1
|
Urbanska M, Guck J. Single-Cell Mechanics: Structural Determinants and Functional Relevance. Annu Rev Biophys 2024; 53:367-395. [PMID: 38382116 DOI: 10.1146/annurev-biophys-030822-030629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
The mechanical phenotype of a cell determines its ability to deform under force and is therefore relevant to cellular functions that require changes in cell shape, such as migration or circulation through the microvasculature. On the practical level, the mechanical phenotype can be used as a global readout of the cell's functional state, a marker for disease diagnostics, or an input for tissue modeling. We focus our review on the current knowledge of structural components that contribute to the determination of the cellular mechanical properties and highlight the physiological processes in which the mechanical phenotype of the cells is of critical relevance. The ongoing efforts to understand how to efficiently measure and control the mechanical properties of cells will define the progress in the field and drive mechanical phenotyping toward clinical applications.
Collapse
Affiliation(s)
- Marta Urbanska
- Max Planck Institute for the Science of Light, Erlangen, Germany; ,
- Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Jochen Guck
- Max Planck Institute for the Science of Light, Erlangen, Germany; ,
- Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
2
|
Scodellaro C, Pina RR, Ferreira FC, Sanjuan-Alberte P, Fernandes TG. Unlocking the Potential of Stem Cell Microenvironments In Vitro. Bioengineering (Basel) 2024; 11:289. [PMID: 38534563 DOI: 10.3390/bioengineering11030289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/07/2024] [Accepted: 03/16/2024] [Indexed: 03/28/2024] Open
Abstract
The field of regenerative medicine has recently witnessed groundbreaking advancements that hold immense promise for treating a wide range of diseases and injuries. At the forefront of this revolutionary progress are stem cells. Stem cells typically reside in specialized environments in vivo, known as microenvironments or niches, which play critical roles in regulating stem cell behavior and determining their fate. Therefore, understanding the complex microenvironments that surround stem cells is crucial for advancing treatment options in regenerative medicine and tissue engineering applications. Several research articles have made significant contributions to this field by exploring the interactions between stem cells and their surrounding niches, investigating the influence of biomechanical and biochemical cues, and developing innovative strategies for tissue regeneration. This review highlights the key findings and contributions of these studies, shedding light on the diverse applications that may arise from the understanding of stem cell microenvironments, thus harnessing the power of these microenvironments to transform the landscape of medicine and offer new avenues for regenerative therapies.
Collapse
Affiliation(s)
- Chiara Scodellaro
- Department of Bioengineering and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Raquel R Pina
- Department of Bioengineering and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Frederico Castelo Ferreira
- Department of Bioengineering and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Paola Sanjuan-Alberte
- Department of Bioengineering and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Tiago G Fernandes
- Department of Bioengineering and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| |
Collapse
|
3
|
Mei Y, Feng X, Jin Y, Kang R, Wang X, Zhao D, Ghosh S, Neu CP, Avril S. Cell nucleus elastography with the adjoint-based inverse solver. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 242:107827. [PMID: 37801883 DOI: 10.1016/j.cmpb.2023.107827] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/09/2023] [Accepted: 09/22/2023] [Indexed: 10/08/2023]
Abstract
BACKGROUND AND OBJECTIVES The mechanics of the nucleus depends on cellular structures and architecture, and impact a number of diseases. Nuclear mechanics is yet rather complex due to heterogeneous distribution of dense heterochromatin and loose euchromatin domains, giving rise to spatially variable stiffness properties. METHODS In this study, we propose to use the adjoint-based inverse solver to identify for the first time the nonhomogeneous elastic property distribution of the nucleus. Inputs of the inverse solver are deformation fields measured with microscopic imaging in contracting cardiomyocytes. RESULTS The feasibility of the proposed method is first demonstrated using simulated data. Results indicate accurate identification of the assumed heterochromatin region, with a maximum relative error of less than 5%. We also investigate the influence of unknown Poisson's ratio on the reconstruction and find that variations of the Poisson's ratio in the range [0.3-0.5] result in uncertainties of less than 15% in the identified stiffness. Finally, we apply the inverse solver on actual deformation fields acquired within the nuclei of two cardiomyocytes. The obtained results are in good agreement with the density maps obtained from microscopy images. CONCLUSIONS Overall, the proposed approach shows great potential for nuclear elastography, with promising value for emerging fields of mechanobiology and mechanogenetics.
Collapse
Affiliation(s)
- Yue Mei
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116023, China; International Research Center for Computational Mechanics, Dalian University of Technology, Dalian 116023, China; Ningbo Institute of Dalian University of Technology, No. 26 Yucai Road, Jiangbei District, Ningbo 315016, China
| | - Xuan Feng
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116023, China; International Research Center for Computational Mechanics, Dalian University of Technology, Dalian 116023, China
| | - Yun Jin
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116023, China; International Research Center for Computational Mechanics, Dalian University of Technology, Dalian 116023, China
| | - Rongyao Kang
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116023, China; International Research Center for Computational Mechanics, Dalian University of Technology, Dalian 116023, China
| | - XinYu Wang
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116023, China; International Research Center for Computational Mechanics, Dalian University of Technology, Dalian 116023, China
| | - Dongmei Zhao
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116023, China; International Research Center for Computational Mechanics, Dalian University of Technology, Dalian 116023, China
| | - Soham Ghosh
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, United States of America
| | - Corey P Neu
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, United States of America; Biomedical Engineering Program, University of Colorado Boulder, Boulder, CO, United States of America; BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, United States of America
| | - Stephane Avril
- Mines Saint-Étienne, Univ Jean Monnet, INSERM, U 1059 Sainbiose, F - 42023, Saint-Étienne, France.
| |
Collapse
|
4
|
Davies BK, Hibbert AP, Roberts SJ, Roberts HC, Tickner JC, Holdsworth G, Arnett TR, Orriss IR. A Machine Learning-Based Image Segmentation Method to Quantify In Vitro Osteoclast Culture Endpoints. Calcif Tissue Int 2023; 113:437-448. [PMID: 37566229 PMCID: PMC10516805 DOI: 10.1007/s00223-023-01121-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/29/2023] [Indexed: 08/12/2023]
Abstract
Quantification of in vitro osteoclast cultures (e.g. cell number) often relies on manual counting methods. These approaches are labour intensive, time consuming and result in substantial inter- and intra-user variability. This study aimed to develop and validate an automated workflow to robustly quantify in vitro osteoclast cultures. Using ilastik, a machine learning-based image analysis software, images of tartrate resistant acid phosphatase-stained mouse osteoclasts cultured on dentine discs were used to train the ilastik-based algorithm. Assessment of algorithm training showed that osteoclast numbers strongly correlated between manual- and automatically quantified values (r = 0.87). Osteoclasts were consistently faithfully segmented by the model when visually compared to the original reflective light images. The ability of this method to detect changes in osteoclast number in response to different treatments was validated using zoledronate, ticagrelor, and co-culture with MCF7 breast cancer cells. Manual and automated counting methods detected a 70% reduction (p < 0.05) in osteoclast number, when cultured with 10 nM zoledronate and a dose-dependent decrease with 1-10 μM ticagrelor (p < 0.05). Co-culture with MCF7 cells increased osteoclast number by ≥ 50% irrespective of quantification method. Overall, an automated image segmentation and analysis workflow, which consistently and sensitively identified in vitro osteoclasts, was developed. Advantages of this workflow are (1) significantly reduction in user variability of endpoint measurements (93%) and analysis time (80%); (2) detection of osteoclasts cultured on different substrates from different species; and (3) easy to use and freely available to use along with tutorial resources.
Collapse
Affiliation(s)
- Bethan K Davies
- Department of Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London, NW1 0TU, UK
- Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Andrew P Hibbert
- Department of Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London, NW1 0TU, UK
| | - Scott J Roberts
- Department of Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London, NW1 0TU, UK
| | - Helen C Roberts
- Department of Natural Sciences, Middlesex University, London, UK
| | - Jennifer C Tickner
- School of Pathology and Laboratory Medicine, University of Western Australia, Perth, Australia
| | | | - Timothy R Arnett
- Department of Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London, NW1 0TU, UK
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Isabel R Orriss
- Department of Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London, NW1 0TU, UK.
| |
Collapse
|
5
|
Xu W, Kabariti S, Young KM, Swingle SP, Liu AY, Sulchek T. Strain-dependent elastography of cancer cells reveals heterogeneity and stiffening due to attachment. J Biomech 2023; 150:111479. [PMID: 36871429 DOI: 10.1016/j.jbiomech.2023.111479] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/12/2023] [Accepted: 01/30/2023] [Indexed: 02/22/2023]
Abstract
Because cells vary in thickness and in biomechanical properties, the use of a constant force trigger during atomic force microscopy (AFM) stiffness mapping produces a varied nominal strain that can obfuscate the comparison of local material properties. In this study, we measured the biomechanical spatial heterogeneity of ovarian and breast cancer cells by using an indentation-dependent pointwise Hertzian method. Force curves and surface topography were used together to determine cell stiffness as a function of nominal strain. By recording stiffness at a particular strain, it may be possible to improve comparison of the material properties of cells and produce higher contrast representations of cell mechanical properties. Defining a linear region of elasticity that corresponds to a modest nominal strain, we were able to clearly distinguish the mechanics of the perinuclear region of cells. We observed that, relative to the lamelopodial stiffness, the perinuclear region was softer for metastatic cancer cells than their nonmetastatic counterparts. Moreover, contrast in the strain-dependent elastography in comparison to conventional force mapping with Hertzian model analysis revealed a significant stiffening phenomenon in the thin lamellipodial region in which the modulus scales inversely and exponentially with cell thickness. The observed exponential stiffening is not affected by relaxation of cytoskeletal tension, but finite element modeling indicates it is affected by substrate adhesion. The novel cell mapping technique explores cancer cell mechanical nonlinearity that results from regional heterogeneity, which could help explain how metastatic cancer cells can show soft phenotypes while simultaneously increasing force generation and invasiveness.
Collapse
Affiliation(s)
- Wenwei Xu
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA
| | - Saif Kabariti
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA
| | - Katherine M Young
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA
| | - Steven P Swingle
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA
| | - Alan Y Liu
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA
| | - Todd Sulchek
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA.
| |
Collapse
|
6
|
Tassinari R, Olivi E, Cavallini C, Taglioli V, Zannini C, Marcuzzi M, Fedchenko O, Ventura C. Mechanobiology: A landscape for reinterpreting stem cell heterogeneity and regenerative potential in diseased tissues. iScience 2023; 26:105875. [PMID: 36647385 PMCID: PMC9839966 DOI: 10.1016/j.isci.2022.105875] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Mechanical forces play a fundamental role in cellular dynamics from the molecular level to the establishment of complex heterogeneity in somatic and stem cells. Here, we highlight the role of cytoskeletal mechanics and extracellular matrix in generating mechanical forces merging into oscillatory synchronized patterns. We discuss how cellular mechanosensing/-transduction can be modulated by mechanical forces to control tissue metabolism and set the basis for nonpharmacologic tissue rescue. Control of bone anabolic activity and repair, as well as obesity prevention, through a fine-tuning of the stem cell morphodynamics are highlighted. We also discuss the use of mechanical forces in the treatment of cardiovascular diseases and heart failure through the fine modulation of stem cell metabolic activity and regenerative potential. We finally focus on the new landscape of delivering specific mechanical stimuli to reprogram tissue-resident stem cells and enhance our self-healing potential, without the need for stem cell or tissue transplantation.
Collapse
Affiliation(s)
| | - Elena Olivi
- ELDOR LAB, via Corticella 183, 40129 Bologna, Italy
| | | | | | | | - Martina Marcuzzi
- NIBB, National Institute of Biostructures and Biosystems, National Laboratory of Molecular Biology and Stem Cell Engineering, via Corticella 183, 40129 Bologna, Italy
| | - Oleksandra Fedchenko
- NIBB, National Institute of Biostructures and Biosystems, National Laboratory of Molecular Biology and Stem Cell Engineering, via Corticella 183, 40129 Bologna, Italy
| | - Carlo Ventura
- ELDOR LAB, via Corticella 183, 40129 Bologna, Italy
- NIBB, National Institute of Biostructures and Biosystems, National Laboratory of Molecular Biology and Stem Cell Engineering, via Corticella 183, 40129 Bologna, Italy
| |
Collapse
|
7
|
Liu Y, Su G, Zhang R, Dai R, Li Z. Nanomaterials-Functionalized Hydrogels for the Treatment of Cutaneous Wounds. Int J Mol Sci 2022; 24:336. [PMID: 36613778 PMCID: PMC9820076 DOI: 10.3390/ijms24010336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/17/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Hydrogels have been utilized extensively in the field of cutaneous wound treatment. The introduction of nanomaterials (NMs), which are a big category of materials with diverse functionalities, can endow the hydrogels with additional and multiple functions to meet the demand for a comprehensive performance in wound dressings. Therefore, NMs-functionalized hydrogels (NMFHs) as wound dressings have drawn intensive attention recently. Herein, an overview of reports about NMFHs for the treatment of cutaneous wounds in the past five years is provided. Firstly, fabrication strategies, which are mainly divided into physical embedding and chemical synthesis of the NMFHs, are summarized and illustrated. Then, functions of the NMFHs brought by the NMs are reviewed, including hemostasis, antimicrobial activity, conductivity, regulation of reactive oxygen species (ROS) level, and stimulus responsiveness (pH responsiveness, photo-responsiveness, and magnetic responsiveness). Finally, current challenges and future perspectives in this field are discussed with the hope of inspiring additional ideas.
