1
|
Alshammari QA. Redox modulatory role of DJ-1 in Parkinson's disease. Biogerontology 2025; 26:81. [PMID: 40159591 DOI: 10.1007/s10522-025-10227-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Accepted: 03/20/2025] [Indexed: 04/02/2025]
Abstract
In particular, oxidative stress, generated by excessive reactive oxygen species (ROS), plays a major role in the neurodegenerative component of Parkinson's disease (PD) in aged neurons. DJ-1 (PARK7) is a key factor for maintaining redox homeostasis and modulation of mitochondrial function to preserve the cellular survival pathways. DJ-1 also plays a role in redox signaling independently of its antioxidant capacity by preventing the redox chain disulfide formation and stabilizing the master regulator of cellular antioxidant defense, Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2). In the DJ-1 or Nrf2 axis, expression of key antioxidant enzymes (glutathione peroxidase (GPx), superoxide dismutase (SOD), and heme oxygenase-1 (HO-1) in response to oxidative stress is increased, and decreased neuronal damage resulting from oxidative stress is achieved. It has been demonstrated that DJ-1 functions as an oxidative stress sensor, and mutations like L166P cause loss of antioxidant activity and increased Reactive Oxygen Species (ROS) accumulation with subsequent mitochondrial dysfunction in dopaminergic neurons. The highly conserved cysteine residue at position 106 (Cys106) of DJ-1 becomes stepwise oxidized (Cys-SOH → Cys-SO₂H → Cys-SO3H), functioning as a redox sensor as well as redox modulator of cellular stress responses. Furthermore, by protecting against α-synuclein aggregation, DJ-1 also protects in models lacking DJ-1, whereby DJ-1 deficiency promotes protein misfolding and neurotoxicity. In addition, DJ-1 participates in regulating neuroinflammation since its diminution provokes NF-κB-mediated exacerbation of proinflammatory cytokine production, leading to neuronal death. Oxidized DJ-1 (OxiDJ-1) is generated in aging brains, particularly in the substantia nigra (SN), and is correlated with PD progression both as a biomarker for disease monitoring and diagnosis of PD early in its course. The therapeutic strategies aimed at DJ-1 include small molecular activators, protein supplementation (Tat-DJ-1, ND-13), and gene therapy aiming to restore the neuroprotective function of DJ-1. Since DJ-1 is multitasking to protect neurons from oxidative damage, mitochondrial dysfunction, and even inflammation, it remains a promising therapeutic target. This review highlights the molecular mechanisms through which DJ-1 can protect from PD and aging-related neurodegeneration and has potential utility as a biomarker or therapeutic target.
Collapse
Affiliation(s)
- Qamar A Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, Northern Border University, Rafha, Saudi Arabia.
- Center for Health Research, Northern Border University, Arar, Saudi Arabia.
| |
Collapse
|
2
|
Charette M, Rosenblum C, Shade O, Deiters A. Optogenetics with Atomic Precision─A Comprehensive Review of Optical Control of Protein Function through Genetic Code Expansion. Chem Rev 2025; 125:1663-1717. [PMID: 39928721 PMCID: PMC11869211 DOI: 10.1021/acs.chemrev.4c00224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 02/12/2025]
Abstract
Conditional control of protein activity is important in order to elucidate the particular functions and interactions of proteins, their regulators, and their substrates, as well as their impact on the behavior of a cell or organism. Optical control provides a perhaps optimal means of introducing spatiotemporal control over protein function as it allows for tunable, rapid, and noninvasive activation of protein activity in its native environment. One method of introducing optical control over protein activity is through the introduction of photocaged and photoswitchable noncanonical amino acids (ncAAs) through genetic code expansion in cells and animals. Genetic incorporation of photoactive ncAAs at key residues in a protein provides a tool for optical activation, or sometimes deactivation, of protein activity. Importantly, the incorporation site can typically be rationally selected based on structural, mechanistic, or computational information. In this review, we comprehensively summarize the applications of photocaged lysine, tyrosine, cysteine, serine, histidine, glutamate, and aspartate derivatives, as well as photoswitchable phenylalanine analogues. The extensive and diverse list of proteins that have been placed under optical control demonstrates the broad applicability of this methodology.
Collapse
Affiliation(s)
- Maura Charette
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Carolyn Rosenblum
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Olivia Shade
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
3
|
Schmidt HM, Horner SM. Towards a Universal Translator: Decoding the PTMs That Regulate Orthoflavivirus Infection. Viruses 2025; 17:287. [PMID: 40007042 PMCID: PMC11861903 DOI: 10.3390/v17020287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/14/2025] [Accepted: 02/18/2025] [Indexed: 02/27/2025] Open
Abstract
Post-translational modifications (PTMs) serve as critical regulators of protein function across biological systems, including during viral infection. For orthoflaviviruses, including human pathogens like dengue, Zika, and West Nile viruses, PTMs on viral proteins regulate multiple aspects of the viral lifecycle and pathogenesis. Here, we review the mechanisms by which PTMs regulate orthoflavivirus infection in both vertebrate and arthropod hosts. We examine how ubiquitination and glycosylation on the viral envelope proteins facilitate viral entry and how phosphorylation, SUMOylation, and acetylation on non-structural proteins modulate viral RNA replication. Additionally, we describe how PTMs on viral structural proteins dynamically regulate viral assembly and egress. We also describe how PTMs can influence tissue tropism and host-specific pathogenesis, with some modifications showing divergent functions between arthropod vectors and vertebrate hosts, and how the host antiviral response can trigger specific PTMs on viral proteins to restrict infection, highlighting PTMs as key mediators of host-pathogen interactions. While significant progress has been made in identifying PTMs on viral proteins, many questions remain about their temporal dynamics, mechanisms of action, and conservation across the orthoflavivirus genus. Understanding how PTMs regulate orthoflavivirus infection may reveal new therapeutic strategies, particularly given recent advances in targeting specific protein modifications for disease treatment.
