsin, TMPRSS2, and TMPRSS13. Life Sci 2025; 361:123299. [PMID: 39643034 DOI: 10.1016/j.lfs.2024.123299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/03/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
AIMS Hepsin (HPN), a Type II transmembrane serine protease (TTSP), is involved in hepatocyte metabolism and various diseases. It undergoes autoactivation on the surface of human hepatoma cells, a mechanism not observed in other cell types. This study aims to explore HPN activation and surface expression in endometrial epithelial cells. MATERIALS AND METHODS We studied HPN zymogen activation and cell surface expression in human embryonic kidney 293 and endometrial epithelial AN3CA and Ishikawa cells using site-directed mutagenesis, Western blotting, flow cytometry, and immunostaining. Treatments with brefeldin A (BFA) and monensin, along with co-transfection assays, were employed to assess HPN activation and expression before reaching the cell surface. We also analyzed the activation and expression of TMPRSS2 and TMPRSS13 and examined the effect of the serine protease inhibitor HAI-1 on these proteases. KEY FINDINGS HPN zymogen autoactivates in the endoplasmic reticulum (ER) and Golgi apparatus. Its active form reduces cell surface expression through trans-autodegradation, a mechanism also applicable to in TMPRSS2 and TMPRSS13. Additionally, HAI-1 interacts with these TTSPs in different ways: it inhibits HPN activation and stabilizes its cell-surface expression; it inhibits TMPRSS2 activation without affecting its cell-surface expression; and it facilitates TMPRSS13 activation, protecting it from degradation and stabilizing its cell surface expression. SIGNIFICANCE These results revealed an intracellular autoactivation and expression mechanism of HPN, TMPRSS2, and TMPRSS13, differing from the extracellular activated TTSPs. These findings provide new insights into the diverse mechanisms in regulating TTSP activation, potentially aiding in treating TTSP-related endometrial diseases.
Collapse
Affiliation(s)
- Zili Jin
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjin, China
| | - Yue Zhang
- Medical Science and Technology Innovation Center, Central Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Wenjun Chen
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Hui Li
- Medical Science and Technology Innovation Center, Central Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Lingyun Shi
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Di Wang
- Center for Human Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Rui Zhu
- Center for Human Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China.
| | - Ce Zhang
- Center for Human Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China.
| |
Collapse
|
9
|
Barros de Lima G, Nencioni E, Thimoteo F, Perea C, Pinto RFA, Sasaki SD. TMPRSS2 as a Key Player in Viral Pathogenesis: Influenza and Coronaviruses. Biomolecules 2025; 15:75. [PMID: 39858469 PMCID: PMC11764435 DOI: 10.3390/biom15010075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/28/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
TMPRSS2, a human transmembrane protease enzyme, plays a crucial role in the spread of certain viruses, including influenza and coronaviruses. This enzyme promotes viral infection by cleaving viral glycoproteins, which helps viruses like SARS-CoV-2 and influenza A enter cells more effectively. Genetic differences in TMPRSS2 may affect people's susceptibility to COVID-19, underscoring the need for studies that consider diverse populations. Beyond infectious diseases, TMPRSS2 has also been linked to some cancers, suggesting it could be a valuable target for drug development. This review provides a summary of TMPRSS2 inhibitors currently under study, with some already in clinical trials to test their effectiveness against viral infections. As we uncover more about TMPRSS2's role in pathogenesis, it could open new doors for therapies to combat future outbreaks.
Collapse
Affiliation(s)
| | | | | | | | | | - Sergio Daishi Sasaki
- Graduate Program of Biosystems, Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC), São Bernardo do Campo, São Paulo 09606-045, Brazil; (G.B.d.L.); (E.N.); (F.T.); (C.P.); (R.F.A.P.)
