1
|
Feng Y, Ye H, Deng Y, Zhao Z, Zhao H, Liu S, Zhang L, Duan Y, Huang Z, Du J, Li Q, Zhou J, Mou C. Early brain gene network alterations and growth disruptions in juvenile Chinese longsnout catfish (Leiocassis longirostris) induced by 17β-estradiol and 17α-methyltestosterone. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 293:118053. [PMID: 40101593 DOI: 10.1016/j.ecoenv.2025.118053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 03/20/2025]
Abstract
Endocrine-disrupting chemicals (EDCs) 17β-estradiol (E2β) and 17α-methyltestosterone (MT) have been detected in aquatic environments at concentrations capable of perturbing neuroendocrine systems, yet their molecular mechanisms of action remain incompletely characterized. This study investigated the effects of chronic exposure to E2β and MT on brain development and neuroendocrine regulation in Leiocassis longirostris, a commercially important catfish species endemic to the Yangtze River Basin. Juvenile fish were exposed to three nominal dietary doses (100-300 ng) of each hormone for 30 days, corresponding to waterborne concentrations (556-1667 ng/L) within the upper range of environmental detections. Histopathological analysis revealed dose-dependent plasma accumulation in cerebral microvasculature, indicative of compromised blood-brain barrier integrity. Transcriptomic profiling identified significant suppression of immediate early genes (IEGs) critical for synaptic plasticity, including FOS, JUN, EGR1, NR4A1, CEBP-A/D, and ETS1, with E2β exerting stronger inhibitory effects (maximal at 200 ng-dose). Concomitant upregulation of neuroendocrine genes cga (gonadotropin α-subunit) and pomcb (pro-opiomelanocortin) suggested compensatory endocrine feedback mechanisms. Growth inhibition was observed in both treatment groups, with E2β-induced reductions in body weight exceeding those of MT. Functional enrichment analysis linked these transcriptional changes to disrupted pathways in synaptic signaling, chromatin remodeling, and endocrine regulation. Collectively, these findings demonstrate that estrogenic and androgenic EDCs impair neurodevelopmental processes via suppression of IEGs, leading to growth retardation and endocrine dysregulation. This study underscores the sublethal risks posed by sex steroid EDCs to wild fish populations and highlights the need for targeted regulatory measures to mitigate aquatic endocrine disruption.
Collapse
Affiliation(s)
- Yang Feng
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan 611731, China
| | - Hua Ye
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, College of Fisheries, Southwest University, Chongqing 402460, China
| | - Yongqiang Deng
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan 611731, China
| | - Zhongmeng Zhao
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan 611731, China
| | - Han Zhao
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan 611731, China
| | - Senyue Liu
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan 611731, China
| | - Lu Zhang
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan 611731, China
| | - Yuanliang Duan
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan 611731, China
| | - Zhipeng Huang
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan 611731, China
| | - Jun Du
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan 611731, China
| | - Qiang Li
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan 611731, China.
| | - Jian Zhou
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan 611731, China.
| | - Chengyan Mou
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan 611731, China.
| |
Collapse
|
2
|
Cheng K, Zhou Y, Hao Y, Wu S, Wang N, Zhang P, Wang Y. Magnolol inhibits appetite and causes visceral fat loss through Growth/differentiation factor-15 (GDF-15) by activating transcription factor 4-CCAAT enhancer binding protein γ-mediated endoplasmic reticulum stress responses. Chin J Nat Med 2025; 23:334-345. [PMID: 40122663 DOI: 10.1016/s1875-5364(25)60835-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/11/2024] [Accepted: 05/07/2024] [Indexed: 03/25/2025]
Abstract
Magnolol, a compound extracted from Magnolia officinalis, demonstrates potential efficacy in addressing metabolic dysfunction and cardiovascular diseases. Its biological activities encompass anti-inflammatory, antioxidant, anticoagulant, and anti-diabetic effects. Growth/differentiation factor-15 (GDF-15), a member of the transforming growth factor β superfamily, is considered a potential therapeutic target for metabolic disorders. This study investigated the impact of magnolol on GDF-15 production and its underlying mechanism. The research examined the pharmacological effect of magnolol on GDF-15 expression in vitro and in vivo, and determined the involvement of endoplasmic reticulum (ER) stress signaling in this process. Luciferase reporter assays, chromatin immunoprecipitation, and in vitro DNA binding assays were employed to examine the regulation of GDF-15 by activating transcription factor 4 (ATF4), CCAAT enhancer binding protein γ (CEBPG), and CCCTC-binding factor (CTCF). The study also investigated the effect of magnolol and ATF4 on the activity of a putative enhancer located in the intron of the GDF-15 gene, as well as the influence of single nucleotide polymorphisms (SNPs) on magnolol and ATF4-induced transcription activity. Results demonstrated that magnolol triggers GDF-15 production in endothelial cells (ECs), hepatoma cell line G2 (HepG2) and hepatoma cell line 3B (Hep3B) cell lines, and primary mouse hepatocytes. The cooperative binding of ATF4 and CEBPG upstream of the GDF-15 gene or the E1944285 enhancer located in the intron led to full-power transcription of the GDF-15 gene. SNP alleles were found to impact the magnolol and ATF4-induced transcription activity of GDF-15. In high-fat diet ApoE-/- mice, administration of magnolol induced GDF-15 production and partially suppressed appetite through GDF-15. These findings suggest that magnolol regulates GDF-15 expression through priming of promoter and enhancer activity, indicating its potential as a drug for the treatment of metabolic disorders.
