1
|
Mendoza H, Siddon AJ. Molecular Techniques and Gene Mutations in Myelodysplastic Syndromes. Clin Lab Med 2023; 43:549-563. [PMID: 37865502 DOI: 10.1016/j.cll.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2023]
Abstract
Sequencing technology, particularly next-generation sequencing, has highlighted the importance of gene mutations in myelodysplastic syndromes (MDSs). Mutations affecting DNA methylation, chromatin modification, RNA splicing, cohesin complex, and other pathways are present in most MDS cases and often have prognostic and clinical implications. Updated international diagnostic guidelines as well as the new International Prognostic Scoring System-Molecular incorporate molecular data into the diagnosis and prognostication of MDS. With whole-genome sequencing predicted to become the future standard of genetic evaluation, it is likely that MDS diagnosis and management will become increasingly personalized based on an individual's clinical and genomic profile.
Collapse
Affiliation(s)
- Hadrian Mendoza
- Department of Internal Medicine, Yale School of Medicine, PO Box 208030, New Haven, CT 06520, USA
| | - Alexa J Siddon
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA; Department of Pathology, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
2
|
Rostami M, kharajo RS, Parsa-kondelaji M, Ayatollahi H, Sheikhi M, Keramati MR. Altered expression of NEAT1 variants and P53, PTEN, and BCL2 genes in Patients with Acute Myeloid Leukemia. Leuk Res 2022; 115:106807. [DOI: 10.1016/j.leukres.2022.106807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 12/19/2022]
|
3
|
Wu F, Chen Z, Liu J, Hou Y. The Akt-mTOR network at the interface of hematopoietic stem cell homeostasis. Exp Hematol 2021; 103:15-23. [PMID: 34464661 DOI: 10.1016/j.exphem.2021.08.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 12/15/2022]
Abstract
Hematopoietic stem cells (HSCs) are immature blood cells that exhibit multilineage differentiation capacity. Homeostasis is critical for HSC potential and lifelong hematopoiesis, and HSC homeostasis is tightly governed by both intrinsic molecular networks and microenvironmental signals. The evolutionarily conserved serine/threonine protein kinase B (PKB, also referred to as Akt)-mammalian target of rapamycin (mTOR) pathway is universal to nearly all multicellular organisms and plays an integral role in most cellular processes. Emerging evidence has revealed a central role of the Akt-mTOR network in HSC homeostasis, because it responds to multiple intracellular and extracellular signals and regulates various downstream targets, eventually affecting several cellular processes, including the cell cycle, mitochondrial metabolism, and protein synthesis. Dysregulated Akt-mTOR signaling greatly affects HSC self-renewal, maintenance, differentiation, survival, autophagy, and aging, as well as transformation of HSCs to leukemia stem cells. Here, we review recent works and provide an advanced understanding of how the Akt-mTOR network regulates HSC homeostasis, thus offering insights into future clinical applications.
Collapse
Affiliation(s)
- Feng Wu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Zhe Chen
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jingbo Liu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China.
| | - Yu Hou
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
| |
Collapse
|
4
|
Cancer stem cell phosphatases. Biochem J 2021; 478:2899-2920. [PMID: 34319405 DOI: 10.1042/bcj20210254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/15/2022]
Abstract
Cancer stem cells (CSCs) are involved in the initiation and progression of human malignancies by enabling cancer tissue self-renewal capacity and constituting the therapy-resistant population of tumor cells. However, despite the exhausting characterization of CSC genetics, epigenetics, and kinase signaling, eradication of CSCs remains an unattainable goal in most human malignancies. While phosphatases contribute equally with kinases to cellular phosphoregulation, our understanding of phosphatases in CSCs lags severely behind our knowledge about other CSC signaling mechanisms. Many cancer-relevant phosphatases have recently become druggable, indicating that further understanding of the CSC phosphatases might provide novel therapeutic opportunities. This review summarizes the current knowledge about fundamental, but yet poorly understood involvement of phosphatases in the regulation of major CSC signaling pathways. We also review the functional roles of phosphatases in CSC self-renewal, cancer progression, and therapy resistance; focusing particularly on hematological cancers and glioblastoma. We further discuss the small molecule targeting of CSC phosphatases and their therapeutic potential in cancer combination therapies.
Collapse
|
5
|
Hosseini Khorami SA, Mutalib MSA, Feili Shiraz M, Abdullah JA, Rejali Z, Ali RM, Khaza'ai H. Genetic determinants of obesity heterogeneity in type II diabetes. Nutr Metab (Lond) 2020; 17:55. [PMID: 32670384 PMCID: PMC7346329 DOI: 10.1186/s12986-020-00476-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 07/01/2020] [Indexed: 11/23/2022] Open
Abstract
Background Although obesity is considered as the main cause of Type II diabetes (T2DM), non-obese individuals may still develop T2DM and obese individuals may not. Method The mRNA expression of PI3K/AKT axis from 100 non-obese and obese participants with insulin sensitivity and insulin resistance states were compared in this study toward the understanding of obesity heterogeneity molecular mechanism. Result In present study, there was no statistically significant difference in gene expression levels of IRS1 and PTEN between groups, whereas PI3K, AKT2 and GLUT4 genes were expressed at a lower level in obese diabetic group compared to other groups and were statistically significant. PDK1 gene was expressed at a higher level in non-obese diabetic group compared to obese diabetic and non-obese non-diabetics groups. No statistically significant difference was identified in gene expression pattern of PI3K/AKT pathway between obese non-diabetics and non-obese non-diabetics. Conclusion The components of PI3K/AKT pathway which is related to the fasting state, showed reduced expression in obese diabetic group due to the chronic over-nutrition which may induced insensitivity and reduced gene expression. The pathogenesis of insulin resistance in the absence of obesity in non-obese diabetic group could be due to disturbance in another pathway related to the non-fasting state like gluconeogenesis. Therefore, the molecular mechanism of insulin signalling in non-obese diabetic individuals is different from obese diabetics which more investigations are required to study insulin signalling pathways in greater depth, in order to assess nutritional factors, contribute to insulin resistance in obese diabetic and non-obese diabetic individuals.
Collapse
Affiliation(s)
| | - Mohd Sokhini Abd Mutalib
- Department of Nutrition and Dietetic, University Putra Malaysia, 43400 Serdang, Selangor Malaysia
| | - Mohammad Feili Shiraz
- Department of Artificial Intelligence and Computer Engineering, Faculty of Electrical Engineering, Computer and IT, Qazvin Branch, Islamic Azad University, Qazvin, Iran
| | | | - Zulida Rejali
- Department of Obstetrics and Gynaecology, University Putra Malaysia, 43400 Serdang, Selangor Malaysia
| | - Razana Mohd Ali
- Department of Pathology, University Putra Malaysia, 43400 Serdang, Selangor Malaysia
| | - Huzwah Khaza'ai
- Department of Biomedical Science, University Putra Malaysia, 43400 Serdang, Selangor Malaysia
| |
Collapse
|
6
|
Shokouhian M, Bagheri M, Poopak B, Chegeni R, Davari N, Saki N. Altering chromatin methylation patterns and the transcriptional network involved in regulation of hematopoietic stem cell fate. J Cell Physiol 2020; 235:6404-6423. [PMID: 32052445 DOI: 10.1002/jcp.29642] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 01/31/2020] [Indexed: 12/15/2022]
Abstract
Hematopoietic stem cells (HSCs) are quiescent cells with self-renewal capacity and potential multilineage development. Various molecular regulatory mechanisms such as epigenetic modifications and transcription factor (TF) networks play crucial roles in establishing a balance between self-renewal and differentiation of HSCs. Histone/DNA methylations are important epigenetic modifications involved in transcriptional regulation of specific lineage HSCs via controlling chromatin structure and accessibility of DNA. Also, TFs contribute to either facilitation or inhibition of gene expression through binding to enhancer or promoter regions of DNA. As a result, epigenetic factors and TFs regulate the activation or repression of HSCs genes, playing a central role in normal hematopoiesis. Given the importance of histone/DNA methylation and TFs in gene expression regulation, their aberrations, including changes in HSCs-related methylation of histone/DNA and TFs (e.g., CCAAT-enhancer-binding protein α, phosphatase and tensin homolog deleted on the chromosome 10, Runt-related transcription factor 1, signal transducers and activators of transcription, and RAS family proteins) could disrupt HSCs fate. Herewith, we summarize how dysregulations in the expression of genes related to self-renewal, proliferation, and differentiation of HSCs caused by changes in epigenetic modifications and transcriptional networks lead to clonal expansion and leukemic transformation.