Collapse
Affiliation(s)
- Yangkun Liu
- Institute of Engineering Medicine, School of Medical Technology, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
| | - Gongmeiyue Su
- Institute of Engineering Medicine, School of Medical Technology, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
| | - Ruoyao Zhang
- Institute of Engineering Medicine, School of Medical Technology, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
| | - Rongji Dai
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
- School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
| | - Zhao Li
- Institute of Engineering Medicine, School of Medical Technology, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
| |
Collapse
|
8
|
Guastamacchia MGR, Xue R, Madi K, Pitkeathly WTE, Lee PD, Webb SED, Cartmell SH, Dalgarno PA. Instantaneous 4D micro-particle image velocimetry (µPIV) via multifocal microscopy (MUM). Sci Rep 2022; 12:18458. [PMID: 36323775 PMCID: PMC9630545 DOI: 10.1038/s41598-022-22701-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 10/18/2022] [Indexed: 11/29/2022] Open
Abstract
Multifocal microscopy (MUM), a technique to capture multiple fields of view (FOVs) from distinct axial planes simultaneously and on one camera, was used to perform micro-particle image velocimetry (µPIV) to reconstruct velocity and shear stress fields imposed by a liquid flowing around a cell. A diffraction based multifocal relay was used to capture images from three different planes with 630 nm axial spacing from which the axial positions of the flow-tracing particles were calculated using the image sharpness metric. It was shown that MUM can achieve an accuracy on the calculated velocity of around (0.52 ± 0.19) µm/s. Using fixed cells, MUM imaged the flow perturbations at sub-cellular level, which showed characteristics similar to those observed in the literature. Using live cells as an exemplar, MUM observed the effect of changing cell morphology on the local flow during perfusion. Compared to standard confocal laser scanning microscope, MUM offers a clear advantage in acquisition speed for µPIV (over 300 times faster). This is an important characteristic for rapidly evolving biological systems where there is the necessity to monitor in real time entire volumes to correlate the sample responses to the external forces.
Collapse
Affiliation(s)
- M G R Guastamacchia
- EPSRC Centre for Doctoral Training in Applied Photonics, Heriot-Watt University, Edinburgh, UK.,Science and Technology Facilities Council, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell, UK.,Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh, UK
| | - R Xue
- Department of Materials, School of Natural Sciences, Faculty of Science and Engineering, University of Manchester, Manchester, UK.,The Henry Royce Institute, Royce Hub Building, The University of Manchester, Manchester, UK
| | - K Madi
- Department of Materials, School of Natural Sciences, Faculty of Science and Engineering, University of Manchester, Manchester, UK.,3Dmagination Ltd, Atlas Building, Harwell Campus, Didcot, UK
| | - W T E Pitkeathly
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh, UK
| | - P D Lee
- Department of Materials, School of Natural Sciences, Faculty of Science and Engineering, University of Manchester, Manchester, UK.,The Henry Royce Institute, Royce Hub Building, The University of Manchester, Manchester, UK
| | - S E D Webb
- Science and Technology Facilities Council, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell, UK.,Biotechnology and Biological Sciences Research Council, Swindon, UK
| | - S H Cartmell
- Department of Materials, School of Natural Sciences, Faculty of Science and Engineering, University of Manchester, Manchester, UK.,The Henry Royce Institute, Royce Hub Building, The University of Manchester, Manchester, UK
| | - P A Dalgarno
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh, UK.
| |
Collapse
|
9
|
Nakaji-Hirabayashi T, Matsumura K, Ishihara R, Ishiguro T, Nasu H, Kanno M, Ichida S, Hatashima T. Enhanced proliferation and differentiation of human mesenchymal stem cells in the gravity-controlled environment. Artif Organs 2022; 46:1760-1770. [PMID: 35403254 DOI: 10.1111/aor.14251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Human bone marrow mesenchymal stem cells (hMSCs) present a promising cell source with a potential to be used for curing various intractable diseases. And it is expected that the development of regenerative medicine employing cell-based therapy would be significantly accelerated when such methods are established. For that, powerful methods for selective growth and differentiation of hMSCs should be developed. METHODS We developed an efficient method for hMSC proliferation and differentiation into osteoblasts and adipocytes using gravity-controlled environments. RESULTS The results indicate that the average doubling time of hMSCs cultured in a regular maintenance medium under microgravity conditions (0.001 G) was 1.5 times shorter than that of cells cultured under natural gravity conditions (1.0 G). Furthermore, 99.2% of cells grown in the microgravity environment showed the expression of hMSC markers, as indicated by flow cytometry analysis. Osteogenic and adipogenic differentiation of hMSCs expanded in the microgravity environment was enhanced under microgravity and hypergravity conditions, respectively, as evidenced by the downregulation of hMSC markers and upregulation of osteoblast and adipocyte markers, respectively. Most cells differentiated into osteoblasts in the microgravity environment after 14 days (~80%) and to adipocytes in the hypergravity environment after 12 days (~90%). CONCLUSIONS Our results indicate that hMSC proliferation and selective differentiation into specific cell lineages could be promoted under microgravity or hypergravity conditions, suggesting that cell culture in the gravity-controlled environment is a useful method to obtain cell preparations for potential clinical applications.
Collapse
Affiliation(s)
- Tadashi Nakaji-Hirabayashi
- Department of Applied Chemistry, Graduate School of Science and Engineering, University of Toyama, Toyama, Japan.,Department of Advanced Nano- and Bio-sciences, Graduate School of Innovative Life Sciences, University of Toyama, Toyama, Japan.,Frontier Research Core for Life Sciences, University of Toyama, Toyama, Japan
| | - Kazuaki Matsumura
- School of Materials Science, Japan Advanced Institute of Science and Technology, Ishikawa, Japan
| | - Reiichi Ishihara
- New Business Project, Development Division, Kitagawa Iron Works Co., Ltd., Hiroshima, Japan
| | - Tatsuya Ishiguro
- New Business Project, Development Division, Kitagawa Iron Works Co., Ltd., Hiroshima, Japan
| | - Hiromitsu Nasu
- New Business Project, Development Division, Kitagawa Iron Works Co., Ltd., Hiroshima, Japan
| | - Masatsugu Kanno
- New Business Project, Development Division, Kitagawa Iron Works Co., Ltd., Hiroshima, Japan
| | - Shunji Ichida
- New Business Project, Development Division, Kitagawa Iron Works Co., Ltd., Hiroshima, Japan
| | - Toshikatsu Hatashima
- New Business Project, Development Division, Kitagawa Iron Works Co., Ltd., Hiroshima, Japan
| |
Collapse
|
10
|
Choi G, Tang Z, Guan W. Microfluidic high-throughput single-cell mechanotyping: Devices and
applications. NANOTECHNOLOGY AND PRECISION ENGINEERING 2021. [DOI: 10.1063/10.0006042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Gihoon Choi
- Department of Electrical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802,
USA
| | - Zifan Tang
- Department of Electrical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802,
USA
| | - Weihua Guan
- Department of Electrical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802,
USA
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802,
USA
| |
Collapse
|
11
|
Matsushita K, Nakahara C, Kimura S, Sakamoto N, Ii S, Miyoshi H. Intranuclear mesoscale viscoelastic changes during osteoblastic differentiation of human mesenchymal stem cells. FASEB J 2021; 35:e22071. [PMID: 34820910 DOI: 10.1096/fj.202100536rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 11/07/2021] [Accepted: 11/12/2021] [Indexed: 11/11/2022]
Abstract
Cell nuclei behave as viscoelastic materials. Dynamic regulation of the viscoelastic properties of nuclei in living cells is crucial for diverse biological and biophysical processes, specifically for intranuclear mesoscale viscoelasticity, through modulation of the efficiency of force propagation to the nucleoplasm and gene expression patterns. However, how the intranuclear mesoscale viscoelasticity of stem cells changes with differentiation is unclear and so is its biological significance. Here, we quantified the changes in intranuclear mesoscale viscoelasticity during osteoblastic differentiation of human mesenchymal stem cells. This analysis revealed that the intranuclear region is a viscoelastic solid, probably with a higher efficiency of force transmission that results in high sensitivity to mechanical signals in the early stages of osteoblastic differentiation. The intranuclear region was noted to alter to a viscoelastic liquid with a lower efficiency, which is responsible for the robustness of gene expression toward terminal differentiation. Additionally, evaluation of changes in the mesoscale viscoelasticity due to chromatin decondensation and correlation between the mesoscale viscoelasticity and local DNA density suggested that size of gap and flexibility of chromatin meshwork structures, which are modulated depending on chromatin condensation state, determine mesoscale viscoelasticity, with various rates of contribution in different differentiation stages. Given that chromatin within the nucleus condenses into heterochromatin as stem cells adopt a specific lineage by restricting transcription, viscoelasticity is perhaps a key factor in cooperative regulation of the nuclear mechanosensitivity and gene expression pattern for stem cell differentiation.
Collapse
Affiliation(s)
- Kojiro Matsushita
- Department of Mechanical Systems Engineering, Graduate School of Systems Design, Tokyo Metropolitan University, Hachioji, Japan
| | - Chiharu Nakahara
- Department of Mechanical Systems Engineering, Graduate School of Systems Design, Tokyo Metropolitan University, Hachioji, Japan
| | - Shun Kimura
- Department of Mechanical Systems Engineering, Graduate School of Systems Design, Tokyo Metropolitan University, Hachioji, Japan
| | - Naoya Sakamoto
- Department of Mechanical Systems Engineering, Graduate School of Systems Design, Tokyo Metropolitan University, Hachioji, Japan
| | - Satoshi Ii
- Department of Mechanical Systems Engineering, Graduate School of Systems Design, Tokyo Metropolitan University, Hachioji, Japan
| | - Hiromi Miyoshi
- Department of Mechanical Systems Engineering, Graduate School of Systems Design, Tokyo Metropolitan University, Hachioji, Japan
| |
Collapse
|
12
|
Enhanced osteogenic differentiation of alendronate-conjugated nanodiamonds for potential osteoporosis treatment. Biomater Res 2021; 25:28. [PMID: 34556181 PMCID: PMC8461989 DOI: 10.1186/s40824-021-00231-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/07/2021] [Indexed: 12/22/2022] Open
Abstract
Background Alendronate (Alen) is promising material used for bone-targeted drug delivery due to its high bone affinity and therapeutic effects on bone diseases. In addition, Alen can enhance the osteogenic differentiation of osteoblastic cell. Recently, nanodiamonds (NDs) with hardness, non-toxicity, and excellent biocompatibility are employed as promising materials for carrier systems and osteogenic differentiation. Therefore, we prepared Alen-conjugated NDs (Alen-NDs) and evaluated their osteogenic differentiation performances. Methods Alen-NDs were synthesized using DMTMM as a coupling reagent. Morphological change of Mouse calvaria-derived preosteoblast (MC3T3-E1) treated with Alen-NDs was observed using the confocal microscope. The osteogenic differentiation was confirmed by cell proliferation, alkaline phosphatase (ALP), calcium deposition, and real-time polymerase chain reaction assay. Results Alen-NDs were prepared to evaluate their effect on the proliferation and differentiation of osteoblastic MC3T3-E1 cells. The Alen-NDs had a size of about 100 nm, and no cytotoxicity at less than 100 μg/mL of concentration. The treatment of NDs and Alen-NDs reduced the proliferation rate of MC3T3-E1 cells without cell death. Confocal microscopy images confirmed that the treatment of NDs and Alen-NDs changed the cellular morphology from a fibroblastic shape to a cuboidal shape. Flow cytometry, alkaline phosphatase (ALP) activity, calcium deposition, and real-time polymerase chain reaction (RT-PCR) confirmed the higher differentiation of MC3T3-E1 cells treated by Alen-NDs, compared to the groups treated by osteogenic medium and NDs. The higher concentration of Alen-ND treated in MC3T3-E1 resulted in a higher differentiation level. Conclusions Alen-NDs can be used as potential therapeutic agents for osteoporosis treatment by inducing osteogenic differentiation.