Collapse
Affiliation(s)
- Keru Cheng
- School of Basic Medicine, Anhui Medical University, Hefei 230032, China; Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Yanyun Zhou
- Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Yilong Hao
- Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Shengyun Wu
- Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Nanping Wang
- Health Science Center, East China Normal University, Shanghai 200241, China
| | - Peng Zhang
- School of Basic Medicine, Anhui Medical University, Hefei 230032, China; Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China.
| | - Yinfang Wang
- School of Basic Medicine, Anhui Medical University, Hefei 230032, China; Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China.
| |
Collapse
|
3
|
Gao S, Niu YD, Chen L, Chen MF, Bing XL, Hong XY. Transcriptomic landscapes reveal development-related physiological processes in the two-spotted spider mite, Tetranychus urticae. EXPERIMENTAL & APPLIED ACAROLOGY 2024; 93:743-759. [PMID: 39150623 DOI: 10.1007/s10493-024-00956-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/06/2024] [Indexed: 08/17/2024]
Abstract
The two-spotted spider mite (Tetranychus urticae Koch, TSSM) is recognized as one of the most problematic spider mite pests. However, the precise gene expression patterns across its key developmental stages remain elusive. Here, we performed a comprehensive transcriptome analysis of TSSM eggs, nymphs and adult females using publicly available RNA sequencing (RNA-seq) data to elucidate the overarching transcriptomic differences between these developmental stages. Principal component analysis and hierarchical clustering analysis unveiled distinct separations among samples across different developmental stages, regardless of their Wolbachia infection status. Differential expression analysis revealed 4,089,2,762, and 1,282 core genes specifically enriched in eggs, nymphs, and adults, respectively. KEGG and GO enrichment analyses showed upregulation of genes in eggs are associated with proteolysis, Wnt signaling pathway, DNA transcription, RNA biosynthetic and metabolic processes, as well as protein folding, sorting, and degradation pathways. Meanwhile, nymphs exhibited increased abundance of genes related to chitin/amino sugar metabolic processes, G protein-coupled receptor signaling pathways, monoatomic ion transport, and neurotransmitter transport pathways. Pathways involving sphingolipid and carbohydrate metabolic processes, proteolysis, lipid transport, and localization were particularly enriched in older females. Altogether, our findings suggest that the egg stage exhibits higher activity in cell differentiation processes, the nymph stage is more involved in chitin development, and the adult stage shows increased metabolic and reproductive activity. This study enhances our understanding of the molecular mechanisms underlying TSSM development and paves the way for further research into the intricate physiological processes of TSSM.
Collapse
Affiliation(s)
- Shuo Gao
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yue-Di Niu
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lei Chen
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Meng-Fei Chen
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiao-Li Bing
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Xiao-Yue Hong
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
4
|
Yamazaki T, Iwasaki K, Tomono S, Imai M, Miwa Y, Shizuku M, Ashimine S, Ishiyama K, Inui M, Okuzaki D, Okada M, Kobayashi T, Akashi-Takamura S. Human RP105 monoclonal antibody enhances antigen-specific antibody production in unique culture conditions. iScience 2024; 27:110649. [PMID: 39246445 PMCID: PMC11380396 DOI: 10.1016/j.isci.2024.110649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/16/2024] [Accepted: 07/31/2024] [Indexed: 09/10/2024] Open
Abstract
Detecting antibodies, particularly those targeting donor human leukocyte antigens in organ transplantation and self-antigens in autoimmune diseases, is crucial for diagnosis and therapy. Radioprotective 105 (RP105), a Toll-like receptor family protein, is expressed in immune-competent cells, such as B cells. Studies in mice have shown that the anti-mouse RP105 antibody strongly activates B cells and triggers an adjuvant effect against viral infections. However, the anti-human RP105 antibody (ɑhRP105) weakly activates human B cells. This study established new culture conditions under, which human B cells are strongly activated by the ɑhRP105. When combined with CpGDNA, specific antibody production against blood group carbohydrates, ɑGal, and SARS-CoV-2 was successfully detected in human B cell cultures. Furthermore, comprehensive analysis using liquid chromatography-electrospray ionization tandem mass spectrometry, single-cell RNA sequencing, and quantitative real-time PCR revealed that ɑhRP105 triggered a different activation stimulus compared to CpGDNA. These findings could help identify antibody-producing B cells in cases of transplant rejection and autoimmune diseases.
