1
|
Su Y, Michimori Y, Fukuyama Y, Shimamura S, Nunoura T, Atomi H. TK2268 encodes the major aminotransferase involved in the conversion from oxaloacetic acid to aspartic acid in Thermococcus kodakarensis. Appl Environ Microbiol 2025; 91:e0201724. [PMID: 39992121 PMCID: PMC11921379 DOI: 10.1128/aem.02017-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 01/28/2025] [Indexed: 02/25/2025] Open
Abstract
Amino acid metabolism in archaea in many cases differs from those reported in bacteria and eukaryotes. The hyperthermophilic archaeon Thermococcus kodakarensis possesses an incomplete tricarboxylic cycle, and the biosynthesis pathway of aspartate is unknown. Here, four Class I aminotransferases in T. kodakarensis encoded by TK0186, TK0548, TK1094, and TK2268 were examined to identify the enzyme(s) responsible for the conversion of oxaloacetate to aspartate. Among the four proteins, the TK2268 protein (TK2268p) was the only protein to recognize oxaloacetate as the amino acceptor. With oxaloacetate, TK2268p only recognized glutamate as the amino donor. The protein also catalyzed the reverse reaction, the transamination between aspartate and 2-oxoglutarate. Substrate inhibition was observed in the presence of high concentrations of oxaloacetate or 2-oxoglutarate. Aminotransferase activity between oxaloacetate and glutamate was observed in cell extracts of the T. kodakarensis host strain KU216. Among the individual gene disruption strains of the four aminotransferases, a significant decrease in activity was only observed in the ΔTK2268 strain. T. kodakarensis KU216 does not display growth in synthetic amino acid medium when aspartate/asparagine are absent. Growth was restored upon the addition of both oxaloacetate and glutamate. Although this restoration in growth was maintained in ΔTK0186, ΔTK0548, and ΔTK1094, growth was not observed in the ΔTK2268 strain. Our results suggest that TK2268p is the predominant aminotransferase responsible for the conversion of oxaloacetate to aspartate. The growth experiments and tracer-based metabolomics using 13C3-pyruvate indicated that pyruvate is a precursor of aspartate and that this conversion is dependent on TK2268p. IMPORTANCE Based on genome sequence, the hyperthermophilic archaeon Thermococcus kodakarensis possesses an incomplete tricarboxylic cycle, raising questions on how this organism carries out the biosynthesis of aspartate and glutamate. The results of this study clarify two main points related to aspartate biosynthesis. We show that aspartate can be produced from oxaloacetate and identify TK2268p as the aminotransferase responsible for this reaction. The other point demonstrated in this study is that pyruvate can act as the precursor for oxaloacetate synthesis. Together with previous results, we can propose some of the roles of the individual aminotransferases in T. kodakarensis. TK0548p and TK0186p are involved in amino acid catabolism, with the latter along with TK1094p involved in the conversion of glyoxylate to glycine. TK2268p is responsible for the biosynthesis of aspartate from oxaloacetate.
Collapse
Affiliation(s)
- Yu Su
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Yuta Michimori
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Yuto Fukuyama
- Research Center for Bioscience and Nanoscience (CeBN), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, Japan
| | - Shigeru Shimamura
- Institute for Extra-Cutting-Edge Science and Technology Avant-Garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, Japan
| | - Takuro Nunoura
- Research Center for Bioscience and Nanoscience (CeBN), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, Japan
| | - Haruyuki Atomi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
- Integrated Research Center for Carbon Negative Science, Kyoto University, Kyoto, Japan
| |
Collapse
|
2
|
Hosseini K, Zivari-Ghader T, Dilmaghani A, Akbarzadehlaleh P, Jafarzadeh-Chehraghi EA. Review on up and downstream processing of L-asparaginase. Prep Biochem Biotechnol 2025:1-9. [PMID: 39853162 DOI: 10.1080/10826068.2024.2449139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2025]
Abstract
L-asparaginase (asparagine amidohydrolase) contributes to 40% of the total enzyme demands worldwide and is one-third of the global requirement as an anti-cancerous drug in treating acute lymphocytic leukemia (ALL), a type of leukemia. This protein breaks down L-asparagine into aspartic acid and ammonia those involved in ALL, rely on for growth and survival. Both non-recombinant and recombinant L-asparaginase can be produced by bacteria when a suitable substrate and method (solid-state fermentation (SSF) or submerged fermentation (SmF) which are techniques to grow microorganisms under controlled conditions), is provided. Between both L-asparaginase's isozymes, asparaginase type II displays higher specific action against L-asparagine and precisely shows antitumor activity. The applied methods in purification of L-asparaginase in the frame of three phases of protein purification strategy known as CIPP (including capture, intermediate purification, and polishing phase) are discussed in this review. Depending on whether the production of the enzyme is intracellular or extracellular, various steps in each phase, like removal of insoluble material, extraction, concentration, and purification, must followed. In this review, authors summarize the upstream processes in L-asparaginase production and the various applied chromatographic and non-chromatographic methods in each step of CIPP, in downstream processes.