| |
Collapse
|
10
|
Shikama Y, Otsuka K, Shikama Y, Furukawa M, Ishimaru N, Matsushita K. Involvement of metformin and aging in salivary expression of ACE2 and TMPRSS2. Biofactors 2025; 51:e2154. [PMID: 39865553 PMCID: PMC11771682 DOI: 10.1002/biof.2154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 11/29/2024] [Indexed: 01/28/2025]
Abstract
SARS-CoV-2-related proteins, ACE2 and TMPRSS2, are determinants of SARS-CoV-2 infection. Although these proteins are expressed in oral-related tissues, their expression patterns and modulatory mechanisms in the salivary glands remain unknown. We herein showed that full-length ACE2, which has both a fully functional enzyme catalytic site and high-affinity SARS-CoV-2 spike S1-binding sites, was more highly expressed in salivary glands than in oral mucosal epithelial cells and the lungs. Regarding TMPRSS2, zymogen and the cleaved form were both expressed in the salivary glands, whereas only zymogen was expressed in murine lacrimal glands and the lungs. Metformin, an AMPK activator, increased stimulated saliva secretion and full-length ACE2 expression and decreased cleaved TMPRSS2 expression in the salivary glands, and exerted the same effects on soluble ACE2 (sACE2) and sTMPRSS2 in saliva. Moreover, metformin decreased the expression of beta-galactosidase, a senescence marker, and ADAM17, a sheddase of ACE2 to sACE2, in the salivary glands. In aged mice, the expression of ACE2 was decreased in the salivary glands, whereas that of sACE2 was increased in saliva, presumably by the up-regulated expression of ADAM17. The expression of TMPRSS2 in the salivary glands and sTMPRSS2 in saliva were both increased. Collectively, these results suggest that the protein expression patterns of ACE2 and TMPRSS2 in the salivary glands differ from those in other oral-related cells and tissues, and also that metformin and aging affect the salivary expression of ACE2 and TMPRSS2, which have the potential as targets for preventing the transmission of SARS-CoV-2.
Collapse
Affiliation(s)
- Yosuke Shikama
- Department of Oral Disease ResearchNational Center for Geriatrics and GerontologyObuJapan
- Department of Geriatric Oral Science, Graduate School of DentistryTohoku UniversitySendaiJapan
| | - Kunihiro Otsuka
- Department of Oral Molecular PathologyTokushima University Graduate School of Biomedical SciencesTokushimaJapan
| | - Yuka Shikama
- Department of Oral Disease ResearchNational Center for Geriatrics and GerontologyObuJapan
| | - Masae Furukawa
- Department of Oral Disease ResearchNational Center for Geriatrics and GerontologyObuJapan
| | - Naozumi Ishimaru
- Department of Oral PathologyGraduate School of Medical and Dental Sciences, Institute of Science TokyoTokyoJapan
| | - Kenji Matsushita
- Department of Oral Disease ResearchNational Center for Geriatrics and GerontologyObuJapan
- Department of Geriatric Oral Science, Graduate School of DentistryTohoku UniversitySendaiJapan
| |
Collapse
|
11
|
Chen Y, Ou X, Li P, Zan F, Tan L, Qian Z. Identification of the critical residues of TMPRSS2 for entry and host range of human coronavirus HKU1. J Virol 2024; 98:e0158724. [PMID: 39526774 PMCID: PMC11650973 DOI: 10.1128/jvi.01587-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024] Open
Abstract
Human coronavirus (CoV) HKU1 infection typically causes common cold but can lead to pneumonia in children, older people, and immunosuppressed individuals. Recently, human transmembrane serine protease 2 (hTMPRSS2) was identified as the functional receptor for HKU1, but its region and residues critical for HKU1 S binding remain elusive. In this study, we find that HKU1 could utilize human and hamster, but not rat, mouse, or bat TMPRSS2 for virus entry, displaying a narrow host range. Using human-bat TMPRSS2 chimeras, we show that the serine peptidase (SP) domain of TMPRSS2 is essential for entry of HKU1. Further extensive mutagenesis analyses of the C-terminal regions of SP domains of human and bat TMPRSS2s identify residues 417 and 469 critical for entry of HKU1. Replacement of either D417 or Y469 with asparagine in hTMPRSS2 abolishes its abilities to mediate entry of HKU1 S pseudovirions and cell-cell fusion, whereas substitution of N417 with D or N469 with Y in bat TMPRSS2 (bTMPRSS2) renders it supporting HKU1 entry. Our findings contribute to a deeper understanding of coronavirus-receptor interactions and cross-species transmission.IMPORTANCEThe interactions of coronavirus (CoV) S proteins with their cognate receptors determine the host range and cross-species transmission potential. Recently, human transmembrane serine protease 2 (hTMPRSS2) was found to be the receptor for HKU1. Here, we show that the TMPRSS2 of hamster, but not rat, mouse, or bat, can serve as a functional entry receptor for HKU1. Moreover, swapping the residues at the positions of 417 and 469 of bTMPRSS2 with the corresponding residues of hTMPRSS2 confers it supporting entry of HKU1 S pseudovirions, indicating the critical role of these residues in HKU1 entry. Our study identified the critical residues in hTMPRSS2 responsible for receptor interaction and host range of HKU1.