Collapse
Affiliation(s)
- Mohammad Shokouhian
- Department of Hematology and Blood Transfusion, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Marziye Bagheri
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Behzad Poopak
- Department of Hematology, Faculty of Paramedical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Rouzbeh Chegeni
- Michener Institute of Education at University Health Network, Toronto, Canada
| | - Nader Davari
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Najmaldin Saki
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
7
|
Gurska LM, Ames K, Gritsman K. Signaling Pathways in Leukemic Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1143:1-39. [PMID: 31338813 PMCID: PMC7249489 DOI: 10.1007/978-981-13-7342-8_1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hematopoietic stem cells (HSCs) and leukemic stem cells (LSCs) utilize many of the same signaling pathways for their maintenance and survival. In this review, we will focus on several signaling pathways whose roles have been extensively studied in both HSCs and LSCs. Our main focus will be on the PI3K/AKT/mTOR pathway and several of its regulators and downstream effectors. We will also discuss several other signaling pathways of particular importance in LSCs, including the WNT/β-catenin pathway, the NOTCH pathway, and the TGFβ pathway. For each of these pathways, we will emphasize differences in how these pathways operate in LSCs, compared to their function in HSCs, to highlight opportunities for the specific therapeutic targeting of LSCs. We will also highlight areas of crosstalk between multiple signaling pathways that may affect LSC function.
Collapse
Affiliation(s)
- Lindsay M Gurska
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Kristina Ames
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Kira Gritsman
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA.
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA.
- Department of Medical Oncology, Montefiore Hospital, Bronx, New York, USA.
| |
Collapse
|
8
|
Samimi A, Kalantari H, Lorestani MZ, Shirzad R, Saki N. Oxidative stress in normal hematopoietic stem cells and leukemia. APMIS 2018; 126:284-294. [PMID: 29575200 DOI: 10.1111/apm.12822] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Accepted: 01/22/2018] [Indexed: 12/19/2022]
Abstract
Leukemia is developed following the abnormal proliferation of immature hematopoietic cells in the blood when hematopoietic stem cells lose the ability to turn into mature cells at different stages of maturation and differentiation. Leukemia initiating cells are specifically dependent upon the suppression of oxidative stress in the hypoglycemic bone marrow (BM) environment to be able to start their activities. Relevant literature was identified by a PubMed search (2000-2017) of English-language literature using the terms 'oxidative stress,' 'reactive oxygen species,' 'hematopoietic stem cell,' and 'leukemia.' The generation and degradation of free radicals is a main component of the metabolism in aerobic organisms. A certain level of ROS is required for proper cellular function, but values outside this range will result in oxidative stress (OS). Long-term overactivity of reactive oxygen species (ROS) has harmful effects on the function of cells and their vital macromolecules, including the transformation of proteins into autoantigens and increased degradation of protein/DNA, which eventually leads to the change in pathways involved in the development of cancer and several other disorders. According to the metabolic disorders of cancer, the relationship between OS changes, the viability of cancer cells, and their response to chemotherapeutic agents affecting this pathway are undeniable. Recently, studies have been conducted to determine the effect of herbal agents and cancer chemotherapy drugs on oxidative stress pathways. By emphasizing the role of oxidative stress on stem cells in the incidence of leukemia, this paper attempts to state and summarize this subject.
Collapse
Affiliation(s)
- Azin Samimi
- Department of Pharmacology and Toxicology, School of Pharmacy, Ahvaz Jundishpur University of Medical Sciences, Ahvaz, Iran
| | - Heybatullah Kalantari
- Department of Pharmacology and Toxicology, School of Pharmacy, Ahvaz Jundishpur University of Medical Sciences, Ahvaz, Iran
| | - Marzieh Zeinvand Lorestani
- Department of Pharmacology and Toxicology, School of Pharmacy, Ahvaz Jundishpur University of Medical Sciences, Ahvaz, Iran
| | - Reza Shirzad
- WHO-Collaborating Centre for Reference and Research on Rabies, Pasteur Institute of Iran, Tehran, Iran
| | - Najmaldin Saki
- Research Center of Thalassemia & Hemoglobinopathy, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
9
|
Dual inhibition of PI3K/mTOR signaling in chemoresistant AML primary cells. Adv Biol Regul 2018; 68:2-9. [PMID: 29576448 DOI: 10.1016/j.jbior.2018.03.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 03/18/2018] [Accepted: 03/18/2018] [Indexed: 01/02/2023]
Abstract
A main cause of treatment failure for AML patients is resistance to chemotherapy. Survival of AML cells may depend on mechanisms that elude conventional drugs action and/or on the presence of leukemia initiating cells at diagnosis, and their persistence after therapy. MDR1 gene is an ATP-dependent drug efflux pump known to be a risk factor for the emergence of resistance, when combined to unstable cytogenetic profile of AML patients. In the present study, we analyzed the sensitivity to conventional chemotherapeutic drugs of 26 samples of primary blasts collected from AML patients at diagnosis. Detection of cell viability and apoptosis allowed to identify two group of samples, one resistant and one sensitive to in vitro treatment. The cells were then analyzed for the presence and the activity of P-glycoprotein. A comparative analysis showed that resistant samples exhibited a high level of MDR1 mRNA as well as of P-glycoprotein content and activity. Moreover, they also displayed high PI3K signaling. Therefore, we checked whether the association with signaling inhibitors might resensitize resistant samples to chemo-drugs. The combination showed a very potent cytotoxic effect, possibly through down modulation of MDR1, which was maintained also when primary blasts were co-cultured with human stromal cells. Remarkably, dual PI3K/mTOR inactivation was cytotoxic also to leukemia initiating cells. All together, our findings indicate that signaling activation profiling associated to gene expression can be very useful to stratify patients and improve therapy.