Collapse
Affiliation(s)
- Kamran Hosseini
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tayebeh Zivari-Ghader
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Azita Dilmaghani
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parvin Akbarzadehlaleh
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
3
|
Li Y, Li Y, Lin Z, Shen S, Xu R, Yu W, Zhou J, Li J, Liu S, Du G. Heterologous expression of a highly thermostable L-asparaginase from Thermococcus zilligii in Aspergillus niger for efficient reduction of acrylamide in French fries. Int J Biol Macromol 2025; 285:138247. [PMID: 39638169 DOI: 10.1016/j.ijbiomac.2024.138247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/15/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024]
Abstract
L-asparaginase (L-ASNase) can hydrolyze L-asparagine, a precursor to acrylamide, thereby reducing toxic acrylamide formation in fried foods. Currently, commercial L-ASNases are primarily produced by wild-type (WT) filamentous fungi; however, these enzymes often exhibit rapid activity loss during high-temperature processing due to limited thermal stability. In this study, we screened a thermostable L-ASNase gene from thermophile bacteria and expressed it in Aspergillus niger to reduce acrylamide content in French fries. Initially, four genes encoding thermostable L-ASNases were selected and integrated into the A. niger genome via non-homologous end joining. Among these, the L-ASNase gene tzi from Thermococcus zilligii was successfully expressed in A. niger, yielding an extracellular activity of 114 U·mg-1. The recombinant enzyme (An-Tzi) displayed the same optimal temperature and pH as its WT counterpart but exhibited superior catalytic efficiency, likely due to the efficient post-translational modifications in A. niger. To further enhance expression, the tzi gene was integrated into the amylase (amyA) locus of the A. niger genome using the CRISPR-Cas9 system, resulting in increased activity of 128 U·mg-1. Additionally, various lengths of the highly expressed glucoamylase (glaA) protein from A. niger AG11 were fused to the N-terminus of the Tzi. Notably, fusing the 500-amino-acid catalytic domain of glaA led to a substantial 3.3-fold increase in enzyme activity. Despite the metabolic stress induced by high-level expression of glaA, supplementing the culture medium with metal ions and sophorose resulted in an extracellular activity of 486.74 U·mg-1, the highest reported yield of L-ASNase in shake flasks. Finally, applying the An-Tzi to French fries achieved a 32 % greater reduction in acrylamide compared to the commercial enzyme. Overall, the recombinant A. niger strain expressing thermostable An-Tzi demonstrates significant potential for industrial applications targeting acrylamide reduction in fried and baked foods.
Collapse
Affiliation(s)
- Yangyang Li
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Yu Li
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Zihe Lin
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Shaoxiong Shen
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Ruirui Xu
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Wenwen Yu
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Jingwen Zhou
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jianghua Li
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Song Liu
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| | - Guocheng Du
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| |
Collapse
|
4
|
Sundaram SS, Kannan A, Chintaluri PG, Sreekala AGV, Nathan VK. Thermostable bacterial L-asparaginase for polyacrylamide inhibition and in silico mutational analysis. Int Microbiol 2024; 27:1765-1779. [PMID: 38519776 DOI: 10.1007/s10123-024-00493-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/07/2024] [Accepted: 02/27/2024] [Indexed: 03/25/2024]
Abstract
The L-asparaginase (ASPN) enzyme has received recognition in various applications including acrylamide degradation in the food industry. The synthesis and application of thermostable ASPN enzymes is required for its use in the food sector, where thermostable enzymes can withstand high temperatures. To achieve this goal, the bacterium Bacillus subtilis was isolated from the hot springs of Tapovan for screening the production of thermostable ASPN enzyme. Thus, ASPN with a maximal specific enzymatic activity of 0.896 U/mg and a molecular weight of 66 kDa was produced from the isolated bacteria. The kinetic study of the enzyme yielded a Km value of 1.579 mM and a Vmax of 5.009 µM/min with thermostability up to 100 min at 75 °C. This may have had a positive indication for employing the enzyme to stop polyacrylamide from being produced. The current study has also been extended to investigate the interaction of native and mutated ASPN enzymes with acrylamide. This concluded that the M10 (with 10 mutations) has the highest protein and thermal stability compared to the wild-type ASPN protein sequence. Therefore, in comparison to a normal ASPN and all other mutant ASPNs, M10 is the most favorable mutation. This research has also demonstrated the usage of ASPN in food industrial applications.
Collapse
Affiliation(s)
| | - Aravind Kannan
- School of Chemical and Biotechnology, SASTRA Deemed to Be University, Thanjavur, Tamil Nadu, India
| | - Pratham Gour Chintaluri
- School of Chemical and Biotechnology, SASTRA Deemed to Be University, Thanjavur, Tamil Nadu, India
| | | | - Vinod Kumar Nathan
- School of Chemical and Biotechnology, SASTRA Deemed to Be University, Thanjavur, Tamil Nadu, India.
