1
|
Zhao X, Zhang X, Lei F, Guo W, Yu H, Wang Y. Effects of fluid shear stress duration on the mechanical properties of HeLa cells using atomic force microscopy. PLoS One 2025; 20:e0321296. [PMID: 40323916 PMCID: PMC12052195 DOI: 10.1371/journal.pone.0321296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 03/04/2025] [Indexed: 05/07/2025] Open
Abstract
Cellular mechanical properties play a critical role in physiological and pathological processes, with fluid shear stress being a key determinant. Despite its importance, the impact of fluid shear stress on the mechanical characteristics of HeLa cells and its role in the mechanism of tumor metastasis remain poorly understood. This study aims to investigate the effects of varying durations of fluid shear stress on the mechanical properties of HeLa cells, thereby elucidating the mechanical interactions between the fluid flow environment and cancer cells during tumor metastasis. We established an in vitro fluid shear stress cell experimental system and analyzed the flow field characteristics within a parallel plate flow chamber using computational fluid dynamics software. Atomic force microscopy was used to measure the mechanical properties of HeLa cells at different time points under a fluid shear stress of 10 dyn/cm², a value representative of physiological conditions. computational fluid dynamics analysis confirmed the stability of laminar flow and the uniformity of shear stress within the parallel plate flow chamber. The experimental results revealed that with increasing fluid shear stress exposure duration, HeLa cells exhibited a fusiform shape, with a reduction in cell height and a significant decrease in cell Young's modulus. By integrating atomic force microscopy with the in vitro fluid shear stress cell experimental system, this study demonstrates the substantial influence of fluid shear stress on the mechanical properties of HeLa cells. This provides novel insights into the behavior of cancer cells within the in vivo flow environment. Our findings enhance the understanding of cellular mechanical property regulation and offer valuable insights for biomedicine engineering research.
Collapse
Affiliation(s)
- Xinyao Zhao
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xiaolong Zhang
- College of Shipbuilding Engineering, Harbin Engineering University, Harbin, China
| | - Fei Lei
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Weikang Guo
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Hui Yu
- Department of Cardiopulmonary Function, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yaoxian Wang
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
2
|
Yu WL, Deng LW, Li HH, Wang CK, Zuo XY, Wang ZC, Meng L, Wen LX, Zeng WZ, Zhao Y, Wang XH. FBXO38 Regulates Nox1 Stability to Reduce Vascular Endothelial Damage Induced by Low Oscillatory Shear Stress. Cardiovasc Ther 2025; 2025:4506032. [PMID: 40313652 PMCID: PMC12043393 DOI: 10.1155/cdr/4506032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 03/28/2025] [Indexed: 05/03/2025] Open
Abstract
Oxidative stress and endothelial dysfunction are critical drivers of atherosclerosis, but the mechanisms regulating oxidative stress under disturbed flow conditions remain incompletely understood. The ubiquitin-proteasome system, particularly E3 ubiquitin ligases, may play a pivotal role in modulating these processes. FBXO38, an E3 ligase involved in proteasomal degradation, has been implicated in various physiological pathways, but its role in regulating oxidative stress in endothelial cells is unknown. We hypothesized that FBXO38 mitigates endothelial damage induced by low oscillatory shear stress (LOSS) by promoting the ubiquitin-proteasome-dependent degradation of Nox1, a major source of reactive oxygen species (ROS). Using an in vitro LOSS model in human umbilical vein endothelial cells (HUVECs) and an in vivo mouse partial carotid ligation model, we assessed the expression of FBXO38 and Nox1 through quantitative PCR, western blotting, immunofluorescence, and immunohistochemistry. LOSS significantly reduced FBXO38 protein expression (by ~60%, p < 0.0001 at 24 h), leading to increased Nox1 protein levels (approximately two-fold, p < 0.001) and apoptosis. FBXO38 overexpression markedly attenuated Nox1 accumulation (~50% reduction, p < 0.05), reduced ROS production, and improved cell viability under LOSS conditions, whereas FBXO38 knockdown exacerbated these effects. Moreover, FBXO38 directly interacted with Nox1, suggesting a ubiquitin-dependent degradation mechanism. Our results reveal that FBXO38 regulates endothelial oxidative stress by controlling Nox1 stability under disturbed shear stress conditions. Although FBXO38 emerges as a promising candidate for therapeutic targeting, further studies are necessary to validate its potential in preclinical and clinical settings.
Collapse
Affiliation(s)
- Wan-li Yu
- Department of Vascular Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li-wen Deng
- Department of Vascular Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Huan-huan Li
- Department of Vascular Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chun-kai Wang
- Department of Vascular Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiang-yi Zuo
- Department of Vascular Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zi-chang Wang
- Department of Vascular Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Meng
- Department of Vascular Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lan-xin Wen
- Department of Vascular Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wan-zhi Zeng
- Department of Vascular Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yu Zhao
- Department of Vascular Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xue-hu Wang
- Department of Vascular Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
3
|
Davis C, Zambrano-Roman B, Sridhar R, Jastram A, Chakraborty S, Zawieja D, Moreno MR. A bioreactor for in vitro studies of lymphatic endothelial cells with simultaneous fluid shear stress and membrane strain. J Mech Behav Biomed Mater 2025; 164:106909. [PMID: 39923469 DOI: 10.1016/j.jmbbm.2025.106909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/17/2024] [Accepted: 01/21/2025] [Indexed: 02/11/2025]
Abstract
Reproducing the in vivo physiologic conditions and biomechanical environment to stimulate natural growth and behavior of lymphatic endothelial cells (LECs) is critical in studying the lymphatic system and its response to stimuli. In vitro studies that deconstruct the biomechanical environment, e.g. independently incorporate flow-induced shear stress or membrane strain have demonstrated the significance of mechanotransduction in LECs (and vascular endothelial cells). Such studies have facilitated the investigation of intracellular signaling pathways stimulated by a particular mechanical cue but do not accurately reproduce natural physiologic behavior of in vivo LECs given the absence of other natural mechanical cues. In this study, we present a novel experimental device designed to reconstruct the in vivo biomechanical environment, i.e. a device that enables the simultaneous application of flow-induced shear stress and cyclic stretching of LECs in vitro. The device is uniquely capable of simulating physiologically-relevant conditions for lymphatic endothelial cells, such as low-flow, high-strain scenarios. Using this device, we observed that, like vascular ECs, LECs aligned in the direction of fluid shear stress when steady flow was applied. In our case the behavior was observed under conditions closer to the physiological mean flow in the lymphatic vessels than vascular levels of shear stress. When concurrent cyclic stretching was applied, the alignment in the direction of flow and perpendicular to the uniaxial stretch was detected in a substantially shortened timeframe. Additionally, the distribution of alignment angles was more closely clustered around 90° under the flow/stretch scenario after 6 h than the 24 h flow only scenario, perhaps indicating a greater sensitivity to cyclic stretching than to fluid shear stress in the morphological alignment response of LECs. We also observed alignment of cell nuclei and F-actin filaments in Human Dermal Lymphatic Endothelial Cells (HDLECs) after only 6 h of combined flow and stretch. These observations underscore the importance of including both sources of mechanical stress when studying the growth and behavior of LECs.
Collapse
Affiliation(s)
- C Davis
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - B Zambrano-Roman
- Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - R Sridhar
- Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - A Jastram
- Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - S Chakraborty
- Department of Medical Physiology, Texas A&M Health Science Center, College Station, TX 77843, USA
| | - D Zawieja
- Department of Medical Physiology, Texas A&M Health Science Center, College Station, TX 77843, USA
| | - M R Moreno
- Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
4
|
Zhang Z, Zheng Z, Gao Y, Li W, Zhang X, Luo H, Lü S, Du Y, Zhang Y, Li N, Long M. Developing a Flow-Resistance Module for Elucidating Cell Mechanotransduction on Multiple Shear Stresses. ACS Biomater Sci Eng 2025; 11:330-342. [PMID: 39681300 DOI: 10.1021/acsbiomaterials.4c01604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Fluid shear stress plays a pivotal role in regulating cellular behaviors, maintaining tissue homeostasis, and driving disease progression. Cells in various tissues are specifically adapted to physiological levels of shear stress and exhibit sensitivity to variations in its magnitude, highlighting the requirement for a comprehensive understanding of cellular responses to both physiologically and pathologically relevant levels of shear stress. In this study, we developed an independent upstream flow-resistance module with high fluidic resistances comprising three microchannels. The validity of the flow-resistance module was confirmed via computational fluid dynamics (CFD) simulations and flow calibration experiments, resulting in the generation of steady wall shear stresses ranging from 0.06 to 11.57 dyn/cm2 within the interconnected cell culture chips. Gene expression profiles, cytoskeletal remodeling, and morphological changes, as well as Yes-associated protein (YAP) nuclear translocation, were investigated in response to various shear stresses to authenticate the reliability of our experimental platform, indicating an increasing trend as the shear stress increases, reaching its maximum at various shear stresses. Our findings suggest that this flow-resistance module can be readily employed for precise characterization of cellular responses under various shear stresses.
Collapse
Affiliation(s)
- Ziliang Zhang
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
- Center for Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhi Zheng
- Center for Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuxin Gao
- Center for Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| | - Wang Li
- Center for Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyu Zhang
- Center for Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huan Luo
- Center for Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| | - Shouqin Lü
- Center for Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Du
- Center for Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| | - Yan Zhang
- Center for Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ning Li
- Center for Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mian Long
- Center for Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Campos OA, Garcia-Herreros A, Sánchez AL, Fineman JR, Pawlak G. A Multichamber Pulsating-Flow Device With Optimized Spatial Shear Stress and Pressure for Endothelial Cell Testing. J Biomech Eng 2025; 147:011006. [PMID: 39382480 PMCID: PMC11625645 DOI: 10.1115/1.4066800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/10/2024]
Abstract
Design and analysis are presented for a new device to test the response of endothelial cells to the simultaneous action of cyclic shear stresses and pressure fluctuations. The design consists of four pulsatile-flow chambers connected in series, where shear stress is identical in all four chambers and pressure amplitude decreases in successive chambers. Each flow chamber is bounded above and below by two parallel plates separated by a small gap. The design of the chamber planform must ensure that cells within the testing region experience spatially uniform time-periodic shear stress. For conditions typically encountered in applications, the viscous unsteady flow exhibits order-unity values of the associated Womersley number. The corresponding solution to the unsteady lubrication problem, with general nonsinusoidal flowrate, is formulated in terms of a stream function satisfying Laplace's equation, which can be integrated numerically to determine the spatial distribution of shear stresses for chambers of general planform. The results are used to optimize the design of a device with a hexagonal planform. Accompanying experiments using particle tracking velocimetry (PTV) in a fabricated chamber were conducted to validate theoretical predictions. Pressure readings indicate that intrachamber pressure variations associated with viscous pressure losses and acoustic fluctuations are relatively small, so that all cells in a given testing region experience nearly equal pressure forces.
Collapse
Affiliation(s)
- Obed A. Campos
- Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA 92093-0411
| | - Antoni Garcia-Herreros
- Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA 92093-0411
| | - Antonio L. Sánchez
- Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA 92093-0411
| | - Jeffrey R. Fineman
- Department of Pediatrics, University of San Francisco, San Francisco, CA 94158; Cardiovascular Research Institute, University of San Francisco, San Francisco, CA 94158
| | - Geno Pawlak
- Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA 92093-0411
| |
Collapse
|
6
|
Jin J, Zandieh-Doulabi B. Low, but Not High, Pulsating Fluid Shear Stress Affects Matrix Extracellular Phosphoglycoprotein Expression, Mainly via Integrin β Subunits in Pre-Osteoblasts. Curr Issues Mol Biol 2024; 46:12428-12441. [PMID: 39590332 PMCID: PMC11593251 DOI: 10.3390/cimb46110738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/30/2024] [Accepted: 11/03/2024] [Indexed: 11/28/2024] Open
Abstract
Matrix extracellular phosphoglycoprotein (Mepe), present in bone and dentin, plays important multifunctional roles in cell signaling, bone mineralization, and phosphate homeostasis. Mepe expression in bone cells changes in response to pulsating fluid shear stress (PFSS), which is transmitted into cells through integrin-based adhesion sites, i.e., α and β subunits. Whether and to what extent PFSS influences Mepe expression through the modulation of integrin α and/or β subunit expression in pre-osteoblasts is uncertain. Therefore, we aimed to test whether low and/or high PFSS affects Mepe expression via modulation of integrin α and/or β subunit expression. MC3T3-E1 pre-osteoblasts were treated with ± 1 h PFSS (magnitude: 0.3 Pa (low PFSS) or 0.7 Pa (high PFSS); frequency: 1 Hz). Single integrin fluorescence intensity in pre-osteoblasts was increased, but single integrin area was decreased by low and high PFSS. Expression of two integrin α subunit-related genes (Itga1 and Itga5 2) was increased by low PFSS, and one (Itga5 2) by high PFSS. Expression of five integrin β subunit genes (Itgb1, Itgb3, Itgb5, Itgb5 13, and Itgb5 123) was increased by low PFSS, and three (Itgb5, Itgb5 13, and Itgb5 123) by high PFSS. Interestingly, Mepe expression in pre-osteoblasts was only modulated by low, but not high, PFSS. In conclusion, both low and high PFSS affected integrin α and β subunit expression in pre-osteoblasts, while integrin β subunit expression was more altered by low PFSS. Importantly, Mepe gene expression was only affected by low PFSS. These results might explain the different ways that Mepe-induced changes in pre-osteoblast mechanosensitivity may drive signaling pathways of bone cell function at low or high impact loading. These findings might have physiological and biomedical implications and require future research specifically addressing the precise role of integrin α or β subunits and Mepe during dynamic loading in bone health and disease.