Collapse
Affiliation(s)
- Hannah M. Schmidt
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA;
| | - Stacy M. Horner
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA;
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
4
|
Xiao Z, Gavriil ES, Cao F, Zhang X, Li SX, Kotelnikov S, Michalska P, Marte F, Huang C, Lu Y, Zhang Y, Bernardini E, Kozakov D, Tate EW. Identification of actionable targeted protein degradation effector sites through Site-specific Ligand Incorporation-induced Proximity (SLIP). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.04.636303. [PMID: 39975383 PMCID: PMC11838594 DOI: 10.1101/2025.02.04.636303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Targeted protein degradation (TPD) is a rapidly emerging and potentially transformative therapeutic modality. However, the large majority of >600 known ubiquitin ligases have yet to be exploited as TPD effectors by proteolysis-targeting chimeras (PROTACs) or molecular glue degraders (MGDs). We report here a chemical-genetic platform, Site-specific Ligand Incorporation-induced Proximity (SLIP), to identify actionable ("PROTACable") sites on any potential effector protein in intact cells. SLIP uses genetic code expansion (GCE) to encode copper-free "click" ligation at a specific effector site in intact cells, enabling in situ formation of a covalent PROTAC-effector conjugate against a target protein of interest (POI). Modification at actionable effector sites drives degradation of the targeted protein, establishing the potential of these sites for TPD. Using SLIP, we systematically screened dozens of sites across E3 ligases and E2 enzymes from diverse classes, identifying multiple novel potentially PROTACable effector sites which are competent for TPD. SLIP adds a powerful approach to the proximity-induced pharmacology (PIP) toolbox, enabling future effector ligand discovery to fully enable TPD, and other emerging PIP modalities.
Collapse
Affiliation(s)
- Zhangping Xiao
- Department of Chemistry, Imperial College London, 82 Wood Lane, London W12 0BZ, UK
| | | | - Fangyuan Cao
- Department of Chemistry, Imperial College London, 82 Wood Lane, London W12 0BZ, UK
| | - Xinyue Zhang
- Department of Chemistry, Imperial College London, 82 Wood Lane, London W12 0BZ, UK
| | - Stan Xiaogang Li
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794, United States
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, United States
| | - Sergei Kotelnikov
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794, United States
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, United States
| | - Patrycja Michalska
- Department of Chemistry, Imperial College London, 82 Wood Lane, London W12 0BZ, UK
| | - Friederike Marte
- Department of Chemistry, Imperial College London, 82 Wood Lane, London W12 0BZ, UK
| | - Chloe Huang
- Department of Chemistry, Imperial College London, 82 Wood Lane, London W12 0BZ, UK
| | - Yudi Lu
- Department of Chemistry, Imperial College London, 82 Wood Lane, London W12 0BZ, UK
| | - Yunxuan Zhang
- Department of Chemistry, Imperial College London, 82 Wood Lane, London W12 0BZ, UK
| | - Erika Bernardini
- Department of Chemistry, Imperial College London, 82 Wood Lane, London W12 0BZ, UK
| | - Dima Kozakov
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794, United States
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, United States
| | - Edward W. Tate
- Department of Chemistry, Imperial College London, 82 Wood Lane, London W12 0BZ, UK
| |
Collapse
|
5
|
Tamura T, Kawano M, Hamachi I. Targeted Covalent Modification Strategies for Drugging the Undruggable Targets. Chem Rev 2025; 125:1191-1253. [PMID: 39772527 DOI: 10.1021/acs.chemrev.4c00745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
The term "undruggable" refers to proteins or other biological targets that have been historically challenging to target with conventional drugs or therapeutic strategies because of their structural, functional, or dynamic properties. Drugging such undruggable targets is essential to develop new therapies for diseases where current treatment options are limited or nonexistent. Thus, investigating methods to achieve such drugging is an important challenge in medicinal chemistry. Among the numerous methodologies for drug discovery, covalent modification of therapeutic targets has emerged as a transformative strategy. The covalent attachment of diverse functional molecules to targets provides a powerful platform for creating highly potent drugs and chemical tools as well the ability to provide valuable information on the structures and dynamics of undruggable targets. In this review, we summarize recent examples of chemical methods for the covalent modification of proteins and other biomolecules for the development of new therapeutics and to overcome drug discovery challenges and highlight how such methods contribute toward the drugging of undruggable targets. In particular, we focus on the use of covalent chemistry methods for the development of covalent drugs, target identification, drug screening, artificial modulation of post-translational modifications, cancer specific chemotherapies, and nucleic acid-based therapeutics.
Collapse
Affiliation(s)
- Tomonori Tamura
- Graduate School of Engineering, Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- Exploratory Research for Advanced Technology (ERATO), Japan Science and Technology Agency (JST), 5 Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Masaharu Kawano
- Graduate School of Engineering, Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Itaru Hamachi
- Graduate School of Engineering, Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- Exploratory Research for Advanced Technology (ERATO), Japan Science and Technology Agency (JST), 5 Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| |
Collapse
|
6
|
Kim DN, Yin T, Zhang T, Im AK, Cort JR, Rozum JC, Pollock D, Qian WJ, Feng S. Artificial Intelligence Transforming Post-Translational Modification Research. Bioengineering (Basel) 2024; 12:26. [PMID: 39851300 PMCID: PMC11762806 DOI: 10.3390/bioengineering12010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/16/2024] [Accepted: 12/29/2024] [Indexed: 01/26/2025] Open
Abstract
Post-Translational Modifications (PTMs) are covalent changes to amino acids that occur after protein synthesis, including covalent modifications on side chains and peptide backbones. Many PTMs profoundly impact cellular and molecular functions and structures, and their significance extends to evolutionary studies as well. In light of these implications, we have explored how artificial intelligence (AI) can be utilized in researching PTMs. Initially, rationales for adopting AI and its advantages in understanding the functions of PTMs are discussed. Then, various deep learning architectures and programs, including recent applications of language models, for predicting PTM sites on proteins and the regulatory functions of these PTMs are compared. Finally, our high-throughput PTM-data-generation pipeline, which formats data suitably for AI training and predictions is described. We hope this review illuminates areas where future AI models on PTMs can be improved, thereby contributing to the field of PTM bioengineering.
Collapse
Affiliation(s)
- Doo Nam Kim
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99352, USA (J.C.R.); (D.P.); (W.-J.Q.)
| | - Tianzhixi Yin
- National Security Directorate, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99352, USA
| | - Tong Zhang
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99352, USA (J.C.R.); (D.P.); (W.-J.Q.)
| | - Alexandria K. Im
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99352, USA (J.C.R.); (D.P.); (W.-J.Q.)
| | - John R. Cort
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99352, USA (J.C.R.); (D.P.); (W.-J.Q.)
| | - Jordan C. Rozum
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99352, USA (J.C.R.); (D.P.); (W.-J.Q.)
| | - David Pollock
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99352, USA (J.C.R.); (D.P.); (W.-J.Q.)