| |
Collapse
|
5
|
Sania A, Muhammad MA, Sajed M, Ahmad N, Aslam M, Tang XF, Rashid N. Engineering Tk1656, a highly active l-asparaginase from Thermococcus kodakarensis, for enhanced activity and stability. Int J Biol Macromol 2024; 281:136442. [PMID: 39389482 DOI: 10.1016/j.ijbiomac.2024.136442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/07/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
l-Asparaginases catalyze the hydrolysis of l-asparagine to l-aspartic acid and ammonia. These enzymes have potential applications in therapeutics and food industry. Tk1656, a highly active and thermostable l-asparaginase from Thermococcus kodakarensis, has been proved effective in selective killing of acute lymphocytic leukemia cells and in reducing acrylamide formation in baked and fried foods. However, it displayed <5 % activity under physiological conditions compared to the optimal activity at 85 °C and pH 9.5. We have attempted engineering of this valuable enzyme to improve the characteristics required for therapeutic and industrial applications. Based on the literature and crystal structure of Tk1656, nine specific mutant variants were designed, produced in Escherichia coli, and the purified mutant enzymes were compared with the wild-type. One of the mutants, K299L, displayed >20 % increase in activity at 85 °C. H158S substitution resulted in >5 °C increase in the optimal temperature. Similarly, a mesophilic-like mutation L56D, resulted in >5-fold increase in activity at pH 7.0 and 37 °C compared to that of the wild-type enzyme. The substrate specificity of the mutant variants remained unchanged. These results demonstrate that L56D and K299L variants of Tk1656 are the potent enzymes for therapeutics and acrylamide mitigation applications, respectively.
Collapse
Affiliation(s)
- Ayesha Sania
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Majida Atta Muhammad
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Muhammad Sajed
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Nasir Ahmad
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Mehwish Aslam
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Xiao-Feng Tang
- Department of Microbiology, College of Life Sciences, Wuhan University, Wuhan 430072, Hubei Province, China
| | - Naeem Rashid
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan.
| |
Collapse
|
6
|
Sania A, Muhammad MA, Sajed M, Azim N, Ahmad N, Aslam M, Tang XF, Rashid N. Structural and functional analyses of an L-asparaginase from Geobacillus thermopakistaniensis. Int J Biol Macromol 2024; 263:130438. [PMID: 38408579 DOI: 10.1016/j.ijbiomac.2024.130438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/29/2024] [Accepted: 02/23/2024] [Indexed: 02/28/2024]
Abstract
Genome sequence of Geobacillus thermopakistaniensis contains an open reading frame annotated as a type II L-asparaginase (ASNaseGt). Critical structural analysis disclosed that ASNaseGt might be a type I L-asparaginase. In order to determine whether it is a type I or type II L-asparaginase, we have performed the structural-functional characterization of the recombinant protein as well as analyzed the localization of ASNaseGt in G. thermopakistaniensis. ASNaseGt exhibited optimal activity at 52 °C and pH 9.5. There was a > 3-fold increase in activity in the presence of β-mercaptoethanol. Apparent Vmax and Km values were 2735 U/mg and 0.35 mM, respectively. ASNaseGt displayed high thermostability with >80 % residual activity even after 6 h of incubation at 55 °C. Recombinant ASNaseGt existed in oligomeric form. Addition of β-mercaptoethanol lowered the degree of oligomerization and displayed that tetrameric form was the most active, with a specific activity of 4300 U/mg. Under physiological conditions, ASNaseGt displayed >50 % of the optimal activity. Localization studies in G. thermopakistaniensis revealed that ASNaseGt is a cytosolic protein. Structural and functional characterization, and localization in G. thermopakistaniensis displayed that ASNaseGt is not a type II but a type I L-asparaginase.
Collapse
Affiliation(s)
- Ayesha Sania
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Majida Atta Muhammad
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Muhammad Sajed
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Naseema Azim
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Nasir Ahmad
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Mehwish Aslam
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Xiao-Feng Tang
- Department of Microbiology, College of Life Sciences, Wuhan University, Wuhan 430072, Hubei Province, China
| | - Naeem Rashid
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan.
| |
Collapse
|
7
|
Lefin N, Miranda J, Beltrán JF, Belén LH, Effer B, Pessoa A, Farias JG, Zamorano M. Current state of molecular and metabolic strategies for the improvement of L-asparaginase expression in heterologous systems. Front Pharmacol 2023; 14:1208277. [PMID: 37426818 PMCID: PMC10323146 DOI: 10.3389/fphar.2023.1208277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/12/2023] [Indexed: 07/11/2023] Open
Abstract
Heterologous expression of L-asparaginase (L-ASNase) has become an important area of research due to its clinical and food industry applications. This review provides a comprehensive overview of the molecular and metabolic strategies that can be used to optimize the expression of L-ASNase in heterologous systems. This article describes various approaches that have been employed to increase enzyme production, including the use of molecular tools, strain engineering, and in silico optimization. The review article highlights the critical role that rational design plays in achieving successful heterologous expression and underscores the challenges of large-scale production of L-ASNase, such as inadequate protein folding and the metabolic burden on host cells. Improved gene expression is shown to be achievable through the optimization of codon usage, synthetic promoters, transcription and translation regulation, and host strain improvement, among others. Additionally, this review provides a deep understanding of the enzymatic properties of L-ASNase and how this knowledge has been employed to enhance its properties and production. Finally, future trends in L-ASNase production, including the integration of CRISPR and machine learning tools are discussed. This work serves as a valuable resource for researchers looking to design effective heterologous expression systems for L-ASNase production as well as for enzymes production in general.