Collapse
|
13
|
Computational modelling unveils how epiblast remodelling and positioning rely on trophectoderm morphogenesis during mouse implantation. PLoS One 2021; 16:e0254763. [PMID: 34320001 PMCID: PMC8318228 DOI: 10.1371/journal.pone.0254763] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 07/02/2021] [Indexed: 11/19/2022] Open
Abstract
Understanding the processes by which the mammalian embryo implants in the maternal uterus is a long-standing challenge in embryology. New insights into this morphogenetic event could be of great importance in helping, for example, to reduce human infertility. During implantation the blastocyst, composed of epiblast, trophectoderm and primitive endoderm, undergoes significant remodelling from an oval ball to an egg cylinder. A main feature of this transformation is symmetry breaking and reshaping of the epiblast into a “cup”. Based on previous studies, we hypothesise that this event is the result of mechanical constraints originating from the trophectoderm, which is also significantly transformed during this process. In order to investigate this hypothesis we propose MG# (MechanoGenetic Sharp), an original computational model of biomechanics able to reproduce key cell shape changes and tissue level behaviours in silico. With this model, we simulate epiblast and trophectoderm morphogenesis during implantation. First, our results uphold experimental findings that repulsion at the apical surface of the epiblast is essential to drive lumenogenesis. Then, we provide new theoretical evidence that trophectoderm morphogenesis indeed can dictate the cup shape of the epiblast and fosters its movement towards the uterine tissue. Our results offer novel mechanical insights into mouse peri-implantation and highlight the usefulness of agent-based modelling methods in the study of embryogenesis.
Collapse
|
14
|
Meng H, Chowdhury TT, Gavara N. The Mechanical Interplay Between Differentiating Mesenchymal Stem Cells and Gelatin-Based Substrates Measured by Atomic Force Microscopy. Front Cell Dev Biol 2021; 9:697525. [PMID: 34235158 PMCID: PMC8255986 DOI: 10.3389/fcell.2021.697525] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 05/31/2021] [Indexed: 12/20/2022] Open
Abstract
Traditional methods to assess hMSCs differentiation typically require long-term culture until cells show marked expression of histological markers such as lipid accumulation inside the cytoplasm or mineral deposition onto the surrounding matrix. In parallel, stem cell differentiation has been shown to involve the reorganization of the cell’s cytoskeleton shortly after differentiation induced by soluble factors. Given the cytoskeleton’s role in determining the mechanical properties of adherent cells, the mechanical characterization of stem cells could thus be a potential tool to assess cellular commitment at much earlier time points. In this study, we measured the mechanical properties of hMSCs cultured on soft gelatin-based hydrogels at multiple time points after differentiation induction toward adipogenic or osteogenic lineages. Our results show that the mechanical properties of cells (stiffness and viscosity) and the organization of the actin cytoskeleton are highly correlated with lineage commitment. Most importantly, we also found that the mechanical properties and the topography of the gelatin substrate in the vicinity of the cells are also altered as differentiation progresses toward the osteogenic lineage, but not on the adipogenic case. Together, these results confirm the biophysical changes associated with stem cell differentiation and suggest a mechanical interplay between the differentiating stem cells and their surrounding extracellular matrix.
Collapse
Affiliation(s)
- Hongxu Meng
- School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
| | - Tina T Chowdhury
- School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
| | - Núria Gavara
- School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom.,Unit of Biophysics and Bioengineering, Medical School, University of Barcelona, Barcelona, Spain
| |
Collapse
|
15
|
Yuste I, Luciano FC, González-Burgos E, Lalatsa A, Serrano DR. Mimicking bone microenvironment: 2D and 3D in vitro models of human osteoblasts. Pharmacol Res 2021; 169:105626. [PMID: 33892092 DOI: 10.1016/j.phrs.2021.105626] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/05/2021] [Accepted: 04/15/2021] [Indexed: 02/06/2023]
Abstract
Understanding the in vitro biology and behavior of human osteoblasts is crucial for developing research models that reproduce closely the bone structure, its functions, and the cell-cell and cell-matrix interactions that occurs in vivo. Mimicking bone microenvironment is challenging, but necessary, to ensure the clinical translation of novel medicines to treat more reliable different bone pathologies. Currently, bone tissue engineering is moving from 2D cell culture models such as traditional culture, sandwich culture, micro-patterning, and altered substrate stiffness, towards more complex 3D models including spheroids, scaffolds, cell sheets, hydrogels, bioreactors, and microfluidics chips. There are many different factors, such cell line type, cell culture media, substrate roughness and stiffness that need consideration when developing in vitro models as they affect significantly the microenvironment and hence, the final outcome of the in vitro assay. Advanced technologies, such as 3D bioprinting and microfluidics, have allowed the development of more complex structures, bridging the gap between in vitro and in vivo models. In this review, past and current 2D and 3D in vitro models for human osteoblasts will be described in detail, highlighting the culture conditions and outcomes achieved, as well as the challenges and limitations of each model, offering a widen perspective on how these models can closely mimic the bone microenvironment and for which applications have shown more successful results.
Collapse
Affiliation(s)
- I Yuste
- Pharmaceutics and Food Technology Department, School of Pharmacy, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - F C Luciano
- Pharmaceutics and Food Technology Department, School of Pharmacy, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - E González-Burgos
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - A Lalatsa
- Biomaterials, Bio-engineering and Nanomedicine (BioN) Lab, Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, White Swan Road, Portsmouth PO1 2 DT, UK
| | - D R Serrano
- Pharmaceutics and Food Technology Department, School of Pharmacy, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; Instituto Universitario de Farmacia Industrial. Facultad de Farmacia. Universidad Complutense de Madrid, 28040, Madrid, Spain.
| |
Collapse
|
16
|
Hodgkinson T, Tsimbouri PM, Llopis-Hernandez V, Campsie P, Scurr D, Childs PG, Phillips D, Donnelly S, Wells JA, O'Brien FJ, Salmeron-Sanchez M, Burgess K, Alexander M, Vassalli M, Oreffo ROC, Reid S, France DJ, Dalby MJ. The use of nanovibration to discover specific and potent bioactive metabolites that stimulate osteogenic differentiation in mesenchymal stem cells. SCIENCE ADVANCES 2021; 7:7/9/eabb7921. [PMID: 33637520 PMCID: PMC7909882 DOI: 10.1126/sciadv.abb7921] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 01/12/2021] [Indexed: 05/02/2023]
Abstract
Bioactive metabolites have wide-ranging biological activities and are a potential source of future research and therapeutic tools. Here, we use nanovibrational stimulation to induce osteogenic differentiation of mesenchymal stem cells, in the absence of off-target, nonosteogenic differentiation. We show that this differentiation method, which does not rely on the addition of exogenous growth factors to culture media, provides an artifact-free approach to identifying bioactive metabolites that specifically and potently induce osteogenesis. We first identify a highly specific metabolite, cholesterol sulfate, an endogenous steroid. Next, a screen of other small molecules with a similar steroid scaffold identified fludrocortisone acetate with both specific and highly potent osteogenic-inducing activity. Further, we implicate cytoskeletal contractility as a measure of osteogenic potency and cell stiffness as a measure of specificity. These findings demonstrate that physical principles can be used to identify bioactive metabolites and then enable optimization of metabolite potency can be optimized by examining structure-function relationships.
Collapse
Affiliation(s)
- Tom Hodgkinson
- Centre for the Cellular Microenvironment, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin D2, Ireland
| | - P Monica Tsimbouri
- Centre for the Cellular Microenvironment, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Virginia Llopis-Hernandez
- Centre for the Cellular Microenvironment, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Paul Campsie
- SUPA Department of Biomedical Engineering, University of Strathclyde, Glasgow G1 1QE, UK
| | - David Scurr
- School of Pharmacy, The University of Nottingham, Nottingham NG7 2RD, UK
| | - Peter G Childs
- Centre for the Cellular Microenvironment, Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow G12 8LT, UK
| | - David Phillips
- School of Chemistry, College of Science and Engineering, University of Glasgow, Glasgow G12 8QQ, UK
| | - Sam Donnelly
- Centre for the Cellular Microenvironment, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Julia A Wells
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton SO16 6YD, UK
| | - Fergal J O'Brien
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin D2, Ireland
| | - Manuel Salmeron-Sanchez
- Centre for the Cellular Microenvironment, Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow G12 8LT, UK
| | - Karl Burgess
- Glasgow Polyomics, College of Medical, Veterinary and Life Sciences, University of Glasgow, Switchback Rd., Bearsden, Glasgow G61 1BD, UK
| | - Morgan Alexander
- School of Pharmacy, The University of Nottingham, Nottingham NG7 2RD, UK
| | - Massimo Vassalli
- Centre for the Cellular Microenvironment, Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow G12 8LT, UK
| | - Richard O C Oreffo
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton SO16 6YD, UK
| | - Stuart Reid
- SUPA Department of Biomedical Engineering, University of Strathclyde, Glasgow G1 1QE, UK
| | - David J France
- School of Chemistry, College of Science and Engineering, University of Glasgow, Glasgow G12 8QQ, UK
| | - Matthew J Dalby
- Centre for the Cellular Microenvironment, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
| |
Collapse
|
17
|
A hyperelastic model for simulating cells in flow. Biomech Model Mechanobiol 2020; 20:509-520. [PMID: 33219464 PMCID: PMC7979664 DOI: 10.1007/s10237-020-01397-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 10/14/2020] [Indexed: 12/24/2022]
Abstract
In the emerging field of 3D bioprinting, cell damage due to large deformations is considered a main cause for cell death and loss of functionality inside the printed construct. Those deformations, in turn, strongly depend on the mechano-elastic response of the cell to the hydrodynamic stresses experienced during printing. In this work, we present a numerical model to simulate the deformation of biological cells in arbitrary three-dimensional flows. We consider cells as an elastic continuum according to the hyperelastic Mooney-Rivlin model. We then employ force calculations on a tetrahedralized volume mesh. To calibrate our model, we perform a series of FluidFM[Formula: see text] compression experiments with REF52 cells demonstrating that all three parameters of the Mooney-Rivlin model are required for a good description of the experimental data at very large deformations up to 80%. In addition, we validate the model by comparing to previous AFM experiments on bovine endothelial cells and artificial hydrogel particles. To investigate cell deformation in flow, we incorporate our model into Lattice Boltzmann simulations via an Immersed-Boundary algorithm. In linear shear flows, our model shows excellent agreement with analytical calculations and previous simulation data.
Collapse
|
18
|
Reengineering Bone-Implant Interfaces for Improved Mechanotransduction and Clinical Outcomes. Stem Cell Rev Rep 2020; 16:1121-1138. [DOI: 10.1007/s12015-020-10022-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
19
|
Henslee EA. Review: Dielectrophoresis in cell characterization. Electrophoresis 2020; 41:1915-1930. [DOI: 10.1002/elps.202000034] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 05/31/2020] [Accepted: 07/14/2020] [Indexed: 12/23/2022]
Affiliation(s)
- Erin A. Henslee
- Department of Engineering Wake Forest University 455 Vine St. Winston‐Salem USA
| |
Collapse
|
20
|
Piergiovanni M, Galli V, Holzner G, Stavrakis S, DeMello A, Dubini G. Deformation of leukaemia cell lines in hyperbolic microchannels: investigating the role of shear and extensional components. LAB ON A CHIP 2020; 20:2539-2548. [PMID: 32567621 DOI: 10.1039/d0lc00166j] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The mechanical properties of cells are of enormous interest in a diverse range of physio and pathological situations of clinical relevance. Unsurprisingly, a variety of microfluidic platforms have been developed in recent years to study the deformability of cells, most commonly employing pure shear or extensional flows, with and without direct contact of the cells with channel walls. Herein, we investigate the effects of shear and extensional flow components on fluid-induced cell deformation by means of three microchannel geometries. In the case of hyperbolic microchannels, cell deformation takes place in a flow with constant extensional rate, under non-zero shear conditions. A sudden expansion at the microchannel terminus allows one to evaluate shape recovery subsequent to deformation. Comparison with other microchannel shapes, that induce either pure shear (straight channel) or pure extensional (cross channel) flows, reveals different deformation modes. Such an analysis is used to confirm the softening and stiffening effects of common treatments, such as cytochalasin D and formalin on cell deformability. In addition to an experimental analysis of leukaemia cell deformability, computational fluid dynamic simulations are used to deconvolve the role of the aforementioned flow components in the cell deformation dynamics. In general terms, the current study can be used as a guide for extracting deformation/recovery dynamics of leukaemia cell lines when exposed to various fluid dynamic conditions.