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99352, USA (J.C.R.); (D.P.); (W.-J.Q.)
| | - Song Feng
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99352, USA (J.C.R.); (D.P.); (W.-J.Q.)
| |
Collapse
|
7
|
Davies M, Boyce M, Conway E. Short circuit: Transcription factor addiction as a growing vulnerability in cancer. Curr Opin Struct Biol 2024; 89:102948. [PMID: 39536500 PMCID: PMC11614577 DOI: 10.1016/j.sbi.2024.102948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/30/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024]
Abstract
Core regulatory circuitry refers to the network of lineage-specific transcription factors regulating expression of both their own coding genes, and that of other transcription factors. Such autoregulatory feedback loops coordinate the transcriptome and epigenome during development and cell fate decisions. This circuitry is hijacked during oncogenesis resulting in cancer cell fate being maintained by lineage-specific transcription factors. Major advances in functional genomics and chemical biology are paving the way for a new generation of cancer therapeutics aimed at disrupting this circuitry through both direct and indirect means. Here we review these critical advances in mechanistic understanding of transcription factor addiction in cancer and how the advent of proteolysis targeting chimeras and CRISPR screen assays are leading the way for a new paradigm in targeted cancer treatments.
Collapse
Affiliation(s)
- Molly Davies
- School of Biomolecular and Biomedical Sciences, Conway Institute, University College Dublin, Dublin 4, Ireland. https://twitter.com/daviesmolly13
| | - Maeve Boyce
- School of Biomolecular and Biomedical Sciences, Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Eric Conway
- School of Biomolecular and Biomedical Sciences, Conway Institute, University College Dublin, Dublin 4, Ireland.
| |
Collapse
|
8
|
Evans EF, Shyr ZA, Traynor BJ, Zheng W. Therapeutic development approaches to treat haploinsufficiency diseases: restoring protein levels. Drug Discov Today 2024; 29:104201. [PMID: 39384033 DOI: 10.1016/j.drudis.2024.104201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/18/2024] [Accepted: 10/02/2024] [Indexed: 10/11/2024]
Abstract
Rare diseases affect one in ten people but only a small fraction of these diseases have an FDA-approved treatment. Haploinsufficiency, caused by a dominant loss-of-function mutation, is a unique rare disease group because patients have one normal allele of the affected gene. This makes rare haploinsufficiency diseases promising candidates for drug development by increasing expression of the normal gene allele, decreasing the target protein degradation and enhancing the target protein function. This review summarizes recent progresses and approaches used in the translational research of therapeutics to treat haploinsufficiency diseases including gene therapy, nucleotide-based therapeutics and small-molecule drug development. We hope that these drug development strategies will accelerate therapeutic development to treat haploinsufficiency diseases.
Collapse
Affiliation(s)
- Elena F Evans
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892-3375, USA
| | - Zeenat A Shyr
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892-3375, USA
| | - Bryan J Traynor
- National Institute on Aging, National Institutes of Health, 35 Convent Drive, Bethesda, MD 20814, USA
| | - Wei Zheng
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892-3375, USA.
| |
Collapse
|
9
|
Peng Y, Liu D, Huang D, Inuzuka H, Liu J. PROTAC as a novel anti-cancer strategy by targeting aging-related signaling. Semin Cancer Biol 2024; 106-107:143-155. [PMID: 39368654 DOI: 10.1016/j.semcancer.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/07/2024]
Abstract
Aging and cancer share common cellular hallmarks, including cellular senescence, genomic instability, and abnormal cell death and proliferation, highlighting potential areas for therapeutic interventions. Recent advancements in targeted protein degradation technologies, notably Proteolysis-Targeting Chimeras (PROTACs), offer a promising approach to address these shared pathways. PROTACs leverage the ubiquitin-proteasome system to specifically degrade pathogenic proteins involved in cancer and aging, thus offering potential solutions to key oncogenic drivers and aging-related cellular dysfunction. This abstract summarizes the recent progress of PROTACs in targeting critical proteins implicated in both cancer progression and aging, and explores future perspectives in integrating these technologies for more effective cancer treatments.
Collapse
Affiliation(s)
- Yunhua Peng
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Donghua Liu
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an 710061, China
| | - Daoyuan Huang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States
| | - Hiroyuki Inuzuka
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States.
| | - Jing Liu
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an 710061, China.
| |
Collapse
|
10
|
Neagu AN, Josan CL, Jayaweera TM, Morrissiey H, Johnson KR, Darie CC. Bio-Pathological Functions of Posttranslational Modifications of Histological Biomarkers in Breast Cancer. Molecules 2024; 29:4156. [PMID: 39275004 PMCID: PMC11397409 DOI: 10.3390/molecules29174156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 08/23/2024] [Accepted: 08/29/2024] [Indexed: 09/16/2024] Open
Abstract
Proteins are the most common types of biomarkers used in breast cancer (BC) theranostics and management. By definition, a biomarker must be a relevant, objective, stable, and quantifiable biomolecule or other parameter, but proteins are known to exhibit the most variate and profound structural and functional variation. Thus, the proteome is highly dynamic and permanently reshaped and readapted, according to changing microenvironments, to maintain the local cell and tissue homeostasis. It is known that protein posttranslational modifications (PTMs) can affect all aspects of protein function. In this review, we focused our analysis on the different types of PTMs of histological biomarkers in BC. Thus, we analyzed the most common PTMs, including phosphorylation, acetylation, methylation, ubiquitination, SUMOylation, neddylation, palmitoylation, myristoylation, and glycosylation/sialylation/fucosylation of transcription factors, proliferation marker Ki-67, plasma membrane proteins, and histone modifications. Most of these PTMs occur in the presence of cellular stress. We emphasized that these PTMs interfere with these biomarkers maintenance, turnover and lifespan, nuclear or subcellular localization, structure and function, stabilization or inactivation, initiation or silencing of genomic and non-genomic pathways, including transcriptional activities or signaling pathways, mitosis, proteostasis, cell-cell and cell-extracellular matrix (ECM) interactions, membrane trafficking, and PPIs. Moreover, PTMs of these biomarkers orchestrate all hallmark pathways that are dysregulated in BC, playing both pro- and/or antitumoral and context-specific roles in DNA damage, repair and genomic stability, inactivation/activation of tumor-suppressor genes and oncogenes, phenotypic plasticity, epigenetic regulation of gene expression and non-mutational reprogramming, proliferative signaling, endocytosis, cell death, dysregulated TME, invasion and metastasis, including epithelial-mesenchymal/mesenchymal-epithelial transition (EMT/MET), and resistance to therapy or reversal of multidrug therapy resistance. PTMs occur in the nucleus but also at the plasma membrane and cytoplasmic level and induce biomarker translocation with opposite effects. Analysis of protein PTMs allows for the discovery and validation of new biomarkers in BC, mainly for early diagnosis, like extracellular vesicle glycosylation, which may be considered as a potential source of circulating cancer biomarkers.