Collapse
Affiliation(s)
- Nicolás Lefin
- Department of Chemical Engineering, Science and Engineering Faculty, Universidad de La Frontera, Temuco, Chile
| | - Javiera Miranda
- Department of Chemical Engineering, Science and Engineering Faculty, Universidad de La Frontera, Temuco, Chile
| | - Jorge F. Beltrán
- Department of Chemical Engineering, Science and Engineering Faculty, Universidad de La Frontera, Temuco, Chile
| | - Lisandra Herrera Belén
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Santiago, Chile
| | - Brian Effer
- Center of Excellence in Translational Medicine and Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
| | - Adalberto Pessoa
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Jorge G. Farias
- Department of Chemical Engineering, Science and Engineering Faculty, Universidad de La Frontera, Temuco, Chile
| | - Mauricio Zamorano
- Department of Chemical Engineering, Science and Engineering Faculty, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
8
|
Gladilina YA, Shishparenok AN, Zhdanov DD. [Approaches for improving L-asparaginase expression in heterologous systems]. BIOMEDITSINSKAIA KHIMIIA 2023; 69:19-38. [PMID: 36857424 DOI: 10.18097/pbmc20236901019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
L-asparaginase (EC 3.5.1.1) is one of the most demanded enzymes used in the pharmaceutical industry as a drug and in the food industry to prevent the formation of toxic acrylamide. Researchers aimed to improve specific activity and reduce side effects to create safer and more potent enzyme products. However, protein modifications and heterologous expression remain problematic in the production of asparaginases from different species. Heterologous expression in optimized producer strains is rationally organized; therefore, modified and heterologous protein expression is enhanced, which is the main strategy in the production of asparaginase. This strategy solves several problems: incorrect protein folding, metabolic load on the producer strain and codon misreading, which affects translation and final protein domains, leading to a decrease in catalytic activity. The main approaches developed to improve the heterologous expression of L-asparaginases are considered in this paper.
Collapse
Affiliation(s)
| | | | - D D Zhdanov
- Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
9
|
Dumina M, Zhgun A. Thermo-L-Asparaginases: From the Role in the Viability of Thermophiles and Hyperthermophiles at High Temperatures to a Molecular Understanding of Their Thermoactivity and Thermostability. Int J Mol Sci 2023; 24:ijms24032674. [PMID: 36768996 PMCID: PMC9916696 DOI: 10.3390/ijms24032674] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/25/2023] [Accepted: 01/28/2023] [Indexed: 02/03/2023] Open
Abstract
L-asparaginase (L-ASNase) is a vital enzyme with a broad range of applications in medicine, food industry, and diagnostics. Among various organisms expressing L-ASNases, thermophiles and hyperthermophiles produce enzymes with superior performances-stable and heat resistant thermo-ASNases. This review is an attempt to take a broader view on the thermo-ASNases. Here we discuss the position of thermo-ASNases in the large family of L-ASNases, their role in the heat-tolerance cellular system of thermophiles and hyperthermophiles, and molecular aspects of their thermoactivity and thermostability. Different types of thermo-ASNases exhibit specific L-asparaginase activity and additional secondary activities. All products of these enzymatic reactions are associated with diverse metabolic pathways and are important for mitigating heat stress. Thermo-ASNases are quite distinct from typical mesophilic L-ASNases based on structural properties, kinetic and activity profiles. Here we attempt to summarize the current understanding of the molecular mechanisms of thermo-ASNases' thermoactivity and thermostability, from amino acid composition to structural-functional relationships. Research of these enzymes has fundamental and biotechnological significance. Thermo-ASNases and their improved variants, cloned and expressed in mesophilic hosts, can form a large pool of enzymes with valuable characteristics for biotechnological application.
Collapse
|
10
|
Sharma A, Kaushik V, Goel M. Insights into the Distribution and Functional Properties of l-Asparaginase in the Archaeal Domain and Characterization of Picrophilus torridus Asparaginase Belonging to the Novel Family Asp2like1. ACS OMEGA 2022; 7:40750-40765. [PMID: 36406543 PMCID: PMC9670692 DOI: 10.1021/acsomega.2c01127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
l-Asparaginase catalyzes the hydrolysis of l-asparagine to aspartic acid and ammonia and is used in the medical and food industries. In this investigation, from the proteomes of 176 archaeal organisms (with completely sequenced genomes), 116 homologs of l-asparaginase were obtained from 86 archaeal organisms segregated into Asp1, Asp2, IaaA, Asp2like1, and Asp2like2 families based on the conserved domain. The similarities and differences in the structure of selected representatives from each family are discussed. From the two novel archaeal l-asparaginase families Asp2like1 and Asp2like2, a representative of Asp2like1 family Picrophilus torridus asparaginase (PtAsp2like1) was characterized in detail to find its suitability in therapeutics. PtAsp2like1 was a glutaminase-free asparaginase that showed the optimum activity at 80 °C and pH 10.0. The Km of PtAsp2like1 toward substrate l-asparagine was 11.69 mM. This study demonstrates the improved mapping of asparaginases in the archaeal domain, facilitating future focused research on archaeal asparaginases for therapeutic applications.