Collapse
Affiliation(s)
- Monica Piergiovanni
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, piazza Leonardo da Vinci, 32 - 20133 Milan, Italy.
| | | | | | | | | | | |
Collapse
|
21
|
Yen MH, Chen YH, Liu YS, Lee OKS. Alteration of Young's modulus in mesenchymal stromal cells during osteogenesis measured by atomic force microscopy. Biochem Biophys Res Commun 2020; 526:827-832. [PMID: 32273088 DOI: 10.1016/j.bbrc.2020.03.146] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 03/25/2020] [Indexed: 12/22/2022]
Abstract
Mechanical properties of biological tissues are increasingly recognized as an important parameter for the indication of disease states as well as tissue homeostasis and regeneration. Multipotent mesenchymal stromal/stem cells (MSCs), which play important roles in bone formation and remodeling, are potential cell sources for regenerative medicine. However, the cellular mechanical properties of differentiating MSCs corresponding to the substrate stiffness has not been sufficiently studied. In this study, we used Atomic Force Microscopy (AFM) to measure changes of stiffness of human MSCs cultured in rigid Petri dish and on polyacrylamide (PA) substrates during osteogenic differentiation. The results showed that the Young's modulus of MSC cytoplasmic outer region increased over time during osteogenesis. There is a strong linear correlation between the osteogenic induction time and the Young's modulus of the cells cultured in rigid Petri dishes in the first 15 days after the induction; the Young's modulus approaches to a plateau after day 15. On the other hand, the Young's moduli of MSCs cultured on PA gels with stiffness of 7 kPa and 42 kPa also increase over time during osteogenic differentiation, but the inclination of such increase is much smaller than that of MSCs differentiating in rigid dishes. Herein, we established a protocol of AFM measurement to evaluate the maturation of stem cell osteogenic differentiation at the single cell level and could encourage further AFM applications in tissue engineering related to mechanobiology.
Collapse
Affiliation(s)
- Meng-Hua Yen
- Institute of Clinical Medicine, and Stem Cell Research Center, National Yang-Ming University, Taipei, Taiwan; Department of Electronic Engineering, National Chin-Yi University of Technology, Taichung, Taiwan.
| | - Yu-Han Chen
- Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan
| | - Yi-Shiuan Liu
- Institute of Clinical Medicine, and Stem Cell Research Center, National Yang-Ming University, Taipei, Taiwan; Department of Physiology and Pharmacology, Chang Gung University College of Medicine, and Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| | - Oscar Kuang-Sheng Lee
- Institute of Clinical Medicine, and Stem Cell Research Center, National Yang-Ming University, Taipei, Taiwan; Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.
| |
Collapse
|
22
|
White CM, Haidekker MA, Kisaalita WS. Ratiometric Nanoviscometers: Applications for Measuring Cellular Physical Properties in 3D Cultures. SLAS Technol 2020; 25:234-246. [PMID: 31997709 DOI: 10.1177/2472630319901262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
New insights into the biomechanical properties of cells are revealing the importance of these properties and how they relate to underlying molecular, architectural, and behavioral changes associated with cell state and disease processes. However, the current understanding of how these in vitro biomechanical properties are associated with in vivo processes has been developed based on the traditional monolayer (two-dimensional [2D]) cell culture, which traditionally has not translated well to the three-dimensional (3D) cell culture and in vivo function. Many gold standard methods and tools used to observe the biomechanical properties of 2D cell cultures cannot be used with 3D cell cultures. Fluorescent molecules can respond to external factors almost instantaneously and require relatively low-cost instrumentation. In this review, we provide the background on fluorescent molecular rotors, which are attractive tools due to the relationship of their emission quantum yield with environmental microviscosity. We make the case for their use in both 2D and 3D cell cultures and speculate on their fundamental and practical applications in cell biology.
Collapse
Affiliation(s)
- Charles McRae White
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, Driftmier Engineering Center, University of Georgia, Athens, GA, USA
| | - Mark A Haidekker
- School of Electrical and Computer Engineering, College of Engineering, Driftmier Engineering Center, University of Georgia, Athens, GA, USA
| | - William S Kisaalita
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, Driftmier Engineering Center, University of Georgia, Athens, GA, USA
| |
Collapse
|
23
|
Santos‐Ferreira T, Herbig M, Otto O, Carido M, Karl MO, Michalakis S, Guck J, Ader M. Morpho-Rheological Fingerprinting of Rod Photoreceptors Using Real-Time Deformability Cytometry. Cytometry A 2019; 95:1145-1157. [PMID: 31107590 PMCID: PMC6900160 DOI: 10.1002/cyto.a.23798] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/30/2019] [Accepted: 05/06/2019] [Indexed: 01/09/2023]
Abstract
Distinct cell-types within the retina are mainly specified by morphological and molecular parameters, however, physical properties are increasingly recognized as a valuable tool to characterize and distinguish cells in diverse tissues. High-throughput analysis of morpho-rheological features has recently been introduced using real-time deformability cytometry (RT-DC) providing new insights into the properties of different cell-types. Rod photoreceptors represent the main light sensing cells in the mouse retina that during development forms apically the densely packed outer nuclear layer. Currently, enrichment and isolation of photoreceptors from retinal primary tissue or pluripotent stem cell-derived organoids for analysis, molecular profiling, or transplantation is achieved using flow cytometry or magnetic activated cell sorting approaches. However, such purification methods require genetic modification or identification of cell surface binding antibody panels. Using primary retina and embryonic stem cell-derived retinal organoids, we characterized the inherent morpho-mechanical properties of mouse rod photoreceptors during development based on RT-DC. We demonstrate that rods become smaller and more compliant throughout development and that these features are suitable to distinguish rods within heterogenous retinal tissues. Hence, physical properties should be considered as additional factors that might affect photoreceptor differentiation and retinal development besides representing potential parameters for label-free sorting of photoreceptors. © 2019 The Authors. Cytometry Part A published by Wiley Periodicals, Inc. on behalf of International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Tiago Santos‐Ferreira
- CRTD/Center for Regenerative Therapies Dresden, Center for Molecular and Cellular BioengineeringTechnische Universität DresdenDresdenGermany
| | - Maik Herbig
- Biotechnology Center, Center for Molecular and Cellular BioengineeringTechnische Universität DresdenDresdenGermany
| | - Oliver Otto
- Biotechnology Center, Center for Molecular and Cellular BioengineeringTechnische Universität DresdenDresdenGermany
- Centre for Innovation Competence: Humoral Immune Reactions in Cardiovascular Diseases (HIKE)University of GreifswaldGreifswaldGermany
| | - Madalena Carido
- CRTD/Center for Regenerative Therapies Dresden, Center for Molecular and Cellular BioengineeringTechnische Universität DresdenDresdenGermany
| | - Mike O. Karl
- CRTD/Center for Regenerative Therapies Dresden, Center for Molecular and Cellular BioengineeringTechnische Universität DresdenDresdenGermany
- German Center for Neurodegenerative Diseases (DZNE)DresdenGermany
| | - Stylianos Michalakis
- Center for Integrated Protein Science Munich (CiPSM), Department of Pharmacy—Center for Drug ResearchLudwig‐Maximilians‐Universität MünchenMunichGermany
| | - Jochen Guck
- Biotechnology Center, Center for Molecular and Cellular BioengineeringTechnische Universität DresdenDresdenGermany
| | - Marius Ader
- CRTD/Center for Regenerative Therapies Dresden, Center for Molecular and Cellular BioengineeringTechnische Universität DresdenDresdenGermany
| |
Collapse
|
24
|
Nyberg KD, Bruce SL, Nguyen AV, Chan CK, Gill NK, Kim TH, Sloan EK, Rowat AC. Predicting cancer cell invasion by single-cell physical phenotyping. Integr Biol (Camb) 2019; 10:218-231. [PMID: 29589844 DOI: 10.1039/c7ib00222j] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The physical properties of cells are promising biomarkers for cancer diagnosis and prognosis. Here we determine the physical phenotypes that best distinguish human cancer cell lines, and their relationship to cell invasion. We use the high throughput, single-cell microfluidic method, quantitative deformability cytometry (q-DC), to measure six physical phenotypes including elastic modulus, cell fluidity, transit time, entry time, cell size, and maximum strain at rates of 102 cells per second. By training a k-nearest neighbor machine learning algorithm, we demonstrate that multiparameter analysis of physical phenotypes enhances the accuracy of classifying cancer cell lines compared to single parameters alone. We also discover a set of four physical phenotypes that predict invasion; using these four parameters, we generate the physical phenotype model of invasion by training a multiple linear regression model with experimental data from a set of human ovarian cancer cells that overexpress a panel of tumor suppressor microRNAs. We validate the model by predicting invasion based on measured physical phenotypes of breast and ovarian human cancer cell lines that are subject to genetic or pharmacologic perturbations. Taken together, our results highlight how physical phenotypes of single cells provide a biomarker to predict the invasion of cancer cells.
Collapse
Affiliation(s)
- Kendra D Nyberg
- Department of Integrative Biology and Physiology, University of California, 610 Charles E. Young Dr East, Los Angeles, CA 90095, USA.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Marcotti S, Reilly GC, Lacroix D. Effect of cell sample size in atomic force microscopy nanoindentation. J Mech Behav Biomed Mater 2019; 94:259-266. [PMID: 30928670 DOI: 10.1016/j.jmbbm.2019.03.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 12/21/2018] [Accepted: 03/17/2019] [Indexed: 11/25/2022]
Abstract
Single-cell technologies are powerful tools to evaluate cell characteristics. In particular, Atomic Force Microscopy (AFM) nanoindentation experiments have been widely used to study single cell mechanical properties. One important aspect related to single cell techniques is the need for sufficient statistical power to obtain reliable results. This aspect is often overlooked in AFM experiments were sample sizes are arbitrarily set. The aim of the present work was to propose a tool for sample size estimation in the context of AFM nanoindentation experiments of single cell. To this aim, a retrospective approach was used by acquiring a large dataset of experimental measurements on four bone cell types and by building saturation curves for increasing sample sizes with a bootstrap resampling method. It was observed that the coefficient of variation (CV%) decayed with a function of the form y = axb with similar parameters for all samples tested and that sample sizes of 21 and 83 cells were needed for the specific cells and protocol employed if setting a maximum threshold on CV% of 10% or 5%, respectively. The developed tool is made available as an open-source repository and guidelines are provided for its use for AFM nanoindentation experimental design.
Collapse
Affiliation(s)
- Stefania Marcotti
- Insigneo Institute for in silico Medicine, University of Sheffield, Mappin Street, Sheffield S1 3JD, UK; Department of Mechanical Engineering, University of Sheffield, Western Bank, Sheffield S10 2TN, UK; Randall Centre for Cell and Molecular Biophysics, King's College London, Guy's Campus, London SE1 1UL, UK.
| | - Gwendolen C Reilly
- Insigneo Institute for in silico Medicine, University of Sheffield, Mappin Street, Sheffield S1 3JD, UK; Department of Materials Science and Engineering, University of Sheffield, Western Bank, Sheffield S10 2TN, UK.
| | - Damien Lacroix
- Insigneo Institute for in silico Medicine, University of Sheffield, Mappin Street, Sheffield S1 3JD, UK; Department of Mechanical Engineering, University of Sheffield, Western Bank, Sheffield S10 2TN, UK.
| |
Collapse
|
26
|
Kiderlen S, Polzer C, Rädler JO, Docheva D, Clausen-Schaumann H, Sudhop S. Age related changes in cell stiffness of tendon stem/progenitor cells and a rejuvenating effect of ROCK-inhibition. Biochem Biophys Res Commun 2019; 509:839-844. [PMID: 30638929 DOI: 10.1016/j.bbrc.2019.01.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 01/05/2019] [Indexed: 12/23/2022]
Abstract
Tendon stem/progenitor cells (TSPC) are potential targets for regenerative medicine and the treatment of tendon injuries. The frequency of such injuries increases in elderly patients while the proportion of functional TSPCs in tendon tissue decreases, protracting tendon repair. Using atomic force microscopy (AFM), we show that cell stiffness and size increase in TSPCs isolated from elderly patients (A-TSPC) compared to TSPCs from younger patients (Y-TSPC). Additionally, two-photon excited fluorescence (TPEF) microscopy revealed a denser, well-structured actin cytoskeleton in A-TSPC, which correlates with the augmented cell stiffness. Treating A-TSPC with ROCK-inhibitor, reverses these age-related changes, and has rejuvenating effect on cell morphology and stiffness. We assume that cellular stiffness is a suitable marker for cell aging and ROCK a potential target for therapeutic applications of cell rejuvenation.