Collapse
|
10
|
Wang Y, Chen B, Wang Z, Zhang W, Hao K, Chen Y, Li K, Wang T, Xie Y, Huang Z, Tong X. Marsdenia tenacissimae extraction (MTE) inhibits the proliferation and induces the apoptosis of human acute T cell leukemia cells through inactivating PI3K/AKT/mTOR signaling pathway via PTEN enhancement. Oncotarget 2018; 7:82851-82863. [PMID: 27756877 PMCID: PMC5347737 DOI: 10.18632/oncotarget.12654] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 10/03/2016] [Indexed: 12/29/2022] Open
Abstract
Marsdenia tenacissimae extraction (MTE) as a traditional Chinese herb has long been used to treat some diseases such as tumors in China. However, the potential effectiveness of MTE in leukemia has not yet been fully understood, and the related molecular mechanism is still unknown. In the present study, we aimed to evaluate the effects of MTE on the proliferation and apoptosis of Jurkat cells (T-ALL lines) and lymphocytes from T-ALL (T-cell acute lymphoblastic leukemia) patients. Firstly, CCK8 assays and flow cytometry assays revealed that MTE dose-dependently reduced the proliferation of Jurkat cells by arresting cell cycle at S phase. Secondly, Annexin V-FITC/PI-stained flow cytometry and TUNEL staining assays showed that MTE promoted the apoptosis of Jurkat cells. Mechanistically, MTE enhanced PTEN (phosphatases and tensin homolog) level and inactivated PI3K/AKT/mTOR signaling pathway in Jurkat cells, which mediated the inhibition of cell proliferation by MTE and MTE-induced apoptosis. Finally, MTE significantly inhibited the proliferation and promoted the apoptosis of lymphocytes from T-ALL patients, compared with lymphocytes from healthy peoples. Taken together, these results reveal an unrecognized function of MTE in inhibiting the proliferation and inducing the apoptosis of T-ALL cells, and identify a pathway of PTEN/PI3K/AKT/mTOR for the effects of MTE on leukemia therapy.
Collapse
Affiliation(s)
- Ying Wang
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.,Department of Blood Transfusion, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, 310014, China
| | - Bingyu Chen
- Department of Blood Transfusion, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, 310014, China
| | - Zhen Wang
- Department of Blood Transfusion, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, 310014, China
| | - Wei Zhang
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou, 310014, China
| | - Ke Hao
- Department of Blood Transfusion, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, 310014, China
| | - Yu Chen
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou, 310014, China
| | - Kaiqiang Li
- Department of Blood Transfusion, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, 310014, China
| | - Tongtong Wang
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou, 310014, China
| | - Yiwei Xie
- Department of Blood Transfusion, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, 310014, China
| | - Zhihui Huang
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.,Institute of Neuroscience and Hypoxia Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xiangmin Tong
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.,Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou, 310014, China
| |
Collapse
|
11
|
Zhang Y, Gong FL, Lu ZN, Wang HY, Cheng YN, Liu ZP, Yu LG, Zhang HH, Guo XL. DHPAC, a novel synthetic microtubule destabilizing agent, possess high anti-tumor activity in vincristine-resistant oral epidermoid carcinoma in vitro and in vivo. Int J Biochem Cell Biol 2017; 93:1-11. [PMID: 29074436 DOI: 10.1016/j.biocel.2017.10.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 10/15/2017] [Accepted: 10/21/2017] [Indexed: 12/13/2022]
Abstract
Multidrug resistance (MDR) is one of major obstacles to effective chemotherapeutic treatment of cancer. This study showed that DHPAC, 2-(6-ethoxy-3-(3-ethoxyphenylamino) -1-methyl-1,4-dihydroindeno[1,2-c]pyrazol-7-yloxy) acetamide, a novel compound that binds to the same site on microtubules as colchicine, has high anti-tumour activity in vincristine-resistant oral epidermoid carcinoma (KB/V) cells. It found that the presence of DHPAC strongly inhibited KB/V cell growth in vivo and in mice xenograft. The inhibitory effect of DHPAC is much stronger than that by colchicine in these KB/V cells (IC50: 64.4nM and 458.0nM respectively). Treatment of the cells with DHPAC induced cell apoptosis by reducing mitochondrial membrane potential and altered the expression of several apoptosis-related proteins such as Bcl-2, Bax, Caspase-9, Cytochrome c and PARP. DHPAC treatment also caused cell rest in G2/M phase by regulating of the expression of a number of cell cycle-related proteins (e.g. Cyclin B1, Cdc2, Cdc25b, Cdc25c, RSK2). Furthermore, DHPAC presence inhibits PTEN phosphorylation and PTEN/Akt/NF-κB signalling. Thus, DHPAC has potent anti-cancer activity in MDR tumuors and may be a potential therapeutic agent for the treatment of vincristine-resistant human oral epidermoid carcinoma.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, PR China
| | - Fu-Lian Gong
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, PR China
| | - Zhen-Ning Lu
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, PR China
| | - Hong-Yuan Wang
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, PR China
| | - Yan-Na Cheng
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, PR China
| | - Zhao-Peng Liu
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, PR China
| | - Lu-Gang Yu
- Department of Gastroenterology, Institute of Translational Medicine, University of Liverpool, Liverpool, L69 3GE, UK
| | - Hui-Hui Zhang
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, PR China
| | - Xiu-Li Guo
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, PR China.
| |
Collapse
|
12
|
Ruvolo PP. GSK-3 as a novel prognostic indicator in leukemia. Adv Biol Regul 2017; 65:26-35. [PMID: 28499784 DOI: 10.1016/j.jbior.2017.05.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 05/05/2017] [Accepted: 05/07/2017] [Indexed: 06/07/2023]
Abstract
While leukemias represent a diverse set of diseases with malignant cells derived from myeloid or lymphoid origin, a common feature is the dysregulation of signal transduction pathways that influence leukemogeneisis, promote drug resistance, and favor leukemia stem cells. Mutations in PI3K, PTEN, RAS, or other upstream regulators can activate the AKT kinase which has central roles in supporting cell proliferation and survival. A major target of AKT is Glycogen Synthase Kinase 3 (GSK3). GSK3 has two isoforms (alpha and beta) that were studied as regulators of metabolism but emerged as central players in cancer in the early 1990s. GSK3 is unique in that the isoforms are constitutively active. Active GSK3 promotes destruction of oncogenic proteins such as beta Catenin, c-MYC, and MCL-1 and thus has tumor suppressor properties. In AML, inactivation of GSK3 is associated with poor overall survival. Interestingly in some leukemias GSK3 targets a tumor suppressor and thus the kinases can act as tumor promoters in those instances. An example is GSK3 targeting p27Kip1 in AML with MLL translocation. This review will cover the role of GSK3 in various leukemias both as tumor suppressor and tumor promoter. We will also briefly cover current state of GSK3 inhibitors for leukemia therapy.
Collapse
Affiliation(s)
- Peter P Ruvolo
- Department of Leukemia, Unit 448, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, United States.
| |
Collapse
|
13
|
Gowda C, Soliman M, Kapadia M, Ding Y, Payne K, Dovat S. Casein Kinase II (CK2), Glycogen Synthase Kinase-3 (GSK-3) and Ikaros mediated regulation of leukemia. Adv Biol Regul 2017. [PMID: 28623166 DOI: 10.1016/j.jbior.2017.06.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Signaling networks that regulate cellular proliferation often involve complex interactions between several signaling pathways. In this manuscript we review the crosstalk between the Casein Kinase II (CK2) and Glycogen Synthase Kinase-3 (GSK-3) pathways that plays a critical role in the regulation of cellular proliferation in leukemia. Both CK2 and GSK-3 are potential targets for anti-leukemia treatment. Previously published data suggest that CK2 and GSK-3 act synergistically to promote the phosphatidylinositol-3 kinase (PI3K) pathway via phosphorylation of PTEN. More recent data demonstrate another mechanism through which CK2 promotes the PI3K pathway - via transcriptional regulation of PI3K pathway genes by the newly-discovered CK2-Ikaros axis. Together, these data suggest that the CK2 and GSK-3 pathways regulate AKT/PI3K signaling in leukemia via two complementary mechanisms: a) direct phosphorylation of PTEN and b) transcriptional regulation of PI3K-promoting genes. Functional interactions between CK2, Ikaros and GSK3 define a novel signaling network that regulates proliferation of leukemia cells. This regulatory network involves both direct posttranslational modifications (by CK and GSK-3) and transcriptional regulation (via CK2-mediated phosphorylation of Ikaros). This information provides a basis for the development of targeted therapy for leukemia.