Collapse
Affiliation(s)
- Jianfeng Jin
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, 1081 LA Amsterdam, The Netherlands;
| | | |
Collapse
|
7
|
Chen X, Fan K, Lu J, Zhang S, Dong J, Qin J, Fan W, Wang Y, Zhang Y, Peng H, Zhang Z, Sun Z, Yu C, Xiong Y, Song Y, Ye Q, Mai S, Wang Y, Wang Q, Zhang F, Wen X, Zhou T, Han L, Long M, Pan G, Burke JF, Zhang X. Selecting Monoclonal Cell Lineages from Somatic Reprogramming Using Robotic-Based Spatial-Restricting Structured Flow. RESEARCH (WASHINGTON, D.C.) 2024; 7:0338. [PMID: 38464498 PMCID: PMC10923610 DOI: 10.34133/research.0338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/19/2024] [Indexed: 03/12/2024]
Abstract
Somatic cell reprogramming generates induced pluripotent stem cells (iPSCs), which serve as a crucial source of seed cells for personalized disease modeling and treatment in regenerative medicine. However, the process of reprogramming often causes substantial lineage manipulations, thereby increasing cellular heterogeneity. As a consequence, the process of harvesting monoclonal iPSCs is labor-intensive and leads to decreased reproducibility. Here, we report the first in-house developed robotic platform that uses a pin-tip-based micro-structure to manipulate radial shear flow for automated monoclonal iPSC colony selection (~1 s) in a non-invasive and label-free manner, which includes tasks for somatic cell reprogramming culturing, medium changes; time-lapse-based high-content imaging; and iPSCs monoclonal colony detection, selection, and expansion. Throughput-wise, this automated robotic system can perform approximately 24 somatic cell reprogramming tasks within 50 days in parallel via a scheduling program. Moreover, thanks to a dual flow-based iPSC selection process, the purity of iPSCs was enhanced, while simultaneously eliminating the need for single-cell subcloning. These iPSCs generated via the dual processing robotic approach demonstrated a purity 3.7 times greater than that of the conventional manual methods. In addition, the automatically produced human iPSCs exhibited typical pluripotent transcriptional profiles, differentiation potential, and karyotypes. In conclusion, this robotic method could offer a promising solution for the automated isolation or purification of lineage-specific cells derived from iPSCs, thereby accelerating the development of personalized medicines.
Collapse
Affiliation(s)
- Xueping Chen
- Guangzhou Institutes of Biomedicine and Health,
Chinese Academy of Sciences, Guangzhou 510530, People’s Republic of China
| | - Ke Fan
- Guangzhou Institutes of Biomedicine and Health,
Chinese Academy of Sciences, Guangzhou 510530, People’s Republic of China
| | - Jun Lu
- Guangzhou Institutes of Biomedicine and Health,
Chinese Academy of Sciences, Guangzhou 510530, People’s Republic of China
- School of Light Industry and Engineering,
South China University of Technology, Guangzhou 510641, People’s Republic of China
| | - Sheng Zhang
- Guangzhou Institutes of Biomedicine and Health,
Chinese Academy of Sciences, Guangzhou 510530, People’s Republic of China
| | - Jianhua Dong
- Guangzhou Institutes of Biomedicine and Health,
Chinese Academy of Sciences, Guangzhou 510530, People’s Republic of China
| | - Jisheng Qin
- Guangzhou Institutes of Biomedicine and Health,
Chinese Academy of Sciences, Guangzhou 510530, People’s Republic of China
| | - Weihua Fan
- Guangzhou Institutes of Biomedicine and Health,
Chinese Academy of Sciences, Guangzhou 510530, People’s Republic of China
| | - Yan Wang
- Guangzhou Institutes of Biomedicine and Health,
Chinese Academy of Sciences, Guangzhou 510530, People’s Republic of China
| | - Yiyuan Zhang
- Guangzhou Institutes of Biomedicine and Health,
Chinese Academy of Sciences, Guangzhou 510530, People’s Republic of China
| | - Huo Peng
- Guangzhou Institutes of Biomedicine and Health,
Chinese Academy of Sciences, Guangzhou 510530, People’s Republic of China
| | - Zhizhong Zhang
- Guangzhou Institutes of Biomedicine and Health,
Chinese Academy of Sciences, Guangzhou 510530, People’s Republic of China
| | - Zhiyong Sun
- Guangzhou Institutes of Biomedicine and Health,
Chinese Academy of Sciences, Guangzhou 510530, People’s Republic of China
| | - Chunlai Yu
- University of Electronic Science and Technology of China, Chengdu 611731, People’s Republic of China
| | - Yucui Xiong
- Guangzhou Institutes of Biomedicine and Health,
Chinese Academy of Sciences, Guangzhou 510530, People’s Republic of China
| | - Yan Song
- Guangzhou Institutes of Biomedicine and Health,
Chinese Academy of Sciences, Guangzhou 510530, People’s Republic of China
| | - Qingqing Ye
- Guangzhou Institutes of Biomedicine and Health,
Chinese Academy of Sciences, Guangzhou 510530, People’s Republic of China
| | - Shiwen Mai
- Guangzhou Institutes of Biomedicine and Health,
Chinese Academy of Sciences, Guangzhou 510530, People’s Republic of China
| | - Yuanhua Wang
- Guangzhou Institutes of Biomedicine and Health,
Chinese Academy of Sciences, Guangzhou 510530, People’s Republic of China
| | - Qizheng Wang
- Guangzhou Institutes of Biomedicine and Health,
Chinese Academy of Sciences, Guangzhou 510530, People’s Republic of China
| | - Fengxiang Zhang
- Guangzhou Institutes of Biomedicine and Health,
Chinese Academy of Sciences, Guangzhou 510530, People’s Republic of China
| | - Xiaohui Wen
- Guangzhou Institutes of Biomedicine and Health,
Chinese Academy of Sciences, Guangzhou 510530, People’s Republic of China
| | - Tiancheng Zhou
- Guangzhou Institutes of Biomedicine and Health,
Chinese Academy of Sciences, Guangzhou 510530, People’s Republic of China
| | - Li Han
- Institute of Electrical Engineering,
Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
| | - Mian Long
- Institute of Mechanics,
Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
| | - Guangjin Pan
- Guangzhou Institutes of Biomedicine and Health,
Chinese Academy of Sciences, Guangzhou 510530, People’s Republic of China
| | - Julian F. Burke
- Biological Sciences,
University of Southampton, University Road, Southampton SO17 1BJ, UK
| | - Xiao Zhang
- Guangzhou Institutes of Biomedicine and Health,
Chinese Academy of Sciences, Guangzhou 510530, People’s Republic of China
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health,
Chinese Academy of Sciences, Guangzhou 510530, People’s Republic of China;
Guangzhou Medical University, Guangzhou 511436, People’s Republic of China
| |
Collapse
|
8
|
Serrano JC, Gillrie MR, Li R, Ishamuddin SH, Moeendarbary E, Kamm RD. Microfluidic-Based Reconstitution of Functional Lymphatic Microvasculature: Elucidating the Role of Lymphatics in Health and Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2302903. [PMID: 38059806 PMCID: PMC10837354 DOI: 10.1002/advs.202302903] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/17/2023] [Indexed: 12/08/2023]
Abstract
The knowledge of the blood microvasculature and its functional role in health and disease has grown significantly attributable to decades of research and numerous advances in cell biology and tissue engineering; however, the lymphatics (the secondary vascular system) has not garnered similar attention, in part due to a lack of relevant in vitro models that mimic its pathophysiological functions. Here, a microfluidic-based approach is adopted to achieve precise control over the biological transport of growth factors and interstitial flow that drive the in vivo growth of lymphatic capillaries (lymphangiogenesis). The engineered on-chip lymphatics with in vivo-like morphology exhibit tissue-scale functionality with drainage rates of interstitial proteins and molecules comparable to in vivo standards. Computational and scaling analyses of the underlying transport phenomena elucidate the critical role of the three-dimensional geometry and lymphatic endothelium in recapitulating physiological drainage. Finally, the engineered on-chip lymphatics enabled studies of lymphatic-immune interactions that revealed inflammation-driven responses by the lymphatics to recruit immune cells via chemotactic signals similar to in vivo, pathological events. This on-chip lymphatics platform permits the interrogation of various lymphatic biological functions, as well as screening of lymphatic-based therapies such as interstitial absorption of protein therapeutics and lymphatic immunomodulation for cancer therapy.
Collapse
Affiliation(s)
- Jean C. Serrano
- Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Mark R. Gillrie
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
- Department of Medicine University of CalgaryCalgaryABT2N 1N4Canada
| | - Ran Li
- Center for Systems Biology Massachusetts General Hospital Research InstituteBostonMA02114USA
| | - Sarah H. Ishamuddin
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Emad Moeendarbary
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
- Department of Mechanical EngineeringUniversity College LondonTorrington PlaceLondonWC1E 7JEUK
- 199 Biotechnologies LtdGloucester RoadLondonW2 6LDUK
| | - Roger D. Kamm
- Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| |
Collapse
|
9
|
Mohseni M, Vahidi B, Azizi H. Computational simulation of applying mechanical vibration to mesenchymal stem cell for mechanical modulation toward bone tissue engineering. Proc Inst Mech Eng H 2023; 237:1377-1389. [PMID: 37982187 DOI: 10.1177/09544119231208223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Evaluation of cell response to mechanical stimuli at in vitro conditions is known as one of the important issues for modulating cell behavior. Mechanical stimuli, including mechanical vibration and oscillatory fluid flow, act as important biophysical signals for the mechanical modulation of stem cells. In the present study, mesenchymal stem cell (MSC) consists of cytoplasm, nucleus, actin, and microtubule. Also, integrin and primary cilium were considered as mechanoreceptors. In this study, the combined effect of vibration and oscillatory fluid flow on the cell and its components were investigated using numerical modeling. The results of the FEM and FSI model showed that the cell response (stress and strain values) at the frequency of 30 H z mechanical vibration has the highest value. The achieved results on shear stress caused by the fluid flow on the cell showed that the cell experiences shear stress in the range of 0 . 1 - 10 Pa . Mechanoreceptors that bind separately to the cell surface, can be highly stimulated by hydrodynamic pressure and, therefore, can play a role in the mechanical modulation of MSCs at in vitro conditions. The results of this research can be effective in future studies to optimize the conditions of mechanical stimuli applied to the cell culture medium and to determine the mechanisms involved in mechanotransduction.
Collapse
Affiliation(s)
- Mohammadreza Mohseni
- Division of Biomedical Engineering, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Bahman Vahidi
- Division of Biomedical Engineering, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Hamidreza Azizi
- Division of Biomedical Engineering, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| |
Collapse
|
10
|
Jackson ML, Bond AR, George SJ. Mechanobiology of the endothelium in vascular health and disease: in vitro shear stress models. Cardiovasc Drugs Ther 2023; 37:997-1010. [PMID: 36190667 PMCID: PMC10516801 DOI: 10.1007/s10557-022-07385-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/18/2022] [Indexed: 11/03/2022]
Abstract
In recent years, there has been growing evidence that vascular pathologies arise in sites experiencing an altered haemodynamic environment. Fluid shear stress (FSS) is an important contributor to vascular homeostasis and regulates endothelial cell (EC) gene expression, morphology, and behaviour through specialised mechanosensitive signalling pathways. The presence of an altered FSS profile is a pathological characteristic of many vascular diseases, with the most established example being the preferential localisation of atherosclerotic plaque development. However, the precise haemodynamic contributions to other vascular pathologies including coronary artery vein graft failure remains poorly defined. To evaluate potential novel therapeutics for the treatment of vascular diseases via targeting EC behaviour, it is important to undertake in vitro experiments using appropriate culture conditions, particularly FSS. There are a wide range of in vitro models used to study the effect of FSS on the cultured endothelium, each with the ability to generate FSS flow profiles through which the investigator can control haemodynamic parameters including flow magnitude and directionality. An important consideration for selection of an appropriate model of FSS exposure is the FSS profile that the model can generate, in comparison to the physiological and pathophysiological haemodynamic environment of the vessel of interest. A resource bringing together the haemodynamic environment characteristic of atherosclerosis pathology and the flow profiles generated by in vitro methods of applying FSS would be beneficial to researchers when selecting the appropriate model for their research. Consequently, here we summarise the widely used methods of exposing cultured endothelium to FSS, the flow profile they generate and their advantages and limitations in investigating the pathological contribution of altered FSS to vascular disease and evaluating novel therapeutic targets for the treatment and prevention of vascular disease.
Collapse
Affiliation(s)
- Molly L. Jackson
- Department of Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS2 8HW UK
| | - Andrew Richard Bond
- Department of Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS2 8HW UK
| | - Sarah Jane George
- Department of Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS2 8HW UK
| |
Collapse
|
11
|
Ye S, Cao Q, Ni P, Xiong S, Zhong M, Yuan T, Shan J, Liang J, Fan Y, Zhang X. Construction of Microfluidic Chip Structure for Cell Migration Studies in Bioactive Ceramics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302152. [PMID: 37282789 DOI: 10.1002/smll.202302152] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/16/2023] [Indexed: 06/08/2023]
Abstract
Cell migration is an essential bioactive ceramics property and critical for bone induction, clinical application, and mechanism research. Standardized cell migration detection methods have many limitations, including a lack of dynamic fluid circulation and the inability to simulate cell behavior in vivo. Microfluidic chip technology, which mimics the human microenvironment and provides controlled dynamic fluid cycling, has the potential to solve these questions and generate reliable models of cell migration in vitro. In this study, a microfluidic chip is reconstructed to integrate the bioactive ceramic into the microfluidic chip structure to constitute a ceramic microbridge microfluidic chip system. Migration differences in the chip system are measured. By combining conventional detection methods with new biotechnology to analyze the causes of cell migration differences, it is found that the concentration gradients of ions and proteins adsorbed on the microbridge materials are directly related to the occurrence of cell migration behavior, which is consistent with previous reports and demonstrates the effectiveness of the microfluidic chip model. This model provides in vivo environment simulation and controllability of input and output conditions superior to standardized cell migration detection methods. The microfluidic chip system provides a new approach to studying and evaluating bioactive ceramics.
Collapse
Affiliation(s)
- Sheng Ye
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Quanle Cao
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Panxianzhi Ni
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Shuting Xiong
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Meng Zhong
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Tun Yuan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, 610064, China
- Sichuan Testing Centre for Biomaterials and Medical Devices, Chengdu, Sichuan, 610064, China
| | - Jing Shan
- Department of Gastroenterology, the 3rd People's Hospital of Chengdu, Southwest Jiaotong University, Chengdu, Sichuan, 610064, China
| | - Jie Liang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, 610064, China
- Sichuan Testing Centre for Biomaterials and Medical Devices, Chengdu, Sichuan, 610064, China
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, 610064, China
| |
Collapse
|
12
|
Trotier A, Bagnoli E, Walski T, Evers J, Pugliese E, Lowery M, Kilcoyne M, Fitzgerald U, Biggs M. Micromotion Derived Fluid Shear Stress Mediates Peri-Electrode Gliosis through Mechanosensitive Ion Channels. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301352. [PMID: 37518828 PMCID: PMC10520674 DOI: 10.1002/advs.202301352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/11/2023] [Indexed: 08/01/2023]
Abstract
The development of bioelectronic neural implant technologies has advanced significantly over the past 5 years, particularly in brain-machine interfaces and electronic medicine. However, neuroelectrode-based therapies require invasive neurosurgery and can subject neural tissues to micromotion-induced mechanical shear, leading to chronic inflammation, the formation of a peri-electrode void and the deposition of reactive glial scar tissue. These structures act as physical barriers, hindering electrical signal propagation and reducing neural implant functionality. Although well documented, the mechanisms behind the initiation and progression of these processes are poorly understood. Herein, in silico analysis of micromotion-induced peri-electrode void progression and gliosis is described. Subsequently, ventral mesencephalic cells exposed to milliscale fluid shear stress in vitro exhibited increased expression of gliosis-associated proteins and overexpression of mechanosensitive ion channels PIEZO1 (piezo-type mechanosensitive ion channel component 1) and TRPA1 (transient receptor potential ankyrin 1), effects further confirmed in vivo in a rat model of peri-electrode gliosis. Furthermore, in vitro analysis indicates that chemical inhibition/activation of PIEZO1 affects fluid shear stress mediated astrocyte reactivity in a mitochondrial-dependent manner. Together, the results suggest that mechanosensitive ion channels play a major role in the development of a peri-electrode void and micromotion-induced glial scarring at the peri-electrode region.