Collapse
Affiliation(s)
- Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iași, Carol I bvd. 20A, 700505 Iasi, Romania;
| | - Claudiu-Laurentiu Josan
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iași, Carol I bvd. 20A, 700505 Iasi, Romania;
| | - Taniya M. Jayaweera
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (T.M.J.); (H.M.); (K.R.J.)
| | - Hailey Morrissiey
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (T.M.J.); (H.M.); (K.R.J.)
| | - Kaya R. Johnson
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (T.M.J.); (H.M.); (K.R.J.)
| | - Costel C. Darie
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (T.M.J.); (H.M.); (K.R.J.)
| |
Collapse
|
11
|
Zhang D, Qi Y, Inuzuka H, Liu J, Wei W. O-GlcNAcylation in tumorigenesis and its implications for cancer therapy. J Biol Chem 2024; 300:107709. [PMID: 39178944 PMCID: PMC11417186 DOI: 10.1016/j.jbc.2024.107709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 08/26/2024] Open
Abstract
O-linked N-acetylglucosaminylation (O-GlcNAcylation) is a dynamic and reversible posttranslational modification that targets serine and threonine residues in a variety of proteins. Uridine diphospho-N-acetylglucosamine, which is synthesized from glucose via the hexosamine biosynthesis pathway, is the major donor of this modification. O-GlcNAc transferase is the sole enzyme that transfers GlcNAc onto protein substrates, while O-GlcNAcase is responsible for removing this modification. O-GlcNAcylation plays an important role in tumorigenesis and progression through the modification of specific protein substrates. In this review, we discuss the tumor-related biological functions of O-GlcNAcylation and summarize the recent progress in the development of pharmaceutical options to manipulate the O-GlcNAcylation of specific proteins as potential anticancer therapies.
Collapse
Affiliation(s)
- Dize Zhang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yihang Qi
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States
| | - Hiroyuki Inuzuka
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States
| | - Jing Liu
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States.
| |
Collapse
|
12
|
Xiao Y, Yuan Y, Liu Y, Lin Z, Zheng G, Zhou D, Lv D. Targeted Protein Degradation: Current and Emerging Approaches for E3 Ligase Deconvolution. J Med Chem 2024; 67:11580-11596. [PMID: 38981094 DOI: 10.1021/acs.jmedchem.4c00723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Targeted protein degradation (TPD), including the use of proteolysis-targeting chimeras (PROTACs) and molecular glue degraders (MGDs) to degrade proteins, is an emerging strategy to develop novel therapies for cancer and beyond. PROTACs or MGDs function by inducing the proximity between an E3 ligase and a protein of interest (POI), leading to ubiquitination and consequent proteasomal degradation of the POI. Notably, one major issue in TPD is the lack of ligandable E3 ligases, as current studies predominantly use CUL4CRBN and CUL2VHL. The TPD community is seeking to expand the landscape of ligandable E3 ligases, but most discoveries rely on phenotypic screens or serendipity, necessitating systematic target deconvolution. Here, we examine and discuss both current and emerging E3 ligase deconvolution approaches for degraders discovered from phenotypic screens or monovalent glue chemistry campaigns, highlighting future prospects for identifying more ligandable E3 ligases.
Collapse
Affiliation(s)
- Yufeng Xiao
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, 1333 Center Drive, Gainesville, Florida 32610, United States
| | - Yaxia Yuan
- Department of Biochemistry and Structural Biology and Center for Innovative Drug Discovery, School of Medicine, University of Texas Health San Antonio, 7703 Floyd Curl Drive, San Antonio, Texas 78229, United States
- Mays Cancer Center, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, Texas 78229, United States
| | - Yi Liu
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, 1333 Center Drive, Gainesville, Florida 32610, United States
| | - Zongtao Lin
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, St. Louis, Missouri 63110, United States
| | - Guangrong Zheng
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, 1333 Center Drive, Gainesville, Florida 32610, United States
| | - Daohong Zhou
- Department of Biochemistry and Structural Biology and Center for Innovative Drug Discovery, School of Medicine, University of Texas Health San Antonio, 7703 Floyd Curl Drive, San Antonio, Texas 78229, United States
- Mays Cancer Center, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, Texas 78229, United States
| | - Dongwen Lv
- Department of Biochemistry and Structural Biology and Center for Innovative Drug Discovery, School of Medicine, University of Texas Health San Antonio, 7703 Floyd Curl Drive, San Antonio, Texas 78229, United States
- Mays Cancer Center, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, Texas 78229, United States
| |
Collapse
|
13
|
Xiong G, Li J, Yao F, Yang F, Xiang Y. New insight into the CNC-bZIP member, NFE2L3, in human diseases. Front Cell Dev Biol 2024; 12:1430486. [PMID: 39149514 PMCID: PMC11325725 DOI: 10.3389/fcell.2024.1430486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/08/2024] [Indexed: 08/17/2024] Open
Abstract
Nuclear factor erythroid 2 (NF-E2)-related factor 3 (NFE2L3), a member of the CNC-bZIP subfamily and widely found in a variety of tissues, is an endoplasmic reticulum (ER) membrane-anchored transcription factor that can be released from the ER and moved into the nucleus to bind the promoter region to regulate a series of target genes involved in antioxidant, inflammatory responses, and cell cycle regulation in response to extracellular or intracellular stress. Recent research, particularly in the past 5 years, has shed light on NFE2L3's participation in diverse biological processes, including cell differentiation, inflammatory responses, lipid homeostasis, immune responses, and tumor growth. Notably, NFE2L3 has been identified as a key player in the development and prognosis of multiple cancers including colorectal cancer, thyroid cancer, breast cancer, hepatocellular carcinoma, gastric cancer, renal cancer, bladder cancer, esophageal squamous cell carcinoma, T cell lymphoblastic lymphoma, pancreatic cancer, and squamous cell carcinoma. Furthermore, research has linked NFE2L3 to other cancers such as lung adenocarcinoma, malignant pleural mesothelioma, ovarian cancer, glioblastoma multiforme, and laryngeal carcinoma, indicating its potential as a target for innovative cancer treatment approaches. Therefore, to gain a better understanding of the role of NFE2L3 in disease, this review offers insights into the discovery, structure, function, and recent advancements in the study of NFE2L3 to lay the groundwork for the development of NFE2L3-targeted cancer therapies.