Collapse
Affiliation(s)
- Chandrika Gowda
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| | - Mario Soliman
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| | - Malika Kapadia
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| | - Yali Ding
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| | - Kimberly Payne
- Department of Anatomy, Loma Linda University, Loma Linda, CA, USA.
| | - Sinisa Dovat
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| |
Collapse
|
14
|
McCubrey JA, Rakus D, Gizak A, Steelman LS, Abrams SL, Lertpiriyapong K, Fitzgerald TL, Yang LV, Montalto G, Cervello M, Libra M, Nicoletti F, Scalisi A, Torino F, Fenga C, Neri LM, Marmiroli S, Cocco L, Martelli AM. Effects of mutations in Wnt/β-catenin, hedgehog, Notch and PI3K pathways on GSK-3 activity-Diverse effects on cell growth, metabolism and cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:2942-2976. [PMID: 27612668 DOI: 10.1016/j.bbamcr.2016.09.004] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 08/14/2016] [Accepted: 09/02/2016] [Indexed: 02/07/2023]
Abstract
Glycogen synthase kinase-3 (GSK-3) is a serine/threonine kinase that participates in an array of critical cellular processes. GSK-3 was first characterized as an enzyme that phosphorylated and inactivated glycogen synthase. However, subsequent studies have revealed that this moon-lighting protein is involved in numerous signaling pathways that regulate not only metabolism but also have roles in: apoptosis, cell cycle progression, cell renewal, differentiation, embryogenesis, migration, regulation of gene transcription, stem cell biology and survival. In this review, we will discuss the roles that GSK-3 plays in various diseases as well as how this pivotal kinase interacts with multiple signaling pathways such as: PI3K/PTEN/Akt/mTOR, Ras/Raf/MEK/ERK, Wnt/beta-catenin, hedgehog, Notch and TP53. Mutations that occur in these and other pathways can alter the effects that natural GSK-3 activity has on regulating these signaling circuits that can lead to cancer as well as other diseases. The novel roles that microRNAs play in regulation of the effects of GSK-3 will also be evaluated. Targeting GSK-3 and these other pathways may improve therapy and overcome therapeutic resistance.
Collapse
Affiliation(s)
- James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University Greenville, NC 27858, USA.
| | - Dariusz Rakus
- Department of Animal Molecular Physiology, Institute of Experimental Biology, Wroclaw University, Wroclaw, Poland
| | - Agnieszka Gizak
- Department of Animal Molecular Physiology, Institute of Experimental Biology, Wroclaw University, Wroclaw, Poland
| | - Linda S Steelman
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University Greenville, NC 27858, USA
| | - Steve L Abrams
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University Greenville, NC 27858, USA
| | - Kvin Lertpiriyapong
- Department of Comparative Medicine, Brody School of Medicine at East Carolina University, USA
| | - Timothy L Fitzgerald
- Department of Surgery, Brody School of Medicine at East Carolina University, USA
| | - Li V Yang
- Department of Internal Medicine, Hematology/Oncology Section, Brody School of Medicine at East Carolina University, USA
| | - Giuseppe Montalto
- Biomedical Department of Internal Medicine and Specialties, University of Palermo, Palermo, Italy; Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Melchiorre Cervello
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Massimo Libra
- Department of Bio-medical Sciences, University of Catania, Catania, Italy
| | | | - Aurora Scalisi
- Unit of Oncologic Diseases, ASP-Catania, Catania 95100, Italy
| | - Francesco Torino
- Department of Systems Medicine, Chair of Medical Oncology, Tor Vergata University of Rome, Rome, Italy
| | - Concettina Fenga
- Department of Biomedical, Odontoiatric, Morphological and Functional Images, Occupational Medicine Section - Policlinico "G. Martino" - University of Messina, Messina 98125, Italy
| | - Luca M Neri
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Sandra Marmiroli
- Department of Surgery, Medicine, Dentistry and Morphology, University of Modena and Reggio Emilia, Modena, Italy
| | - Lucio Cocco
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Alberto M Martelli
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| |
Collapse
|
15
|
Steelman LS, Martelli AM, Cocco L, Libra M, Nicoletti F, Abrams SL, McCubrey JA. The therapeutic potential of mTOR inhibitors in breast cancer. Br J Clin Pharmacol 2016; 82:1189-1212. [PMID: 27059645 DOI: 10.1111/bcp.12958] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 03/29/2016] [Accepted: 03/31/2016] [Indexed: 12/16/2022] Open
Abstract
Rapamycin and modified rapamycins (rapalogs) have been used to prevent allograft rejection after organ transplant for over 15 years. The mechanistic target of rapamycin (mTOR) has been determined to be a key component of the mTORC1 complex which consists of the serine/threonine kinase TOR and at least five other proteins which are involved in regulating its activity. Some of the best characterized substrates of mTORC1 are proteins which are key kinases involved in the regulation of cell growth (e.g., p70S6K) and protein translation (e.g., 4E-BP1). These proteins may in some cases serve as indicators to sensitivity to rapamycin-related therapies. Dysregulation of mTORC1 activity frequently occurs due to mutations at, or amplifications of, upstream growth factor receptors (e.g., human epidermal growth factor receptor-2, HER2) as well as kinases (e.g., PI3K) and phosphatases (e.g., PTEN) critical in the regulation of cell growth. More recently, it has been shown that certain rapalogs may enhance the effectiveness of hormonal-based therapies for breast cancer patients who have become resistant to endocrine therapy. The combined treatment of certain rapalogs (e.g., everolimus) and aromatase inhibitors (e.g., exemestane) has been approved by the United States Food and Drug Administration (US FDA) and other drug regulatory agencies to treat estrogen receptor positive (ER+) breast cancer patients who have become resistant to hormonal-based therapies and have progressed. This review will summarize recent basic and clinical research in the area and evaluate potential novel therapeutic approaches.
Collapse
Affiliation(s)
- Linda S Steelman
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Alberto M Martelli
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Lucio Cocco
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, Laboratory of Translational Oncology & Functional Genomics, Section of Pathology & Oncology, University of Catania, Catania, Italy
| | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, Laboratory of Translational Oncology & Functional Genomics, Section of Pathology & Oncology, University of Catania, Catania, Italy
| | - Stephen L Abrams
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA.
| |
Collapse
|
16
|
The PI3K/Akt/PTEN/mTOR pathway: a fruitful target for inducing cell death in rheumatoid arthritis? Future Med Chem 2016; 7:1137-47. [PMID: 26132523 DOI: 10.4155/fmc.15.55] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
PI3K/Akt/mTOR signaling regulates diverse cellular processes. Abnormal PI3K/Akt/mTOR signaling is a characteristic feature of cancer. As such inhibition of PI3K/Akt/mTOR signaling using small molecule inhibitors has been a focus of recently developed anticancer drugs. Rheumatoid arthritis and psoriatic arthritis are autoimmune-mediated inflammatory diseases. PI3K signaling could now be targeted to determine its contribution to rheumatoid and psoriatic arthritis where deregulated proliferation and aberrant survival of activated immune cells, macrophages, monocytes, dendritic cells and synovial fibroblasts significantly overlap with abnormal growth of cancer cells. The results of some recent studies in psoriatic arthritis using PI3K signaling inhibitors suggests that small molecule inhibitor strategies directed at PI3K signaling may be a useful future therapy for immune-mediated arthritis.