Collapse
Affiliation(s)
- Stefanie Kiderlen
- Center for Applied Tissue Engineering and Regenerative Medicine - CANTER, Munich University of Applied Sciences, Munich, Germany; Faculty of Physics, Soft Condensed Matter, Ludwig-Maximilians-University, Munich, Germany; Center for NanoScience, Ludwig-Maximilians-University, Munich, Germany
| | - Christoph Polzer
- Faculty of Physics, Soft Condensed Matter, Ludwig-Maximilians-University, Munich, Germany; Multiphoton Imaging Lab, Munich University of Applied Sciences, Munich, Germany
| | - Joachim O Rädler
- Faculty of Physics, Soft Condensed Matter, Ludwig-Maximilians-University, Munich, Germany; Center for NanoScience, Ludwig-Maximilians-University, Munich, Germany
| | - Denitsa Docheva
- Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Center, Regensburg, Germany
| | - Hauke Clausen-Schaumann
- Center for Applied Tissue Engineering and Regenerative Medicine - CANTER, Munich University of Applied Sciences, Munich, Germany; Center for NanoScience, Ludwig-Maximilians-University, Munich, Germany.
| | - Stefanie Sudhop
- Center for Applied Tissue Engineering and Regenerative Medicine - CANTER, Munich University of Applied Sciences, Munich, Germany; Center for NanoScience, Ludwig-Maximilians-University, Munich, Germany.
| |
Collapse
|
27
|
Golan M, Pribyl J, Pesl M, Jelinkova S, Acimovic I, Jaros J, Rotrekl V, Falk M, Sefc L, Skladal P, Kratochvilova I. Cryopreserved Cells Regeneration Monitored by Atomic Force Microscopy and Correlated With State of Cytoskeleton and Nuclear Membrane. IEEE Trans Nanobioscience 2018; 17:485-497. [PMID: 30307873 DOI: 10.1109/tnb.2018.2873425] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Atomic force microscopy (AFM) helps to describe and explain the mechanobiological properties of living cells on the nanoscale level under physiological conditions. The stiffness of cells is an important parameter reflecting cell physiology. Here, we have provided the first study of the stiffness of cryopreserved cells during post-thawing regeneration using AFM combined with confocal fluorescence microscopy. We demonstrated that the nonfrozen cell stiffness decreased proportionally to the cryoprotectant concentration in the medium. AFM allowed us to map cell surface reconstitution in real time after a freeze/thaw cycle and to monitor the regeneration processes at different depths of the cell and even different parts of the cell surface (nucleus and edge). Fluorescence microscopy showed that the cytoskeleton in fibroblasts, though damaged by the freeze/thaw cycle, is reconstructed after long-term plating. Confocal microscopy confirmed that structural changes affect the nuclear envelopes in cryopreserved cells. AFM nanoindentation analysis could be used as a noninvasive method to identify cells that have regenerated their surface mechanical properties with the proper dynamics and to a sufficient degree. This identification can be important particularly in the field of in vitro fertilization and in future cell-based regeneration strategies.
Collapse
|
28
|
Herbig M, Mietke A, Müller P, Otto O. Statistics for real-time deformability cytometry: Clustering, dimensionality reduction, and significance testing. BIOMICROFLUIDICS 2018; 12:042214. [PMID: 29937952 PMCID: PMC5999349 DOI: 10.1063/1.5027197] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/21/2018] [Indexed: 06/08/2023]
Abstract
Real-time deformability (RT-DC) is a method for high-throughput mechanical and morphological phenotyping of cells in suspension. While analysis rates exceeding 1000 cells per second allow for a label-free characterization of complex biological samples, e.g., whole blood, data evaluation has so far been limited to a few geometrical and material parameters such as cell size, deformation, and elastic Young's modulus. But as a microscopy-based technology, RT-DC actually generates and yields multidimensional datasets that require automated and unbiased tools to obtain morphological and rheological cell information. Here, we present a statistical framework to shed light on this complex parameter space and to extract quantitative results under various experimental conditions. As model systems, we apply cell lines as well as primary cells and highlight more than 11 parameters that can be obtained from RT-DC data. These parameters are used to identify sub-populations in heterogeneous samples using Gaussian mixture models, to perform a dimensionality reduction using principal component analysis, and to quantify the statistical significance applying linear mixed models to datasets of multiple replicates.
Collapse
Affiliation(s)
- M. Herbig
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, 01307 Dresden, Germany
| | | | - P. Müller
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, 01307 Dresden, Germany
| | - O. Otto
- Author to whom the correspondence should be addressed:
| |
Collapse
|
29
|
Visschers IGS, Van Dam NM, Peters JL. Quantification of Thrips Damage Using Ilastik and ImageJ Fiji. Bio Protoc 2018; 8:e2806. [PMID: 34286023 PMCID: PMC8275258 DOI: 10.21769/bioprotoc.2806] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 03/30/2018] [Accepted: 04/02/2018] [Indexed: 11/02/2022] Open
Abstract
Quantification of insect damage is an essential measurement for identifying resistance in plants. In screening for host plant resistance against thrips, the total damaged leaf area is used as a criterion to determine resistance levels. Here we present an objective novel method for analyzing thrips damage on leaf disc using the freely available software programs Ilastik and ImageJ. The protocol was developed in order to screen over 40 Capsicum lines for resistance against Frankliniella occidentalis (Western Flower Thrips) and Thrips tabaci (Onion thrips).
Collapse
Affiliation(s)
- Isabella G. S. Visschers
- Department of Molecular Interaction Ecology, Institute for Water and Wetland Research, Radboud University, 6525 AJ Nijmegen, The Netherlands
| | - Nicole M. Van Dam
- Department of Molecular Interaction Ecology, Institute for Water and Wetland Research, Radboud University, 6525 AJ Nijmegen, The Netherlands
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
- Friedrich Schiller University Jena, Institute of Ecology, Dornburger-Str. 159, 07743 Jena, Germany
| | - Janny L. Peters
- Department of Molecular Plant Physiology, Institute for Water and Wetland Research, Radboud University, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
30
|
Isseroff R, Chen J, Khan Z, Guha A, Lin S, Li J, Fang KC, Zhang L, Simon M, Rafailovich M. Creating a Novel Graphene Oxide/Iron/Polylactic Acid Composite that Promotes Dental Pulp Stem Cell Proliferation and Mineralization. ACTA ACUST UNITED AC 2018. [DOI: 10.1557/adv.2018.364] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
31
|
Shukla VC, Kuang TR, Senthilvelan A, Higuita-Castro N, Duarte-Sanmiguel S, Ghadiali SN, Gallego-Perez D. Lab-on-a-Chip Platforms for Biophysical Studies of Cancer with Single-Cell Resolution. Trends Biotechnol 2018; 36:549-561. [PMID: 29559164 DOI: 10.1016/j.tibtech.2018.02.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 02/15/2018] [Accepted: 02/16/2018] [Indexed: 12/14/2022]
Abstract
Recent cancer research has more strongly emphasized the biophysical aspects of tumor development, progression, and microenvironment. In addition to genetic modifications and mutations in cancer cells, it is now well accepted that the physical properties of cancer cells such as stiffness, electrical impedance, and refractive index vary with tumor progression and can identify a malignant phenotype. Moreover, cancer heterogeneity renders population-based characterization techniques inadequate, as individual cellular features are lost in the average. Hence, platforms for fast and accurate characterization of biophysical properties of cancer cells at the single-cell level are required. Here, we highlight some of the recent advances in the field of cancer biophysics and the development of lab-on-a-chip platforms for single-cell biophysical analyses of cancer cells.
Collapse
Affiliation(s)
- Vasudha C Shukla
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine and Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA; Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH 43210, USA; These authors contributed equally to this work
| | - Tai-Rong Kuang
- The Key Laboratory of Polymer Processing Engineering of Ministry of Education, South China University of Technology, Guangzhou 510640, P.R. China; These authors contributed equally to this work.
| | - Abirami Senthilvelan
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Natalia Higuita-Castro
- Department of Internal Medicine (Division of Pulmonary, Critical Care and Sleep Medicine), Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA; Department of Surgery, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Silvia Duarte-Sanmiguel
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH 43210, USA; Department of Human Sciences (Human Nutrition), College of Human Ecology, The Ohio State University, Columbus, OH 43210, USA
| | - Samir N Ghadiali
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH 43210, USA; Department of Internal Medicine (Division of Pulmonary, Critical Care and Sleep Medicine), Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Daniel Gallego-Perez
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH 43210, USA; Department of Surgery, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
32
|
Bongiorno T, Gura J, Talwar P, Chambers D, Young KM, Arafat D, Wang G, Jackson-Holmes EL, Qiu P, McDevitt TC, Sulchek T. Biophysical subsets of embryonic stem cells display distinct phenotypic and morphological signatures. PLoS One 2018. [PMID: 29518080 PMCID: PMC5843178 DOI: 10.1371/journal.pone.0192631] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The highly proliferative and pluripotent characteristics of embryonic stem cells engender great promise for tissue engineering and regenerative medicine, but the rapid identification and isolation of target cell phenotypes remains challenging. Therefore, the objectives of this study were to characterize cell mechanics as a function of differentiation and to employ differences in cell stiffness to select population subsets with distinct mechanical, morphological, and biological properties. Biomechanical analysis with atomic force microscopy revealed that embryonic stem cells stiffened within one day of differentiation induced by leukemia inhibitory factor removal, with a lagging but pronounced change from spherical to spindle-shaped cell morphology. A microfluidic device was then employed to sort a differentially labeled mixture of pluripotent and differentiating cells based on stiffness, resulting in pluripotent cell enrichment in the soft device outlet. Furthermore, sorting an unlabeled population of partially differentiated cells produced a subset of “soft” cells that was enriched for the pluripotent phenotype, as assessed by post-sort characterization of cell mechanics, morphology, and gene expression. The results of this study indicate that intrinsic cell mechanical properties might serve as a basis for efficient, high-throughput, and label-free isolation of pluripotent stem cells, which will facilitate a greater biological understanding of pluripotency and advance the potential of pluripotent stem cell differentiated progeny as cell sources for tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Tom Bongiorno
- The G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, United States of America
| | - Jeremy Gura
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, United States of America
| | - Priyanka Talwar
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, United States of America
| | - Dwight Chambers
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, United States of America
| | - Katherine M. Young
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, United States of America
| | - Dalia Arafat
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States of America
| | - Gonghao Wang
- The G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, United States of America
| | - Emily L. Jackson-Holmes
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, United States of America
| | - Peng Qiu
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, United States of America
| | - Todd C. McDevitt
- Gladstone Institute for Cardiovascular Disease, San Francisco, CA, United States of America
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, United States of America
| | - Todd Sulchek
- The G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, United States of America
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, United States of America
- The Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States of America
- * E-mail:
| |
Collapse
|
33
|
Urbanska M, Winzi M, Neumann K, Abuhattum S, Rosendahl P, Müller P, Taubenberger A, Anastassiadis K, Guck J. Single-cell mechanical phenotype is an intrinsic marker of reprogramming and differentiation along the mouse neural lineage. Development 2017; 144:4313-4321. [DOI: 10.1242/dev.155218] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 10/24/2017] [Indexed: 12/18/2022]
Abstract
Cellular reprogramming is a dedifferentiation process during which cells continuously undergo phenotypical remodeling. Although the genetic and biochemical details of this remodeling are fairly well understood, little is known about the change in cell mechanical properties during the process. In this study, we investigated changes in the mechanical phenotype of murine fetal neural progenitor cells (fNPCs) during reprogramming to induced pluripotent stem cells (iPSCs). We find that fNPCs become progressively stiffer en route to pluripotency, and that this stiffening is mirrored by iPSCs becoming more compliant during differentiation towards the neural lineage. Furthermore, we show that the mechanical phenotype of iPSCs is comparable with that of embryonic stem cells. These results suggest that mechanical properties of cells are inherent to their developmental stage. They also reveal that pluripotent cells can differentiate towards a more compliant phenotype, which challenges the view that pluripotent stem cells are less stiff than any cells more advanced developmentally. Finally, our study indicates that the cell mechanical phenotype might be utilized as an inherent biophysical marker of pluripotent stem cells.
Collapse
Affiliation(s)
- Marta Urbanska
- Cellular Machines, Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, Dresden 01307, Germany
| | - Maria Winzi
- Cellular Machines, Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, Dresden 01307, Germany
| | - Katrin Neumann
- Stem Cell Engineering, Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, Dresden 01307, Germany
| | - Shada Abuhattum
- Cellular Machines, Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, Dresden 01307, Germany
- JPK Instruments AG, Colditzstraße 34-36, Berlin 12099, Germany
| | - Philipp Rosendahl
- Cellular Machines, Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, Dresden 01307, Germany
| | - Paul Müller
- Cellular Machines, Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, Dresden 01307, Germany
| | - Anna Taubenberger
- Cellular Machines, Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, Dresden 01307, Germany
| | - Konstantinos Anastassiadis
- Stem Cell Engineering, Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, Dresden 01307, Germany
| | - Jochen Guck
- Cellular Machines, Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, Dresden 01307, Germany
| |
Collapse
|
34
|
Garcia-Areas R, Libreros S, Simoes M, Castro-Silva C, Gazaniga N, Amat S, Jaczewska J, Keating P, Schilling K, Brito M, Wojcikiewicz EP, Iragavarpu-Charyulu V. Suppression of tumor-derived Semaphorin 7A and genetic ablation of host-derived Semaphorin 7A impairs tumor progression in a murine model of advanced breast carcinoma. Int J Oncol 2017; 51:1395-1404. [PMID: 29048670 PMCID: PMC5642386 DOI: 10.3892/ijo.2017.4144] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 07/31/2017] [Indexed: 12/12/2022] Open
Abstract
Solid tumors can generate a plethora of neurogenesis-related molecules that enhance their growth and metastasis. Among them, we have identified axonal guidance molecule Semaphorin 7A (SEMA7A) in breast cancer. The goal of this study was to determine the therapeutic effect of suppressing SEMA7A levels in the 4T1 murine model of advanced breast carcinoma. We used anti-SEMA7A short hairpin RNA (shRNA) to gene silence SEMA7A in 4T1 mammary tumor cells. When implanted into the mammary fat pads of syngeneic mice, SEMA7A shRNA-expressing 4T1 tumors exhibited decreased growth rates, deferred metastasis and reduced mortality. In vitro, SEMA7A shRNA-expressing 4T1 cells had weakened proliferative, migratory and invasive abilities, and decreased levels of mesenchymal factors. Atomic force microscopy studies showed that SEMA7A shRNA-expressing 4T1 cells had an increase in cell stiffness that corresponded with their decreased malignant potential. Genetic ablation of host-derived SEMA7A further enhanced the antitumor effects of SEMA7A shRNA gene silencing in 4T1 cells. Our preclinical findings demonstrate a critical role for SEMA7A in mediating mammary tumor progression.