Collapse
Affiliation(s)
- Guanghui Xiong
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
- Department of Children Rehabilitation, Maternal and Child Health Hospital of Jintang County, Chendu, Sichuan, China
| | - Jie Li
- Department of Anaesthesia, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Fuli Yao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Fang Yang
- Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
- Department of Pathophysiology, College of High Altitude Military Medicine, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yuancai Xiang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
14
|
Olie CS, O'Brien DP, Jones HB, Liang Z, Damianou A, Sur-Erdem I, Pinto-Fernández A, Raz V, Kessler BM. Deubiquitinases in muscle physiology and disorders. Biochem Soc Trans 2024; 52:1085-1098. [PMID: 38716888 PMCID: PMC11346448 DOI: 10.1042/bst20230562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 06/27/2024]
Abstract
In vivo, muscle and neuronal cells are post-mitotic, and their function is predominantly regulated by proteostasis, a multilayer molecular process that maintains a delicate balance of protein homeostasis. The ubiquitin-proteasome system (UPS) is a key regulator of proteostasis. A dysfunctional UPS is a hallmark of muscle ageing and is often impacted in neuromuscular disorders (NMDs). Malfunction of the UPS often results in aberrant protein accumulation which can lead to protein aggregation and/or mis-localization affecting its function. Deubiquitinating enzymes (DUBs) are key players in the UPS, controlling protein turnover and maintaining the free ubiquitin pool. Several mutations in DUB encoding genes are linked to human NMDs, such as ATXN3, OTUD7A, UCHL1 and USP14, whilst other NMDs are associated with dysregulation of DUB expression. USP5, USP9X and USP14 are implicated in synaptic transmission and remodeling at the neuromuscular junction. Mice lacking USP19 show increased maintenance of lean muscle mass. In this review, we highlight the involvement of DUBs in muscle physiology and NMDs, particularly in processes affecting muscle regeneration, degeneration and inflammation following muscle injury. DUBs have recently garnered much respect as promising drug targets, and their roles in muscle maturation, regeneration and degeneration may provide the framework for novel therapeutics to treat muscular disorders including NMDs, sarcopenia and cachexia.
Collapse
Affiliation(s)
- Cyriel S. Olie
- Department of Human Genetics, Leiden University Medical Centre, 2333ZC Leiden, The Netherlands
| | - Darragh P. O'Brien
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, U.K
| | - Hannah B.L. Jones
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, U.K
| | - Zhu Liang
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, U.K
- Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, U.K
| | - Andreas Damianou
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, U.K
- Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, U.K
| | - Ilknur Sur-Erdem
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, U.K
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Women's Centre, John Radcliffe Hospital, Oxford OX3 9DU, U.K
| | - Adán Pinto-Fernández
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, U.K
- Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, U.K
| | - Vered Raz
- Department of Human Genetics, Leiden University Medical Centre, 2333ZC Leiden, The Netherlands
| | - Benedikt M. Kessler
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, U.K
- Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, U.K
| |
Collapse
|
15
|
Shan W, Peng W, Chen Y, Wang Y, Yu Q, Tian Y, Dou Y, Tu J, Huang X, Li X, Wang Z, Zhu Q, Chen J, Xia B. GSK3β and UCHL3 govern RIPK4 homeostasis via deubiquitination to enhance tumor metastasis in ovarian cancer. Oncogene 2024; 43:1885-1899. [PMID: 38664501 DOI: 10.1038/s41388-024-03040-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 06/16/2024]
Abstract
Receptor-interacting protein kinase 4 (RIPK4) is increasingly recognized as a pivotal player in ovarian cancer, promoting tumorigenesis and disease progression. Despite its significance, the posttranslational modifications dictating RIPK4 stability in ovarian cancer remain largely uncharted. In this study, we first established that RIPK4 levels are markedly higher in metastatic than in primary ovarian cancer tissues through single-cell sequencing. Subsequently, we identified UCHL3 as a key deubiquitinase that regulates RIPK4. We elucidate the mechanism that UCHL3 interacts with and deubiquitinates RIPK4 at the K469 site, removing the K48-linked ubiquitin chain and thus enhancing RIPK4 stabilization. Intriguingly, inhibition of UCHL3 activity using TCID leads to increased RIPK4 ubiquitination and degradation. Furthermore, we discovered that GSK3β-mediated phosphorylation of RIPK4 at Ser420 enhances its interaction with UCHL3, facilitating further deubiquitination and stabilization. Functionally, RIPK4 was found to drive the proliferation and metastasis of ovarian cancer in a UCHL3-dependent manner both in vitro and in vivo. Importantly, positive correlations between RIPK4 and UCHL3 protein expression levels were observed, with both serving as indicators of poor prognosis in ovarian cancer patients. Overall, this study uncovers a novel pathway wherein GSK3β-induced phosphorylation of RIPK4 strengthens its interaction with UCHL3, leading to increased deubiquitination and stabilization of RIPK4, thereby promoting ovarian cancer metastasis. These findings offer new insights into the molecular underpinnings of ovarian cancer and highlight potential therapeutic targets for enhancing antitumor efficacy.
Collapse
Affiliation(s)
- Wulin Shan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230031, China
| | - Wenju Peng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230031, China
| | - Yao Chen
- Department of Obstetrics and Gynecology, Bengbu Medical University, Bengbu, Anhui, 233030, China
| | - Yumeng Wang
- Department of Obstetrics and Gynecology, Bengbu Medical University, Bengbu, Anhui, 233030, China
| | - Qiongli Yu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230031, China
| | - Yuan Tian
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230031, China
| | - Yingyu Dou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230031, China
| | - Jinqi Tu
- Hefei Jingdongfang Hospital, Hefei, Anhui, 230011, China
| | - Xu Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230031, China
| | - Xiaoyu Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230031, China
| | - Zengying Wang
- Department of Obstetrics and Gynecology, Bengbu Medical University, Bengbu, Anhui, 233030, China
| | - Qi Zhu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230031, China
| | - Jiming Chen
- Department of Gynecology, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, 213000, China.
| | - Bairong Xia
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230031, China.
- Department of Obstetrics and Gynecology, Bengbu Medical University, Bengbu, Anhui, 233030, China.
| |
Collapse
|
16
|
Cao X, Yan Z, Chen Z, Ge Y, Hu X, Peng F, Huang W, Zhang P, Sun R, Chen J, Ding M, Zong D, He X. The Emerging Role of Deubiquitinases in Radiosensitivity. Int J Radiat Oncol Biol Phys 2024; 118:1347-1370. [PMID: 38092257 DOI: 10.1016/j.ijrobp.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/03/2023] [Accepted: 12/03/2023] [Indexed: 02/05/2024]
Abstract
Radiation therapy is a primary treatment for cancer, but radioresistance remains a significant challenge in improving efficacy and reducing toxicity. Accumulating evidence suggests that deubiquitinases (DUBs) play a crucial role in regulating cell sensitivity to ionizing radiation. Traditional small-molecule DUB inhibitors have demonstrated radiosensitization effects, and novel deubiquitinase-targeting chimeras (DUBTACs) provide a promising strategy for radiosensitizer development by harnessing the ubiquitin-proteasome system. This review highlights the mechanisms by which DUBs regulate radiosensitivity, including DNA damage repair, the cell cycle, cell death, and hypoxia. Progress on DUB inhibitors and DUBTACs is summarized, and their potential radiosensitization effects are discussed. Developing drugs targeting DUBs appears to be a promising alternative approach to overcoming radioresistance, warranting further research into their mechanisms.