Collapse
|
17
|
Sarmento LM, Barata JT. CHK1 and replicative stress in T-cell leukemia: Can an irreverent tumor suppressor end up playing the oncogene? Adv Biol Regul 2016; 60:115-121. [PMID: 26527132 DOI: 10.1016/j.jbior.2015.10.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 10/19/2015] [Accepted: 10/20/2015] [Indexed: 06/05/2023]
Abstract
Replicative stress (RS) is a cell-intrinsic phenomenon enhanced by oncogenic transformation. Checkpoint kinase 1 (CHK1) is a key component of the ATR-dependent DNA damage response pathway that protects cells from RS by preventing replication fork collapse and activating homologous DNA repair. Taking this knowledge into account, one would predict CHK1 behaves strictly as a tumor suppressor. However, the reality seems far more complex. CHEK1 loss-of-function mutations have not been found in human tumors, and transgenic expression of Chek1 in mice promotes oncogene-induced transformation through RS inhibition. Moreover, CHK1 is overexpressed in various human cancers and CHK1 inhibitors have been developed as sensitizers to enhance the cytotoxicity of DNA damage-inducing chemotherapies. Here, we summarize the literature on the involvement of CHK1 in cancer progression, including our recent observation that CHK1 sustains T-cell acute lymphoblastic leukemia (T-ALL) cell viability. We also debate the importance of identifying patients that could benefit the most from treatment with CHK1 inhibitors, taking T-ALL as a model, and propose possible markers of therapeutic response.
Collapse
Affiliation(s)
- Leonor M Sarmento
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - João T Barata
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal.
| |
Collapse
|
18
|
Chappell WH, Abrams SL, Lertpiriyapong K, Fitzgerald TL, Martelli AM, Cocco L, Rakus D, Gizak A, Terrian D, Steelman LS, McCubrey JA. Novel roles of androgen receptor, epidermal growth factor receptor, TP53, regulatory RNAs, NF-kappa-B, chromosomal translocations, neutrophil associated gelatinase, and matrix metalloproteinase-9 in prostate cancer and prostate cancer stem cells. Adv Biol Regul 2015; 60:64-87. [PMID: 26525204 DOI: 10.1016/j.jbior.2015.10.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 10/02/2015] [Indexed: 12/19/2022]
Abstract
Approximately one in six men will be diagnosed with some form of prostate cancer in their lifetime. Over 250,000 men worldwide die annually due to complications from prostate cancer. While advancements in prostate cancer screening and therapies have helped in lowering this statistic, better tests and more effective therapies are still needed. This review will summarize the novel roles of the androgen receptor (AR), epidermal growth factor receptor (EGFR), the EGFRvIII variant, TP53, long-non-coding RNAs (lncRNAs), microRNAs (miRs), NF-kappa-B, chromosomal translocations, neutrophil associated gelatinase, (NGAL), matrix metalloproteinase-9 (MMP-9), the tumor microenvironment and cancer stem cells (CSC) have on the diagnosis, development and treatment of prostate cancer.
Collapse
Affiliation(s)
- William H Chappell
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Stephen L Abrams
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Kvin Lertpiriyapong
- Department of Comparative Medicine, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Timothy L Fitzgerald
- Department of Surgery, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Alberto M Martelli
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Lucio Cocco
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Dariusz Rakus
- Department of Animal Molecular Physiology, Institute of Experimental Biology, Wroclaw University, Wroclaw, Poland
| | - Agnieszka Gizak
- Department of Animal Molecular Physiology, Institute of Experimental Biology, Wroclaw University, Wroclaw, Poland
| | - David Terrian
- Department of Anatomy and Cell Biology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Linda S Steelman
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - James A McCubrey
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA.
| |
Collapse
|
19
|
Pellagatti A, Dolatshad H, Yip BH, Valletta S, Boultwood J. Application of genome editing technologies to the study and treatment of hematological disease. Adv Biol Regul 2015; 60:122-134. [PMID: 26433620 DOI: 10.1016/j.jbior.2015.09.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 09/07/2015] [Accepted: 09/09/2015] [Indexed: 11/29/2022]
Abstract
Genome editing technologies have advanced significantly over the past few years, providing a fast and effective tool to precisely manipulate the genome at specific locations. The three commonly used genome editing technologies are Zinc Finger Nucleases (ZFNs), Transcription Activator-Like Effector Nucleases (TALENs), and the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-associated Cas9 (CRISPR/Cas9) system. ZFNs and TALENs consist of endonucleases fused to a DNA-binding domain, while the CRISPR/Cas9 system uses guide RNAs to target the bacterial Cas9 endonuclease to the desired genomic location. The double-strand breaks made by these endonucleases are repaired in the cells either by non-homologous end joining, resulting in the introduction of insertions/deletions, or, if a repair template is provided, by homology directed repair. The ZFNs, TALENs and CRISPR/Cas9 systems take advantage of these repair mechanisms for targeted genome modification and have been successfully used to manipulate the genome in human cells. These genome editing tools can be used to investigate gene function, to discover new therapeutic targets, and to develop disease models. Moreover, these genome editing technologies have great potential in gene therapy. Here, we review the latest advances in the application of genome editing technology to the study and treatment of hematological disorders.
Collapse
Affiliation(s)
- Andrea Pellagatti
- Bloodwise Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, and NIHR Biomedical Research Centre, Oxford, UK.
| | - Hamid Dolatshad
- Bloodwise Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, and NIHR Biomedical Research Centre, Oxford, UK
| | - Bon Ham Yip
- Bloodwise Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, and NIHR Biomedical Research Centre, Oxford, UK
| | - Simona Valletta
- Bloodwise Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, and NIHR Biomedical Research Centre, Oxford, UK
| | - Jacqueline Boultwood
- Bloodwise Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, and NIHR Biomedical Research Centre, Oxford, UK.