Collapse
|
11
|
Chi H, Xia B, Shen J, Zhu X, Lu Z, Lu F, Zhu P. Characterization of a novel and glutaminase-free type II L-asparaginase from Corynebacterium glutamicum and its acrylamide alleviation efficiency in potato chips. Int J Biol Macromol 2022; 221:1384-1393. [PMID: 36130640 DOI: 10.1016/j.ijbiomac.2022.09.162] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/31/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022]
Abstract
Type II L-asparaginase as a pivotal enzyme agent has been applied to treating for acute lymphoblastic leukemia (ALL) and efficient mitigation of acrylamide formed in fried and baked foods. However, low activity, narrow range of pH stability, as well as undesirable glutaminase activity hinder the applications of this enzyme. In our work, A novel type II L-asparaginase (CgASNase) from Corynebacterium glutamicum with molecular mass of about 35 kDa was chosen to express in E. coli. CgASNase shared only 27 % structural identity with the reported L-asparaginase from Helicobacter pylori. The purified CgASNase showed the highest specific activity of 1979.08 IU mg-1 to L-asparagine, compared with reported type II ASNases in the literature. CgASNase displayed superior stability at a wide pH range from 5.0 to 11.0, and retained about 76 % of its activity at 30 °C for 30 min. The kinetic parameters Km (Michaelis constant), kcat (turnover number), and kcat/Km (catalytic efficiency) values of 4.66 mM, 79,697.40 min-1, and 17,102.45 mM-1 min-1, respectively. More importantly, CgASNase exhibited strict substrate specificity towards L-asparagine, no detectable activity to l-glutamine. To explore its ability to catalyze L-asparagine, CgASNase was supplied in frying potato chips, which produced the fries with 84 % less acrylamide content compared with no supply. These findings suggest that CgASNase presents excellent properties for chemotherapy against diseases and great potential in the food processing industry.
Collapse
Affiliation(s)
- Huibing Chi
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Bingjie Xia
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Juan Shen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoyu Zhu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Fengxia Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Ping Zhu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
12
|
Izadpanah Qeshmi F, Homaei A, Khajeh K, Kamrani E, Fernandes P. Production of a Novel Marine Pseudomonas aeruginosa Recombinant L-Asparaginase: Insight on the Structure and Biochemical Characterization. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:599-613. [PMID: 35507234 DOI: 10.1007/s10126-022-10129-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
The present study focused on the cloning, expression, and characterization of L-asparaginase of marine Pseudomonas aeruginosa HR03 isolated from fish intestine. Thus, a gene fragment containing the L-asparaginase sequence of Pseudomonas aeruginosa HR03 isolated from the fish intestine was cloned in the pET21a vector and then expressed in Escherichia coli BL21 (DE3) cells. Thereafter, the recombinant L-asparaginase (HR03Asnase) was purified by nickel affinity chromatography, and the enzymatic properties of HR03Asnase, including the effects of pH and temperature on HR03Asnase activity and its kinetic parameters, were determined. The recombinant enzyme HR03Asnase showed the highest similarity to type I L-asparaginase from Pseudomonas aeruginosa. The three-dimensional (3D) modeling results indicate that HR03Asnase exists as a homotetramer. Its molecular weight was 35 kDa, and the maximum activity of the purified enzyme was observed at pH8 and at 40 °C. The km and Vmax of the enzyme obtained with L-asparagine as substrate were 10.904 mM and 3.44 × 10-2 mM/min, respectively. The maximum activity of HR03Asnase was reduced by 50% at 90 °C after 10-min incubation; however, the enzyme maintained more than 20% of its activity after 30-min incubation. This enzyme also maintained almost 50% of its activity at pH 12 after 40-min incubation. The evaluation of pH and temperature stability of HR03Asnase showed that the enzyme has a wide range of activity, which is a suitable characteristic for its application in different industries. Overall, the results of the present study indicate that marine sources are promising biological reservoirs for enzymes to be used for biotechnological purposes, and marine thermostable HR03Asnase is likely a potential candidate for its future usage in the pharmaceutical and food industries.
Collapse
Affiliation(s)
- Fatemeh Izadpanah Qeshmi
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, P.O. Box 3995, Bandar Abbas, Iran
| | - Ahmad Homaei
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, P.O. Box 3995, Bandar Abbas, Iran.
| | - Khosro Khajeh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ehsan Kamrani
- Fisheries Department, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
| | - Pedro Fernandes
- Department of Bioengineering and IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
- DREAMS and Faculty of Engineering, Universidade Lusófona de Humanidades E Tecnologias, Av. Campo Grande 376, 1749-024, Lisbon, Portugal
| |
Collapse
|
13
|
Al Yousef SA. Fusarium sp. L-asparaginases: purification, characterization, and potential assessment as an antileukemic chemotherapeutic agent. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:11243-11254. [PMID: 34532809 DOI: 10.1007/s11356-021-16175-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
Asparaginases important role in the treatment of leukemia. It is part of chemotherapy in the treatment of leukemia in the last three decades. L-Asparaginase is isolated from Fusarium sp. isolated from soil and purified using ammonium sulfate precipitation and Sephadex G 100. Characterization of the crude enzyme revealed it is a metalloprotease inhibited by EDTA. Hg2+, Cd2+, and Pb2+ also inhibited the enzyme. Mg2+, Zn2+, and Ca2+ activated L-asparaginase. Furthermore, kinetic studies of purified enzyme were carried out. Vmax and Km were 0.031 M and 454 U/mL, respectively. The optimum temperature was 30 °C and the optimum pH was 7. Concerning substrate specificity, gelatin and casein in addition to L-asparagine were tested. The enzyme was found to be nonspecific that could hydrolyze all tested substrates at different rates. The maximum enzyme activity was recorded in the case of L-asparagine, followed by casein and gelatin, respectively. The molecular weight of L-asparaginase was 22.5 kDa. The antileukemic cytotoxicity assay of the enzyme against RAW2674 leukemic cell lines by MTT viability test was estimated. The enzyme exhibited antileukemic activity with IC50 of 50.1 UmL-1. The current work presents additional information regarding the purification and characterization of the enzyme produced by Fusarium sp. and its evaluation as a potential antileukemic chemotherapeutic agent.