Collapse
Affiliation(s)
- Xiang Cao
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Zhenyu Yan
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Zihan Chen
- Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yizhi Ge
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Xinyu Hu
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Fanyu Peng
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Wenxuan Huang
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Pingchuan Zhang
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Ruozhou Sun
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Jiazhen Chen
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Mingjun Ding
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Dan Zong
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China.
| | - Xia He
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China; Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
17
|
Kumar S, Nabet B. A chemical magnet: Approaches to guide precise protein localization. Bioorg Med Chem 2024; 102:117672. [PMID: 38461554 PMCID: PMC11064470 DOI: 10.1016/j.bmc.2024.117672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/26/2024] [Accepted: 03/01/2024] [Indexed: 03/12/2024]
Abstract
Small molecules that chemically induce proximity between two proteins have been widely used to precisely modulate protein levels, stability, and activity. Recently, several studies developed novel strategies that employ heterobifunctional molecules that co-opt shuttling proteins to control the spatial localization of a target protein, unlocking new potential within this domain. Together, these studies lay the groundwork for novel targeted protein relocalization modalities that can rewire the protein circuitry and interactome to influence biological outcomes.
Collapse
Affiliation(s)
- Saurav Kumar
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Behnam Nabet
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Department of Pharmacology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
18
|
Utgés JS, MacGowan SA, Ives CM, Barton GJ. Classification of likely functional class for ligand binding sites identified from fragment screening. Commun Biol 2024; 7:320. [PMID: 38480979 PMCID: PMC10937669 DOI: 10.1038/s42003-024-05970-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 02/23/2024] [Indexed: 03/17/2024] Open
Abstract
Fragment screening is used to identify binding sites and leads in drug discovery, but it is often unclear which binding sites are functionally important. Here, data from 37 experiments, and 1309 protein structures binding to 1601 ligands were analysed. A method to group ligands by binding sites is introduced and sites clustered according to profiles of relative solvent accessibility. This identified 293 unique ligand binding sites, grouped into four clusters (C1-4). C1 includes larger, buried, conserved, and population missense-depleted sites, enriched in known functional sites. C4 comprises smaller, accessible, divergent, missense-enriched sites, depleted in functional sites. A site in C1 is 28 times more likely to be functional than one in C4. Seventeen sites, which to the best of our knowledge are novel, in 13 proteins are identified as likely to be functionally important with examples from human tenascin and 5-aminolevulinate synthase highlighted. A multi-layer perceptron, and K-nearest neighbours model are presented to predict cluster labels for ligand binding sites with an accuracy of 96% and 100%, respectively, so allowing functional classification of sites for proteins not in this set. Our findings will be of interest to those studying protein-ligand interactions and developing new drugs or function modulators.
Collapse
Affiliation(s)
- Javier S Utgés
- Division of Computational Biology, School of Life Sciences, University of Dundee, Dundee, Scotland, UK
| | - Stuart A MacGowan
- Division of Computational Biology, School of Life Sciences, University of Dundee, Dundee, Scotland, UK
| | - Callum M Ives
- Division of Computational Biology, School of Life Sciences, University of Dundee, Dundee, Scotland, UK
- Department of Chemistry and Hamilton Institute, Maynooth University, Maynooth, Ireland
| | - Geoffrey J Barton
- Division of Computational Biology, School of Life Sciences, University of Dundee, Dundee, Scotland, UK.
| |
Collapse
|
19
|
Sharma C, Hamza A, Boyle E, Donu D, Cen Y. Post-Translational Modifications and Diabetes. Biomolecules 2024; 14:310. [PMID: 38540730 PMCID: PMC10968569 DOI: 10.3390/biom14030310] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 09/22/2024] Open
Abstract
Diabetes and its associated complications have increasingly become major challenges for global healthcare. The current therapeutic strategies involve insulin replacement therapy for type 1 diabetes (T1D) and small-molecule drugs for type 2 diabetes (T2D). Despite these advances, the complex nature of diabetes necessitates innovative clinical interventions for effective treatment and complication prevention. Accumulative evidence suggests that protein post-translational modifications (PTMs), including glycosylation, phosphorylation, acetylation, and SUMOylation, play important roles in diabetes and its pathological consequences. Therefore, the investigation of these PTMs not only sheds important light on the mechanistic regulation of diabetes but also opens new avenues for targeted therapies. Here, we offer a comprehensive overview of the role of several PTMs in diabetes, focusing on the most recent advances in understanding their functions and regulatory mechanisms. Additionally, we summarize the pharmacological interventions targeting PTMs that have advanced into clinical trials for the treatment of diabetes. Current challenges and future perspectives are also provided.
Collapse
Affiliation(s)
- Chiranjeev Sharma
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23219, USA; (C.S.); (A.H.); (E.B.); (D.D.)
| | - Abu Hamza
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23219, USA; (C.S.); (A.H.); (E.B.); (D.D.)
| | - Emily Boyle
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23219, USA; (C.S.); (A.H.); (E.B.); (D.D.)
| | - Dickson Donu
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23219, USA; (C.S.); (A.H.); (E.B.); (D.D.)
| | - Yana Cen
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23219, USA; (C.S.); (A.H.); (E.B.); (D.D.)
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219, USA
| |
Collapse
|
20
|
Koe JC, Parker SJ. The posttranslational regulation of amino acid transporters is critical for their function in the tumor microenvironment. Curr Opin Biotechnol 2024; 85:103022. [PMID: 38056204 DOI: 10.1016/j.copbio.2023.103022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/28/2023] [Accepted: 11/06/2023] [Indexed: 12/08/2023]
Abstract
Amino acid transporters (AATs) facilitate nutrient uptake and nutrient exchange between cancer and stromal cells. The posttranslational modification (PTM) of transporters is an important mechanism that tumor-associated cells use to dynamically regulate their function and stability in response to microenvironmental cues. In this review, we summarize recent findings that demonstrate the significance of N-glycosylation, phosphorylation, and ubiquitylation for the function of AATs. We also highlight powerful approaches that hijack the PTM machinery that could be used as therapeutics or tools to modulate transporter activity.