| |
Collapse
|
20
|
Chiarini F, Lonetti A, Evangelisti C, Buontempo F, Orsini E, Evangelisti C, Cappellini A, Neri LM, McCubrey JA, Martelli AM. Advances in understanding the acute lymphoblastic leukemia bone marrow microenvironment: From biology to therapeutic targeting. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:449-463. [PMID: 26334291 DOI: 10.1016/j.bbamcr.2015.08.015] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 08/26/2015] [Accepted: 08/27/2015] [Indexed: 02/07/2023]
Abstract
The bone marrow (BM) microenvironment regulates the properties of healthy hematopoietic stem cells (HSCs) localized in specific niches. Two distinct microenvironmental niches have been identified in the BM, the "osteoblastic (endosteal)" and "vascular" niches. Nevertheless, these niches provide sanctuaries where subsets of leukemic cells escape chemotherapy-induced death and acquire a drug-resistant phenotype. Moreover, it is emerging that leukemia cells are able to remodel the BM niches into malignant niches which better support neoplastic cell survival and proliferation. This review focuses on the cellular and molecular biology of microenvironment/leukemia interactions in acute lymphoblastic leukemia (ALL) of both B- and T-cell lineage. We shall also highlight the emerging role of exosomes/microvesicles as efficient messengers for cell-to-cell communication in leukemia settings. Studies on the interactions between the BM microenvironment and ALL cells have led to the discovery of potential therapeutic targets which include cytokines/chemokines and their receptors, adhesion molecules, signal transduction pathways, and hypoxia-related proteins. The complex interplays between leukemic cells and BM microenvironment components provide a rationale for innovative, molecularly targeted therapies, designed to improve ALL patient outcome. A better understanding of the contribution of the BM microenvironment to the process of leukemogenesis and leukemia persistence after initial remission, may provide new targets that will allow destruction of leukemia cells without adversely affecting healthy HSCs. This article is part of a Special Issue entitled: Tumor Microenvironment Regulation of Cancer Cell Survival, Metastasis,Inflammation, and Immune Surveillance edited by Peter Ruvolo and Gregg L. Semenza.
Collapse
Affiliation(s)
- Francesca Chiarini
- Institute of Molecular Genetics, National Research Council, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Annalisa Lonetti
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Camilla Evangelisti
- Institute of Molecular Genetics, National Research Council, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Francesca Buontempo
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Ester Orsini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Cecilia Evangelisti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Alessandra Cappellini
- Department of Human Social and Health Sciences, University of Cassino, Cassino, Italy
| | - Luca M Neri
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - James A McCubrey
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Alberto M Martelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.
| |
Collapse
|
21
|
Roles of NGAL and MMP-9 in the tumor microenvironment and sensitivity to targeted therapy. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:438-448. [PMID: 26278055 DOI: 10.1016/j.bbamcr.2015.08.010] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 08/08/2015] [Accepted: 08/10/2015] [Indexed: 12/15/2022]
Abstract
Various, diverse molecules contribute to the tumor microenvironment and influence invasion and metastasis. In this review, the roles of neutrophil gelatinase-associated lipocalin (NGAL) and matrix metalloproteinase-9 (MMP-9) in the tumor microenvironment and sensitivity to therapy will be discussed. The lipocalin family of proteins has many important functions. For example when NGAL forms a complex with MMP-9 it increases its stability which is important in cancer metastasis. Small hydrophobic molecules are bound by NGAL which can alter their entry into and efflux from cells. Iron transport and storage are also influenced by NGAL activity. Regulation of iron levels is important for survival in the tumor microenvironment as well as metastasis. Innate immunity is also regulated by NGAL as it can have bacteriostatic properties. NGAL and MMP-9 expression may also affect the sensitivity of cancer cells to chemotherapy as well as targeted therapy. Thus NGAL and MMP-9 play important roles in key processes involved in metastasis as well as response to therapy. This article is part of a Special Issue entitled: Tumor Microenvironment Regulation of Cancer Cell Survival, Metastasis, Inflammation, and Immune Surveillance edited by Peter Ruvolo and Gregg L. Semenza.
Collapse
|
22
|
Redox Regulation in Cancer Stem Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:750798. [PMID: 26273424 PMCID: PMC4529979 DOI: 10.1155/2015/750798] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 02/03/2015] [Accepted: 02/10/2015] [Indexed: 12/17/2022]
Abstract
Reactive oxygen species (ROS) and ROS-dependent (redox regulation) signaling pathways and transcriptional activities are thought to be critical in stem cell self-renewal and differentiation during growth and organogenesis. Aberrant ROS burst and dysregulation of those ROS-dependent cellular processes are strongly associated with human diseases including many cancers. ROS levels are elevated in cancer cells partially due to their higher metabolism rate. In the past 15 years, the concept of cancer stem cells (CSCs) has been gaining ground as the subpopulation of cancer cells with stem cell-like properties and characteristics have been identified in various cancers. CSCs possess low levels of ROS and are responsible for cancer recurrence after chemotherapy or radiotherapy. Unfortunately, how CSCs control ROS production and scavenging and how ROS-dependent signaling pathways contribute to CSCs function remain poorly understood. This review focuses on the role of redox balance, especially in ROS-dependent cellular processes in cancer stem cells (CSCs). We updated recent advances in our understanding of ROS generation and elimination in CSCs and their effects on CSC self-renewal and differentiation through modulating signaling pathways and transcriptional activities. The review concludes that targeting CSCs by manipulating ROS metabolism/dependent pathways may be an effective approach for improving cancer treatment.
Collapse
|
23
|
Fitzgerald TL, Lertpiriyapong K, Cocco L, Martelli AM, Libra M, Candido S, Montalto G, Cervello M, Steelman L, Abrams SL, McCubrey JA. Roles of EGFR and KRAS and their downstream signaling pathways in pancreatic cancer and pancreatic cancer stem cells. Adv Biol Regul 2015; 59:65-81. [PMID: 26257206 DOI: 10.1016/j.jbior.2015.06.003] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 06/04/2015] [Indexed: 01/06/2023]
Abstract
Pancreatic cancer is currently the fourth most common cancer, is increasing in incidence and soon will be the second leading cause of cancer death in the USA. This is a deadly malignancy with an incidence that approximates the mortality with 44,000 new cases and 36,000 deaths each year. Surgery, although only modestly successful, is the only curative option. However, due the locally aggressive nature and early metastasis, surgery can be performed on less than 20% of patients. Cytotoxic chemotherapy is palliative, has significant toxicity and improves survival very little. Thus new treatment paradigms are needed desperately. Due to the extremely high frequency of KRAS gene mutations (>90%) detected in pancreatic cancer patients, the roles of the epidermal growth factor receptor (EGFR), Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTORC1/GSK-3 pathways have been investigated in pancreatic cancer for many years. Constitutively active Ras can activate both of these pathways and there is cross talk between Ras and EGFR which is believed to be important in driving metastasis. Mutant KRAS may also drive the expression of GSK-3 through Raf/MEK/ERK-mediated effects on GSK-3 transcription. GSK-3 can then regulate the expression of NF-kappaB which is important in modulating pancreatic cancer chemoresistance. While the receptors and many downstream signaling molecules have been identified and characterized, there is still much to learn about these pathways and how their deregulation can lead to cancer. Multiple inhibitors to EGFR, PI3K, mTOR, GSK-3, Raf, MEK and hedgehog (HH) have been developed and are being evaluated in various cancers. Current research often focuses on the role of these pathways in cancer stem cells (CSC), with the goal to identify sites where therapeutic resistance may develop. Relatively novel fields of investigation such as microRNAs and drugs used for other diseases e.g., diabetes, (metformin) and malaria (chloroquine) have provided new information about therapeutic resistance and CSCs. This review will focus on recent advances in the field and how they affect pancreatic cancer research and treatment.