Collapse
Affiliation(s)
- Tatsuya Yamazaki
- Department of Microbiology and Immunology, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Kenta Iwasaki
- Department of Kidney Diseases and Transplant Immunology, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Susumu Tomono
- Department of Microbiology and Immunology, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Masaki Imai
- Department of Medical Technology and Sciences, Kyoto Tachibana University, Kyoto, Kyoto, Japan
| | - Yuko Miwa
- Department of Kidney Diseases and Transplant Immunology, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Masato Shizuku
- Department of Renal Transplant Surgery, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Satoshi Ashimine
- Department of Renal Transplant Surgery, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Kohei Ishiyama
- Department of Renal Transplant Surgery, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Masanori Inui
- Department of Microbiology and Immunology, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Daisuke Okuzaki
- Laboratory of Human Immunology (Single Cell Genomics), WPI-IFReC, Osaka University, Suita, Osaka, Japan
| | - Manabu Okada
- Department of Transplant and Endocrine Surgery, Japanese Red Cross Aichi Medical Center Nagoya Daini Hospital, Nagoya, Aichi, Japan
| | - Takaaki Kobayashi
- Department of Renal Transplant Surgery, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Sachiko Akashi-Takamura
- Department of Microbiology and Immunology, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| |
Collapse
|
5
|
Chen J, Pan Y, Lu Y, Fang X, Ma T, Chen X, Wang Y, Fang X, Zhang C, Song C. The Function and Mechanism of Long Noncoding RNAs in Adipogenic Differentiation. Genes (Basel) 2024; 15:875. [PMID: 39062654 PMCID: PMC11275360 DOI: 10.3390/genes15070875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/16/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Adipocytes are crucial for maintaining energy balance. Adipocyte differentiation involves distinct stages, including the orientation stage, clone amplification stage, clone amplification termination stage, and terminal differentiation stage. Understanding the regulatory mechanisms governing adipogenic differentiation is essential for comprehending the physiological processes and identifying potential biomarkers and therapeutic targets for metabolic diseases, ultimately improving glucose and fat metabolism. Adipogenic differentiation is influenced not only by key factors such as hormones, the peroxisome proliferator-activated receptor (PPAR) family, and the CCATT enhancer-binding protein (C/EBP) family but also by noncoding RNA, including microRNA (miRNA), long noncoding RNA (lncRNA), and circular RNA (circRNA). Among these, lncRNA has been identified as a significant regulator in adipogenic differentiation. Research has demonstrated various ways in which lncRNAs contribute to the molecular mechanisms of adipogenic differentiation. Throughout the adipogenesis process, lncRNAs modulate adipocyte differentiation and development by influencing relevant signaling pathways and transcription factors. This review provides a brief overview of the function and mechanism of lncRNAs in adipogenic differentiation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Chunlei Zhang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China; (J.C.); (Y.P.); (Y.L.); (X.F.); (T.M.); (X.C.); (Y.W.); (X.F.)
| | - Chengchuang Song
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China; (J.C.); (Y.P.); (Y.L.); (X.F.); (T.M.); (X.C.); (Y.W.); (X.F.)
| |
Collapse
|
6
|
Igami K, Kittaka H, Yagi M, Gotoh K, Matsushima Y, Ide T, Ikeda M, Ueda S, Nitta SI, Hayakawa M, Nakayama KI, Matsumoto M, Kang D, Uchiumi T. iMPAQT reveals that adequate mitohormesis from TFAM overexpression leads to life extension in mice. Life Sci Alliance 2024; 7:e202302498. [PMID: 38664021 PMCID: PMC11046090 DOI: 10.26508/lsa.202302498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/13/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Mitochondrial transcription factor A, TFAM, is essential for mitochondrial function. We examined the effects of overexpressing the TFAM gene in mice. Two types of transgenic mice were created: TFAM heterozygous (TFAM Tg) and homozygous (TFAM Tg/Tg) mice. TFAM Tg/Tg mice were smaller and leaner notably with longer lifespans. In skeletal muscle, TFAM overexpression changed gene and protein expression in mitochondrial respiratory chain complexes, with down-regulation in complexes 1, 3, and 4 and up-regulation in complexes 2 and 5. The iMPAQT analysis combined with metabolomics was able to clearly separate the metabolomic features of the three types of mice, with increased degradation of fatty acids and branched-chain amino acids and decreased glycolysis in homozygotes. Consistent with these observations, comprehensive gene expression analysis revealed signs of mitochondrial stress, with elevation of genes associated with the integrated and mitochondrial stress responses, including Atf4, Fgf21, and Gdf15. These found that mitohormesis develops and metabolic shifts in skeletal muscle occur as an adaptive strategy.