Collapse
Affiliation(s)
- Alexandre Trotier
- SFI Research Centre for Medical Devices (CÚRAM)University of GalwayGalwayH91 W2TYIreland
- Galway Neuroscience CentreUniversity of GalwayGalwayH91 W2TYIreland
| | - Enrico Bagnoli
- SFI Research Centre for Medical Devices (CÚRAM)University of GalwayGalwayH91 W2TYIreland
- Galway Neuroscience CentreUniversity of GalwayGalwayH91 W2TYIreland
| | - Tomasz Walski
- SFI Research Centre for Medical Devices (CÚRAM)University of GalwayGalwayH91 W2TYIreland
- Department of Biomedical EngineeringFaculty of Fundamental Problems of TechnologyWrocław University of Science and TechnologyWroclaw50‐370Poland
| | - Judith Evers
- School of Electrical and Electronic EngineeringUniversity College DublinDublin 4Ireland
| | - Eugenia Pugliese
- SFI Research Centre for Medical Devices (CÚRAM)University of GalwayGalwayH91 W2TYIreland
| | - Madeleine Lowery
- School of Electrical and Electronic EngineeringUniversity College DublinDublin 4Ireland
| | - Michelle Kilcoyne
- SFI Research Centre for Medical Devices (CÚRAM)University of GalwayGalwayH91 W2TYIreland
- Galway Neuroscience CentreUniversity of GalwayGalwayH91 W2TYIreland
- Carbohydrate Signalling GroupDiscipline of MicrobiologyUniversity of GalwayGalwayH91 W2TYIreland
| | - Una Fitzgerald
- SFI Research Centre for Medical Devices (CÚRAM)University of GalwayGalwayH91 W2TYIreland
- Galway Neuroscience CentreUniversity of GalwayGalwayH91 W2TYIreland
| | - Manus Biggs
- SFI Research Centre for Medical Devices (CÚRAM)University of GalwayGalwayH91 W2TYIreland
- Galway Neuroscience CentreUniversity of GalwayGalwayH91 W2TYIreland
| |
Collapse
|
13
|
Gong J, Nirala NK, Chen J, Wang F, Gu P, Wen Q, Ip YT, Xiang Y. TrpA1 is a shear stress mechanosensing channel regulating intestinal stem cell proliferation in Drosophila. SCIENCE ADVANCES 2023; 9:eadc9660. [PMID: 37224252 PMCID: PMC10208578 DOI: 10.1126/sciadv.adc9660] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 04/18/2023] [Indexed: 05/26/2023]
Abstract
Adult stem cells are essential for tissue maintenance and repair. Although genetic pathways for controlling adult stem cells are extensively investigated in various tissues, much less is known about how mechanosensing could regulate adult stem cells and tissue growth. Here, we demonstrate that shear stress sensing regulates intestine stem cell proliferation and epithelial cell number in adult Drosophila. Ca2+ imaging in ex vivo midguts shows that shear stress, but not other mechanical forces, specifically activates enteroendocrine cells among all epithelial cell types. This activation is mediated by transient receptor potential A1 (TrpA1), a Ca2+-permeable channel expressed in enteroendocrine cells. Furthermore, specific disruption of shear stress, but not chemical, sensitivity of TrpA1 markedly reduces proliferation of intestinal stem cells and midgut cell number. Therefore, we propose that shear stress may act as a natural mechanical stimulation to activate TrpA1 in enteroendocrine cells, which, in turn, regulates intestine stem cell behavior.
Collapse
Affiliation(s)
- Jiaxin Gong
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Niraj K. Nirala
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Jiazhang Chen
- Department of Physics, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | - Fei Wang
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Pengyu Gu
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Qi Wen
- Department of Physics, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | - Y. Tony Ip
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Yang Xiang
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
14
|
Baksamawi HA, Alexiadis A, Vigolo D, Brill A. Platelet accumulation in an endothelium-coated elastic vein valve model of deep vein thrombosis is mediated by GPIb α-VWF interaction. Front Cardiovasc Med 2023; 10:1167884. [PMID: 37180784 PMCID: PMC10174463 DOI: 10.3389/fcvm.2023.1167884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/28/2023] [Indexed: 05/16/2023] Open
Abstract
Deep vein thrombosis is a life-threatening disease that takes millions of people's lives worldwide. Given both technical and ethical issues of using animals in research, it is necessary to develop an appropriate in vitro model that would recapitulate the conditions of venous thrombus development. We present here a novel microfluidics vein-on-a-chip with moving valve leaflets to mimic the hydrodynamics in a vein, and Human Umbilical Vein Endothelial Cell (HUVEC) monolayer. A pulsatile flow pattern, typical for veins, was used in the experiments. Unstimulated human platelets, reconstituted with the whole blood, accumulated at the luminal side of the leaflet tips proportionally to the leaflet flexibility. Platelet activation by thrombin induced robust platelet accrual at the leaflet tips. Inhibition of glycoprotein (GP) IIb-IIIa did not decrease but, paradoxically, slightly increased platelet accumulation. In contrast, blockade of the interaction between platelet GPIbα and A1 domain of von Willebrand factor completely abolished platelet deposition. Stimulation of the endothelium with histamine, a known secretagogue of Weibel-Palade bodies, promoted platelet accrual at the basal side of the leaflets, where human thrombi are usually observed. Thus, platelet deposition depends on the leaflet flexibility, and accumulation of activated platelets at the valve leaflets is mediated by GPIbα-VWF interaction.
Collapse
Affiliation(s)
- Hosam Alden Baksamawi
- School of Chemical Engineering, University of Birmingham, Birmingham, United Kingdom
| | - Alessio Alexiadis
- School of Chemical Engineering, University of Birmingham, Birmingham, United Kingdom
- School of Biomedical Engineering, The University of Sydney, Sydney, NSW, Australia
| | - Daniele Vigolo
- School of Chemical Engineering, University of Birmingham, Birmingham, United Kingdom
- School of Biomedical Engineering, The University of Sydney, Sydney, NSW, Australia
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, Australia
| | - Alexander Brill
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
15
|
Gong J, Chen J, Gu P, Shang Y, Ruppell KT, Yang Y, Wang F, Wen Q, Xiang Y. Shear stress activates nociceptors to drive Drosophila mechanical nociception. Neuron 2022; 110:3727-3742.e8. [PMID: 36087585 DOI: 10.1016/j.neuron.2022.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 06/07/2022] [Accepted: 08/11/2022] [Indexed: 12/15/2022]
Abstract
Mechanical nociception is essential for animal survival. However, the forces involved in nociceptor activation and the underlying mechanotransduction mechanisms remain elusive. Here, we address these problems by investigating nocifensive behavior in Drosophila larvae. We show that strong poking stimulates nociceptors with a mixture of forces including shear stress and stretch. Unexpectedly, nociceptors are selectively activated by shear stress, but not stretch. Both the shear stress responses of nociceptors and nocifensive behavior require transient receptor potential A1 (TrpA1), which is specifically expressed in nociceptors. We further demonstrate that expression of mammalian or Drosophila TrpA1 in heterologous cells confers responses to shear stress but not stretch. Finally, shear stress activates TrpA1 in a membrane-delimited manner, through modulation of membrane fluidity. Together, our study reveals TrpA1 as an evolutionarily conserved mechanosensitive channel specifically activated by shear stress and suggests a critical role of shear stress in activating nociceptors to drive mechanical nociception.
Collapse
Affiliation(s)
- Jiaxin Gong
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Jiazhang Chen
- Department of Physics, Worcester Polytechnic Institute, Worcester, MA 01605, USA
| | - Pengyu Gu
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Ye Shang
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA; Program in Neuroscience, Morningside Graduate School of Biomedical Sciences, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Kendra Takle Ruppell
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA; Program in Neuroscience, Morningside Graduate School of Biomedical Sciences, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Ying Yang
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Fei Wang
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA; Program in Neuroscience, Morningside Graduate School of Biomedical Sciences, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Qi Wen
- Department of Physics, Worcester Polytechnic Institute, Worcester, MA 01605, USA.
| | - Yang Xiang
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA; Program in Neuroscience, Morningside Graduate School of Biomedical Sciences, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
16
|
Hardman D, Nguyen ML, Descroix S, Bernabeu MO. Mathematical modelling of oxygen transport in a muscle-on-chip device. Interface Focus 2022; 12:20220020. [PMID: 35996738 PMCID: PMC9372644 DOI: 10.1098/rsfs.2022.0020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/07/2022] [Indexed: 12/18/2022] Open
Abstract
Muscle-on-chip devices aim to recapitulate the physiological characteristics of in vivo muscle tissue and so maintaining levels of oxygen transported to cells is essential for cell survival and for providing the normoxic conditions experienced in vivo. We use finite-element method numerical modelling to describe oxygen transport and reaction in a proposed three-dimensional muscle-on-chip bioreactor with embedded channels for muscle cells and growth medium. We determine the feasibility of ensuring adequate oxygen for muscle cell survival in a device sealed from external oxygen sources and perfused via medium channels. We investigate the effects of varying elements of the bioreactor design on oxygen transport to optimize muscle tissue yield and maintain normoxic conditions. Successful co-culturing of muscle cells with motor neurons can boost muscle tissue function and so we estimate the maximum density of seeded neurons supported by oxygen concentrations within the bioreactor. We show that an enclosed bioreactor can provide sufficient oxygen for muscle cell survival and growth. We define a more efficient arrangement of muscle and perfusion chambers that can sustain a predicted 50% increase in maximum muscle volume per perfusion vessel. A study of simulated bioreactors provides functions for predicting bioreactor designs with normoxic conditions for any size of perfusion vessel, muscle chamber and distance between chambers.
Collapse
Affiliation(s)
- David Hardman
- Centre for Medical Informatics, Usher Institute, The University of Edinburgh, Edinburgh EH8 9BT, UK
| | - Manh-Louis Nguyen
- Institut Curie, Laboratoire Physico Chimie Curie, Institut Pierre-Gilles de Gennes, CNRS UMR168, 75005 Paris, France
| | - Stéphanie Descroix
- Institut Curie, Laboratoire Physico Chimie Curie, Institut Pierre-Gilles de Gennes, CNRS UMR168, 75005 Paris, France
| | - Miguel O. Bernabeu
- Centre for Medical Informatics, Usher Institute, The University of Edinburgh, Edinburgh EH8 9BT, UK
- The Bayes Centre, The University of Edinburgh, Edinburgh EH8 9BT, UK
| |
Collapse
|
17
|
Meng F, Cheng H, Qian J, Dai X, Huang Y, Fan Y. In vitro fluidic systems: Applying shear stress on endothelial cells. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2022. [DOI: 10.1016/j.medntd.2022.100143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
18
|
Kunz P, King R. Secretory Vesicle and Glucoamylase Distribution in Aspergillus niger and Macromorphology in Regions of Varying Shear Stress. Front Microbiol 2022; 13:842249. [PMID: 35668754 PMCID: PMC9164161 DOI: 10.3389/fmicb.2022.842249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
In technical fermentations, filamentous microorganisms are exposed to different forms of mechanical stress, among which shear stress is prevalent in turbulent broths. Whereas small-scale bioreactors allow for realistic turbulent flow field conditions, they are not well-suited to investigate the fungal response to shear stress in more detail, as they only reveal the integral effect of a highly dynamic stress stimulus. Therefore, the widely used model system for producing constant, but rather low shear forces, the parallel plate flow chamber, is extended in this work by adding a backward-facing step (BFS). The BFS induces vortex shedding in the wake of the step and brings out distinct areas of different shear stress levels at the bottom of the chamber where mycelia grow. This allows for a stress-dependent analysis of growing cells using a confocal laser-scanning microscope. As the real stress cannot be measured in the experiment, the wall shear stress is estimated numerically using computational fluid dynamics (CFD). As a first application of the experimental setup, the relative biomass concentration, the relative amount of secretory vesicles and the relative amount of the chosen product glucoamylase produced by the filamentous fungus Aspergillus niger were measured. The obtained area scans show homogeneous mycelia growth in areas of low stress and cloud-like patterns downstream of the predicted flow reattachment length where high shear stress dominates. Quantitative analysis of the time course suggests that the amount of available secretory vesicles inside of A. niger decreases when the shear stress is increased, despite that no significant differences in biomass production could be found. In contrast, the highest level of glucoamylase was reached for intermediate volumetric flow rates, i.e., levels of shear stress.
Collapse
|
19
|
Fallon ME, Mathews R, Hinds MT. In Vitro Flow Chamber Design for the Study of Endothelial Cell (Patho)Physiology. J Biomech Eng 2022; 144:020801. [PMID: 34254640 PMCID: PMC8628846 DOI: 10.1115/1.4051765] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 07/06/2021] [Indexed: 02/03/2023]
Abstract
In the native vasculature, flowing blood produces a frictional force on vessel walls that affects endothelial cell function and phenotype. In the arterial system, the vasculature's local geometry directly influences variations in flow profiles and shear stress magnitudes. Straight arterial sections with pulsatile shear stress have been shown to promote an athero-protective endothelial phenotype. Conversely, areas with more complex geometry, such as arterial bifurcations and branch points with disturbed flow patterns and lower, oscillatory shear stress, typically lead to endothelial dysfunction and the pathogenesis of cardiovascular diseases. Many studies have investigated the regulation of endothelial responses to various shear stress environments. Importantly, the accurate in vitro simulation of in vivo hemodynamics is critical to the deeper understanding of mechanotransduction through the proper design and use of flow chamber devices. In this review, we describe several flow chamber apparatuses and their fluid mechanics design parameters, including parallel-plate flow chambers, cone-and-plate devices, and microfluidic devices. In addition, chamber-specific design criteria and relevant equations are defined in detail for the accurate simulation of shear stress environments to study endothelial cell responses.