Collapse
Affiliation(s)
- Timothy L Fitzgerald
- Department of Surgery, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Kvin Lertpiriyapong
- Department of Comparative Medicine, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Lucio Cocco
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Alberto M Martelli
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, Laboratory of Translational Oncology & Functional Genomics, Section of Pathology & Oncology, Via Androne, Catania, Italy, University of Catania, Catania, Italy
| | - Saverio Candido
- Department of Biomedical and Biotechnological Sciences, Laboratory of Translational Oncology & Functional Genomics, Section of Pathology & Oncology, Via Androne, Catania, Italy, University of Catania, Catania, Italy
| | - Giuseppe Montalto
- Biomedical Department of Internal Medicine and Specialties, University of Palermo, Palermo, Italy; Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Melchiorre Cervello
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Linda Steelman
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Stephen L Abrams
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA.
| |
Collapse
|
24
|
Nishioka C, Ikezoe T, Yokoyama A. Blockade of CD82 by a monoclonal antibody potentiates anti-leukemia effects of AraC in vivo. Cancer Med 2015; 4:1426-31. [PMID: 26139471 PMCID: PMC4567027 DOI: 10.1002/cam4.482] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 05/06/2015] [Accepted: 05/07/2015] [Indexed: 11/23/2022] Open
Abstract
We recently found that CD82 inhibits matrix metalloproteinase 9 and augments adhesion of CD34+/CD38− acute myelogenous leukemia (AML) cells to the bone marrow (BM) microenvironment. The present study found that the use of an anti-CD82 monoclonal antibody (CD82 mAb) mobilized CD34+ leukemia cells from BM into the peripheral blood in a humanized AML murine model. The use of CD82 mAb in combination with cytarabine (AraC) significantly prolonged survival of immunodeficient mice-bearing human AML cells than did treatment with either AraC or CD82 mAb alone. Taken together, the combination of an anti-leukemic agent and the mobilizing agent CD82 mAb may be a promising treatment strategy to treat patients with AML.
Collapse
Affiliation(s)
- Chie Nishioka
- Department of Hematology and Respiratory Medicine, Kochi Medical School, Kochi University, Nankoku, Kochi, 783-8505, Japan
| | - Takayuki Ikezoe
- Department of Hematology and Respiratory Medicine, Kochi Medical School, Kochi University, Nankoku, Kochi, 783-8505, Japan
| | - Akihito Yokoyama
- Department of Hematology and Respiratory Medicine, Kochi Medical School, Kochi University, Nankoku, Kochi, 783-8505, Japan
| |
Collapse
|
25
|
Durinck K, Goossens S, Peirs S, Wallaert A, Van Loocke W, Matthijssens F, Pieters T, Milani G, Lammens T, Rondou P, Van Roy N, De Moerloose B, Benoit Y, Haigh J, Speleman F, Poppe B, Van Vlierberghe P. Novel biological insights in T-cell acute lymphoblastic leukemia. Exp Hematol 2015; 43:625-39. [PMID: 26123366 DOI: 10.1016/j.exphem.2015.05.017] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 05/24/2015] [Indexed: 01/07/2023]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive type of blood cancer that accounts for about 15% of pediatric and 25% of adult acute lymphoblastic leukemia (ALL) cases. It is considered as a paradigm for the multistep nature of cancer initiation and progression. Genetic and epigenetic reprogramming events, which transform T-cell precursors into malignant T-ALL lymphoblasts, have been extensively characterized over the past decade. Despite our comprehensive understanding of the genomic landscape of human T-ALL, leukemia patients are still treated by high-dose multiagent chemotherapy, potentially followed by hematopoietic stem cell transplantation. Even with such aggressive treatment regimens, which are often associated with considerable acute and long-term side effects, about 15% of pediatric and 40% of adult T-ALL patients still relapse, owing to acquired therapy resistance, and present with very dismal survival perspectives. Unfortunately, the molecular mechanisms by which residual T-ALL tumor cells survive chemotherapy and act as a reservoir for leukemic progression and hematologic relapse remain poorly understood. Nevertheless, it is expected that enhanced molecular understanding of T-ALL disease biology will ultimately facilitate a targeted therapy driven approach that can reduce chemotherapy-associated toxicities and improve survival of refractory T-ALL patients through personalized salvage therapy. In this review, we summarize recent biological insights into the molecular pathogenesis of T-ALL and speculate how the genetic landscape of T-ALL could trigger the development of novel therapeutic strategies for the treatment of human T-ALL.
Collapse
Affiliation(s)
- Kaat Durinck
- Center for Medical Genetics, Department for Pediatrics, Ghent, Belgium
| | - Steven Goossens
- Department for Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Unit for Molecular Oncology, VIB Inflammation Research Center, Ghent, Belgium; Mammalian Functional Genetics Laboratory, Division of Blood Cancers, Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria, Australia
| | - Sofie Peirs
- Center for Medical Genetics, Department for Pediatrics, Ghent, Belgium
| | - Annelynn Wallaert
- Center for Medical Genetics, Department for Pediatrics, Ghent, Belgium
| | - Wouter Van Loocke
- Center for Medical Genetics, Department for Pediatrics, Ghent, Belgium
| | | | - Tim Pieters
- Center for Medical Genetics, Department for Pediatrics, Ghent, Belgium; Department for Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Unit for Molecular Oncology, VIB Inflammation Research Center, Ghent, Belgium
| | - Gloria Milani
- Center for Medical Genetics, Department for Pediatrics, Ghent, Belgium
| | - Tim Lammens
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium
| | - Pieter Rondou
- Center for Medical Genetics, Department for Pediatrics, Ghent, Belgium
| | - Nadine Van Roy
- Center for Medical Genetics, Department for Pediatrics, Ghent, Belgium
| | - Barbara De Moerloose
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium
| | - Yves Benoit
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium
| | - Jody Haigh
- Mammalian Functional Genetics Laboratory, Division of Blood Cancers, Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria, Australia
| | - Frank Speleman
- Center for Medical Genetics, Department for Pediatrics, Ghent, Belgium
| | - Bruce Poppe
- Center for Medical Genetics, Department for Pediatrics, Ghent, Belgium
| | | |
Collapse
|
26
|
Follo MY, Manzoli L, Poli A, McCubrey JA, Cocco L. PLC and PI3K/Akt/mTOR signalling in disease and cancer. Adv Biol Regul 2014; 57:10-6. [PMID: 25482988 DOI: 10.1016/j.jbior.2014.10.004] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 10/22/2014] [Indexed: 12/20/2022]
Abstract
Cancer cell metabolism is deregulated, and signalling pathways can be involved. For instance, PI3K/Akt/mTOR is associated with normal proliferation and differentiation, and its alteration is detectable in cancer cells, that exploit the normal mechanisms to overcome apoptosis. On the other hand, also the family of Phospholipase C (PLC) enzymes play a critical role in cell growth, and any change concerning these enzymes or their downstream targets can be associated with neoplastic transformation. Here, we review the role of PLC and PI3K/Akt/mTOR signal transduction pathways in pathophysiology.