Collapse
Affiliation(s)
- Ko Igami
- LSI Medience Corporation, Tokyo, Japan
- Kyushu Pro Search Limited Liability Partnership, Fukuoka, Japan
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Hiroki Kittaka
- LSI Medience Corporation, Tokyo, Japan
- Kyushu Pro Search Limited Liability Partnership, Fukuoka, Japan
| | - Mikako Yagi
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
- Clinical Chemistry, Division of Biochemical Science and Technology, Department of Health Sciences, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazuhito Gotoh
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
- Department of Laboratory Medicine, Tokai University School of Medicine, Kanagawa, Japan
| | - Yuichi Matsushima
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Tomomi Ide
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masataka Ikeda
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Saori Ueda
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Shin-Ichiro Nitta
- LSI Medience Corporation, Tokyo, Japan
- Kyushu Pro Search Limited Liability Partnership, Fukuoka, Japan
| | - Manami Hayakawa
- Kyushu Pro Search Limited Liability Partnership, Fukuoka, Japan
| | - Keiichi I Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
- Anticancer Strategies Laboratory, TMDU Advanced Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masaki Matsumoto
- Department of Omics and Systems Biology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Dongchon Kang
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
- Kashiigaoka Rehabilitation Hospital, Fukuoka, Japan
| | - Takeshi Uchiumi
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
- Clinical Chemistry, Division of Biochemical Science and Technology, Department of Health Sciences, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
7
|
Park JH, Hothi P, de Lomana ALG, Pan M, Calder R, Turkarslan S, Wu WJ, Lee H, Patel AP, Cobbs C, Huang S, Baliga NS. Gene regulatory network topology governs resistance and treatment escape in glioma stem-like cells. SCIENCE ADVANCES 2024; 10:eadj7706. [PMID: 38848360 PMCID: PMC11160475 DOI: 10.1126/sciadv.adj7706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 05/03/2024] [Indexed: 06/09/2024]
Abstract
Poor prognosis and drug resistance in glioblastoma (GBM) can result from cellular heterogeneity and treatment-induced shifts in phenotypic states of tumor cells, including dedifferentiation into glioma stem-like cells (GSCs). This rare tumorigenic cell subpopulation resists temozolomide, undergoes proneural-to-mesenchymal transition (PMT) to evade therapy, and drives recurrence. Through inference of transcriptional regulatory networks (TRNs) of patient-derived GSCs (PD-GSCs) at single-cell resolution, we demonstrate how the topology of transcription factor interaction networks drives distinct trajectories of cell-state transitions in PD-GSCs resistant or susceptible to cytotoxic drug treatment. By experimentally testing predictions based on TRN simulations, we show that drug treatment drives surviving PD-GSCs along a trajectory of intermediate states, exposing vulnerability to potentiated killing by siRNA or a second drug targeting treatment-induced transcriptional programs governing nongenetic cell plasticity. Our findings demonstrate an approach to uncover TRN topology and use it to rationally predict combinatorial treatments that disrupt acquired resistance in GBM.
Collapse
Affiliation(s)
| | - Parvinder Hothi
- Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA, USA
| | | | - Min Pan
- Institute for Systems Biology, Seattle, WA, USA
| | | | | | - Wei-Ju Wu
- Institute for Systems Biology, Seattle, WA, USA
| | - Hwahyung Lee
- Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA, USA
| | - Anoop P. Patel
- Department of Neurosurgery, Preston Robert Tisch Brain Tumor Center, Duke University, Durham, NC, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA
| | - Charles Cobbs
- Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA, USA
| | - Sui Huang
- Institute for Systems Biology, Seattle, WA, USA
| | - Nitin S. Baliga
- Institute for Systems Biology, Seattle, WA, USA
- Departments of Microbiology, Biology, and Molecular Engineering Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
8
|
Mei X, Huang T, Chen A, Liu W, Jiang L, Zhong S, Shen D, Qiao P, Zhao Q. BmC/EBPZ gene is essential for the larval growth and development of silkworm, Bombyx mori. Front Physiol 2024; 15:1298869. [PMID: 38523808 PMCID: PMC10959570 DOI: 10.3389/fphys.2024.1298869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 02/19/2024] [Indexed: 03/26/2024] Open
Abstract
The genetic male sterile line (GMS) of the silkworm Bombyx mori is a recessive mutant that is naturally mutated from the wild-type 898WB strain. One of the major characteristics of the GMS mutant is its small larvae. Through positional cloning, candidate genes for the GMS mutant were located in a region approximately 800.5 kb long on the 24th linkage group of the silkworm. One of the genes was Bombyx mori CCAAT/enhancer-binding protein zeta (BmC/EBPZ), which is a member of the basic region-leucine zipper transcription factor family. Compared with the wild-type 898WB strain, the GMS mutant features a 9 bp insertion in the 3'end of open reading frame sequence of BmC/EBPZ gene. Moreover, the high expression level of the BmC/EBPZ gene in the testis suggests that the gene is involved in the regulation of reproduction-related genes. Using the CRISPR/Cas9-mediated knockout system, we found that the BmC/EBPZ knockout strains had the same phenotypes as the GMS mutant, that is, the larvae were small. However, the larvae of BmC/EBPZ knockout strains died during the development of the third instar. Therefore, the BmC/EBPZ gene was identified as the major gene responsible for GMS mutation.