Collapse
Affiliation(s)
- R Garcia-Areas
- Department of Biomedical Sciences, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - S Libreros
- Department of Biomedical Sciences, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - M Simoes
- Department of Biomedical Sciences, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - C Castro-Silva
- Department of Biomedical Sciences, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - N Gazaniga
- Department of Biomedical Sciences, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - S Amat
- Department of Biomedical Sciences, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - J Jaczewska
- Department of Biomedical Sciences, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - P Keating
- Department of Biomedical Sciences, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - K Schilling
- Lynn Women's Health & Wellness Institute, Boca Raton Regional Hospital, Boca Raton, FL 33431, USA
| | - M Brito
- Department of Pathology, Boca Raton Regional Hospital, Boca Raton, FL 33431, USA
| | - E P Wojcikiewicz
- Department of Biomedical Sciences, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - V Iragavarpu-Charyulu
- Department of Biomedical Sciences, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
| |
Collapse
|
35
|
Bongiorno T, Chojnowski JL, Lauderdale JD, Sulchek T. Cellular Stiffness as a Novel Stemness Marker in the Corneal Limbus. Biophys J 2017; 111:1761-1772. [PMID: 27760362 DOI: 10.1016/j.bpj.2016.09.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 08/24/2016] [Accepted: 09/02/2016] [Indexed: 10/20/2022] Open
Abstract
Healthy eyes contain a population of limbal stem cells (LSCs) that continuously renew the corneal epithelium. However, each year, 1 million Americans are afflicted with severely reduced visual acuity caused by corneal damage or disease, including LSC deficiency (LSCD). Recent advances in corneal transplant technology promise to repair the cornea by implanting healthy LSCs to encourage regeneration; however, success is limited to transplanted tissues that contain a sufficiently high percentage of LSCs. Attempts to screen limbal tissues for suitable implants using molecular stemness markers are confounded by the poorly understood signature of the LSC phenotype. For cells derived from the corneal limbus, we show that the performance of cell stiffness as a stemness indicator is on par with the performance of ΔNP63α, a common molecular marker. In combination with recent methods for sorting cells on a biophysical basis, the biomechanical stemness markers presented here may enable the rapid purification of LSCs from a heterogeneous population of corneal cells, thus potentially enabling clinicians and researchers to generate corneal transplants with sufficiently high fractions of LSCs, regardless of the LSC percentage in the donor tissue.
Collapse
Affiliation(s)
- Tom Bongiorno
- The G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Jena L Chojnowski
- Department of Cellular Biology, University of Georgia, Athens, Georgia
| | | | - Todd Sulchek
- The G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia; The Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia.
| |
Collapse
|
36
|
Li M, Dang D, Liu L, Xi N, Wang Y. Atomic Force Microscopy in Characterizing Cell Mechanics for Biomedical Applications: A Review. IEEE Trans Nanobioscience 2017; 16:523-540. [PMID: 28613180 DOI: 10.1109/tnb.2017.2714462] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Cell mechanics is a novel label-free biomarker for indicating cell states and pathological changes. The advent of atomic force microscopy (AFM) provides a powerful tool for quantifying the mechanical properties of single living cells in aqueous conditions. The wide use of AFM in characterizing cell mechanics in the past two decades has yielded remarkable novel insights in understanding the development and progression of certain diseases, such as cancer, showing the huge potential of cell mechanics for practical applications in the field of biomedicine. In this paper, we reviewed the utilization of AFM to characterize cell mechanics. First, the principle and method of AFM single-cell mechanical analysis was presented, along with the mechanical responses of cells to representative external stimuli measured by AFM. Next, the unique changes of cell mechanics in two types of physiological processes (stem cell differentiation, cancer metastasis) revealed by AFM were summarized. After that, the molecular mechanisms guiding cell mechanics were analyzed. Finally the challenges and future directions were discussed.
Collapse
|
37
|
Microfluidic Sorting of Cells by Viability Based on Differences in Cell Stiffness. Sci Rep 2017; 7:1997. [PMID: 28515450 PMCID: PMC5435733 DOI: 10.1038/s41598-017-01807-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 04/03/2017] [Indexed: 12/11/2022] Open
Abstract
The enrichment of viable cells is an essential step to obtain effective products for cell therapy. While procedures exist to characterize the viability of cells, most methods to exclude nonviable cells require the use of density gradient centrifugation or antibody-based cell sorting with molecular labels of cell viability. We report a label-free microfluidic technique to separate live and dead cells that exploits differences in cellular stiffness. The device uses a channel with repeated ridges that are diagonal with respect to the direction of cell flow. Stiff nonviable cells directed through the channel are compressed and translated orthogonally to the channel length, while soft live cells follow hydrodynamic flow. As a proof of concept, Jurkat cells are enriched to high purity of viable cells by a factor of 185-fold. Cell stiffness was validated as a sorting parameter as nonviable cells were substantially stiffer than live cells. To highlight the utility for hematopoietic stem cell transplantation, frozen samples of cord blood were thawed and the purity of viable nucleated cells was increased from 65% to over 94% with a recovery of 73% of the viable cells. Thus, the microfluidic stiffness sorting can simply and efficiently obtain highly pure populations of viable cells.
Collapse
|
38
|
Virjula S, Zhao F, Leivo J, Vanhatupa S, Kreutzer J, Vaughan TJ, Honkala AM, Viehrig M, Mullen CA, Kallio P, McNamara LM, Miettinen S. The effect of equiaxial stretching on the osteogenic differentiation and mechanical properties of human adipose stem cells. J Mech Behav Biomed Mater 2017; 72:38-48. [PMID: 28448920 DOI: 10.1016/j.jmbbm.2017.04.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 04/05/2017] [Accepted: 04/12/2017] [Indexed: 01/22/2023]
Abstract
Although mechanical cues are known to affect stem cell fate and mechanobiology, the significance of such stimuli on the osteogenic differentiation of human adipose stem cells (hASCs) remains unclear. In this study, we investigated the effect of long-term mechanical stimulation on the attachment, osteogenic differentiation and mechanical properties of hASCs. Tailor-made, pneumatic cell stretching devices were used to expose hASCs to cyclic equiaxial stretching in osteogenic medium. Cell attachment and focal adhesions were visualised using immunocytochemical vinculin staining on days 3 and 6, and the proliferation and alkaline phosphatase activity, as a sign of early osteogenic differentiation, were analysed on days 0, 6 and 10. Furthermore, the mechanical properties of hASCs, in terms of apparent Young's modulus and normalised contractility, were obtained using a combination of atomic force microscopy based indentation and computational approaches. Our results indicated that cyclic equiaxial stretching delayed proliferation and promoted osteogenic differentiation of hASCs. Stretching also reduced cell size and intensified focal adhesions and actin cytoskeleton. Moreover, cell stiffening was observed during osteogenic differentiation and especially under mechanical stimulation. These results suggest that cyclic equiaxial stretching modifies cell morphology, focal adhesion formation and mechanical properties of hASCs. This could be exploited to enhance osteogenic differentiation.
Collapse
Affiliation(s)
- Sanni Virjula
- Adult Stem Cell Group, BioMediTech, Faculty of Medicine and Life Sciences, University of Tampere, Lääkärinkatu 1, 33520 Tampere, Finland; Science Centre, Tampere University Hospital, Biokatu 6, 33520 Tampere, Finland.
| | - Feihu Zhao
- Biomechanics Research Centre (BMEC), Biomedical Engineering, College of Engineering and Informatics, National University of Ireland, Galway, Ireland.
| | - Joni Leivo
- Department of Automation Science and Engineering, BioMediTech, Tampere University of Technology, Korkeakoulunkatu 3, 33720 Tampere, Finland.
| | - Sari Vanhatupa
- Adult Stem Cell Group, BioMediTech, Faculty of Medicine and Life Sciences, University of Tampere, Lääkärinkatu 1, 33520 Tampere, Finland; Science Centre, Tampere University Hospital, Biokatu 6, 33520 Tampere, Finland.
| | - Joose Kreutzer
- Department of Automation Science and Engineering, BioMediTech, Tampere University of Technology, Korkeakoulunkatu 3, 33720 Tampere, Finland.
| | - Ted J Vaughan
- Biomechanics Research Centre (BMEC), Biomedical Engineering, College of Engineering and Informatics, National University of Ireland, Galway, Ireland.
| | - Anna-Maija Honkala
- Adult Stem Cell Group, BioMediTech, Faculty of Medicine and Life Sciences, University of Tampere, Lääkärinkatu 1, 33520 Tampere, Finland; Science Centre, Tampere University Hospital, Biokatu 6, 33520 Tampere, Finland.
| | - Marlitt Viehrig
- Department of Automation Science and Engineering, BioMediTech, Tampere University of Technology, Korkeakoulunkatu 3, 33720 Tampere, Finland.
| | - Conleth A Mullen
- Biomechanics Research Centre (BMEC), Biomedical Engineering, College of Engineering and Informatics, National University of Ireland, Galway, Ireland.
| | - Pasi Kallio
- Department of Automation Science and Engineering, BioMediTech, Tampere University of Technology, Korkeakoulunkatu 3, 33720 Tampere, Finland.
| | - Laoise M McNamara
- Biomechanics Research Centre (BMEC), Biomedical Engineering, College of Engineering and Informatics, National University of Ireland, Galway, Ireland.
| | - Susanna Miettinen
- Adult Stem Cell Group, BioMediTech, Faculty of Medicine and Life Sciences, University of Tampere, Lääkärinkatu 1, 33520 Tampere, Finland; Science Centre, Tampere University Hospital, Biokatu 6, 33520 Tampere, Finland.
| |
Collapse
|
39
|
Lin J, Kim D, Tse HT, Tseng P, Peng L, Dhar M, Karumbayaram S, Di Carlo D. High-throughput physical phenotyping of cell differentiation. MICROSYSTEMS & NANOENGINEERING 2017; 3:17013. [PMID: 31057860 PMCID: PMC6445007 DOI: 10.1038/micronano.2017.13] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 11/23/2016] [Accepted: 12/21/2016] [Indexed: 05/08/2023]
Abstract
In this report, we present multiparameter deformability cytometry (m-DC), in which we explore a large set of parameters describing the physical phenotypes of pluripotent cells and their derivatives. m-DC utilizes microfluidic inertial focusing and hydrodynamic stretching of single cells in conjunction with high-speed video recording to realize high-throughput characterization of over 20 different cell motion and morphology-derived parameters. Parameters extracted from videos include size, deformability, deformation kinetics, and morphology. We train support vector machines that provide evidence that these additional physical measurements improve classification of induced pluripotent stem cells, mesenchymal stem cells, neural stem cells, and their derivatives compared to size and deformability alone. In addition, we utilize visual interactive stochastic neighbor embedding to visually map the high-dimensional physical phenotypic spaces occupied by these stem cells and their progeny and the pathways traversed during differentiation. This report demonstrates the potential of m-DC for improving understanding of physical differences that arise as cells differentiate and identifying cell subpopulations in a label-free manner. Ultimately, such approaches could broaden our understanding of subtle changes in cell phenotypes and their roles in human biology.
Collapse
Affiliation(s)
- Jonathan Lin
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| | - Donghyuk Kim
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| | - Henry T. Tse
- CytoVale Inc., 384 Oyster Point Boulevard #7 South, San Francisco, CA 94080, USA
| | - Peter Tseng
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Lillian Peng
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| | - Manjima Dhar
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| | - Saravanan Karumbayaram
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Los Angeles, CA 90095, USA
| | - Dino Di Carlo
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA
- Department of Mechanical Engineering, University of California, Los Angeles, CA 90095, USA
- ()
| |
Collapse
|
40
|
Bio- chemical and physical characterizations of mesenchymal stromal cells along the time course of directed differentiation. Sci Rep 2016; 6:31547. [PMID: 27526936 PMCID: PMC4985743 DOI: 10.1038/srep31547] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 07/18/2016] [Indexed: 12/21/2022] Open
Abstract
Cellular biophysical properties are novel biomarkers of cell phenotypes which may reflect the status of differentiating stem cells. Accurate characterizations of cellular biophysical properties, in conjunction with the corresponding biochemical properties could help to distinguish stem cells from primary cells, cancer cells, and differentiated cells. However, the correlated evolution of these properties in the course of directed stem cells differentiation has not been well characterized. In this study, we applied video particle tracking microrheology (VPTM) to measure intracellular viscoelasticity of differentiating human mesenchymal stromal/stem cells (hMSCs). Our results showed that osteogenesis not only increased both elastic and viscous moduli, but also converted the intracellular viscoelasticity of differentiating hMSCs from viscous-like to elastic-like. In contrast, adipogenesis decreased both elastic and viscous moduli while hMSCs remained viscous-like during the differentiation. In conjunction with bio- chemical and physical parameters, such as gene expression profiles, cell morphology, and cytoskeleton arrangement, we demonstrated that VPTM is a unique approach to quantify, with high data throughput, the maturation level of differentiating hMSCs and to anticipate their fate decisions. This approach is well suited for time-lapsed study of the mechanobiology of differentiating stem cells especially in three dimensional physico-chemical biomimetic environments including porous scaffolds.