Collapse
Affiliation(s)
- Meghan E. Fallon
- Department of Biomedical Engineering, Oregon Health & Science University, 3303 S Bond Ave CH13B, Portland, OR 97239
| | - Rick Mathews
- Department of Biomedical Engineering, Oregon Health & Science University, 3303 S Bond Ave CH13B, Portland, OR 97239
| | - Monica T. Hinds
- Department of Biomedical Engineering, Oregon Health & Science University, 3303 S Bond Ave CH13B, Portland, OR 97239
| |
Collapse
|
20
|
Raredon MSB, Engler AJ, Yuan Y, Greaney AM, Niklason LE. Microvascular fluid flow in ex vivo and engineered lungs. J Appl Physiol (1985) 2021; 131:1444-1459. [PMID: 34554016 PMCID: PMC8616606 DOI: 10.1152/japplphysiol.00286.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/23/2021] [Accepted: 09/15/2021] [Indexed: 11/22/2022] Open
Abstract
In recent years, it has become common to experiment with ex vivo perfused lungs for organ transplantation and to attempt regenerative pulmonary engineering using decellularized lung matrices. However, our understanding of the physiology of ex vivo organ perfusion is imperfect; it is not currently well understood how decreasing microvascular barrier affects the perfusion of pulmonary parenchyma. In addition, protocols for lung perfusion and organ culture fluid-handling are far from standardized, with widespread variation on both basic methods and on ideally controlled parameters. To address both of these deficits, a robust, noninvasive, and mechanistic model is needed which is able to predict microvascular resistance and permeability in perfused lungs while providing insight into capillary recruitment. Although validated mathematical models exist for fluid flow in native pulmonary tissue, previous models generally assume minimal intravascular leak from artery to vein and do not assess capillary bed recruitment. Such models are difficult to apply to both ex vivo lung perfusions, in which edema can develop over time and microvessels can become blocked, and to decellularized ex vivo organomimetic cultures, in which microvascular recruitment is variable and arterially perfused fluid enters into the alveolar space. Here, we develop a mathematical model of pulmonary microvascular fluid flow which is applicable in both instances, and we apply our model to data from native, decellularized, and regenerating lungs under ex vivo perfusion. The results provide substantial insight into microvascular pressure-flow mechanics, while producing previously unknown output values for tissue-specific capillary-alveolar hydraulic conductivity, microvascular recruitment, and total organ barrier resistance.NEW & NOTEWORTHY We present a validated model of pulmonary microvascular fluid mechanics and apply this model to study the effects of increased capillary permeability in decellularized and regenerating lungs. We find that decellularization alters microvascular steady-state mechanics and that re-endothelialization partially rescues key biologic parameters. The described model provides powerful insight into intraorgan microvascular dynamics and may be used to guide regenerative engineering experiments. We include all data and derivations necessary to replicate this work.
Collapse
Affiliation(s)
- Micha Sam Brickman Raredon
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
- Vascular Biology and Therapeutics, Yale University, New Haven, Connecticut
- Medical Scientist Training Program, Yale University, New Haven, Connecticut
| | - Alexander J Engler
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
- Vascular Biology and Therapeutics, Yale University, New Haven, Connecticut
| | - Yifan Yuan
- Vascular Biology and Therapeutics, Yale University, New Haven, Connecticut
- Department of Anesthesiology, Yale University, New Haven, Connecticut
| | - Allison M Greaney
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
- Vascular Biology and Therapeutics, Yale University, New Haven, Connecticut
| | - Laura E Niklason
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
- Vascular Biology and Therapeutics, Yale University, New Haven, Connecticut
- Department of Anesthesiology, Yale University, New Haven, Connecticut
| |
Collapse
|
21
|
Shoukat AA, Chaudry UM, Shaban M, Anwar M, Khan TI, Ahmad HW, Mujahid R. Flow Rate Optimization for Thermal-FSI of Minichannel Heat Sink: A Numerical approach. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2021. [DOI: 10.1007/s13369-021-05463-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
22
|
Myofiber stretch induces tensile and shear deformation of muscle stem cells in their native niche. Biophys J 2021; 120:2665-2678. [PMID: 34087215 PMCID: PMC8390894 DOI: 10.1016/j.bpj.2021.05.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 05/02/2021] [Accepted: 05/18/2021] [Indexed: 12/28/2022] Open
Abstract
Muscle stem cells (MuSCs) are requisite for skeletal muscle regeneration and homeostasis. Proper functioning of MuSCs, including activation, proliferation, and fate decision, is determined by an orchestrated series of events and communication between MuSCs and their niche. A multitude of biochemical stimuli are known to regulate MuSC fate and function. However, in addition to biochemical factors, it is conceivable that MuSCs are subjected to mechanical forces during muscle stretch-shortening cycles because of myofascial connections between MuSCs and myofibers. MuSCs respond to mechanical forces in vitro, but it remains to be proven whether physical forces are also exerted on MuSCs in their native niche and whether they contribute to the functioning and fate of MuSCs. MuSC deformation in their native niche resulting from mechanical loading of ex vivo myofiber bundles was visualized utilizing mT/mG double-fluorescent Cre-reporter mouse and multiphoton microscopy. MuSCs were subjected to 1 h pulsating fluid shear stress (PFSS) with a peak shear stress rate of 6.5 Pa/s. After PFSS treatment, nitric oxide, messenger RNA (mRNA) expression levels of genes involved in regulation of MuSC proliferation and differentiation, ERK 1/2, p38, and AKT activation were determined. Ex vivo stretching of extensor digitorum longus and soleus myofiber bundles caused compression as well as tensile and shear deformation of MuSCs in their niche. MuSCs responded to PFSS in vitro with increased nitric oxide production and an upward trend in iNOS mRNA levels. PFSS enhanced gene expression of c-Fos, Cdk4, and IL-6, whereas expression of Wnt1, MyoD, Myog, Wnt5a, COX2, Rspo1, Vangl2, Wnt10b, and MGF remained unchanged. ERK 1/2 and p38 MAPK signaling were also upregulated after PFSS treatment. We conclude that MuSCs in their native niche are subjected to force-induced deformations due to myofiber stretch-shortening. Moreover, MuSCs are mechanoresponsive, as evidenced by PFSS-mediated expression of factors by MuSCs known to promote proliferation.
Collapse
|
23
|
Jin J, Seddiqi H, Bakker AD, Wu G, Verstappen JFM, Haroon M, Korfage JAM, Zandieh‐Doulabi B, Werner A, Klein‐Nulend J, Jaspers RT. Pulsating fluid flow affects pre-osteoblast behavior and osteogenic differentiation through production of soluble factors. Physiol Rep 2021; 9:e14917. [PMID: 34174021 PMCID: PMC8234477 DOI: 10.14814/phy2.14917] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 11/24/2022] Open
Abstract
Bone mass increases after error-loading, even in the absence of osteocytes. Loaded osteoblasts may produce a combination of growth factors affecting adjacent osteoblast differentiation. We hypothesized that osteoblasts respond to a single load in the short-term (minutes) by changing F-actin stress fiber distribution, in the intermediate-term (hours) by signaling molecule production, and in the long-term (days) by differentiation. Furthermore, growth factors produced during and after mechanical loading by pulsating fluid flow (PFF) will affect osteogenic differentiation. MC3T3-E1 pre-osteoblasts were either/not stimulated by 60 min PFF (amplitude, 1.0 Pa; frequency, 1 Hz; peak shear stress rate, 6.5 Pa/s) followed by 0-6 h, or 21/28 days of post-incubation without PFF. Computational analysis revealed that PFF immediately changed distribution and magnitude of fluid dynamics over an adherent pre-osteoblast inside a parallel-plate flow chamber (immediate impact). Within 60 min, PFF increased nitric oxide production (5.3-fold), altered actin distribution, but did not affect cell pseudopodia length and cell orientation (initial downstream impact). PFF transiently stimulated Fgf2, Runx2, Ocn, Dmp1, and Col1⍺1 gene expression between 0 and 6 h after PFF cessation. PFF did not affect alkaline phosphatase nor collagen production after 21 days, but altered mineralization after 28 days. In conclusion, a single bout of PFF with indirect associated release of biochemical factors, stimulates osteoblast differentiation in the long-term, which may explain enhanced bone formation resulting from mechanical stimuli.
Collapse
Affiliation(s)
- Jianfeng Jin
- Department of Oral Cell BiologyAcademic Centre for Dentistry Amsterdam (ACTA)University of Amsterdam and Vrije Universiteit AmsterdamAmsterdam Movement SciencesAmsterdamThe Netherlands
| | - Hadi Seddiqi
- Department of Oral Cell BiologyAcademic Centre for Dentistry Amsterdam (ACTA)University of Amsterdam and Vrije Universiteit AmsterdamAmsterdam Movement SciencesAmsterdamThe Netherlands
| | - Astrid D. Bakker
- Department of Oral Cell BiologyAcademic Centre for Dentistry Amsterdam (ACTA)University of Amsterdam and Vrije Universiteit AmsterdamAmsterdam Movement SciencesAmsterdamThe Netherlands
| | - Gang Wu
- Department of Oral Implantology and Prosthetic DentistryAcademic Centre for Dentistry Amsterdam (ACTA)University of Amsterdam and Vrije Universiteit AmsterdamAmsterdam Movement SciencesAmsterdamThe Netherlands
| | - Johanna F. M. Verstappen
- Division of Molecular Intensive Care MedicineDepartment of Anesthesiology and Intensive Care MedicineUniversity Hospital TuebingenTübingenGermany
| | - Mohammad Haroon
- Laboratory for MyologyFaculty of Behavioral and Movement SciencesVrije Universiteit AmsterdamAmsterdam Movement SciencesAmsterdamThe Netherlands
| | - Joannes A. M. Korfage
- Department of Functional AnatomyAcademic Centre for Dentistry Amsterdam (ACTA)University of Amsterdam and Vrije Universiteit AmsterdamAmsterdam Movement SciencesAmsterdamThe Netherlands
| | - Behrouz Zandieh‐Doulabi
- Department of Oral Cell BiologyAcademic Centre for Dentistry Amsterdam (ACTA)University of Amsterdam and Vrije Universiteit AmsterdamAmsterdam Movement SciencesAmsterdamThe Netherlands
| | - Arie Werner
- Department of Dental Materials ScienceAcademic Centre for Dentistry Amsterdam (ACTA)University of Amsterdam and Vrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Jenneke Klein‐Nulend
- Department of Oral Cell BiologyAcademic Centre for Dentistry Amsterdam (ACTA)University of Amsterdam and Vrije Universiteit AmsterdamAmsterdam Movement SciencesAmsterdamThe Netherlands
| | - Richard T. Jaspers
- Laboratory for MyologyFaculty of Behavioral and Movement SciencesVrije Universiteit AmsterdamAmsterdam Movement SciencesAmsterdamThe Netherlands
| |
Collapse
|
24
|
Lee-Montiel FT, Laemmle A, Charwat V, Dumont L, Lee CS, Huebsch N, Okochi H, Hancock MJ, Siemons B, Boggess SC, Goswami I, Miller EW, Willenbring H, Healy KE. Integrated Isogenic Human Induced Pluripotent Stem Cell-Based Liver and Heart Microphysiological Systems Predict Unsafe Drug-Drug Interaction. Front Pharmacol 2021; 12:667010. [PMID: 34025426 PMCID: PMC8138446 DOI: 10.3389/fphar.2021.667010] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/14/2021] [Indexed: 12/14/2022] Open
Abstract
Three-dimensional (3D) microphysiological systems (MPSs) mimicking human organ function in vitro are an emerging alternative to conventional monolayer cell culture and animal models for drug development. Human induced pluripotent stem cells (hiPSCs) have the potential to capture the diversity of human genetics and provide an unlimited supply of cells. Combining hiPSCs with microfluidics technology in MPSs offers new perspectives for drug development. Here, the integration of a newly developed liver MPS with a cardiac MPS—both created with the same hiPSC line—to study drug–drug interaction (DDI) is reported. As a prominent example of clinically relevant DDI, the interaction of the arrhythmogenic gastroprokinetic cisapride with the fungicide ketoconazole was investigated. As seen in patients, metabolic conversion of cisapride to non-arrhythmogenic norcisapride in the liver MPS by the cytochrome P450 enzyme CYP3A4 was inhibited by ketoconazole, leading to arrhythmia in the cardiac MPS. These results establish integration of hiPSC-based liver and cardiac MPSs to facilitate screening for DDI, and thus drug efficacy and toxicity, isogenic in the same genetic background.
Collapse
Affiliation(s)
- Felipe T Lee-Montiel
- Departments of Bioengineering, and Materials Science & Engineering, University of California Berkeley, Berkeley, CA, United States
| | - Alexander Laemmle
- Department of Surgery, Division of Transplant Surgery, Liver Center and Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, United States.,Institute of Clinical Chemistry and Department of Pediatrics, Inselspital, University Hospital Bern, Bern, Switzerland
| | - Verena Charwat
- Departments of Bioengineering, and Materials Science & Engineering, University of California Berkeley, Berkeley, CA, United States
| | - Laure Dumont
- Department of Surgery, Division of Transplant Surgery, Liver Center and Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, United States
| | - Caleb S Lee
- Departments of Bioengineering, and Materials Science & Engineering, University of California Berkeley, Berkeley, CA, United States
| | - Nathaniel Huebsch
- Departments of Bioengineering, and Materials Science & Engineering, University of California Berkeley, Berkeley, CA, United States
| | - Hideaki Okochi
- Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California San Francisco, San Francisco, CA, United States
| | | | - Brian Siemons
- Departments of Bioengineering, and Materials Science & Engineering, University of California Berkeley, Berkeley, CA, United States
| | - Steven C Boggess
- Department of Chemistry, University of California Berkeley, Berkeley, CA, United States
| | - Ishan Goswami
- Departments of Bioengineering, and Materials Science & Engineering, University of California Berkeley, Berkeley, CA, United States
| | - Evan W Miller
- Departments of Chemistry and Molecular & Cell Biology, and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, United States
| | - Holger Willenbring
- Department of Surgery, Division of Transplant Surgery, Liver Center and Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, United States
| | - Kevin E Healy
- Departments of Bioengineering, and Materials Science & Engineering, University of California Berkeley, Berkeley, CA, United States
| |
Collapse
|
25
|
Shear Stress Modulates Osteoblast Cell and Nucleus Morphology and Volume. Int J Mol Sci 2020; 21:ijms21218361. [PMID: 33171812 PMCID: PMC7664694 DOI: 10.3390/ijms21218361] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022] Open
Abstract
Mechanical loading preserves bone mass and function—yet, little is known about the cell biological basis behind this preservation. For example, cell and nucleus morphology are critically important for cell function, but how these morphological characteristics are affected by the physiological mechanical loading of bone cells is under-investigated. This study aims to determine the effects of fluid shear stress on cell and nucleus morphology and volume of osteoblasts, and how these effects relate to changes in actin cytoskeleton and focal adhesion formation. Mouse calvaria 3T3-E1 (MC3T3-E1) osteoblasts were treated with or without 1 h pulsating fluid flow (PFF). Live-cell imaging was performed every 10 min during PFF and immediately after PFF. Cytoskeletal organization and focal adhesions were visualized, and gene and protein expression quantified. Two-dimensional (2D) and three-dimensional (3D) morphometric analyses were made using MeasureStack and medical imaging interaction toolkit (MITK) software. 2D-images revealed that 1 h PFF changed cell morphology from polygonal to triangular, and nucleus morphology from round to ellipsoid. PFF also reduced cell surface area (0.3-fold), cell volume (0.3-fold), and nucleus volume (0.2-fold). During PFF, the live-cell volume gradually decreased from 6000 to 3000 µm3. After PFF, α-tubulin orientation was more disorganized, but F-actin fluorescence intensity was enhanced, particularly around the nucleus. 3D-images obtained from Z-stacks indicated that PFF increased F-actin fluorescence signal distribution around the nucleus in the XZ and YZ direction (2.3-fold). PFF increased protein expression of phospho-paxillin (2.0-fold) and integrin-α5 (2.8-fold), but did not increase mRNA expression of paxillin-a (PXNA), paxillin-b (PXNB), integrin-α5 (ITGA51), or α-tubulin protein expression. In conclusion, PFF induced substantial changes in osteoblast cytoskeleton, as well as cell and nucleus morphology and volume, which was accompanied by elevated gene and protein expression of adhesion and structural proteins. More insights into the mechanisms whereby mechanical cues drive morphological changes in bone cells, and thereby, possibly in bone cell behavior, will aid the guidance of clinical treatment, particularly in the field of orthodontics, (oral) implantology, and orthopedics.