Collapse
Affiliation(s)
- Yahan Chen
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- MOE Key Laboratory of Pathogen Infection Prevention and Control, Peking Union Medical College, Beijing, China
| | - Xiuyuan Ou
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- MOE Key Laboratory of Pathogen Infection Prevention and Control, Peking Union Medical College, Beijing, China
| | - Pei Li
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- MOE Key Laboratory of Pathogen Infection Prevention and Control, Peking Union Medical College, Beijing, China
| | - Fuwen Zan
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- MOE Key Laboratory of Pathogen Infection Prevention and Control, Peking Union Medical College, Beijing, China
| | - Lin Tan
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- MOE Key Laboratory of Pathogen Infection Prevention and Control, Peking Union Medical College, Beijing, China
| | - Zhaohui Qian
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- MOE Key Laboratory of Pathogen Infection Prevention and Control, Peking Union Medical College, Beijing, China
- State Key Laboratory of Respiratory Health and Multimorbidity, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
12
|
Sáez-Leyva J, Lennol MP, Avilés-Granados C, García-Ayllón MS, Gutiérrez A, Francés R, Sáez-Valero J. Altered plasma levels of the SARS-CoV-2-related proteins ACE2 and TMPRSS2 in patients with Crohn's disease. Sci Rep 2024; 14:30346. [PMID: 39638806 PMCID: PMC11621418 DOI: 10.1038/s41598-024-81810-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024] Open
Abstract
The SARS-CoV-2 coronavirus infects cells through the cellular receptor angiotensin-converting enzyme 2 (ACE2), and the protease TMPRSS2 for the priming of viral spike protein. Thus, changes in these key proteins due to chronic conditions can increase risk for SARS-CoV2 infection; but significance of changes may differ is these changes correspond to full-length species or proteolytic fragments. Here, we determined that full-length ACE2 decreased in the plasma of uninfected Crohn's disease (CD) patients before treatment onset compared to controls. TMPRSS2 is mostly presented in plasma as full-length species and as an active peptidase fragment, but also as a prodomain fragment, which is the unique species remarkably decreased in plasma from CD patients. Patients treated with the anti-TNFα adalimumab showed recovery in ACE2 levels, while those treated with infliximab, or with the anti-IL-12/23 ustekinumab, still displayed a decrease in full-length species, as well as in cleaved fragments. Patients treated with azathioprine displayed similar ACE2 levels to that of controls, except a decrease in one of the ACE2 fragments. Uniquely, patients treated with azathioprine or with ustekinumab showed partial recovery in the reduction of the TMPRSS2-prodomain fragment characterized in treatment-naïve patients. Our data suggest that CD and common therapies are not related to increased susceptibility for SARS-CoV-2.
Collapse
Affiliation(s)
- Jorge Sáez-Leyva
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Matthew P Lennol
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Institute of Neurophysiopathology (INP UMR7051), CNRS, Aix-Marseille Université, Marseille, 13005, France
| | - Carlos Avilés-Granados
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
| | - María-Salud García-Ayllón
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Unidad de Investigación, Hospital General Universitario de Elche, FISABIO, Elche, Spain
| | - Ana Gutiérrez
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
- Servicio de Medicina Digestiva, Hospital General Universitario de Alicante, Alicante, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Rubén Francés
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain.
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain.
- Hepatic and Intestinal Immunology Group, Department of Clinical Medicine, Miguel Hernández University, San Juan de Alicante, Spain.
| | - Javier Sáez-Valero
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain.
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain.