Collapse
Affiliation(s)
- Sulaiman A Al Yousef
- Clinical Laboratories Sciences Department, College of Applied Medical Science, Hafr Al Batin University, Hafr Al Batin, 319 91, Saudi Arabia.
| |
Collapse
|
14
|
Looking into a highly thermostable and efficient recombinant manganese-catalase from Geobacillusthermopakistaniensis. J Biosci Bioeng 2021; 133:25-32. [PMID: 34642121 DOI: 10.1016/j.jbiosc.2021.09.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/09/2021] [Accepted: 09/17/2021] [Indexed: 01/17/2023]
Abstract
Catalases, heme or non-heme, are catalysts that decompose hydrogen peroxide. Among them, non-heme or manganese-catalases have been studied from limited organisms. We report here heterologous production of a manganese-catalase, Cat-IIGt, previously annotated as a hypothetical protein, from a thermophilic bacterium Geobacillus thermopakistaniensis. Recombinant Cat-IIGt, produced as inactive inclusion bodies in Escherichia coli, was solubilized and refolded into a soluble and highly active form. Sequence homology, absorption spectra, resistance to sodium azide inhibition and activation by Mn2+ indicated that it was a manganese-catalase. Metal analysis revealed the presence of ∼2 Mn2+ and ∼2 Ca2+ per subunit of Cat-IIGt. Recombinant Cat-IIGt exhibited highest activity at pH 10.0 and 70°C. The enzyme was highly active with a specific activity of 40,529 μmol min-1 mg-1. The apparent Km and kcat values were 75 mM and 1.5 × 104 s-1 subunit-1, respectively. Recombinant Cat-IIGt was highly thermostable with a half-life of 30 min at 100°C. The structural attributes of Cat-IIGt, including the metal and substrate binding residues, were predicted by homology modeling and molecular docking studies. High activity and thermostability and alkaline nature make Cat-IIGt a potential candidate for textile and paper processing industries.
Collapse
|
15
|
Dumina MV, Zhgun AA, Pokrovskay MV, Aleksandrova SS, Zhdanov DD, Sokolov NN, El’darov MA. Comparison of Enzymatic Activity of Novel Recombinant L-asparaginases of Extremophiles. APPL BIOCHEM MICRO+ 2021. [DOI: 10.1134/s0003683821050057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Dumina M, Zhgun A, Pokrovskaya M, Aleksandrova S, Zhdanov D, Sokolov N, El’darov M. A Novel L-Asparaginase from Hyperthermophilic Archaeon Thermococcus sibiricus: Heterologous Expression and Characterization for Biotechnology Application. Int J Mol Sci 2021; 22:9894. [PMID: 34576056 PMCID: PMC8470970 DOI: 10.3390/ijms22189894] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/25/2021] [Accepted: 09/09/2021] [Indexed: 01/23/2023] Open
Abstract
L-asparaginase (L-ASNase) is a vital enzyme with a broad range of applications in medicine and food industry. Drawbacks of current commercial L-ASNases stimulate the search for better-producing sources of the enzyme, and extremophiles are especially attractive in this view. In this study, a novel L-asparaginase originating from the hyperthermophilic archaeon Thermococcus sibiricus (TsA) was expressed in Escherichia coli, purified and characterized. The enzyme is optimally active at 90 °C and pH 9.0 with a specific activity of 2164 U/mg towards L-asparagine. Kinetic parameters KM and Vmax for the enzyme are 2.8 mM and 1200 µM/min, respectively. TsA is stable in urea solutions 0-6 M and displays no significant changes of the activity in the presence of metal ions Ni2+, Cu2+, Mg2+, Zn2+ and Ca2+ and EDTA added in concentrations 1 and 10 mmol/L except for Fe3+. The enzyme retains 86% of its initial activity after 20 min incubation at 90 °C, which should be enough to reduce acrylamide formation in foods processed at elevated temperatures. TsA displays strong cytotoxic activity toward cancer cell lines K562, A549 and Sk-Br-3, while normal human fibroblasts WI-38 are almost unsensitive to it. The enzyme seems to be a promising candidate for further investigation and biotechnology application.