Collapse
Affiliation(s)
- Xinglin Mei
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Tianchen Huang
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Anli Chen
- Key Sericultural Laboratory of Shaanxi, Ankang University, Ankang, Shaanxi, China
| | - Weibin Liu
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Li Jiang
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Shanshan Zhong
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Dongxu Shen
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Peitong Qiao
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Qiaoling Zhao
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| |
Collapse
|
9
|
Chawla B, Csankovszki G. How Chromatin Motor Complexes Influence the Nuclear Architecture: A Review of Chromatin Organization, Cohesins, and Condensins with a Focus on C. elegans. DNA 2024; 4:84-103. [PMID: 39726802 PMCID: PMC11671135 DOI: 10.3390/dna4010005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Chromatin is the complex of DNA and associated proteins found in the nuclei of living organisms. How it is organized is a major research field as it has implications for replication, repair, and gene expression. This review summarizes the current state of the chromatin organization field, with a special focus on chromatin motor complexes cohesin and condensin. Containing the highly conserved SMC proteins, these complexes are responsible for organizing chromatin during cell division. Additionally, research has demonstrated that condensin and cohesin also have important functions during interphase to shape the organization of chromatin and regulate expression of genes. Using the model organism C. elegans, the authors review the current knowledge of how these complexes perform such diverse roles and what open questions still exist in the field.
Collapse
Affiliation(s)
- Bahaar Chawla
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1085, USA
| | - Gyӧrgyi Csankovszki
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1085, USA
| |
Collapse
|
10
|
Stephens KE, Moore C, Vinson DA, White BE, Renfro Z, Zhou W, Ji Z, Ji H, Zhu H, Guan Y, Taverna SD. Identification of Regulatory Elements in Primary Sensory Neurons Involved in Trauma-Induced Neuropathic Pain. Mol Neurobiol 2024; 61:1845-1859. [PMID: 37792259 PMCID: PMC10896855 DOI: 10.1007/s12035-023-03673-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/22/2023] [Indexed: 10/05/2023]
Abstract
Chronic pain is a significant public health issue that is often refractory to existing therapies. Here we use a multiomic approach to identify cis-regulatory elements that show differential chromatin accessibility and reveal transcription factor (TF) binding motifs with functional regulation in the rat dorsal root ganglion (DRG), which contain cell bodies of primary sensory neurons, after nerve injury. We integrated RNA-seq to understand how differential chromatin accessibility after nerve injury may influence gene expression. Using TF protein arrays and chromatin immunoprecipitation-qPCR, we confirmed C/EBPγ binding to a differentially accessible sequence and used RNA-seq to identify processes in which C/EBPγ plays an important role. Our findings offer insights into TF motifs that are associated with chronic pain. These data show how interactions between chromatin landscapes and TF expression patterns may work together to determine gene expression programs in rat DRG neurons after nerve injury.
Collapse
Affiliation(s)
- Kimberly E Stephens
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
- Arkansas Children's Research Institute, 13 Children's Way, Slot 512-47, Little Rock, AR, 72202, USA.
- Department of Pharmacology and Molecular Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA.
- Center for Epigenetics, Johns Hopkins University, Baltimore, MD, USA.
| | - Cedric Moore
- Department of Pharmacology and Molecular Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
- , Present address: 20400 Century Blvd, Suite 120, Germantown, MD, USA
| | - David A Vinson
- Department of Pharmacology and Molecular Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
- Center for Epigenetics, Johns Hopkins University, Baltimore, MD, USA
| | - Bryan E White
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Arkansas Children's Research Institute, 13 Children's Way, Slot 512-47, Little Rock, AR, 72202, USA
| | - Zachary Renfro
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Arkansas Children's Research Institute, 13 Children's Way, Slot 512-47, Little Rock, AR, 72202, USA
- Present address: School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Weiqiang Zhou
- Department of Biostatistics, School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Zhicheng Ji
- Department of Biostatistics, School of Public Health, Johns Hopkins University, Baltimore, MD, USA
- Present address: Department of Biostatistics and Bioinformatics, School of Medicine, Duke University, Durham, NC, USA
| | - Hongkai Ji
- Department of Biostatistics, School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Heng Zhu
- Department of Pharmacology and Molecular Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Yun Guan
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
- Department of Neurological Surgery, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| | - Sean D Taverna
- Department of Pharmacology and Molecular Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA.