| |
Collapse
|
13
|
Saba AA, Nur J, Alam MS, Howlader ZH, Islam LN, Nabi AN. Missense variant rs75603675 within TMPRSS2 gene is associated with the increased risk of severe form of COVID-19. GENE REPORTS 2024; 37:102039. [DOI: 10.1016/j.genrep.2024.102039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
14
|
de Oliveira-Simões FA, Victorino da Silva Amatto I, Langer Marciano C, Rosa-Garzon NGD, Noma Okamoto D, Juliano MA, Juliano L, Cabral H. Biochemical characterization, stability, and kinetics of three substrates of the recombinant TMPRSS2 serine protease domain. Prep Biochem Biotechnol 2024; 54:1285-1293. [PMID: 38727020 DOI: 10.1080/10826068.2024.2349132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Transmembrane serine protease 2 (TMPRSS2) is a membrane-bound protease belonging to the type II transmembrane serine protease (TTSP) family. It is a multidomain protein, including a serine protease domain responsible for its self-activation. The protein has been implicated as an oncogenic transcription factor and for its ability to cleave (prime) the SARS-CoV-2 spike protein. In order to characterize the TMPRSS2 biochemical properties, we expressed the serine protease domain (rTMPRSS2_SP) in Komagataella phaffii using the pPICZαA vector and purified it using immobilized metal affinity (Ni Sepharose™ excel) and size exclusion (Superdex 75) chromatography. We explored operational fluorescence resonance energy transfer FRET peptides as substrates. We chose the peptide Abz-QARK-(Dnp)-NH2 (Abz = ortho-aminobenzoic acid, the fluorescence donor, and Dnp = 2,4-dinitrophenyl, the quencher group) as a substrate to find the optimal conditions for maximum enzymatic activity. We found that metallic ions such as Ca2+ and Na+ increased enzymatic activity, but ionic surfactants and reducing agents decreased catalytic capacity. Finally, we determined the rTMPRSS2_SP stability for long-term storage. Altogether, our results represent the first comprehensive characterization of TMPRSS2's biochemical properties, providing valuable insights into its serine protease domain.
Collapse
Affiliation(s)
- Flávio Antônio de Oliveira-Simões
- Pharmaceutical Sciences Program, Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Isabela Victorino da Silva Amatto
- Biosciences and Biotechnology Program, Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Camila Langer Marciano
- Biosciences and Biotechnology Program, Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Nathalia Gonsales da Rosa-Garzon
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Débora Noma Okamoto
- Deparatment of Pharmaceutical Sciences, Universidade Federal de São Paulo, Diadema, SP, Brazil
| | - Maria Aparecida Juliano
- Departament of Biophysical, Escola Paulista de Medicina, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Luiz Juliano
- Departament of Biophysical, Escola Paulista de Medicina, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Hamilton Cabral
- Pharmaceutical Sciences Program, Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
- Biosciences and Biotechnology Program, Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
15
|
Murdocca M, Andrade Santos-Filho O, De Masi C, Dos Santos Rodrigues E, Campos de Souza CV, De Santis R, Amatore D, Latini A, Schipani R, di Rienzo Businco L, Brandimarte B, Grilli G, Huang TL, Mayence AS, Lista F, Duranti A, Sangiuolo F, Vanden Eynde JJ, Novelli G. Characterization of the symmetrical benzimidazole twin drug TL1228: the role as viral entry inhibitor for fighting COVID-19. Biol Direct 2024; 19:93. [PMID: 39415197 PMCID: PMC11481581 DOI: 10.1186/s13062-024-00523-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 08/28/2024] [Indexed: 10/18/2024] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is reliably one of the largest pandemics the world has suffered in recent years. In the search for non-biological antivirals, special emphasis was placed on drug repurposing to accelerate the clinical implementation of effective drugs.The life cycle of the virus has been extensively investigated and many human targets have been identified, such as the molecular chaperone GRP78, representing a host auxiliary factor for SARS-CoV-2 entry. Here we report the inhibitor capacity of TL1228, a small molecule discovered through an in silico screening approach, which could interfere with the interaction of SARS-CoV-2 and its target cells, blocking the recognition of the GRP78 cellular receptor by the viral Spike protein. TL1228 showed in vitro the ability to reduce significantly both pseudoviral and authentic viral activity even through the reduction of GRP78/ACE2 transcript levels. Importantly, TL1228 acts in modulating expression levels of innate immunity and as inflammation markers.