Collapse
Affiliation(s)
- Jessica C Koe
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, BC, Canada; Centre for Molecular Medicine and Therapeutics, Vancouver, BC, Canada
| | - Seth J Parker
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, BC, Canada; Centre for Molecular Medicine and Therapeutics, Vancouver, BC, Canada; British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada.
| |
Collapse
|
21
|
Chen Y, Jiang Z, Yang Y, Zhang C, Liu H, Wan J. The functions and mechanisms of post-translational modification in protein regulators of RNA methylation: Current status and future perspectives. Int J Biol Macromol 2023; 253:126773. [PMID: 37690652 DOI: 10.1016/j.ijbiomac.2023.126773] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/12/2023]
Abstract
RNA methylation, an epigenetic modification that does not alter gene sequence, may be important to diverse biological processes. Protein regulators of RNA methylation include "writers," "erasers," and "readers," which respectively deposit, remove, and recognize methylated RNA. RNA methylation, particularly N6-methyladenosine (m6A), 5-methylcytosine (m5C), N3-methylcytosine (m3C), N1-methyladenosine (m1A) and N7-methylguanosine (m7G), has been suggested as disease therapeutic targets. Despite advances in the structure and pharmacology of RNA methylation regulators that have improved drug discovery, regulating these proteins by various post-translational modifications (PTMs) has received little attention. PTM modifies protein structure and function, affecting all aspects of normal biology and pathogenesis, including immunology, cell differentiation, DNA damage repair, and tumors. It is becoming evident that RNA methylation regulators are also regulated by diverse PTMs. PTM of RNA methylation regulators induces their covalent linkage to new functional groups, hence modifying their activity and function. Mass spectrometry has identified many PTMs on protein regulators of RNA methylation. In this review, we describe the functions and PTM of protein regulators of RNA methylation and summarize the recent advances in the regulatory mode of human disease and its underlying mechanisms.
Collapse
Affiliation(s)
- Youming Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zuli Jiang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ying Yang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Chenxing Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hongyang Liu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Junhu Wan
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
22
|
Xue T, Fei S, Gu J, Li N, Zhang P, Liu X, Thompson PR, Zhang X. Inhibiting MEK1 R189 citrullination enhances the chemosensitivity of docetaxel to multiple tumour cells. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220246. [PMID: 37778380 PMCID: PMC10542448 DOI: 10.1098/rstb.2022.0246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/30/2023] [Indexed: 10/03/2023] Open
Abstract
Drug resistance is still a big challenge for cancer patients. We previously demonstrated that inhibiting peptidylarginine deiminase 2 (PADI2) enzyme activity with Cl-amine increases the efficacy of docetaxel (Doc) on tamoxifen-resistant breast cancer cells with PADI2 expression. However, it is not clear whether this effect applies to other tumour cells. Here, we collected four types of tumour cells with different PADIs expression and fully evaluated the inhibitory effect of the combination of PADIs inhibitor (BB-Cla) and Doc in vitro and in vivo on tumour cell growth. Results show that inhibiting PADIs combined with Doc additively inhibits tumour cell growth across the four tumour cells. PADI2-catalysed citrullination of MEK1 Arg 189 exists in the four tumour cells, and blocking the function of MEK1 Cit189 promotes the anti-tumour effect of Doc in these tumour cells. Further analysis shows that inhibiting MEK1 Cit189 decreases the expression of cancer cell stemness factors and helps prevent cancer cell stemness maintenance. Importantly, this combined treatment can partially restore the sensitivity of chemotherapy-resistant cells to docetaxel or cisplatin in tumour cells. Thus, our study provides an experimental basis for the combined therapeutic approaches using docetaxel- and PADIs inhibitors-based strategies in tumour treatment. This article is part of the Theo Murphy meeting issue 'The virtues and vices of protein citrullination'.
Collapse
Affiliation(s)
- Teng Xue
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Shujia Fei
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Jian Gu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Nan Li
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Pengxue Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Xiaoqiu Liu
- College of Basic Medical Science, China Medical University, Shenyang 110122, People's Republic of China
| | - Paul R Thompson
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Xuesen Zhang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
- College of Basic Medical Science, China Medical University, Shenyang 110122, People's Republic of China
| |
Collapse
|
23
|
Lui K, Huang Y, Sheikh MS, Cheung KK, Tam WY, Sun KT, Cheng KM, Ng WWM, Loh AWK. The oncogenic potential of Rab-like protein 1A (RBEL1A) GTPase: The first review of RBEL1A research with future research directions and challenges. J Cancer 2023; 14:3214-3226. [PMID: 37928422 PMCID: PMC10622986 DOI: 10.7150/jca.84267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 09/12/2023] [Indexed: 11/07/2023] Open
Abstract
Research on Rab-like protein 1A (RBEL1A) in the past two decades highlighted the oncogenic properties of this gene. Despite the emerging evidence, its importance in cancer biology was underrated. This is the first RBEL1A critical review covering its discovery, biochemistry, physiological functions, and clinical insights. RBEL1A expression at the appropriate levels appears essential in normal cells and tissues to maintain chromosomal stability; however, its overexpression is linked to tumorigenesis. Furthermore, the upstream and downstream targets of the RBEL1A signaling pathways will be discussed. Mechanistically, RBEL1A promotes cell proliferation signals by enhancing the Erk1/2, Akt, c-Myc, and CDK pathways while blunting the apoptotic signals via inhibitions on p53, Rb, and caspase pathways. More importantly, this review covers the clinical relevance of RBEL1A in the cancer field, such as drug resistance and poor overall survival rate. Also, this review points out the bottle-necks of the RBEL1A research and its future research directions. It is becoming clear that RBEL1A could potentially serve as a valuable target of anticancer therapy. Genetic and pharmacological researches are expected to facilitate the identification and development of RBEL1A inhibitors as cancer therapeutics in the future, which could undoubtedly improve the management of human malignancy.