- Center for Epigenetics, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
11
|
Shen Z, Hou Y, Zhao G, Tan L, Chen J, Dong Z, Ni C, Pei L. Physiological functions of glucose transporter-2: From cell physiology to links with diabetes mellitus. Heliyon 2024; 10:e25459. [PMID: 38333863 PMCID: PMC10850595 DOI: 10.1016/j.heliyon.2024.e25459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 01/26/2024] [Accepted: 01/26/2024] [Indexed: 02/10/2024] Open
Abstract
Glucose is a sugar crucial for human health since it participates in many biochemical reactions. It produces adenosine 5'-triphosphate (ATP) and nucleosides through glucose metabolic and pentose phosphate pathways. These processes require many transporter proteins to assist in transferring glucose across cells, and the most notable ones are glucose transporter-2 (GLUT-2) and sodium/glucose cotransporter 1 (SGLT1). Glucose enters small intestinal epithelial cells from the intestinal lumen by crossing the brush boundary membrane via the SGLT1 cotransporter. It exits the cells by traversing the basolateral membrane through the activity of the GLUT-2 transporter, supplying energy throughout the body. Dysregulation of these glucose transporters is involved in the pathogenesis of several metabolic diseases, such as diabetes. Natural loss of GLUT-2 or its downregulation causes abnormal blood glucose concentrations in the body, such as fasting hypoglycemia and glucose tolerance. Therefore, understanding GLUT-2 physiology is necessary for exploring the mechanisms of diabetes and targeted treatment development. This article reviews how the apical GLUT-2 transporter maintains normal physiological functions of the human body and the adaptive changes this transporter produces under pathological conditions such as diabetes.
Collapse
Affiliation(s)
- Zhean Shen
- Xinjiang Institute of Technology, Aksu, China
| | - Yingze Hou
- Sanquan College of Xinxiang Medical University, Xinxiang, China
| | - Guo Zhao
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Libi Tan
- School of Laboratory Medicine and Biotechnology, Southern Medical University, China
| | - Jili Chen
- Department of Nutrition and Food Hygiene School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Ziqi Dong
- School of Public Health, Peking University Health Science Center, Beijing 100021, China
| | - Chunxiao Ni
- Hangzhou Lin ‘an District Center for Disease Control and Prevention, Hangzhou, China
| | | |
Collapse
|
12
|
Park JH, Hothi P, Lopez Garcia de Lomana A, Pan M, Calder R, Turkarslan S, Wu WJ, Lee H, Patel AP, Cobbs C, Huang S, Baliga NS. Gene regulatory network topology governs resistance and treatment escape in glioma stem-like cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.02.578510. [PMID: 38370784 PMCID: PMC10871280 DOI: 10.1101/2024.02.02.578510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Poor prognosis and drug resistance in glioblastoma (GBM) can result from cellular heterogeneity and treatment-induced shifts in phenotypic states of tumor cells, including dedifferentiation into glioma stem-like cells (GSCs). This rare tumorigenic cell subpopulation resists temozolomide, undergoes proneural-to-mesenchymal transition (PMT) to evade therapy, and drives recurrence. Through inference of transcriptional regulatory networks (TRNs) of patient-derived GSCs (PD-GSCs) at single-cell resolution, we demonstrate how the topology of transcription factor interaction networks drives distinct trajectories of cell state transitions in PD-GSCs resistant or susceptible to cytotoxic drug treatment. By experimentally testing predictions based on TRN simulations, we show that drug treatment drives surviving PD-GSCs along a trajectory of intermediate states, exposing vulnerability to potentiated killing by siRNA or a second drug targeting treatment-induced transcriptional programs governing non-genetic cell plasticity. Our findings demonstrate an approach to uncover TRN topology and use it to rationally predict combinatorial treatments that disrupts acquired resistance in GBM.