Collapse
|
26
|
Tian X, Leite DM, Scarpa E, Nyberg S, Fullstone G, Forth J, Matias D, Apriceno A, Poma A, Duro-Castano A, Vuyyuru M, Harker-Kirschneck L, Šarić A, Zhang Z, Xiang P, Fang B, Tian Y, Luo L, Rizzello L, Battaglia G. On the shuttling across the blood-brain barrier via tubule formation: Mechanism and cargo avidity bias. SCIENCE ADVANCES 2020; 6:6/48/eabc4397. [PMID: 33246953 PMCID: PMC7695481 DOI: 10.1126/sciadv.abc4397] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 10/02/2020] [Indexed: 05/20/2023]
Abstract
The blood-brain barrier is made of polarized brain endothelial cells (BECs) phenotypically conditioned by the central nervous system (CNS). Although transport across BECs is of paramount importance for nutrient uptake as well as ridding the brain of waste products, the intracellular sorting mechanisms that regulate successful receptor-mediated transcytosis in BECs remain to be elucidated. Here, we used a synthetic multivalent system with tunable avidity to the low-density lipoprotein receptor-related protein 1 (LRP1) to investigate the mechanisms of transport across BECs. We used a combination of conventional and super-resolution microscopy, both in vivo and in vitro, accompanied with biophysical modeling of transport kinetics and membrane-bound interactions to elucidate the role of membrane-sculpting protein syndapin-2 on fast transport via tubule formation. We show that high-avidity cargo biases the LRP1 toward internalization associated with fast degradation, while mid-avidity augments the formation of syndapin-2 tubular carriers promoting a fast shuttling across.
Collapse
Affiliation(s)
- Xiaohe Tian
- School of Life Science, Anhui University, Hefei, P. R. China
- Department of Chemistry, Anhui University, Hefei, P. R. China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, P. R. China
| | - Diana M Leite
- Department of Chemistry, University College London, London, UK
- Institute for the Physics of Living Systems, University College London, London, UK
| | - Edoardo Scarpa
- Department of Chemistry, University College London, London, UK
- Institute for the Physics of Living Systems, University College London, London, UK
- SomaNautix Ltd., London, UK
| | - Sophie Nyberg
- Department of Chemistry, University College London, London, UK
- Institute for the Physics of Living Systems, University College London, London, UK
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Gavin Fullstone
- Department of Chemistry, University College London, London, UK
- Institute for the Physics of Living Systems, University College London, London, UK
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Joe Forth
- Department of Chemistry, University College London, London, UK
- Institute for the Physics of Living Systems, University College London, London, UK
| | - Diana Matias
- Department of Chemistry, University College London, London, UK
- Institute for the Physics of Living Systems, University College London, London, UK
| | - Azzurra Apriceno
- Department of Chemistry, University College London, London, UK
- Institute for the Physics of Living Systems, University College London, London, UK
| | - Alessandro Poma
- Department of Chemistry, University College London, London, UK
- Institute for the Physics of Living Systems, University College London, London, UK
| | - Aroa Duro-Castano
- Department of Chemistry, University College London, London, UK
- Institute for the Physics of Living Systems, University College London, London, UK
| | - Manish Vuyyuru
- Institute for the Physics of Living Systems, University College London, London, UK
- Department of Physics and Astronomy, University College London, London, UK
| | - Lena Harker-Kirschneck
- Institute for the Physics of Living Systems, University College London, London, UK
- Department of Physics and Astronomy, University College London, London, UK
| | - Anđela Šarić
- Institute for the Physics of Living Systems, University College London, London, UK
- Department of Physics and Astronomy, University College London, London, UK
| | - Zhongping Zhang
- Institute of Physical Science and Information Technology, Anhui University, Hefei, P. R. China
- CAS Center for Excellence in Nanoscience, Institute of Intelligent Machines, Chinese Academy of Science, Hefei, China
| | - Pan Xiang
- School of Life Science, Anhui University, Hefei, P. R. China
| | - Bin Fang
- Department of Chemistry, Anhui University, Hefei, P. R. China
| | - Yupeng Tian
- Department of Chemistry, Anhui University, Hefei, P. R. China
| | - Lei Luo
- College of Pharmaceutical Sciences, Southwest University, Chongqing, P. R. China
| | - Loris Rizzello
- Department of Chemistry, University College London, London, UK
- Institute for the Physics of Living Systems, University College London, London, UK
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
| | - Giuseppe Battaglia
- Department of Chemistry, Anhui University, Hefei, P. R. China.
- Department of Chemistry, University College London, London, UK
- Institute for the Physics of Living Systems, University College London, London, UK
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| |
Collapse
|
27
|
Hong JK, Gao L, Singh J, Goh T, Ruhoff AM, Neto C, Waterhouse A. Evaluating medical device and material thrombosis under flow: current and emerging technologies. Biomater Sci 2020; 8:5824-5845. [DOI: 10.1039/d0bm01284j] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review highlights the importance of flow in medical device thrombosis and explores current and emerging technologies to evaluate dynamic biomaterial Thrombosis in vitro.
Collapse
Affiliation(s)
- Jun Ki Hong
- School of Chemistry
- The University of Sydney
- Australia
- School of Medical Sciences
- Faculty of Medicine and Health
| | - Lingzi Gao
- Heart Research Institute
- Newtown
- Australia
- The University of Sydney Nano Institute
- The University of Sydney
| | - Jasneil Singh
- Heart Research Institute
- Newtown
- Australia
- The Charles Perkins Centre
- The University of Sydney
| | - Tiffany Goh
- Heart Research Institute
- Newtown
- Australia
- The Charles Perkins Centre
- The University of Sydney
| | - Alexander M. Ruhoff
- Heart Research Institute
- Newtown
- Australia
- The Charles Perkins Centre
- The University of Sydney
| | - Chiara Neto
- School of Chemistry
- The University of Sydney
- Australia
- The University of Sydney Nano Institute
- The University of Sydney
| | - Anna Waterhouse
- School of Medical Sciences
- Faculty of Medicine and Health
- The University of Sydney
- Australia
- Heart Research Institute
| |
Collapse
|
28
|
Hagihara T, Kondo J, Endo H, Ohue M, Sakai Y, Inoue M. Hydrodynamic stress stimulates growth of cell clusters via the ANXA1/PI3K/AKT axis in colorectal cancer. Sci Rep 2019; 9:20027. [PMID: 31882967 PMCID: PMC6934682 DOI: 10.1038/s41598-019-56739-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 12/11/2019] [Indexed: 01/06/2023] Open
Abstract
Cancer cells are exposed to various stresses in vivo, including hydrodynamic stress (HDS). HDS on cancer cells in the blood stream can influence the metastatic potential. Recent studies revealed that circulating tumor cell clusters are more responsible for metastasis than circulating single cells. Nevertheless, most studies on HDS are based on single cells prepared from established cancer cell lines. Here, we used cancer tissue-originated spheroids (CTOS) as a patient-derived, 3D organoid model to investigate the effect of HDS on cancer cell clusters. We found that HDS induced the growth of cancer cell clusters in a population of colorectal CTOSs. Microarray analyses revealed that the multifunctional protein, Annexin 1 (ANXA1), was upregulated upon HDS exposure. Chemically-induced membrane damage also triggered the expression of ANXA1. A knockdown of ANXA1 revealed that ANXA1 regulated HDS-stimulated growth in colorectal CTOSs. Mechanistically, activating the PI3K/AKT pathway downstream of ANXA1 contributed to the phenotype. These findings demonstrate that HDS induces the growth of cancer cell clusters via ANXA1/PI3K/AKT axis, which helps to elucidate the pro-metastatic feature of circulating cancer cell clusters.
Collapse
Affiliation(s)
- Takeshi Hagihara
- Department of Clinical Bio-resource Research and Development, Graduate School of Medicine, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto, 606-8501, Japan.,Division of Gastrointestinal Surgery, Department of Surgery, Graduate School of Medicine, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto, 606-8501, Japan.,Department of Biochemistry, Osaka International Cancer Institute, 3-1-69, Otemae, Chuo-ku, Osaka, 541-8567, Japan
| | - Jumpei Kondo
- Department of Clinical Bio-resource Research and Development, Graduate School of Medicine, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto, 606-8501, Japan. .,Department of Biochemistry, Osaka International Cancer Institute, 3-1-69, Otemae, Chuo-ku, Osaka, 541-8567, Japan.
| | - Hiroko Endo
- Department of Biochemistry, Osaka International Cancer Institute, 3-1-69, Otemae, Chuo-ku, Osaka, 541-8567, Japan
| | - Masayuki Ohue
- Department of Biochemistry, Osaka International Cancer Institute, 3-1-69, Otemae, Chuo-ku, Osaka, 541-8567, Japan
| | - Yoshiharu Sakai
- Division of Gastrointestinal Surgery, Department of Surgery, Graduate School of Medicine, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Masahiro Inoue
- Department of Clinical Bio-resource Research and Development, Graduate School of Medicine, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto, 606-8501, Japan.,Department of Biochemistry, Osaka International Cancer Institute, 3-1-69, Otemae, Chuo-ku, Osaka, 541-8567, Japan
| |
Collapse
|
29
|
Tetrafluoroethylene-Propylene Elastomer for Fabrication of Microfluidic Organs-on-Chips Resistant to Drug Absorption. MICROMACHINES 2019; 10:mi10110793. [PMID: 31752314 PMCID: PMC6915658 DOI: 10.3390/mi10110793] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 11/08/2019] [Accepted: 11/15/2019] [Indexed: 12/26/2022]
Abstract
Organs-on-chips are microfluidic devices typically fabricated from polydimethylsiloxane (PDMS). Since PDMS has many attractive properties including high optical clarity and compliance, PDMS is very useful for cell culture applications; however, PDMS possesses a significant drawback in that small hydrophobic molecules are strongly absorbed. This drawback hinders widespread use of PDMS-based devices for drug discovery and development. Here, we describe a microfluidic cell culture system made of a tetrafluoroethylene-propylene (FEPM) elastomer. We demonstrated that FEPM does not absorb small hydrophobic compounds including rhodamine B and three types of drugs, nifedipine, coumarin, and Bay K8644, whereas PDMS absorbs them strongly. The device consists of two FEPM layers of microchannels separated by a thin collagen vitrigel membrane. Since FEPM is flexible and biocompatible, this microfluidic device can be used to culture cells while applying mechanical strain. When human umbilical vein endothelial cells (HUVECs) were subjected to cyclic strain (~10%) for 4 h in this device, HUVECs reoriented and aligned perpendicularly in response to the cyclic stretch. Moreover, we demonstrated that this device can be used to replicate the epithelial–endothelial interface as well as to provide physiological mechanical strain and fluid flow. This method offers a robust platform to produce organs-on-chips for drug discovery and development.
Collapse
|
30
|
Hadida M, Marchat D. Strategy for achieving standardized bone models. Biotechnol Bioeng 2019; 117:251-271. [PMID: 31531968 PMCID: PMC6915912 DOI: 10.1002/bit.27171] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 12/24/2022]
Abstract
Reliably producing functional in vitro organ models, such as organ-on-chip systems, has the potential to considerably advance biology research, drug development time, and resource efficiency. However, despite the ongoing major progress in the field, three-dimensional bone tissue models remain elusive. In this review, we specifically investigate the control of perfusion flow effects as the missing link between isolated culture systems and scientifically exploitable bone models and propose a roadmap toward this goal.
Collapse
Affiliation(s)
- Mikhael Hadida
- Mines Saint-Etienne, Univ Lyon, Univ Jean Monnet, INSERM, U 1059 Sainbiose, Centre CIS, Saint-Etienne, France
| | - David Marchat
- Mines Saint-Etienne, Univ Lyon, Univ Jean Monnet, INSERM, U 1059 Sainbiose, Centre CIS, Saint-Etienne, France
| |
Collapse
|
31
|
Valls-Margarit M, Iglesias-García O, Di Guglielmo C, Sarlabous L, Tadevosyan K, Paoli R, Comelles J, Blanco-Almazán D, Jiménez-Delgado S, Castillo-Fernández O, Samitier J, Jané R, Martínez E, Raya Á. Engineered Macroscale Cardiac Constructs Elicit Human Myocardial Tissue-like Functionality. Stem Cell Reports 2019; 13:207-220. [PMID: 31231023 PMCID: PMC6626888 DOI: 10.1016/j.stemcr.2019.05.024] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 05/23/2019] [Accepted: 05/24/2019] [Indexed: 01/18/2023] Open
Abstract
In vitro surrogate models of human cardiac tissue hold great promise in disease modeling, cardiotoxicity testing, and future applications in regenerative medicine. However, the generation of engineered human cardiac constructs with tissue-like functionality is currently thwarted by difficulties in achieving efficient maturation at the cellular and/or tissular level. Here, we report on the design and implementation of a platform for the production of engineered cardiac macrotissues from human pluripotent stem cells (PSCs), which we term "CardioSlice." PSC-derived cardiomyocytes, together with human fibroblasts, are seeded into large 3D porous scaffolds and cultured using a parallelized perfusion bioreactor with custom-made culture chambers. Continuous electrical stimulation for 2 weeks promotes cardiomyocyte alignment and synchronization, and the emergence of cardiac tissue-like properties. These include electrocardiogram-like signals that can be readily measured on the surface of CardioSlice constructs, and a response to proarrhythmic drugs that is predictive of their effect in human patients.