Collapse
Affiliation(s)
- Maria Dumina
- Group of Fungal Genetic Engineering, Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences, 117312 Moscow, Russia;
| | - Alexander Zhgun
- Group of Fungal Genetic Engineering, Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences, 117312 Moscow, Russia;
| | - Marina Pokrovskaya
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, 119121 Moscow, Russia; (M.P.); (S.A.); (D.Z.); (N.S.)
| | - Svetlana Aleksandrova
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, 119121 Moscow, Russia; (M.P.); (S.A.); (D.Z.); (N.S.)
| | - Dmitry Zhdanov
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, 119121 Moscow, Russia; (M.P.); (S.A.); (D.Z.); (N.S.)
| | - Nikolay Sokolov
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, 119121 Moscow, Russia; (M.P.); (S.A.); (D.Z.); (N.S.)
| | - Michael El’darov
- Group of Fungal Genetic Engineering, Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences, 117312 Moscow, Russia;
| |
Collapse
|
17
|
Jia R, Wan X, Geng X, Xue D, Xie Z, Chen C. Microbial L-asparaginase for Application in Acrylamide Mitigation from Food: Current Research Status and Future Perspectives. Microorganisms 2021; 9:microorganisms9081659. [PMID: 34442737 PMCID: PMC8400838 DOI: 10.3390/microorganisms9081659] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 12/31/2022] Open
Abstract
L-asparaginase (E.C.3.5.1.1) hydrolyzes L-asparagine to L-aspartic acid and ammonia, which has been widely applied in the pharmaceutical and food industries. Microbes have advantages for L-asparaginase production, and there are several commercially available forms of L-asparaginase, all of which are derived from microbes. Generally, L-asparaginase has an optimum pH range of 5.0-9.0 and an optimum temperature of between 30 and 60 °C. However, the optimum temperature of L-asparaginase from hyperthermophilic archaea is considerable higher (between 85 and 100 °C). The native properties of the enzymes can be enhanced by using immobilization techniques. The stability and recyclability of immobilized enzymes makes them more suitable for food applications. This current work describes the classification, catalytic mechanism, production, purification, and immobilization of microbial L-asparaginase, focusing on its application as an effective reducer of acrylamide in fried potato products, bakery products, and coffee. This highlights the prospects of cost-effective L-asparaginase, thermostable L-asparaginase, and immobilized L-asparaginase as good candidates for food application in the future.
Collapse
Affiliation(s)
- Ruiying Jia
- Institute of Nursing and Health, College of Nursing and Health, Henan University, Kaifeng 475004, China; (R.J.); (X.W.)
| | - Xiao Wan
- Institute of Nursing and Health, College of Nursing and Health, Henan University, Kaifeng 475004, China; (R.J.); (X.W.)
| | - Xu Geng
- School of Basic Medicine, Henan University, Jinming Avenue, Kaifeng 475004, China;
- Correspondence: (X.G.); (C.C.)
| | - Deming Xue
- School of Life Science, Henan Normal University, Xinxiang 453007, China;
| | - Zhenxing Xie
- School of Basic Medicine, Henan University, Jinming Avenue, Kaifeng 475004, China;
| | - Chaoran Chen
- Institute of Nursing and Health, College of Nursing and Health, Henan University, Kaifeng 475004, China; (R.J.); (X.W.)
- Correspondence: (X.G.); (C.C.)
| |
Collapse
|
18
|
Loch JI, Jaskolski M. Structural and biophysical aspects of l-asparaginases: a growing family with amazing diversity. IUCRJ 2021; 8:514-531. [PMID: 34258001 PMCID: PMC8256714 DOI: 10.1107/s2052252521006011] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
l-Asparaginases have remained an intriguing research topic since their discovery ∼120 years ago, especially after their introduction in the 1960s as very efficient antileukemic drugs. In addition to bacterial asparaginases, which are still used to treat childhood leukemia, enzymes of plant and mammalian origin are now also known. They have all been structurally characterized by crystallography, in some cases at outstanding resolution. The structural data have also shed light on the mechanistic details of these deceptively simple enzymes. Yet, despite all this progress, no better therapeutic agents have been found to beat bacterial asparaginases. However, a new option might arise with the discovery of yet another type of asparaginase, those from symbiotic nitrogen-fixing Rhizobia, and with progress in the protein engineering of enzymes with desired properties. This review surveys the field of structural biology of l-asparaginases, focusing on the mechanistic aspects of the well established types and speculating about the potential of the new members of this amazingly diversified family.