Collapse
Affiliation(s)
| | - Parvinder Hothi
- Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA
| | | | - Min Pan
- Institute for Systems Biology, Seattle, WA
| | | | | | - Wei-Ju Wu
- Institute for Systems Biology, Seattle, WA
| | - Hwahyung Lee
- Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA
| | - Anoop P Patel
- Department of Neurosurgery, Preston Robert Tisch Brain Tumor Center, Duke University, Durham, NC
- Center for Advanced Genomic Technologies, Duke University, Durham, NC
| | - Charles Cobbs
- Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA
| | - Sui Huang
- Institute for Systems Biology, Seattle, WA
| | - Nitin S Baliga
- Institute for Systems Biology, Seattle, WA
- Departments of Microbiology, Biology, and Molecular Engineering Sciences, University of Washington, Seattle, WA
| |
Collapse
|
13
|
Henikoff S, Henikoff JG, Ahmad K, Paranal RM, Janssens DH, Russell ZR, Szulzewsky F, Kugel S, Holland EC. Epigenomic analysis of formalin-fixed paraffin-embedded samples by CUT&Tag. Nat Commun 2023; 14:5930. [PMID: 37739938 PMCID: PMC10516967 DOI: 10.1038/s41467-023-41666-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/14/2023] [Indexed: 09/24/2023] Open
Abstract
For more than a century, formalin-fixed paraffin-embedded (FFPE) sample preparation has been the preferred method for long-term preservation of biological material. However, the use of FFPE samples for epigenomic studies has been difficult because of chromatin damage from long exposure to high concentrations of formaldehyde. Previously, we introduced Cleavage Under Targeted Accessible Chromatin (CUTAC), an antibody-targeted chromatin accessibility mapping protocol based on CUT&Tag. Here we show that simple modifications of our CUTAC protocol either in single tubes or directly on slides produce high-resolution maps of paused RNA Polymerase II at enhancers and promoters using FFPE samples. We find that transcriptional regulatory element differences produced by FFPE-CUTAC distinguish between mouse brain tumors and identify and map regulatory element markers with high confidence and precision, including microRNAs not detectable by RNA-seq. Our simple workflows make possible affordable epigenomic profiling of archived biological samples for biomarker identification, clinical applications and retrospective studies.
Collapse
Affiliation(s)
- Steven Henikoff
- Basic Science Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| | - Jorja G Henikoff
- Basic Science Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Kami Ahmad
- Basic Science Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Ronald M Paranal
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Derek H Janssens
- Basic Science Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Zachary R Russell
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Frank Szulzewsky
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Sita Kugel
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Eric C Holland
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| |
Collapse
|
14
|
Zhang X, Zheng X, Ying X, Xie W, Yin Y, Wang X. CEBPG suppresses ferroptosis through transcriptional control of SLC7A11 in ovarian cancer. J Transl Med 2023; 21:334. [PMID: 37210575 DOI: 10.1186/s12967-023-04136-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 04/16/2023] [Indexed: 05/22/2023] Open
Abstract
BACKGROUND Ovarian cancer (OC) has high mortality and poor prognosis for lacking of specific biomarkers and typical clinical symptoms in the early stage. CEBPG is an important regulator in tumor development, yet it is unclear exactly how it contributes to the progression of OC. METHODS TCGA and tissue microarrays with immunohistochemical staining (IHC) were used to examine CEBPG expression in OC. A variety of in vitro assays were conducted, including colony formation, proliferation, migration, and invasion. The orthotopic OC mouse model was established for in vivo studies. Ferroptosis was detected by observing mitochondrial changes with electron microscopy, detecting ROS expression, and detecting cell sensitivity to drugs by CCK8 assay. The interaction between CEBPG and SLC7A11 was confirmed by CUT&Tag and dual luciferase reporter assays. RESULTS A significantly higher expression level of CEBPG in OC when compared with benign tissues of ovary, and that high CEBPG expression level was also tightly associated with poor prognosis of patients diagnosed with OC, as determined by analysis of datasets and patient samples. Conversely, knockdown of CEBPG inhibited OC progression using experiments of OC cell lines and in vivo orthotopic OC-bearing mouse model. Importantly, CEBPG was identified as a new participator mediating ferroptosis evasion in OC cells using RNA-sequencing, which could contribute to OC progression. The CUT&Tag and dua luciferase reporter assays further revealed the inner mechanism that CEBPG regulated OC cell ferroptosis through transcriptional control of SLC7A11. CONCLUSIONS Our findings established CEBPG as a novel transcriptional regulator of OC ferroptosis, with potential value in predicting clinical outcomes and as a therapeutic candidate.
Collapse
Affiliation(s)
- Xiaoqian Zhang
- Department of Obstetrics and Gynecology, XinHua Hospital, Shanghai JiaoTong University School of Medicine, 1665 Kongjiang Rd, Yangpu District, Shanghai, 200092, China
| | - Xiaocui Zheng
- Department of Obstetrics and Gynecology, XinHua Hospital, Shanghai JiaoTong University School of Medicine, 1665 Kongjiang Rd, Yangpu District, Shanghai, 200092, China
| | - Xiang Ying
- Department of Obstetrics and Gynecology, XinHua Hospital, Shanghai JiaoTong University School of Medicine, 1665 Kongjiang Rd, Yangpu District, Shanghai, 200092, China
| | - Weiwei Xie
- Department of Obstetrics and Gynecology, XinHua Hospital, Shanghai JiaoTong University School of Medicine, 1665 Kongjiang Rd, Yangpu District, Shanghai, 200092, China
| | - Yujia Yin
- Department of Obstetrics and Gynecology, XinHua Hospital, Shanghai JiaoTong University School of Medicine, 1665 Kongjiang Rd, Yangpu District, Shanghai, 200092, China
| | - Xipeng Wang
- Department of Obstetrics and Gynecology, XinHua Hospital, Shanghai JiaoTong University School of Medicine, 1665 Kongjiang Rd, Yangpu District, Shanghai, 200092, China.