Collapse
|
41
|
Pearson YE, Lund AW, Lin AWH, Ng CP, Alsuwaidi A, Azzeh S, Gater DL, Teo JCM. Non-invasive single-cell biomechanical analysis using live-imaging datasets. J Cell Sci 2016; 129:3351-64. [PMID: 27422102 DOI: 10.1242/jcs.191205] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 07/12/2016] [Indexed: 12/31/2022] Open
Abstract
The physiological state of a cell is governed by a multitude of processes and can be described by a combination of mechanical, spatial and temporal properties. Quantifying cell dynamics at multiple scales is essential for comprehensive studies of cellular function, and remains a challenge for traditional end-point assays. We introduce an efficient, non-invasive computational tool that takes time-lapse images as input to automatically detect, segment and analyze unlabeled live cells; the program then outputs kinematic cellular shape and migration parameters, while simultaneously measuring cellular stiffness and viscosity. We demonstrate the capabilities of the program by testing it on human mesenchymal stem cells (huMSCs) induced to differentiate towards the osteoblastic (huOB) lineage, and T-lymphocyte cells (T cells) of naïve and stimulated phenotypes. The program detected relative cellular stiffness differences in huMSCs and huOBs that were comparable to those obtained with studies that utilize atomic force microscopy; it further distinguished naïve from stimulated T cells, based on characteristics necessary to invoke an immune response. In summary, we introduce an integrated tool to decipher spatiotemporal and intracellular dynamics of cells, providing a new and alternative approach for cell characterization.
Collapse
Affiliation(s)
- Yanthe E Pearson
- Department of Applied Mathematics and Sciences, Khalifa University, P.O. Box 127788, Abu Dhabi, UAE
| | - Amanda W Lund
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Alex W H Lin
- Endothelix, Inc., 2500 West Loop, South Houston, TX 77027, USA
| | - Chee P Ng
- Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, Singapore 138602 Mimetas BV, JH Oortweg 19, Leiden 2333 CH, The Netherlands
| | - Aysha Alsuwaidi
- Department of Biomedical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, UAE
| | - Sara Azzeh
- Department of Biomedical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, UAE
| | - Deborah L Gater
- Department of Applied Mathematics and Sciences, Khalifa University, P.O. Box 127788, Abu Dhabi, UAE
| | - Jeremy C M Teo
- Department of Biomedical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, UAE
| |
Collapse
|
42
|
Yue T, Park KH, Reese BE, Zhu H, Lyon S, Ma J, Mohler PJ, Zhang M. Quantifying Drug-Induced Nanomechanics and Mechanical Effects to Single Cardiomyocytes for Optimal Drug Administration To Minimize Cardiotoxicity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:1909-19. [PMID: 26738425 PMCID: PMC6083215 DOI: 10.1021/acs.langmuir.5b04314] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Contrary to the well-studied dynamics and mechanics at organ and tissue levels, there is still a lack of good understanding for single cell dynamics and mechanics. Single cell dynamics and mechanics may act as an interface to provide unique information reflecting activities at the organ and tissue levels. This research was aimed at quantifying doxorubicin- and dexrazoxane-induced nanomechanics and mechanical effects to single cardiomyocytes, to reveal the therapeutic effectiveness of drugs at the single cell level and to optimize drug administration for reducing cardiotoxicity. This work employed a nanoinstrumentation platform, including a digital holographic microscope combined with an atomic force microscope, which can characterize cell stiffness and beating dynamics in response to drug exposures in real time and obtain time-dose-dependent effects of cardiotoxicity and protection. Through this research, an acute increase and a delayed decrease of surface beating force induced by doxorubicin was characterized. Dexrazoxane treated cells maintained better beating force and mechanical functions than cells without any treatment, which demonstrated cardioprotective effects of dexrazoxane. In addition, combined drug effects were quantitatively evaluated following various drug administration protocols. Preadministration of dexrazoxane was demonstrated to have protective effects against doxorubicin, which could lead to better strategies for cardiotoxicity prevention and anticancer drug administration. This study concluded that quantification of nanomechanics and mechanical effects at the single cell level could offer unique insights of molecular mechanisms involved in cellular activities influencing organ and tissue level responses to drug exposure, providing a new opportunity for the development of effective and time-dose-dependent strategies of drug administration.
Collapse
Affiliation(s)
- Tao Yue
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Ki Ho Park
- Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio 43210, United States
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio 43210, United States
| | - Benjamin E. Reese
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Hua Zhu
- Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio 43210, United States
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio 43210, United States
| | - Seth Lyon
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jianjie Ma
- Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio 43210, United States
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio 43210, United States
| | - Peter J. Mohler
- Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio 43210, United States
| | - Mingjun Zhang
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio 43210, United States
- Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio 43210, United States
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, Ohio 43210, United States
- Corresponding Author:
| |
Collapse
|
43
|
Lownes Urbano R, Morss Clyne A. An inverted dielectrophoretic device for analysis of attached single cell mechanics. LAB ON A CHIP 2016; 16:561-73. [PMID: 26738543 PMCID: PMC4734981 DOI: 10.1039/c5lc01297j] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Dielectrophoresis (DEP), the force induced on a polarizable body by a non-uniform electric field, has been widely used to manipulate single cells in suspension and analyze their stiffness. However, most cell types do not naturally exist in suspension but instead require attachment to the tissue extracellular matrix in vivo. Cells alter their cytoskeletal structure when they attach to a substrate, which impacts cell stiffness. It is therefore critical to be able to measure mechanical properties of cells attached to a substrate. We present a novel inverted quadrupole dielectrophoretic device capable of measuring changes in the mechanics of single cells attached to a micropatterned polyacrylamide gel. The device is positioned over a cell of defined size, a directed DEP pushing force is applied, and cell centroid displacement is dynamically measured by optical microscopy. Using this device, single endothelial cells showed greater centroid displacement in response to applied DEP pushing force following actin cytoskeleton disruption by cytochalasin D. In addition, transformed mammary epithelial cell (MCF10A-NeuT) showed greater centroid displacement in response to applied DEP pushing force compared to untransformed cells (MCF10A). DEP device measurements were confirmed by showing that the cells with greater centroid displacement also had a lower elastic modulus by atomic force microscopy. The current study demonstrates that an inverted DEP device can determine changes in single attached cell mechanics on varied substrates.
Collapse
Affiliation(s)
- Rebecca Lownes Urbano
- Drexel University, Department of Mechanical Engineering and Mechanics, 3141 Chestnut Street, Philadelphia, PA 19104, USA.
| | - Alisa Morss Clyne
- Drexel University, Department of Mechanical Engineering and Mechanics, 3141 Chestnut Street, Philadelphia, PA 19104, USA.
| |
Collapse
|
44
|
Willoughby NA, Bock H, Hoeve MA, Pells S, Williams C, McPhee G, Freile P, Choudhury D, De Sousa PA. A scalable label-free approach to separate human pluripotent cells from differentiated derivatives. BIOMICROFLUIDICS 2016; 10:014107. [PMID: 26858819 PMCID: PMC4714989 DOI: 10.1063/1.4939946] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 01/01/2016] [Indexed: 05/24/2023]
Abstract
The broad capacity of pluripotent human embryonic stem cells (hESC) to grow and differentiate demands the development of rapid, scalable, and label-free methods to separate living cell populations for clinical and industrial applications. Here, we identify differences in cell stiffness, expressed as cell elastic modulus (CEM), for hESC versus mesenchymal progenitors, osteoblast-like derivatives, and fibroblasts using atomic force microscopy and data processing algorithms to characterize the stiffness of cell populations. Undifferentiated hESC exhibited a range of CEMs whose median was nearly three-fold lower than those of differentiated cells, information we exploited to develop a label-free separation device based on the principles of tangential flow filtration. To test the device's utility, we segregated hESC mixed with fibroblasts and hESC-mesenchymal progenitors induced to undergo osteogenic differentiation. The device permitted a throughput of 10(6)-10(7) cells per min and up to 50% removal of specific cell types per single pass. The level of enrichment and depletion of soft, pluripotent hESC in the respective channels was found to rise with increasing stiffness of the differentiating cells, suggesting CEM can serve as a major discriminator. Our results demonstrate the principle of a scalable, label-free, solution for separation of heterogeneous cell populations deriving from human pluripotent stem cells.
Collapse
Affiliation(s)
- N A Willoughby
- Institute for Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences , Heriot-Watt University , Edinburgh EH14 4AS, United Kingdom
| | - H Bock
- Institute for Chemical Sciences, School of Engineering and Physical Sciences , Heriot-Watt University , Edinburgh, United Kingdom
| | - M A Hoeve
- Centers for Clinical Brain Sciences and Regenerative Medicine, University of Edinburgh , Edinburgh EH16 4SB, United Kingdom
| | - S Pells
- Centers for Clinical Brain Sciences and Regenerative Medicine, University of Edinburgh , Edinburgh EH16 4SB, United Kingdom
| | - C Williams
- Institute for Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences , Heriot-Watt University , Edinburgh EH14 4AS, United Kingdom
| | - G McPhee
- Institute for Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences , Heriot-Watt University , Edinburgh EH14 4AS, United Kingdom
| | - P Freile
- Centers for Clinical Brain Sciences and Regenerative Medicine, University of Edinburgh , Edinburgh EH16 4SB, United Kingdom
| | - D Choudhury
- Institute for Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences , Heriot-Watt University , Edinburgh EH14 4AS, United Kingdom
| | - P A De Sousa
- Centers for Clinical Brain Sciences and Regenerative Medicine, University of Edinburgh , Edinburgh EH16 4SB, United Kingdom
| |
Collapse
|
45
|
Xavier M, Rosendahl P, Herbig M, Kräter M, Spencer D, Bornhäuser M, Oreffo ROC, Morgan H, Guck J, Otto O. Mechanical phenotyping of primary human skeletal stem cells in heterogeneous populations by real-time deformability cytometry. Integr Biol (Camb) 2016; 8:616-23. [DOI: 10.1039/c5ib00304k] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mechanical measurements of skeletal stem cells using RT-DC reveal a distinct sub-population within the human bone marrow.
Collapse
Affiliation(s)
- Miguel Xavier
- Faculty of Physical Sciences and Engineering
- Institute for Life Sciences
- University of Southampton SO17 1BJ
- UK
- Centre for Human Development
| | | | - Maik Herbig
- Biotechnology Center
- Technische Universität Dresden
- Dresden
- Germany
| | - Martin Kräter
- Universitätsklinikum Carl Gustav Carus
- Technische Universität Dresden
- Dresden
- Germany
| | - Daniel Spencer
- Faculty of Physical Sciences and Engineering
- Institute for Life Sciences
- University of Southampton SO17 1BJ
- UK
| | - Martin Bornhäuser
- Universitätsklinikum Carl Gustav Carus
- Technische Universität Dresden
- Dresden
- Germany
| | - Richard O. C. Oreffo
- Centre for Human Development
- Stem Cells and Regeneration
- Institute of Developmental Sciences
- Southampton General Hospital
- UK
| | - Hywel Morgan
- Faculty of Physical Sciences and Engineering
- Institute for Life Sciences
- University of Southampton SO17 1BJ
- UK
| | - Jochen Guck
- Biotechnology Center
- Technische Universität Dresden
- Dresden
- Germany
| | - Oliver Otto
- Biotechnology Center
- Technische Universität Dresden
- Dresden
- Germany
| |
Collapse
|
46
|
Liu YX, Karsai A, Anderson DS, Silva RM, Uyeminami DL, Van Winkle LS, Pinkerton KE, Liu GY. Single-Cell Mechanics Provides an Effective Means To Probe in Vivo Interactions between Alveolar Macrophages and Silver Nanoparticles. J Phys Chem B 2015; 119:15118-29. [PMID: 26562364 DOI: 10.1021/acs.jpcb.5b07656] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Single-cell mechanics, derived from atomic force microscopy-based technology, provides a new and effective means to investigate nanomaterial-cell interactions upon in vivo exposure. Lung macrophages represent initial and important responses upon introducing nanoparticles into the respiratory tract, as well as particle clearance with time. Cellular mechanics has previously proven effective to probe in vitro nanomaterial-cell interactions. This study extends technology further to probe the interactions between primary alveolar macrophages (AM) and silver nanoparticles (AgNPs) upon in vivo exposure. Two types of AgNPs, 20 and 110 nm, were instilled to rat lung at 0.5 mg AgNPs/kg body weight, and allowed 24 h interaction. The consequences of these interactions were investigated by harvesting the primary AMs while maintaining their biological status. Cellular mechanics measurements revealed the diverse responses among AM cells, due to variations in AgNP uptake and oxidative dissolving into Ag(+). Three major responses are evident: zero to low uptake that does not alter cellular mechanics, intracellular accumulation of AgNPs trigger cytoskeleton rearrangement resulting in the stiffening of mechanics, and damage of cytoskeleton that softens the mechanical profile. These effects were confirmed using confocal imaging of F-actin and measurements of reactive oxygen species production. More detailed intracellular interactions will also be discussed on the basis of this study in conjunction with prior knowledge of AgNP toxicity.