Collapse
Affiliation(s)
- Maria Valls-Margarit
- Biomimetic Systems for Cell Engineering, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Olalla Iglesias-García
- Center of Regenerative Medicine in Barcelona (CMRB), L'Hospitalet de Llobregat, Barcelona, Spain; Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
| | - Claudia Di Guglielmo
- Center of Regenerative Medicine in Barcelona (CMRB), L'Hospitalet de Llobregat, Barcelona, Spain; Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
| | - Leonardo Sarlabous
- Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain; Biomedical Signal Processing and Interpretation, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain; Department of Automatic Control, Universitat Politècnica de Catalunya - BarcelonaTech (UPC), Barcelona, Spain
| | - Karine Tadevosyan
- Center of Regenerative Medicine in Barcelona (CMRB), L'Hospitalet de Llobregat, Barcelona, Spain; Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
| | - Roberto Paoli
- Nanobioengineering, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Jordi Comelles
- Biomimetic Systems for Cell Engineering, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Dolores Blanco-Almazán
- Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain; Biomedical Signal Processing and Interpretation, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain; Department of Automatic Control, Universitat Politècnica de Catalunya - BarcelonaTech (UPC), Barcelona, Spain
| | - Senda Jiménez-Delgado
- Center of Regenerative Medicine in Barcelona (CMRB), L'Hospitalet de Llobregat, Barcelona, Spain; Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
| | | | - Josep Samitier
- Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain; Nanobioengineering, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain; Department of Electronics and Biomedical Engineering, University of Barcelona (UB), Barcelona, Spain
| | - Raimon Jané
- Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain; Biomedical Signal Processing and Interpretation, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain; Department of Automatic Control, Universitat Politècnica de Catalunya - BarcelonaTech (UPC), Barcelona, Spain
| | - Elena Martínez
- Biomimetic Systems for Cell Engineering, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain; Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain; Department of Electronics and Biomedical Engineering, University of Barcelona (UB), Barcelona, Spain.
| | - Ángel Raya
- Center of Regenerative Medicine in Barcelona (CMRB), L'Hospitalet de Llobregat, Barcelona, Spain; Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
32
|
Warboys CM, Ghim M, Weinberg PD. Understanding mechanobiology in cultured endothelium: A review of the orbital shaker method. Atherosclerosis 2019; 285:170-177. [PMID: 31096159 PMCID: PMC6570700 DOI: 10.1016/j.atherosclerosis.2019.04.210] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/30/2019] [Accepted: 04/04/2019] [Indexed: 12/04/2022]
Abstract
A striking feature of atherosclerosis is its highly non-uniform distribution within the arterial tree. This has been attributed to variation in the haemodynamic wall shear stress (WSS) experienced by endothelial cells, but the WSS characteristics that are important and the mechanisms by which they lead to disease remain subjects of intensive investigation despite decades of research. In vivo evidence suggests that multidirectional WSS is highly atherogenic. This possibility is increasingly being studied by culturing endothelial cells in wells that are swirled on an orbital shaker. The method is simple and cost effective, has high throughput and permits chronic exposure, but interpretation of the results can be difficult because the fluid mechanics are complex; hitherto, their description has largely been restricted to the engineering literature. Here we review the findings of such studies, which indicate that putatively atherogenic flow characteristics occur at the centre of the well whilst atheroprotective ones occur towards the edge, and we describe simple mathematical methods for choosing experimental variables that avoid resonance, wave breaking and uncovering of the cells. We additionally summarise a large number of studies showing that endothelium cultured at the centre of the well expresses more pro-inflammatory and fewer homeostatic genes, has higher permeability, proliferation, apoptosis and senescence, and shows more endothelial-to-mesenchymal transition than endothelium at the edge. This simple method, when correctly interpreted, has the potential to greatly increase our understanding of the homeostatic and pathogenic mechanobiology of endothelial cells and may help identify new therapeutic targets in vascular disease.
Collapse
Affiliation(s)
| | - Mean Ghim
- Department of Bioengineering, Imperial College London, UK
| | | |
Collapse
|
33
|
Evaluation and Prediction of Mass Transport Properties for Porous Implant with Different Unit Cells: A Numerical Study. BIOMED RESEARCH INTERNATIONAL 2019; 2019:3610785. [PMID: 31179318 PMCID: PMC6507231 DOI: 10.1155/2019/3610785] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 04/11/2019] [Indexed: 01/01/2023]
Abstract
Efficient exchange of nutrients and wastes required for cell proliferation and differentiation plays a pivotal role in improving the service life of porous implants. In this study, mass transport properties for porous implant with different unit cells were evaluated and predicted when the porosities are kept the same. To this end, three typical unit cells (diamond (DO), rhombic dodecahedron (RD), and octet truss (OT)) were selected, in which DO displayed diagonal-symmetrical shape, while RD and OT share midline-symmetrical structure. Then, single unit cells were designed quantitatively, and its shape parameters were measured and calculated. Moreover, corresponding porous scaffolds with same outline size were created, respectively. Furthermore, using computational fluid dynamics (CFD) methodology, flow performances with Dulbecco's Modified Eagle's Medium (DMEM) in vitro were simulated for three different porous implants, and flow trajectory, velocity, and wall shear stress which could reflect the properties of mass transfer and tissue regeneration were compared and predicted numerically. Results demonstrated that different unit cell could directly lead to different mass transport properties for porous implant, in spite of same porosity, scaffold size, and service environment. Additionally, by the results, DO displayed greater tortuosity, more appropriate areas, and smoother shear stress distribution than RD and OT, which would provide better surroundings for implant fixation and tissue regeneration. However, RD and OT showed better mass transport properties because of bigger maximum velocity (5.177 mm/s, 4.381 mm/s) than DO (3.941 mm/s). This study would provide great helps for unit cell selection and biological performance optimization for 3D printed bone implants.
Collapse
|
34
|
Ozbolat V, Dey M, Ayan B, Ozbolat IT. Extrusion-based printing of sacrificial Carbopol ink for fabrication of microfluidic devices. Biofabrication 2019; 11:034101. [PMID: 30884470 DOI: 10.1088/1758-5090/ab10ae] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Current technologies for manufacturing of microfluidic devices include soft-lithography, wet and dry etching, thermoforming, micro-machining and three-dimensional (3D) printing. Among them, soft-lithography has been the mostly preferred one in medical and pharmaceutical fields due to its ability to generate polydimethylsiloxane (PDMS) devices with resin biocompatibility, throughput and transparency for imaging. It is a multi-step process requiring the preparation of a silicon wafer pattern, which is fabricated using photolithography according to a defined mask. Photolithography is a costly, complicated and time-consuming process requiring a clean-room environment, and the technology is not readily accessible in most of the developing countries. In addition, generated patterns on photolithography-made silicon wafers do not allow building 3D intricate shapes and silicon direct bonding is thus utilized for closed fluid channels and complex 3D structures. 3D Printing of PDMS has recently gained significant interest due to its ability to define complex 3D shapes directly from user-defined designs. In this work, we investigated Carbopol as a sacrificial gel in order to create microfluidic channels in PDMS devices. Our study demonstrated that Carbopol ink possessed a shear-thinning behavior and enabled the extrusion-based printing of channel templates, which were overlaid with PDMS to create microfluidic devices upon curing of PDMS and removal of the sacrificial Carbopol ink. To demonstrate the effectiveness of the fabricated devices, channels were lined up with human umbilical vein endothelial cells (HUVECs) and human bone marrow endothelial cells (BMECs) in separate devices, where both HUVECs and BMECs demonstrated the formation of endothelium with highly aligned cells in the direction of fluid flow. Overall, we here present a highly affordable and practical approach in fabrication of PDMS devices with closed fluid channels, which have great potential in a myriad of applications from cancer treatments to infectious disease diagnostics to artificial organs.
Collapse
Affiliation(s)
- Veli Ozbolat
- Engineering Science and Mechanics Department, Penn State University, University Park, PA 16802, United States of America. The Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, United States of America. Mechanical Engineering Department, Ceyhan Engineering Faculty, Cukurova University, Adana 01950, Turkey
| | | | | | | |
Collapse
|
35
|
Garcia J, Patel N, Basehore S, Clyne AM. Fibroblast Growth Factor-2 Binding to Heparan Sulfate Proteoglycans Varies with Shear Stress in Flow-Adapted Cells. Ann Biomed Eng 2019; 47:1078-1093. [PMID: 30689065 PMCID: PMC6470077 DOI: 10.1007/s10439-019-02202-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 01/08/2019] [Indexed: 12/19/2022]
Abstract
Fibroblast growth factor 2 (FGF2), an important regulator of angiogenesis, binds to endothelial cell (EC) surface FGF receptors (FGFRs) and heparan sulfate proteoglycans (HSPGs). FGF2 binding kinetics have been predominantly studied in static culture; however, the endothelium is constantly exposed to flow which may affect FGF2 binding. We therefore used experimental and computational techniques to study how EC FGF2 binding changes in flow. ECs adapted to 24 h of flow demonstrated biphasic FGF2-HSPG binding, with FGF2-HSPG complexes increasing up to 20 dynes/cm2 shear stress and then decreasing at higher shear stresses. To understand how adaptive EC surface remodeling in response to shear stress may affect FGF2 binding to FGFR and HSPG, we implemented a computational model to predict the relative effects of flow-induced surface receptor changes. We then fit the computational model to the experimental data using relationships between HSPG availability and FGF2-HSPG dissociation and flow that were developed from a basement membrane study, as well as including HSPG production. These studies suggest that FGF2 binding kinetics are altered in flow-adapted ECs due to changes in cell surface receptor quantity, availability, and binding kinetics, which may affect cell growth factor response.
Collapse
Affiliation(s)
- Jonathan Garcia
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut St, Philadelphia, PA, USA
| | - Nisha Patel
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut St, Philadelphia, PA, USA
| | - Sarah Basehore
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut St, Philadelphia, PA, USA
| | - Alisa Morss Clyne
- Mechanical Engineering and Mechanics Department, Drexel University, 3141 Chestnut St, Philadelphia, PA, USA.
| |
Collapse
|
36
|
Thompson AJ, Ma LJ, Plegue TJ, Potkay JA. Design Analysis and Optimization of a Single-Layer PDMS Microfluidic Artificial Lung. IEEE Trans Biomed Eng 2019; 66:1082-1093. [DOI: 10.1109/tbme.2018.2866782] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
37
|
Gold K, Gaharwar AK, Jain A. Emerging trends in multiscale modeling of vascular pathophysiology: Organ-on-a-chip and 3D printing. Biomaterials 2019; 196:2-17. [PMID: 30072038 PMCID: PMC6344330 DOI: 10.1016/j.biomaterials.2018.07.029] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 07/13/2018] [Accepted: 07/18/2018] [Indexed: 01/17/2023]
Abstract
Most biomedical and pharmaceutical research of the human vascular system aims to unravel the complex mechanisms that drive disease progression from molecular to organ levels. The knowledge gained can then be used to innovate diagnostic and treatment strategies which can ultimately be determined precisely for patients. Despite major advancements, current modeling strategies are often limited at identifying, quantifying, and dissecting specific cellular and molecular targets that regulate human vascular diseases. Therefore, development of multiscale modeling approaches are needed that can advance our knowledge and facilitate the design of next-generation therapeutic approaches in vascular diseases. This article critically reviews animal models, static in vitro systems, and dynamic in vitro culture systems currently used to model vascular diseases. A leading emphasis on the potential of emerging approaches, specifically organ-on-a-chip and three-dimensional (3D) printing, to recapitulate the innate human vascular physiology and anatomy is described. The applications of these approaches and future outlook in designing and screening novel therapeutics are also presented.
Collapse
Affiliation(s)
- Karli Gold
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Akhilesh K Gaharwar
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA; Department of Material Sciences, Texas A&M University, College Station, TX, 77843, USA; Center for Remote Health and Technologies and Systems, Texas A&M University, College Station, TX, 77843, USA.
| | - Abhishek Jain
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
38
|
Comparative transcriptomics of shear stress treated Pkd1−/− cells and pre-cystic kidneys reveals pathways involved in early polycystic kidney disease. Biomed Pharmacother 2018; 108:1123-1134. [DOI: 10.1016/j.biopha.2018.07.178] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/30/2018] [Accepted: 07/31/2018] [Indexed: 02/08/2023] Open
|
39
|
Li J, Chen D, Luan H, Zhang Y, Fan Y. Numerical Evaluation and Prediction of Porous Implant Design and Flow Performance. BIOMED RESEARCH INTERNATIONAL 2018; 2018:1215021. [PMID: 30009164 PMCID: PMC6020664 DOI: 10.1155/2018/1215021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 05/20/2018] [Indexed: 11/18/2022]
Abstract
Porous structure has been widely acknowledged as important factor for mass transfer and tissue regeneration. This study investigates effect of aimed-control design on mass transfer and tissue regeneration of porous implant with regular unit cell. Two shapes of unit cells (Octet truss, and Rhombic dodecahedron) were selected, which have similar symmetrical structure and are commonly used in practice. Through parametric design, porous scaffolds with the strut sizes of φ 0.5, 0.7, 0.9, and 1.1mm were created, respectively. Then using fluid flow simulation method, flow velocity, permeability, and shear stress which could reflect the properties of mass transfer and tissue regeneration were compared and evaluated, and the relationships between porous structure's physical parameters and flow performance were studied. Results demonstrated that unit cell shape and strut size greatly determine and influence other physical parameters and flow performances of porous implant. With the increasing of strut size, pore size and porosity linearly decrease, but the volume, surface area, and specific surface area increased. Importantly, implant with smaller strut size resulted in smaller flow velocity directly but greater permeability and more appropriate shear stress, which should be beneficial to cell attachment and proliferation. This study confirmed that porous implant with different unit cell shows different performances of mass transfer and tissue regeneration, and unit cell shape and strut size play vital roles in the control design. These findings could facilitate the quantitative assessment and optimization of the porous implant.