| |
Collapse
|
15
|
Targeting Transcription Factors ATF5, CEBPB and CEBPD with Cell-Penetrating Peptides to Treat Brain and Other Cancers. Cells 2023; 12:cells12040581. [PMID: 36831248 PMCID: PMC9954556 DOI: 10.3390/cells12040581] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Developing novel therapeutics often follows three steps: target identification, design of strategies to suppress target activity and drug development to implement the strategies. In this review, we recount the evidence identifying the basic leucine zipper transcription factors ATF5, CEBPB, and CEBPD as targets for brain and other malignancies. We describe strategies that exploit the structures of the three factors to create inhibitory dominant-negative (DN) mutant forms that selectively suppress growth and survival of cancer cells. We then discuss and compare four peptides (CP-DN-ATF5, Dpep, Bpep and ST101) in which DN sequences are joined with cell-penetrating domains to create drugs that pass through tissue barriers and into cells. The peptide drugs show both efficacy and safety in suppressing growth and in the survival of brain and other cancers in vivo, and ST101 is currently in clinical trials for solid tumors, including GBM. We further consider known mechanisms by which the peptides act and how these have been exploited in rationally designed combination therapies. We additionally discuss lacunae in our knowledge about the peptides that merit further research. Finally, we suggest both short- and long-term directions for creating new generations of drugs targeting ATF5, CEBPB, CEBPD, and other transcription factors for treating brain and other malignancies.
Collapse
|
16
|
Lee YS, Lee KH. Expressional Evaluation of C/EBP Family, SREBP1, and Steroid Hormone
Receptors in the Epididiymal Fat of Postnatally Developing Mouse. Dev Reprod 2022; 26:49-58. [PMID: 35950166 PMCID: PMC9336211 DOI: 10.12717/dr.2022.26.2.49] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/13/2022] [Accepted: 05/14/2022] [Indexed: 11/24/2022]
Abstract
The differentiation and development of preadipocyte into mature adipocyte
are regulated by transcription factors, such as CCAAT
enhancer binding protein (Cebp) gene family and sterol
regulatory element binding transcription factor 1 (Srebp1).
Steroid hormones give influences on the development and function of adipocyte.
The present research examined expression patterns of CCAAT
enhancer binding protein alpha (Cebpa), CCAAT enhancer binding
protein beta (Cebpb), CCAAT enhancer binding protein gamma
(Cebpg), sterol regulatory element binding transcription
factor 1 (Srebp1), androgen receptor (Ar), and
estrogen receptors (Esr) among different epididymal fat
parts during postnatal period by quantitative real-time
polymerase chain reaction. In the distal epididymal fat, expression of
Cebpa, Cebpb, Cebpg,
Srebp1, Ar, and Esr2 was
increased until 12 months of age, while expression of Esr1 was
decreased at 5 months of age and was not detectable after 8 months of age. In
the proximal epididymal fat, transcript levels of Cebps and
Srebp1 were increased at 8 months of age, followed by
decreases of Cebpb and Cebpg transcript levels
at 12 months of age. An additional increase of Srebp1
expression was observed at 12 months of age. Expression of Ar
and Esr2 were increased until 8 months of age, followed by a
drop of Ar expression level at 12 months of age. Expression
pattern of Esr1 was similar to that in the
distal epididymal fat. In the tail epididymal fat, expression of
Cebpa, Cebpg, Srebp1,
Ar, and Esr2 was increased with age.
Esr1 was not detectable at all. The highest level of
Cebpb was observed at 8 months of age. These data suggest
the possibility of developmental and functional differentiation among the
epididymal fat parts.
Collapse
Affiliation(s)
- Yong-Seung Lee
- Dept. of Biological Science, Sungkyunkwan
University, Suwon 16419, Korea
| | - Ki-Ho Lee
- Dept. of Biochemistry and Molecular
Biology, College of Medicine, Eulji University,
Daejeon 34824, Korea
- Corresponding author Ki-Ho Lee, Dept. of
Biochemistry and Molecular, Biology, Eulji University, Daejeon 34824, Korea,
Tel: +82-42-259-1643, Fax:
+82-42-259-1649, E-mail:
| |
Collapse
|