Collapse
Affiliation(s)
- Michela Murdocca
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Osvaldo Andrade Santos-Filho
- Center of Health Sciences Laboratory of Molecular Modelling & Computational Strutural Biology Cidade Universitária, Federal University of Rio de Janeiro IPPN, Av. Carlos Chagas Filho373, Bloco H, Rio de Janeiro, 21941-599, RJ, Brazil
| | - Claudia De Masi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Edivaldo Dos Santos Rodrigues
- Center of Health Sciences Laboratory of Molecular Modelling & Computational Strutural Biology Cidade Universitária, Federal University of Rio de Janeiro IPPN, Av. Carlos Chagas Filho373, Bloco H, Rio de Janeiro, 21941-599, RJ, Brazil
| | - Claudia Valeria Campos de Souza
- Center of Health Sciences Laboratory of Molecular Modelling & Computational Strutural Biology Cidade Universitária, Federal University of Rio de Janeiro IPPN, Av. Carlos Chagas Filho373, Bloco H, Rio de Janeiro, 21941-599, RJ, Brazil
| | - Riccardo De Santis
- Department of Public Health and Infectious Diseases, University of Rome Sapienza, Rome, Italy
- Defence Institute for Biomedical Sciences, Rome, 00184, Italy
| | | | - Andrea Latini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Rossella Schipani
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Lino di Rienzo Businco
- Otorhinolaryngology Department, Institute of Sport Medicine and Science CONI, Rome, Italy
| | - Bruno Brandimarte
- Electronic Measurements Physics Department, Sapienza University, Rome, Italy
| | - Giorgia Grilli
- Defence Institute for Biomedical Sciences, Rome, 00184, Italy
| | - Tien L Huang
- Formerly Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA, 70125, USA
| | - Annie S Mayence
- Formerly Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA, 70125, USA
| | - Florigio Lista
- Defence Institute for Biomedical Sciences, Rome, 00184, Italy
| | - Andrea Duranti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, 61029, Italy
| | - Federica Sangiuolo
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy.
| | - Jean Jacques Vanden Eynde
- Formerly Department of Organic Chemistry (FS), University of Mons-UMONS, 1 place du Parc, Mons, 7000, Belgium
| | - Giuseppe Novelli
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
16
|
Quagliariello V, Canale ML, Bisceglia I, Maurea C, Gabrielli D, Tarantini L, Paccone A, Inno A, Oliva S, Cadeddu Dessalvi C, Zito C, Caraglia M, Berretta M, D’Aiuto G, Maurea N. Addressing Post-Acute COVID-19 Syndrome in Cancer Patients, from Visceral Obesity and Myosteatosis to Systemic Inflammation: Implications in Cardio-Onco-Metabolism. Biomedicines 2024; 12:1650. [PMID: 39200115 PMCID: PMC11351439 DOI: 10.3390/biomedicines12081650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/16/2024] [Accepted: 07/23/2024] [Indexed: 09/01/2024] Open
Abstract
Cardiovascular disease and cancer are the two leading causes of morbidity and mortality in the world. The emerging field of cardio-oncology described several shared risk factors that predispose patients to both cardiovascular disease and cancer. Post-acute COVID-19 syndrome is a chronic condition that occurs in many patients who have experienced a SARS-CoV-2 infection, mainly based on chronic fatigue, sedentary lifestyle, cramps, breathing difficulties, and reduced lung performance. Post-acute COVID-19 exposes patients to increased visceral adiposity, insulin resistance, myosteatosis, and white adipose tissue content (surrounded by M1 macrophages and characterized by a Th1/Th17 phenotype), which increases the risk of cardiovascular mortality and cancer recurrence. In this review, the main metabolic affections of post-acute COVID-19 syndrome in cancer patients at low and high risk of cardiomyopathies will be summarized. Furthermore, several non-pharmacological strategies aimed at reducing atherosclerotic and cardiac risk will be provided, especially through anti-inflammatory nutrition with a low insulin and glycemic index, appropriate physical activity, and immune-modulating bioactivities able to reduce visceral obesity and myosteatosis, improving insulin-related signaling and myocardial metabolism.
Collapse
Affiliation(s)
- Vincenzo Quagliariello
- Division of Cardiology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Napoli, Italy (N.M.)
| | | | - Irma Bisceglia
- Servizi Cardiologici Integrati, Dipartimento Cardio-Toraco-Vascolare, Azienda Ospedaliera San Camillo Forlanini, 00152 Roma, Italy;
| | - Carlo Maurea
- Neurology Department, University of Salerno, 84084 Fisciano, Italy;
| | - Domenico Gabrielli
- U.O.C. Cardiologia, Dipartimento Cardio-Toraco-Vascolare, Azienda Ospedaliera San Camillo Forlanini, 00152 Roma, Italy;
| | - Luigi Tarantini
- Divisione di Cardiologia, Arcispedale S. Maria Nuova, Azienda Unità Sanitaria Locale-IRCCS di Reggio-Emilia, 42122 Reggio Emilia, Italy;
| | - Andrea Paccone
- Division of Cardiology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Napoli, Italy (N.M.)