Collapse
Affiliation(s)
- Jian Li
- Robotic Institute, Beihang University, Beijing 100191, China
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability and Key Laboratory of Rehabilitation Aids Technology and System of the Ministry of Civil Affairs, National Research Center for Rehabilitation Technical Aids, Beijing 100176, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
| | - Diansheng Chen
- Robotic Institute, Beihang University, Beijing 100191, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
| | - Huiqin Luan
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability and Key Laboratory of Rehabilitation Aids Technology and System of the Ministry of Civil Affairs, National Research Center for Rehabilitation Technical Aids, Beijing 100176, China
| | - Yingying Zhang
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability and Key Laboratory of Rehabilitation Aids Technology and System of the Ministry of Civil Affairs, National Research Center for Rehabilitation Technical Aids, Beijing 100176, China
| | - Yubo Fan
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability and Key Laboratory of Rehabilitation Aids Technology and System of the Ministry of Civil Affairs, National Research Center for Rehabilitation Technical Aids, Beijing 100176, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| |
Collapse
|
40
|
Park DY, Kim TH, Lee JM, Ahrberg CD, Chung BG. Circular-shaped microfluidic device to study the effect of shear stress on cellular orientation. Electrophoresis 2018; 39:1816-1820. [PMID: 29659029 DOI: 10.1002/elps.201800109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/06/2018] [Accepted: 04/09/2018] [Indexed: 12/11/2022]
Abstract
Understanding the effects of shear stress on mammalian cells is a crucial factor for understanding a number of biological processes and diseases. Here, we show the development of a circular-shaped microfluidic device for the facile generation of shear stress gradients. With this microfluidic device, the effect of shear stress on orientation of human umbilical vein endothelial cells was studied. This microfluidic device, which enables to control the alignment of human umbilical vein endothelial cells within a microchannel, can be a valuable tool to mimic blood vessels.
Collapse
Affiliation(s)
- Da Yeon Park
- Department of Biomedical Engineering, Sogang University, Seoul, Korea
| | - Tae Hyeon Kim
- Department of Mechanical Engineering, Sogang University, Seoul, Korea
| | - Jong Min Lee
- Department of Mechanical Engineering, Sogang University, Seoul, Korea
| | | | - Bong Geun Chung
- Department of Mechanical Engineering, Sogang University, Seoul, Korea
| |
Collapse
|
41
|
Caunii A, Oprean C, Cristea M, Ivan A, Danciu C, Tatu C, Paunescu V, Marti D, Tzanakakis G, Spandidos DA, Tsatsakis A, Susan R, Soica C, Avram S, Dehelean C. Effects of ursolic and oleanolic on SK‑MEL‑2 melanoma cells: In vitro and in vivo assays. Int J Oncol 2017; 51:1651-1660. [PMID: 29039461 PMCID: PMC5673023 DOI: 10.3892/ijo.2017.4160] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 10/02/2017] [Indexed: 12/21/2022] Open
Abstract
Among the triterpenoids, oleanolic acid (OA) and its isomer, ursolic acid (UA) are promising therapeutic candidates, with potential benefits in the management of melanoma. In this study, we aimed to examine the in vitro and in vivo anti‑invasive and anti‑metastatic activity of OA and UA to determine their possible usefulness as chemopreventive or chemotherapeutic agents in melanoma. For the in vitro experiments, the anti‑proliferative activity of the triterpenic compounds on SK‑MEL‑2 melanoma cells was examined. The anti‑invasive potential was assessed by testing the effects of the active compound on vascular cell adhesion molecule (VCAM) and intercellular adhesion molecule (ICAM) adhesion to melanoma cells. Normal and tumor angiogenesis were evaluated in vivo by chicken embryo chorioallantoic membrane (CAM) assay. The two test triterpenoid acids, UA and OA, exerted differential effects in vitro and in vivo on the SK‑MEL‑2 melanoma cells. UA exerted a significant and dose‑dependent anti‑proliferative effect in vitro, compared to OA. The cytotoxic effects in vitro on the melanoma cells were determined by the examining alterations in the cell cycle phases induced by UA that lead to cell arrest in the S phase. Moreover, UA was found to affect SK‑MEL‑2 melanoma cell invasiveness by limiting the cell adhesion capacity to ICAM molecules, but not influencing their adhesion to VCAM molecules. On the whole, in this study, by assessing the effects of the two triterpenoids in vivo, our results revealed that OA had a greater potential to impair the invasive capacity and tumor angiogenesis compared with UA.
Collapse
Affiliation(s)
- Angela Caunii
- Faculty of Pharmacy, 'Victor Babeş' University of Medicine and Pharmacy, 300041 Timişoara
| | - Camelia Oprean
- Faculty of Pharmacy, 'Victor Babeş' University of Medicine and Pharmacy, 300041 Timişoara
- 'Pius Brinzeu' Timişoara County Emergency Clinical Hospital, Oncogen Institute, 300723 Timişoara
| | - Mirabela Cristea
- 'Pius Brinzeu' Timişoara County Emergency Clinical Hospital, Oncogen Institute, 300723 Timişoara
| | - Alexandra Ivan
- 'Pius Brinzeu' Timişoara County Emergency Clinical Hospital, Oncogen Institute, 300723 Timişoara
- Faculty of Medicine, 'Victor Babeş' University of Medicine and Pharmacy, 300041 Timişoara
| | - Corina Danciu
- Faculty of Pharmacy, 'Victor Babeş' University of Medicine and Pharmacy, 300041 Timişoara
| | - Calin Tatu
- 'Pius Brinzeu' Timişoara County Emergency Clinical Hospital, Oncogen Institute, 300723 Timişoara
- Faculty of Medicine, 'Victor Babeş' University of Medicine and Pharmacy, 300041 Timişoara
| | - Virgil Paunescu
- 'Pius Brinzeu' Timişoara County Emergency Clinical Hospital, Oncogen Institute, 300723 Timişoara
- Faculty of Medicine, 'Victor Babeş' University of Medicine and Pharmacy, 300041 Timişoara
| | - Daniela Marti
- Faculty of Medicine, Western University Vasile Goldis, Arad 310025, Romania
| | - George Tzanakakis
- Faculty of Medicine, University of Crete, 71003 Heraklion, Crete, Greece
| | | | - Aristides Tsatsakis
- Faculty of Medicine, 'Victor Babeş' University of Medicine and Pharmacy, 300041 Timişoara
- Faculty of Medicine, University of Crete, 71003 Heraklion, Crete, Greece
| | - Razvan Susan
- Faculty of Medicine, 'Victor Babeş' University of Medicine and Pharmacy, 300041 Timişoara
| | - Codruta Soica
- Faculty of Pharmacy, 'Victor Babeş' University of Medicine and Pharmacy, 300041 Timişoara
| | - Stefana Avram
- Faculty of Pharmacy, 'Victor Babeş' University of Medicine and Pharmacy, 300041 Timişoara
| | - Cristina Dehelean
- Faculty of Pharmacy, 'Victor Babeş' University of Medicine and Pharmacy, 300041 Timişoara
| |
Collapse
|
42
|
Kunnen SJ, Malas TB, Semeins CM, Bakker AD, Peters DJM. Comprehensive transcriptome analysis of fluid shear stress altered gene expression in renal epithelial cells. J Cell Physiol 2017; 233:3615-3628. [PMID: 29044509 PMCID: PMC5765508 DOI: 10.1002/jcp.26222] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 10/05/2017] [Indexed: 12/21/2022]
Abstract
Renal epithelial cells are exposed to mechanical forces due to flow‐induced shear stress within the nephrons. Shear stress is altered in renal diseases caused by tubular dilation, obstruction, and hyperfiltration, which occur to compensate for lost nephrons. Fundamental in regulation of shear stress are primary cilia and other mechano‐sensors, and defects in cilia formation and function have profound effects on development and physiology of kidneys and other organs. We applied RNA sequencing to get a comprehensive overview of fluid‐shear regulated genes and pathways in renal epithelial cells. Functional enrichment‐analysis revealed TGF‐β, MAPK, and Wnt signaling as core signaling pathways up‐regulated by shear. Inhibitors of TGF‐β and MAPK/ERK signaling modulate a wide range of mechanosensitive genes, identifying these pathways as master regulators of shear‐induced gene expression. However, the main down‐regulated pathway, that is, JAK/STAT, is independent of TGF‐β and MAPK/ERK. Other up‐regulated cytokine pathways include FGF, HB‐EGF, PDGF, and CXC. Cellular responses to shear are modified at several levels, indicated by altered expression of genes involved in cell‐matrix, cytoskeleton, and glycocalyx remodeling, as well as glycolysis and cholesterol metabolism. Cilia ablation abolished shear induced expression of a subset of genes, but genes involved in TGF‐β, MAPK, and Wnt signaling were hardly affected, suggesting that other mechano‐sensors play a prominent role in the shear stress response of renal epithelial cells. Modulations in signaling due to variations in fluid shear stress are relevant for renal physiology and pathology, as suggested by elevated gene expression at pathological levels of shear stress compared to physiological shear.
Collapse
Affiliation(s)
- Steven J Kunnen
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Tareq B Malas
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Cornelis M Semeins
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, The Netherlands
| | - Astrid D Bakker
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, The Netherlands
| | - Dorien J M Peters
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
43
|
Mack JJ, Mosqueiro TS, Archer BJ, Jones WM, Sunshine H, Faas GC, Briot A, Aragón RL, Su T, Romay MC, McDonald AI, Kuo CH, Lizama CO, Lane TF, Zovein AC, Fang Y, Tarling EJ, de Aguiar Vallim TQ, Navab M, Fogelman AM, Bouchard LS, Iruela-Arispe ML. NOTCH1 is a mechanosensor in adult arteries. Nat Commun 2017; 8:1620. [PMID: 29158473 PMCID: PMC5696341 DOI: 10.1038/s41467-017-01741-8] [Citation(s) in RCA: 221] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 10/13/2017] [Indexed: 02/06/2023] Open
Abstract
Endothelial cells transduce mechanical forces from blood flow into intracellular signals required for vascular homeostasis. Here we show that endothelial NOTCH1 is responsive to shear stress, and is necessary for the maintenance of junctional integrity, cell elongation, and suppression of proliferation, phenotypes induced by laminar shear stress. NOTCH1 receptor localizes downstream of flow and canonical NOTCH signaling scales with the magnitude of fluid shear stress. Reduction of NOTCH1 destabilizes cellular junctions and triggers endothelial proliferation. NOTCH1 suppression results in changes in expression of genes involved in the regulation of intracellular calcium and proliferation, and preventing the increase of calcium signaling rescues the cell-cell junctional defects. Furthermore, loss of Notch1 in adult endothelium increases hypercholesterolemia-induced atherosclerosis in the descending aorta. We propose that NOTCH1 is atheroprotective and acts as a mechanosensor in adult arteries, where it integrates responses to laminar shear stress and regulates junctional integrity through modulation of calcium signaling.
Collapse
Affiliation(s)
- Julia J Mack
- Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, CA, 90095, USA
| | - Thiago S Mosqueiro
- Institute for Quantitative and Computational Biology, University of California, Los Angeles, CA, 90095, USA
| | - Brian J Archer
- Department of Bioengineering, University of California, Los Angeles, CA, 90095, USA
| | - William M Jones
- Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, CA, 90095, USA
| | - Hannah Sunshine
- Interdepartmental Graduate Program in Molecular, Cellular and Integrative Physiology, University of California, Los Angeles, CA, 90095, USA
| | - Guido C Faas
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Anais Briot
- Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, CA, 90095, USA
| | - Raquel L Aragón
- Molecular Biology Interdisciplinary Graduate Program, Molecular Biology Institute, University of California, Los Angeles, CA, 90095, USA
| | - Trent Su
- Department of Biological Chemistry, University of California, Los Angeles, CA, 90095, USA
| | - Milagros C Romay
- Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, CA, 90095, USA
| | - Austin I McDonald
- Molecular Biology Interdisciplinary Graduate Program, Molecular Biology Institute, University of California, Los Angeles, CA, 90095, USA
| | - Cheng-Hsiang Kuo
- Department of Medicine, University of Chicago, Chicago, IL, 60637, USA
| | - Carlos O Lizama
- Cardiovascular Research Institute, University of California, San Francisco, CA, 94158, USA
| | - Timothy F Lane
- Department of Biological Chemistry, University of California, Los Angeles, CA, 90095, USA
- Department of Ob-Gyn, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA, 90095, USA
| | - Ann C Zovein
- Cardiovascular Research Institute, University of California, San Francisco, CA, 94158, USA
| | - Yun Fang
- Department of Medicine, University of Chicago, Chicago, IL, 60637, USA
| | - Elizabeth J Tarling
- Department of Biological Chemistry, University of California, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA, 90095, USA
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Thomas Q de Aguiar Vallim
- Department of Biological Chemistry, University of California, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA, 90095, USA
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Mohamad Navab
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Alan M Fogelman
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Louis S Bouchard
- Department of Bioengineering, University of California, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA, 90095, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
| | - M Luisa Iruela-Arispe
- Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, CA, 90095, USA.
- Molecular Biology Institute, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
44
|
Towards a Biohybrid Lung: Endothelial Cells Promote Oxygen Transfer through Gas Permeable Membranes. BIOMED RESEARCH INTERNATIONAL 2017; 2017:5258196. [PMID: 28913354 PMCID: PMC5587952 DOI: 10.1155/2017/5258196] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 05/24/2017] [Indexed: 11/18/2022]
Abstract
In patients with respiratory failure, extracorporeal lung support can ensure the vital gas exchange via gas permeable membranes but its application is restricted by limited long-term stability and hemocompatibility of the gas permeable membranes, which are in contact with the blood. Endothelial cells lining these membranes promise physiological hemocompatibility and should enable prolonged application. However, the endothelial cells increase the diffusion barrier of the blood-gas interface and thus affect gas transfer. In this study, we evaluated how the endothelial cells affect the gas exchange to optimize performance while maintaining an integral cell layer. Human umbilical vein endothelial cells were seeded on gas permeable cell culture membranes and cultivated in a custom-made bioreactor. Oxygen transfer rates of blank and endothelialized membranes in endothelial culture medium were determined. Cell morphology was assessed by microscopy and immunohistochemistry. Both setups provided oxygenation of the test fluid featuring small standard deviations of the measurements. Throughout the measuring range, the endothelial cells seem to promote gas transfer to a certain extent exceeding the blank membranes gas transfer performance by up to 120%. Although the underlying principles hereof still need to be clarified, the results represent a significant step towards the development of a biohybrid lung.