Collapse
Affiliation(s)
- Ki Lui
- School of Nursing and Health Studies, Hong Kong Metropolitan University, Hong Kong
| | - Ying Huang
- Department of Pharmacology, State University of New York, Upstate Medical University, Syracuse, New York, USA
| | - M. Saeed Sheikh
- Department of Pharmacology, State University of New York, Upstate Medical University, Syracuse, New York, USA
| | - Kwok-Kuen Cheung
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong
| | - Wing Yip Tam
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Keng-Ting Sun
- Division of Medical Sciences & Graduate Entry Medicine, School of Medicine, University of Nottingham, United Kingdom
| | - Ka Ming Cheng
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong
| | | | - Anthony Wai-Keung Loh
- Division of Science, Engineering and Health Studies (SEHS), College of Professional and Continuing Education, The Hong Kong Polytechnic University, Hong Kong
| |
Collapse
|
24
|
Gan Y, Chen X, Li Y, Guo Y, Wang R. Sequential Azidation/Azolation of Prenylated Derivatives and a Click Reaction Enable Selective Labeling and Degradation of RAS Protein. J Org Chem 2023; 88:10836-10843. [PMID: 37462271 DOI: 10.1021/acs.joc.3c00904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
We propose the introduction of the azido and azo-functionalities into prenylated derivatives under mild conditions in a selective and efficient way. Upon protocol establishment and substrate scope determination, we apply this method to prenylated protein (citronellol-BSA) labeling, chemical pulldown, and enrichment. Eventually, we achieve the degradation of RAS on MCF-7 and HeLa cell lines by employing the well-designed probe von Hippel-Lindau derivatives C4 through the sequential azidation/azolation and click-reaction (SACR) pathway targeting the prenyl functionality attached to the Caax motif of the tested RAS protein. This method displays great potential in regulation of prenylated molecules.
Collapse
Affiliation(s)
- Youfang Gan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xiaoqian Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yuanyuan Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yuyang Guo
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Rui Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, Guangdong 518063, China
| |
Collapse
|
25
|
Lu T, Xu R, Wang C, Zhou X, Parra-Medina R, Díaz-Peña R, Peng B, Zhang L. Bioinformatics analysis and single-cell RNA sequencing: elucidating the ubiquitination pathways and key enzymes in lung adenocarcinoma. J Thorac Dis 2023; 15:3885-3907. [PMID: 37559628 PMCID: PMC10407523 DOI: 10.21037/jtd-23-795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/18/2023] [Indexed: 08/11/2023]
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) is a prevalent subtype of lung cancer associated with high mortality rates. We aimed to utilize single-cell multiomics analysis to identify the key molecules involved in ubiquitination modification, which plays a role in LUAD development and progression. METHODS We use a systematic approach to analyze LUAD-related single-cell and bulk transcriptome datasets from Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases. Single-cell RNA sequencing (scRNA-seq) data were normalized, clustered, and annotated with the Seurat package in R. InferCNV was used to distinguish malignant from epithelial cells, and AUCell evaluated the area under the curve (AUC) score of ubiquitination-related enzymes. Survival and differential analyses identified significant molecular markers associated with ubiquitination. PSMD14 expression was confirmed using reverse-transcription quantitative polymerase chain reaction (RT-qPCR) and Western blot assays, and its knockdown cell lines were assessed for effects on cellular processes and tumor formation in mice. PSMD14's interacting proteins were predicted, and its impact on AGR2 protein half-life and ubiquitination was evaluated. Rescue experiments involving PSMD14 overexpression and AGR2 silencing assessed their impact on malignant behaviors. RESULTS By means of single-cell sequencing analysis, we probed the ubiquitination modification landscape in the LUAD microenvironment. Malignant cells had elevated scores for enzymes and ubiquitin-binding domains compared to normal epithelial cells, with 53 ubiquitination-related molecules showing prognostic disparities. FGR, PSMD14, and ZBTB16 were identified as genes with prognostic significance, with PSMD14 showing higher expression in epithelial and malignant cells. Two missense mutation sites were identified in PSMD14, which had a high copy number amplification ratio and positive correlation with messenger RNA (mRNA) expression. PSMD14 expression and tumor stage were found to be independent prognostic factors, and interfering with PSMD14 expression reduced the malignant behavior of LUAD cells. PSMD14 was found to bind to AGR2 protein and reduce its ubiquitination, leading to increased AGR2 stability. Knockdown of AGR2 inhibited the enhancement of cell viability, invasion, and migration resulting from PSMD14 overexpression. CONCLUSIONS This study examined ubiquitination modifications in LUAD using sequencing data, identifying PSMD14's critical role in malignancy regulation and its potential as a prognostic and therapeutic biomarker. These insights enhance understanding of LUAD mechanisms and treatment.
Collapse
Affiliation(s)
- Tong Lu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Harbin Medical University, Harbin, China
| | - Ran Xu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Harbin Medical University, Harbin, China
| | - Chenghao Wang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Harbin Medical University, Harbin, China
| | - Xiang Zhou
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Harbin Medical University, Harbin, China
| | - Rafael Parra-Medina
- Department of Pathology, Fundación Universitaria de Ciencias de la Salud, Hospital San José, Bogotá, Colombia
- Department of Pathology, National Cancer Institute (INC), Bogotá, Colombia
| | - Roberto Díaz-Peña
- Fundación Pública Galega de Medicina Xenómica, SERGAS, Grupo de Medicina Xenómica-USC, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
- Faculty of Health Sciences, Universidad Autónoma de Chile, Talca, Chile
| | - Bo Peng
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Harbin Medical University, Harbin, China
| | - Linyou Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Harbin Medical University, Harbin, China
| |
Collapse
|
26
|
Liu X, Ciulli A. Proximity-Based Modalities for Biology and Medicine. ACS CENTRAL SCIENCE 2023; 9:1269-1284. [PMID: 37521793 PMCID: PMC10375889 DOI: 10.1021/acscentsci.3c00395] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Indexed: 08/01/2023]
Abstract
Molecular proximity orchestrates biological function, and blocking existing proximities is an established therapeutic strategy. By contrast, strengthening or creating neoproximity with chemistry enables modulation of biological processes with high selectivity and has the potential to substantially expand the target space. A plethora of proximity-based modalities to target proteins via diverse approaches have recently emerged, opening opportunities for biopharmaceutical innovation. This Outlook outlines the diverse mechanisms and molecules based on induced proximity, including protein degraders, blockers, and stabilizers, inducers of protein post-translational modifications, and agents for cell therapy, and discusses opportunities and challenges that the field must address to mature and unlock translation in biology and medicine.
Collapse
Affiliation(s)
- Xingui Liu
- Centre for Targeted Protein
Degradation, Division of Biological Chemistry and Drug Discovery,
School of Life Sciences, University of Dundee, 1 James Lindsay Place, Dundee DD1 5JJ, United Kingdom
| | - Alessio Ciulli
- Centre for Targeted Protein
Degradation, Division of Biological Chemistry and Drug Discovery,
School of Life Sciences, University of Dundee, 1 James Lindsay Place, Dundee DD1 5JJ, United Kingdom
| |
Collapse
|