Collapse
Affiliation(s)
- Ying X Liu
- Department of Chemistry, ‡Center for Health and the Environment, §Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, and ∥Department of Pediatrics, School of Medicine, University of California , Davis, California 95616, United States
| | - Arpad Karsai
- Department of Chemistry, ‡Center for Health and the Environment, §Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, and ∥Department of Pediatrics, School of Medicine, University of California , Davis, California 95616, United States
| | - Donald S Anderson
- Department of Chemistry, ‡Center for Health and the Environment, §Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, and ∥Department of Pediatrics, School of Medicine, University of California , Davis, California 95616, United States
| | - Rona M Silva
- Department of Chemistry, ‡Center for Health and the Environment, §Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, and ∥Department of Pediatrics, School of Medicine, University of California , Davis, California 95616, United States
| | - Dale L Uyeminami
- Department of Chemistry, ‡Center for Health and the Environment, §Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, and ∥Department of Pediatrics, School of Medicine, University of California , Davis, California 95616, United States
| | - Laura S Van Winkle
- Department of Chemistry, ‡Center for Health and the Environment, §Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, and ∥Department of Pediatrics, School of Medicine, University of California , Davis, California 95616, United States
| | - Kent E Pinkerton
- Department of Chemistry, ‡Center for Health and the Environment, §Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, and ∥Department of Pediatrics, School of Medicine, University of California , Davis, California 95616, United States
| | - Gang-yu Liu
- Department of Chemistry, ‡Center for Health and the Environment, §Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, and ∥Department of Pediatrics, School of Medicine, University of California , Davis, California 95616, United States
| |
Collapse
|
47
|
Spagnol ST, Lin WC, Booth EA, Ladoux B, Lazarus HM, Dahl KN. Early Passage Dependence of Mesenchymal Stem Cell Mechanics Influences Cellular Invasion and Migration. Ann Biomed Eng 2015; 44:2123-31. [PMID: 26581348 DOI: 10.1007/s10439-015-1508-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 11/11/2015] [Indexed: 02/06/2023]
Abstract
The cellular structures and mechanical properties of human mesenchymal stem cells (hMSCs) vary significantly during culture and with differentiation. Previously, studies to measure mechanics have provided divergent results using different quantitative parameters and mechanical models of deformation. Here, we examine hMSCs prepared for clinical use and subject them to mechanical testing conducive to the relevant deformability associated with clinical injection procedures. Micropipette aspiration of hMSCs shows deformation as a viscoelastic fluid, with little variation from cell to cell within a population. After two passages, hMSCs deform as viscoelastic solids. Further, for clinical applicability during stem cell migration in vivo, we investigated the ability of hMSCs to invade into micropillar arrays of increasing confinement from 12 to 8 μm spacing between adjacent micropillars. We find that hMSC samples with reduced deformability and cells that are more solid-like with passage are more easily able to enter the micropillar arrays. Increased cell fluidity is an advantage for injection procedures and optimization of cell selection based on mechanical properties may enhance efficacy of injected hMSC populations. However, the ability to invade and migrate within tight interstitial spaces appears to be increased with a more solidified cytoskeleton, likely from increased force generation and contractility. Thus, there may be a balance between optimal injection survival and in situ tissue invasion.
Collapse
Affiliation(s)
- Stephen T Spagnol
- Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA, 15213, USA
| | - Wei-Chun Lin
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Elizabeth A Booth
- Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA, 15213, USA
| | - Benoit Ladoux
- Institut Jacques Monod (IJM), CNRS UMR 7592 & Université Paris Diderot, Paris, France
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Hillard M Lazarus
- Division of Hematology and Oncology, Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Kris Noel Dahl
- Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA, 15213, USA.
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
48
|
Tartibi M, Liu Y, Liu GY, Komvopoulos K. Single-cell mechanics--An experimental-computational method for quantifying the membrane-cytoskeleton elasticity of cells. Acta Biomater 2015; 27:224-235. [PMID: 26300334 DOI: 10.1016/j.actbio.2015.08.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 08/01/2015] [Accepted: 08/19/2015] [Indexed: 10/23/2022]
Abstract
The membrane-cytoskeleton system plays a major role in cell adhesion, growth, migration, and differentiation. F-actin filaments, cross-linkers, binding proteins that bundle F-actin filaments to form the actin cytoskeleton, and integrins that connect the actin cytoskeleton network to the cell plasma membrane and extracellular matrix are major cytoskeleton constituents. Thus, the cell cytoskeleton is a complex composite that can assume different shapes. Atomic force microscopy (AFM)-based techniques have been used to measure cytoskeleton material properties without much attention to cell shape. A recently developed surface chemical patterning method for long-term single-cell culture was used to seed individual cells on circular patterns. A continuum-based cell model, which uses as input the force-displacement response obtained with a modified AFM setup and relates the membrane-cytoskeleton elastic behavior to the cell geometry, while treating all other subcellular components suspended in the cytoplasmic liquid (gel) as an incompressible fluid, is presented and validated by experimental results. The developed analytical-experimental methodology establishes a framework for quantifying the membrane-cytoskeleton elasticity of live cells. This capability may have immense implications in cell biology, particularly in studies seeking to establish correlations between membrane-cytoskeleton elasticity and cell disease, mortality, differentiation, and migration, and provide insight into cell infiltration through nonwoven fibrous scaffolds. The present method can be further extended to analyze membrane-cytoskeleton viscoelasticity, examine the role of other subcellular components (e.g., nucleus envelope) in cell elasticity, and elucidate the effects of mechanical stimuli on cell differentiation and motility. STATEMENT OF SIGNIFICANCE This is the first study to decouple the membrane-cytoskeleton elasticity from cell stiffness and introduce an effective approach for measuring the elastic modulus. The novelty of this study is the development of new technology for quantifying the elastic stiffness of the membrane-cytoskeleton system of cells. This capability could have immense implications in cell biology, particularly in establishing correlations between various cell diseases, mortality, and differentiation with membrane-cytoskeleton elasticity, examining through-tissue cell migration, and understanding cell infiltration in porous scaffolds. The present method can be further extended to analyze membrane-cytoskeleton viscous behavior, identify the contribution of other subcellular components (e.g., nucleus envelope) to load sharing, and elucidate mechanotransduction effects due to repetitive compressive loading and unloading on cell differentiation and motility.
Collapse
|
49
|
Wang G, Turbyfield C, Crawford K, Alexeev A, Sulchek T. Cellular enrichment through microfluidic fractionation based on cell biomechanical properties. MICROFLUIDICS AND NANOFLUIDICS 2015; 19:987-993. [PMID: 28316561 PMCID: PMC5354170 DOI: 10.1007/s10404-015-1608-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The biomechanical properties of populations of diseased cells are shown to have differences from healthy populations of cells, yet the overlap of these biomechanical properties can limit their use in disease cell enrichment and detection. We report a new microfluidic cell enrichment technology that continuously fractionates cells through differences in biomechanical properties, resulting in highly pure cellular subpopulations. Cell fractionation is achieved in a microfluidic channel with an array of diagonal ridges that are designed to segregate biomechanically distinct cells to different locations in the channel. Due to the imposition of elastic and viscous forces during cellular compression, which are a function of cell biomechanical properties including size and viscoelasticity, larger, stiffer and less viscos cells migrate parallel to the diagonal ridges and exhibit positive lateral displacement. On the other hand, smaller, softer and more viscous cells migrate perpendicular to the diagonal ridges due to circulatory flow induced by the ridges and result in negative lateral displacement. Multiple outlets are then utilized to collect cells with finer gradation of differences in cell biomechanical properties. The result is that cell fractionation dramatically improves cell separation efficiency compared to binary outputs and enables the measurement of subtle biomechanical differences within a single cell type. As a proof-of-concept demonstration, we mix two different leukemia cell lines (K562 and HL60) and utilize cell fractionation to achieve over 45-fold enhancement of cell populations, with high purity cellular enrichment (90% to 99%) of each cell line. In addition, we demonstrate cell fractionation of a single cell type (K562 cells) into subpopulations and characterize the variations of biomechanical properties of the separated cells with atomic force microscopy. These results will be beneficial to obtaining label-free separation of cellular mixtures, or to better investigate the origins of biomechanical differences in a single cell type.
Collapse
Affiliation(s)
- Gonghao Wang
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Drive, Atlanta, GA, 30332-0405, USA
| | - Cory Turbyfield
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Drive, Atlanta, GA, 30332-0535, USA
| | - Kaci Crawford
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Drive, Atlanta, GA, 30332-0535, USA
| | - Alexander Alexeev
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Drive, Atlanta, GA, 30332-0405, USA
| | - Todd Sulchek
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Drive, Atlanta, GA, 30332-0405, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Drive, Atlanta, GA, 30332-0535, USA
| |
Collapse
|
50
|
LeBlon CE, Casey ME, Fodor CR, Zhang T, Zhang X, Jedlicka SS. Correlation between in vitro expansion-related cell stiffening and differentiation potential of human mesenchymal stem cells. Differentiation 2015; 90:1-15. [PMID: 26381795 DOI: 10.1016/j.diff.2015.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 08/10/2015] [Accepted: 08/20/2015] [Indexed: 12/28/2022]
Abstract
Human mesenchymal stem cells (hMSCs) are an attractive cell source for tissue regeneration, given their self-renewal and multilineage potential. However, they are present in only small percentages in human bone marrow, and are generally propagated in vitro prior to downstream use. Previous work has shown that hMSC propagation can lead to alterations in cell behavior and differentiation potency, yet optimization of differentiation based on starting cell elastic modulus is an area still under investigation. To further advance the knowledge in this field, hMSCs were cultured and routinely passaged on tissue-culture polystyrene to investigate the correlation between cell stiffening and differentiation potency during in vitro aging. Local cell elastic modulus was measured at every passage using atomic force microscopy indentation. At each passage, cells were induced to differentiate down myogenic and osteogenic paths. Cells induced to differentiate, as well as undifferentiated cells were assessed for gene and protein expression using quantitative polymerase chain reaction and immunofluorescent staining, respectively, for osteogenic and myogenic markers. Myogenic and osteogenic cell potential are highly reliant on the elastic modulus of the starting cell population (of undifferentiated cells), and this potential appears to peak when the innate cell elastic modulus is close to that of differentiated tissue. However, the latent expression of the same markers in undifferentiated cells also appears to undergo a correlative relationship with cell elastic modulus, indicating some endogenous effects of cell elastic modulus and gene/protein expression. Overall, this study correlates age-related changes with regards to innate cell stiffening and gene/protein expression in commercial hMSCs, providing some guidance as to maintenance and future use of hMSCs in future tissue engineering applications.
Collapse
Affiliation(s)
- Courtney E LeBlon
- Mechanical Engineering & Mechanics, Packard Laboratory, Lehigh University, 19 Memorial Drive, Bethlehem, PA 18015, United States
| | - Meghan E Casey
- Bioengineering Program, Lehigh University, 111 Research Drive, Iacocca Hall, Bethlehem, PA 18015, United States
| | - Caitlin R Fodor
- Bioengineering Program, Lehigh University, 111 Research Drive, Iacocca Hall, Bethlehem, PA 18015, United States
| | - Tony Zhang
- Bioengineering Program, Lehigh University, 111 Research Drive, Iacocca Hall, Bethlehem, PA 18015, United States
| | - Xiaohui Zhang
- Mechanical Engineering & Mechanics, Packard Laboratory, Lehigh University, 19 Memorial Drive, Bethlehem, PA 18015, United States; Bioengineering Program, Lehigh University, 111 Research Drive, Iacocca Hall, Bethlehem, PA 18015, United States
| | - Sabrina S Jedlicka
- Bioengineering Program, Lehigh University, 111 Research Drive, Iacocca Hall, Bethlehem, PA 18015, United States; Materials Science and Engineering, Whitaker Laboratory, Lehigh University, 5 East Packer Ave., Bethlehem, PA 18015, United States; Center for Advanced Materials & Nanotechnology, Whitaker Laboratory, Lehigh University, 5 East Packer Ave., Bethlehem, PA 18015, United States.
| |
Collapse
|