Collapse
Affiliation(s)
- Matilde Y Follo
- Department of Biomedical and Neuromotor Sciences, Cellular Signalling Laboratory, University of Bologna, Bologna, Italy.
| | - Lucia Manzoli
- Department of Biomedical and Neuromotor Sciences, Cellular Signalling Laboratory, University of Bologna, Bologna, Italy
| | - Alessandro Poli
- Department of Biomedical and Neuromotor Sciences, Cellular Signalling Laboratory, University of Bologna, Bologna, Italy
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Lucio Cocco
- Department of Biomedical and Neuromotor Sciences, Cellular Signalling Laboratory, University of Bologna, Bologna, Italy.
| |
Collapse
|
27
|
McCubrey JA, Abrams SL, Fitzgerald TL, Cocco L, Martelli AM, Montalto G, Cervello M, Scalisi A, Candido S, Libra M, Steelman LS. Roles of signaling pathways in drug resistance, cancer initiating cells and cancer progression and metastasis. Adv Biol Regul 2014; 57:75-101. [PMID: 25453219 DOI: 10.1016/j.jbior.2014.09.016] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 09/13/2014] [Indexed: 11/28/2022]
Abstract
The EGFR/PI3K/PTEN/Akt/mTORC pathway plays prominent roles in malignant transformation, prevention of apoptosis, drug resistance, cancer initiating cells (CICs) and metastasis. The expression of this pathway is frequently altered in breast and other cancers due to mutations at or aberrant expression of: HER2, EGFR1, PIK3CA, and PTEN as well as other oncogenes and tumor suppressor genes. miRs and epigenetic mechanisms of gene regulation are also important events which regulate this pathway. In some breast cancer cases, mutations at certain components of this pathway (e.g., PIK3CA) are associated with a better prognosis than breast cancers lacking these mutations. The expression of this pathway has been associated with CICs and in some cases resistance to therapeutics. We will review the effects of activation of the EGFR/PI3K/PTEN/Akt/mTORC pathway primarily in breast cancer and development of drug resistance. The targeting of this pathway and other interacting pathways will be discussed as well as clinical trials with novel small molecule inhibitors as well as established drugs that are used to treat other diseases. In this manuscript, we will discuss an inducible EGFR model (v-ERB-B:ER) and its effects on cell growth, cell cycle progression, activation of signal transduction pathways, prevention of apoptosis in hematopoietic, breast and prostate cancer models.
Collapse
Affiliation(s)
- James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA.
| | - Stephen L Abrams
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Timothy L Fitzgerald
- Department of Surgery, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Lucio Cocco
- Cellular Signalling Laboratory, Department of Anatomical Sciences, Università di Bologna, Bologna, Italy; Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Alberto M Martelli
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Giuseppe Montalto
- Biomedical Department of Internal Medicine and Specialties, University of Palermo, Palermo, Italy
| | - Melchiorre Cervello
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Aurora Scalisi
- Unit of Oncologic Diseases, ASP-Catania, Catania 95100, Italy
| | - Saverio Candido
- Department of Bio-Medical Sciences, University of Catania, Catania, Italy
| | - Massimo Libra
- Department of Bio-Medical Sciences, University of Catania, Catania, Italy
| | - Linda S Steelman
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| |
Collapse
|
28
|
Spinelli L, Lindsay YE, Leslie NR. PTEN inhibitors: an evaluation of current compounds. Adv Biol Regul 2014; 57:102-11. [PMID: 25446882 DOI: 10.1016/j.jbior.2014.09.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 09/06/2014] [Indexed: 12/22/2022]
Abstract
Small molecule inhibitors of many classes of enzymes, including phosphatases, have widespread use as experimental tools and as therapeutics. Efforts to develop inhibitors against the lipid phosphatase and tumour suppressor, PTEN, was for some time limited by concerns that their use as therapy could result in increased risk of cancer. However, the accumulation of evidence that short term PTEN inhibition may be valuable in conditions such as nerve injury has raised interest. Here we investigate the inhibition of PTEN by four available PTEN inhibitors, bpV(phen), bpV(pic), VO-OHpic and SF1670 and compared this inhibition with that of only 3 other related enzymes, the tyrosine phosphatase SHP1 and the phosphoinositide phosphatases INPP4A and INPP4B. Even with this very small number of comparators, for all compounds, inhibition of multiple enzymes was observed and with all three vanadate compounds, this was similar or more potent than the inhibition of PTEN. In particular, the bisperoxovanadate compounds were found to inhibit PTEN poorly in the presence of reducing agents including the cellular redox buffer glutathione.
Collapse
Affiliation(s)
- Laura Spinelli
- Institute of Biological Chemistry, Biophysics and Bioengineering, Nasmyth Building, Heriot Watt University, Edinburgh, EH14 4AS, UK; Division of Cell Signalling and Immunology, College of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | - Yvonne E Lindsay
- Division of Cell Signalling and Immunology, College of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | - Nicholas R Leslie
- Institute of Biological Chemistry, Biophysics and Bioengineering, Nasmyth Building, Heriot Watt University, Edinburgh, EH14 4AS, UK; Division of Cell Signalling and Immunology, College of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK.
| |
Collapse
|
29
|
Jhanwar-Uniyal M, Gillick JL, Neil J, Tobias M, Thwing ZE, Murali R. Distinct signaling mechanisms of mTORC1 and mTORC2 in glioblastoma multiforme: a tale of two complexes. Adv Biol Regul 2014; 57:64-74. [PMID: 25442674 DOI: 10.1016/j.jbior.2014.09.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 09/09/2014] [Indexed: 02/07/2023]
Abstract
Mechanistic target of rapamycin (mTOR) is a serine-threonine kinase that functions via two multiprotein complexes, namely mTORC1 and mTORC2, each characterized by different binding partners that confer separate functions. mTORC1 function is tightly regulated by PI3-K/Akt and is sensitive to rapamycin. mTORC2 is sensitive to growth factors, not nutrients, and is associated with rapamycin-insensitivity. mTORC1 regulates protein synthesis and cell growth through downstream molecules: 4E-BP1 (also called EIF4E-BP1) and S6K. Also, mTORC2 is thought to modulate growth factor signaling by phosphorylating the C-terminal hydrophobic motif of some AGC kinases such as Akt and SGK. Recent evidence has suggested that mTORC2 may play an important role in maintenance of normal as well as cancer cells by virtue of its association with ribosomes, which may be involved in metabolic regulation of the cell. Rapamycin (sirolimus) and its analogs known as rapalogues, such as RAD001 (everolimus) and CCI-779 (temsirolimus), suppress mTOR activity through an allosteric mechanism that acts at a distance from the ATP-catalytic binding site, and are considered incomplete inhibitors. Moreover, these compounds suppress mTORC1-mediated S6K activation, thereby blocking a negative feedback loop, leading to activation of mitogenic pathways promoting cell survival and growth. Consequently, mTOR is a suitable target of therapy in cancer treatments. However, neither of these complexes is fully inhibited by the allosteric inhibitor rapamycin or its analogs. In recent years, new pharmacologic agents have been developed which can inhibit these complexes via ATP-binding mechanism, or dual inhibition of the canonical PI3-K/Akt/mTOR signaling pathway. These compounds include WYE-354, KU-003679, PI-103, Torin1, and Torin2, which can target both complexes or serve as a dual inhibitor for PI3-K/mTOR. This investigation describes the mechanism of action of pharmacological agents that effectively target mTORC1 and mTORC2 resulting in suppression of growth, proliferation, and migration of tumor and cancer stem cells.
Collapse
Affiliation(s)
| | - John L Gillick
- Department of Neurosurgery, New York Medical College, Valhalla, NY 10595, USA
| | - Jayson Neil
- Department of Neurosurgery, New York Medical College, Valhalla, NY 10595, USA
| | - Michael Tobias
- Department of Neurosurgery, New York Medical College, Valhalla, NY 10595, USA
| | - Zachary E Thwing
- Department of Neurosurgery, New York Medical College, Valhalla, NY 10595, USA
| | - Raj Murali
- Department of Neurosurgery, New York Medical College, Valhalla, NY 10595, USA
| |
Collapse
|