| | - Alessandro Inno
- Medical Oncology, IRCCS Ospedale Sacro Cuore Don Calabria, 37024 Negrar di Valpolicella, Italy;
| | - Stefano Oliva
- UOSD Cardiologia di Interesse Oncologico IRCCS Istituto Tumori “Giovanni Paolo II”, 70124 Bari, Italy;
| | | | - Concetta Zito
- Cardiology Division, University Hospital Polyclinic G. Martino, University of Messina, 98122 Messina, Italy;
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio, 7, 80138 Naples, Italy;
| | - Massimiliano Berretta
- Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy;
| | | | - Nicola Maurea
- Division of Cardiology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Napoli, Italy (N.M.)
| |
Collapse
|
17
|
Radisky ES. Extracellular proteolysis in cancer: Proteases, substrates, and mechanisms in tumor progression and metastasis. J Biol Chem 2024; 300:107347. [PMID: 38718867 PMCID: PMC11170211 DOI: 10.1016/j.jbc.2024.107347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/08/2024] [Accepted: 04/25/2024] [Indexed: 06/02/2024] Open
Abstract
A vast ensemble of extracellular proteins influences the development and progression of cancer, shaped and reshaped by a complex network of extracellular proteases. These proteases, belonging to the distinct classes of metalloproteases, serine proteases, cysteine proteases, and aspartic proteases, play a critical role in cancer. They often become dysregulated in cancer, with increases in pathological protease activity frequently driven by the loss of normal latency controls, diminished regulation by endogenous protease inhibitors, and changes in localization. Dysregulated proteases accelerate tumor progression and metastasis by degrading protein barriers within the extracellular matrix (ECM), stimulating tumor growth, reactivating dormant tumor cells, facilitating tumor cell escape from immune surveillance, and shifting stromal cells toward cancer-promoting behaviors through the precise proteolysis of specific substrates to alter their functions. These crucial substrates include ECM proteins and proteoglycans, soluble proteins secreted by tumor and stromal cells, and extracellular domains of cell surface proteins, including membrane receptors and adhesion proteins. The complexity of the extracellular protease web presents a significant challenge to untangle. Nevertheless, technological strides in proteomics, chemical biology, and the development of new probes and reagents are enabling progress and advancing our understanding of the pivotal importance of extracellular proteolysis in cancer.
Collapse
Affiliation(s)
- Evette S Radisky
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida, USA.
| |
Collapse
|
18
|
Salaun C, Tomkinson NCO, Chamberlain LH. The endoplasmic reticulum-localized enzyme zDHHC6 mediates S-acylation of short transmembrane constructs from multiple type I and II membrane proteins. J Biol Chem 2023; 299:105201. [PMID: 37660915 PMCID: PMC10520890 DOI: 10.1016/j.jbc.2023.105201] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/10/2023] [Accepted: 08/25/2023] [Indexed: 09/05/2023] Open
Abstract
In this study, we investigated the S-acylation of two host cell proteins important for viral infection: TMPRSS2 (transmembrane serine protease 2), which cleaves severe acute respiratory syndrome coronavirus 2 spike to facilitate viral entry, and bone marrow stromal antigen 2, a general viral restriction factor. We found that both proteins were S-acylated by zDHHC6, an S-acyltransferase enzyme localized at the endoplasmic reticulum, in coexpression experiments. Mutagenic analysis revealed that zDHHC6 modifies a single cysteine in each protein, which are in proximity to the transmembrane domains (TMDs). For TMPRSS2, the modified cysteine is positioned two residues into the TMD, whereas the modified cysteine in bone marrow stromal antigen 2 has a cytosolic location two amino acids upstream of the TMD. Cysteine swapping revealed that repositioning the target cysteine of TMPRSS2 further into the TMD substantially reduced S-acylation by zDHHC6. Interestingly, zDHHC6 efficiently S-acylated truncated forms of these proteins that contained only the TMDs and short juxtamembrane regions. The ability of zDHHC6 to modify short TMD sequences was also seen for the transferrin receptor (another type II membrane protein) and for five different type I membrane protein constructs, including cluster of differentiation 4. Collectively, the results of this study show that zDHHC6 can modify diverse membrane proteins (type I and II) and requires only the presence of the TMD and target cysteine for efficient S-acylation. Thus, zDHHC6 may be a broad specificity S-acyltransferase specialized for the modification of a diverse set of transmembrane proteins at the endoplasmic reticulum.
Collapse
Affiliation(s)
- Christine Salaun
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom.
| | - Nicholas C O Tomkinson
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, United Kingdom
| | - Luke H Chamberlain
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| |
Collapse
|