Collapse
|
45
|
Campeau MA, Lortie A, Tremblay P, Béliveau MO, Dubé D, Langelier È, Rouleau L. Effect of manufacturing and experimental conditions on the mechanical and surface properties of silicone elastomer scaffolds used in endothelial mechanobiological studies. Biomed Eng Online 2017; 16:90. [PMID: 28705250 PMCID: PMC5513328 DOI: 10.1186/s12938-017-0380-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 07/06/2017] [Indexed: 11/17/2022] Open
Abstract
Background Mechanobiological studies allow the characterization of cell response to mechanical stresses. Cells need to be supported by a material with properties similar to the physiological environment. Silicone elastomers have been used to produce various in vitro scaffolds of different geometries for endothelial cell studies given its relevant mechanical, optical and surface properties. However, obtaining defined and repeatable properties is a challenge as depending on the different manufacturing and processing steps, mechanical and surface properties may vary significantly between research groups. Methods The impact of different manufacturing and processing methods on the mechanical and surface properties was assessed by measuring the Young’s modulus and the contact angle. Silicone samples were produced using different curing temperatures and processed with different sterilization techniques and hydrophilization conditions. Results Different curing temperatures were used to obtain materials of different stiffness with a chosen silicone elastomer, i.e. Sylgard 184®. Sterilization by boiling had a tendency to stiffen samples cured at lower temperatures whereas UV and ethanol did not alter the material properties. Hydrophilization using sulphuric acid allowed to decrease surface hydrophobicity, however this effect was lost over time as hydrophobic recovery occurred. Extended contact with water maintained decreased hydrophobicity up to 7 days. Mechanobiological studies require complete cell coverage of the scaffolds used prior to mechanical stresses exposure. Different concentrations of fibronectin and collagen were used to coat the scaffolds and cell seeding density was varied to optimize cell coverage. Conclusion This study highlights the potential bias introduced by manufacturing and processing conditions needed in the preparation of scaffolds used in mechanobiological studies involving endothelial cells. As manufacturing, processing and cell culture conditions are known to influence cell adhesion and function, they should be more thoroughly assessed by research groups that perform such mechanobiological studies using silicone. Electronic supplementary material The online version of this article (doi:10.1186/s12938-017-0380-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marc-Antoine Campeau
- Department of Chemical Engineering, McGill University, Montreal, QC, H3A 0C5, Canada
| | - Audrey Lortie
- Département de génie chimique et biotechnologique, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | - Pierrick Tremblay
- Département de génie chimique et biotechnologique, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | - Marc-Olivier Béliveau
- Département de génie chimique et biotechnologique, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | - Dominic Dubé
- Département de génie mécanique, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | - Ève Langelier
- Département de génie mécanique, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada.,Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Sherbrooke, QC, J1H 5N4, Canada
| | - Léonie Rouleau
- Département de génie mécanique, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada. .,Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Sherbrooke, QC, J1H 5N4, Canada.
| |
Collapse
|
46
|
Rathod ML, Ahn J, Jeon NL, Lee J. Hybrid polymer microfluidic platform to mimic varying vascular compliance and topology. LAB ON A CHIP 2017; 17:2508-2516. [PMID: 28653725 DOI: 10.1039/c7lc00340d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Several cardiovascular pathologies and aging have been associated with alterations in the mechanical and structural properties of the vascular wall, leading to a reduction in arterial compliance and the development of constriction. In the past, rare efforts have been directed to understand the endothelial cell response to combined mechanical stimuli from fluid flow and substrate rigidity. Recent approaches using microfluidic platforms have limitations in precisely mimicking healthy and diseased vasculature conditions from altered topological and substrate compliance perspectives. To address this, we demonstrated an effective fabrication process to realize a hybrid polymer platform to test these mechanistic features of blood vessels. The salient features of the platform include circular microchannels of varying diameters, variation in substrate rigidity along the channel length, and the coexistence of microchannels with different cross sections on a single platform. The platform demonstrates the combined effects of flow-induced shear forces and substrate rigidity on the endothelial cell layer inside the circular microchannels. The experimental results indicate a pronounced cell response to flow induced shear stress via its interplay with the underlying substrate mechanics.
Collapse
Affiliation(s)
- M L Rathod
- School of Mechanical and Aerospace Engineering, Seoul National University, Seoul 151-744, South Korea.
| | | | | | | |
Collapse
|
47
|
van Esterik FAS, Ghazanfari S, Zandieh-Doulabi B, Semeins CM, Kleverlaan CJ, Klein-Nulend J. Mechanoresponsiveness of human adipose stem cells on nanocomposite and micro-hybrid composite. J Biomed Mater Res A 2017. [PMID: 28639404 DOI: 10.1002/jbm.a.36149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Resin-based composites are used for bone repair applications and comprise resin matrix and different sized filler particles. Nanometer-sized filler particles improve composite's mechanical properties compared with micrometer-sized filler particles, but whether differences exist in the biological response to these composites is unknown. Natural bone comprises a nanocomposite structure, and nanoscale interactions with extracellular matrix components influence stem cell differentiation. Therefore we hypothesized that nanometer-sized filler particles in resin-based composites enhance osteogenic differentiation of stem cells showing a more bone cell-like response to mechanical loading compared with micrometer-sized filler particles. Pulsating fluid flow (PFF; 5 Hz, mean shear stress: 0.7 Pa; 1 h) rapidly, within 5 min, increased nitric oxide production in human adipose stem cells (hASCs) on nanocomposite, but not on micro-hybrid composite. PFF increased RUNX2 expression in hASCs on micro-hybrid composite, but not on nanocomposite after 2 h post-incubation. PFF did not affect mean cell orientation and shape index of hASCs on both composites. In conclusion, the PFF-increased nitric oxide production in hASCs on nanocomposite, and increased osteogenic differentiation of hASCs on micro-hybrid composite suggest different responses to mechanical loading of hASCs on composite with nanometer-sized and micrometer-sized filler particles. This might have important implications for bone tissue engineering. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2986-2994, 2017.
Collapse
Affiliation(s)
- Fransisca A S van Esterik
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, MOVE Research Institute Amsterdam, Amsterdam, The Netherlands.,Department of Dental Materials Science, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, MOVE Research Institute Amsterdam, Amsterdam, The Netherlands
| | - Samaneh Ghazanfari
- Department of Orthopedic Surgery, VU University Medical Center, MOVE Research Institute Amsterdam, Amsterdam, The Netherlands
| | - Behrouz Zandieh-Doulabi
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, MOVE Research Institute Amsterdam, Amsterdam, The Netherlands
| | - Cornelis M Semeins
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, MOVE Research Institute Amsterdam, Amsterdam, The Netherlands
| | - Cornelis J Kleverlaan
- Department of Dental Materials Science, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, MOVE Research Institute Amsterdam, Amsterdam, The Netherlands
| | - Jenneke Klein-Nulend
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, MOVE Research Institute Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
48
|
Erbeldinger N, Rapp F, Ktitareva S, Wendel P, Bothe AS, Dettmering T, Durante M, Friedrich T, Bertulat B, Meyer S, Cardoso MC, Hehlgans S, Rödel F, Fournier C. Measuring Leukocyte Adhesion to (Primary) Endothelial Cells after Photon and Charged Particle Exposure with a Dedicated Laminar Flow Chamber. Front Immunol 2017; 8:627. [PMID: 28620384 PMCID: PMC5451490 DOI: 10.3389/fimmu.2017.00627] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 05/11/2017] [Indexed: 12/12/2022] Open
Abstract
The vascular endothelium interacts with all types of blood cells and is a key modulator of local and systemic inflammatory processes, for example, in the adhesion of blood leukocytes to endothelial cells (EC) and the following extravasation into the injured tissue. The endothelium is constantly exposed to mechanical forces caused by blood flow, and the resulting shear stress is essential for the maintenance of endothelial function. Changes in local hemodynamics are sensed by EC, leading to acute or persistent changes. Therefore, in vitro assessment of EC functionality should include shear stress as an essential parameter. Parallel-plate flow chambers with adjustable shear stress can be used to study EC properties. However, commercially available systems are not suitable for radiation experiments, especially with charged particles, which are increasingly used in radiotherapy of tumors. Therefore, research on charged-particle-induced vascular side effects is needed. In addition, α-particle emitters (e.g., radon) are used to treat inflammatory diseases at low doses. In the present study, we established a flow chamber system, applicable for the investigation of radiation induced changes in the adhesion of lymphocytes to EC as readout for the onset of an inflammatory reaction or the modification of a pre-existing inflammatory state. In this system, primary human EC are cultured under physiological laminar shear stress, subjected to a proinflammatory treatment and/or irradiation with X-rays or charged particles, followed by a coincubation with primary human lymphocytes (peripheral blood lymphocytes (PBL)). Analysis is performed by semiautomated quantification of fluorescent staining in microscopic pictures. First results obtained after irradiation with X-rays or helium ions indicate decreased adhesion of PBL to EC under laminar conditions for both radiation qualities, whereas adhesion of PBL under static conditions is not clearly affected by irradiation. Under static conditions, no radiation-induced changes in surface expression of adhesion molecules and activation of nuclear factor kappa B (NF-κB) signaling were observed after single cell-based high-throughput analysis. In subsequent studies, these investigations will be extended to laminar conditions.
Collapse
Affiliation(s)
- Nadine Erbeldinger
- Department of Biophysics, GSI Helmholtz Center for Heavy Ion Research, Darmstadt, Germany.,Department of Biology, Technical University Darmstadt, Darmstadt, Germany
| | - Felicitas Rapp
- Department of Biophysics, GSI Helmholtz Center for Heavy Ion Research, Darmstadt, Germany
| | - Svetlana Ktitareva
- Department of Biophysics, GSI Helmholtz Center for Heavy Ion Research, Darmstadt, Germany
| | - Philipp Wendel
- Department of Biophysics, GSI Helmholtz Center for Heavy Ion Research, Darmstadt, Germany
| | - Anna S Bothe
- Department of Biophysics, GSI Helmholtz Center for Heavy Ion Research, Darmstadt, Germany
| | - Till Dettmering
- Department of Biophysics, GSI Helmholtz Center for Heavy Ion Research, Darmstadt, Germany
| | - Marco Durante
- Department of Biophysics, GSI Helmholtz Center for Heavy Ion Research, Darmstadt, Germany
| | - Thomas Friedrich
- Department of Biophysics, GSI Helmholtz Center for Heavy Ion Research, Darmstadt, Germany
| | - Bianca Bertulat
- Department of Biology, Technical University Darmstadt, Darmstadt, Germany
| | - Stephanie Meyer
- Department of Biology, Technical University Darmstadt, Darmstadt, Germany
| | - M C Cardoso
- Department of Biology, Technical University Darmstadt, Darmstadt, Germany
| | - Stephanie Hehlgans
- Department of Radiotherapy and Oncology, University of Frankfurt, Frankfurt, Germany
| | - Franz Rödel
- Department of Radiotherapy and Oncology, University of Frankfurt, Frankfurt, Germany
| | - Claudia Fournier
- Department of Biophysics, GSI Helmholtz Center for Heavy Ion Research, Darmstadt, Germany
| |
Collapse
|
49
|
Bays JL, Campbell HK, Heidema C, Sebbagh M, DeMali KA. Linking E-cadherin mechanotransduction to cell metabolism through force-mediated activation of AMPK. Nat Cell Biol 2017; 19:724-731. [PMID: 28553939 PMCID: PMC5494977 DOI: 10.1038/ncb3537] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 04/24/2017] [Indexed: 02/08/2023]
Abstract
The response of cells to mechanical force is a major determinant of cell behaviour and is an energetically costly event. How cells derive energy to resist mechanical force is unknown. Here, we show that application of force to E-cadherin stimulates liver kinase B1 (LKB1) to activate AMP-activated protein kinase (AMPK), a master regulator of energy homeostasis. LKB1 recruits AMPK to the E-cadherin mechanotransduction complex, thereby stimulating actomyosin contractility, glucose uptake and ATP production. The increase in ATP provides energy to reinforce the adhesion complex and actin cytoskeleton so that the cell can resist physiological forces. Together, these findings reveal a paradigm for how mechanotransduction and metabolism are linked and provide a framework for understanding how diseases involving contractile and metabolic disturbances arise.
Collapse
Affiliation(s)
- Jennifer L Bays
- Department of Biochemistry, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | - Hannah K Campbell
- Department of Biochemistry, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | - Christy Heidema
- Interdisciplinary Graduate Program in Molecular and Cellular Biology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | - Michael Sebbagh
- Centre de Recherche en Cancérologie de Marseille, Aix Marseille University UM105, Institut Paoli Calmettes, UMR7258 CNRS, U1068 INSERM, Cell Polarity, Cell signalling and Cancer-Equipe labellisée Ligue Contre le Cancer, Marseille 13273, France
| | - Kris A DeMali
- Department of Biochemistry, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA.,Interdisciplinary Graduate Program in Molecular and Cellular Biology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| |
Collapse
|
50
|
Middleton K, Al-Dujaili S, Mei X, Günther A, You L. Microfluidic co-culture platform for investigating osteocyte-osteoclast signalling during fluid shear stress mechanostimulation. J Biomech 2017; 59:35-42. [PMID: 28552413 DOI: 10.1016/j.jbiomech.2017.05.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 05/12/2017] [Accepted: 05/13/2017] [Indexed: 11/30/2022]
Abstract
Bone cells exist in a complex environment where they are constantly exposed to numerous dynamic biochemical and mechanical stimuli. These stimuli regulate bone cells that are involved in various bone disorders, such as osteoporosis. Knowledge of how these stimuli affect bone cells have been utilised to develop various treatments, such as pharmaceuticals, hormone therapy, and exercise. To investigate the role that bone loading has on these disorders in vitro, bone cell mechanotransduction studies are typically performed using parallel plate flow chambers (PPFC). However, these chambers do not allow for dynamic cellular interactions among different cell populations to be investigated. We present a microfluidic approach that exposes different cell populations, which are located at physiologically relevant distances within adjacent channels, to different levels of fluid shear stress, and promotes cell-cell communication between the different channels. We employed this microfluidic system to assess mechanically regulated osteocyte-osteoclast communication. Osteoclast precursors (RAW264.7 cells) responded to cytokine gradients (e.g., RANKL, OPG, PGE-2) developed by both mechanically stimulated (fOCY) and unstimulated (nOCY) osteocyte-like MLO-Y4 cells simultaneously. Specifically, we observed increased osteoclast precursor cell densities and osteoclast differentiation towards nOCY. We also used this system to show an increased mechanoresponse of osteocytes when in co-culture with osteoclasts. We envision broad applicability of the presented approach for microfluidic perfusion co-culture of multiple cell types in the presence of fluid flow stimulation, and as a tool to investigate osteocyte mechanotransduction, as well as bone metastasis extravasation. This system could also be applied to any multi-cell population cross-talk studies that are typically performed using PPFCs (e.g. endothelial cells, smooth muscle cells, and fibroblasts).
Collapse
Affiliation(s)
- K Middleton
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada
| | - S Al-Dujaili
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada
| | - X Mei
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario M5S 3G8, Canada
| | - A Günther
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada; Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario M5S 3G8, Canada
| | - L You
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada; Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario M5S 3G8, Canada.
| |
Collapse
|