Collapse
Affiliation(s)
- Joanna I. Loch
- Department of Crystal Chemistry and Crystal Physics, Faculty of Chemistry, Jagiellonian University, Cracow, Poland
| | - Mariusz Jaskolski
- Department of Crystallography, Faculty of Chemistry, A. Mickiewicz University, Poznan, Poland
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| |
Collapse
|
19
|
Nadeem MS, Khan JA, Al-Ghamdi MA, Khan MI, Zeyadi MA. Studies on the recombinant production and anticancer activity of thermostable L- asparaginase I from Pyrococcus abyssi. BRAZ J BIOL 2021; 82:e244735. [PMID: 34076169 DOI: 10.1590/1519-6984.244735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 11/23/2020] [Indexed: 11/22/2022] Open
Abstract
L-Asparaginase catalysing the breakdown of L-Asparagine to L-Aspartate and ammonia is an enzyme of therapeutic importance in the treatment of cancer, especially the lymphomas and leukaemia. The present study describes the recombinant production, properties and anticancer potential of enzyme from a hyperthermophilic archaeon Pyrococcus abyssi. There are two genes coding for asparaginase in the genome of this organism. A 918 bp gene encoding 305 amino acids was PCR amplified and cloned in BL21 (DE3) strain of E. coli using pET28a (+) plasmid. The production of recombinant enzyme was induced under 0.5mM IPTG, purified by selective heat denaturation and ion exchange chromatography. Purified enzyme was analyzed for kinetics, in silico structure and anticancer properties. The recombinant enzyme has shown a molecular weight of 33 kDa, specific activity of 1175 U/mg, KM value 2.05mM, optimum temperature and pH 80°C and 8 respectively. No detectable enzyme activity found when L-Glutamine was used as the substrate. In silico studies have shown that the enzyme exists as a homodimer having Arg11, Ala87, Thr110, His112, Gln142, Leu172, and Lys232 being the putative active site residues. The free energy change calculated by molecular docking studies of enzyme and substrate was found as ∆G - 4.5 kJ/mole indicating the affinity of enzyme with the substrate. IC50 values of 5U/mL to 7.5U/mL were determined for FB, caco2 cells and HepG2 cells. A calculated amount of enzyme (5U/mL) exhibited 78% to 55% growth inhibition of caco2 and HepG2 cells. In conclusion, the recombinant enzyme produced and characterized in the present study offers a good candidate for the treatment of cancer. The procedures adopted in the present study can be prolonged for in vivo studies.
Collapse
Affiliation(s)
- M S Nadeem
- King Abdulaziz University, Faculty of Science, Department of Biochemistry, Jeddah, Saudi Arabia
| | - J A Khan
- King Abdulaziz University, Faculty of Science, Department of Biochemistry, Jeddah, Saudi Arabia
| | - M A Al-Ghamdi
- King Abdulaziz University, Faculty of Science, Department of Biochemistry, Jeddah, Saudi Arabia
| | - M I Khan
- King Abdulaziz University, Faculty of Science, Department of Biochemistry, Jeddah, Saudi Arabia
| | - M A Zeyadi
- King Abdulaziz University, Faculty of Science, Department of Biochemistry, Jeddah, Saudi Arabia
| |
Collapse
|
20
|
Thermococcus kodakarensis-derived L-asparaginase: a candidate for the treatment of glioblastoma. Biologia (Bratisl) 2021. [DOI: 10.2478/s11756-021-00678-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
Naeem SU, Ahmad N, Rashid N. Pcal_0842, a highly thermostable glycosidase from Pyrobaculum calidifontis displays both α-1,4- and β-1,4-glycosidic cleavage activities. Int J Biol Macromol 2020; 165:1745-1754. [DOI: 10.1016/j.ijbiomac.2020.10.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/12/2020] [Accepted: 10/01/2020] [Indexed: 12/14/2022]
|
22
|
Lin HC, Li WH, Chen CC, Cheng TH, Lan YH, Huang MD, Chen WM, Chang JS, Chang HY. Diverse Enzymes With Industrial Applications in Four Thraustochytrid Genera. Front Microbiol 2020; 11:573907. [PMID: 33193181 PMCID: PMC7641610 DOI: 10.3389/fmicb.2020.573907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 09/24/2020] [Indexed: 11/19/2022] Open
Abstract
Thraustochytrids are heterotrophic fungus-like protists that can dissolve organic matters with enzymes. Four strains, AP45, ASP1, ASP2, and ASP4, were isolated from the coastal water of Taiwan, and respectively identified as Aurantiochytrium sp., Schizochytrium sp., Parietichytrium sp., and Botryochytrium sp. based on 18S rRNA sequences. Transcriptome datasets of these four strains at days 3-5 were generated using Next Generation Sequencing technology, and screened for enzymes with potential industrial applications. Functional annotations based on KEGG database suggest that many unigenes of all four strains were related to the pathways of industrial enzymes. Most of all four strains contained homologous genes for 15 out of the 17 targeted enzymes, and had extra- and/or intra-cellular enzymatic activities, including urease, asparaginase, lipase, glucosidase, alkaline phosphatase and protease. Complete amino sequences of the first-time identified L-asparaginase and phytase in thraustochytrids were retrieved, and respectively categorized to the Type I and BPPhy families based on phylogenetic relationships, protein structural modeling and active sites. Milligram quantities of highly purified, soluble protein of urease and L-asparaginase were successfully harvested and analyzed for recombinant enzymatic activities. These analytical results highlight the diverse enzymes for wide-range applications in thraustochytrids.
Collapse
Affiliation(s)
- Hsiu-Chin Lin
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan.,Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Wei-Hao Li
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Chi-Chih Chen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Tien-Hsing Cheng
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Yu-Hsuan Lan
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Ming-Der Huang
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Wen-Ming Chen
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - Jo-Shu Chang
- Department of Chemical and Materials Engineering, College of Engineering, Tunghai University, Taichung, Taiwan.,Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, Taiwan.,Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Hsin-Yang Chang
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan.,Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
23
|
Aly N, El-Ahwany A, Ataya FS, Saeed H. Bacillus sonorensis L. Asparaginase: Cloning, Expression in E. coli and Characterization. Protein J 2020; 39:717-729. [PMID: 33106988 DOI: 10.1007/s10930-020-09932-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2020] [Indexed: 02/06/2023]
Abstract
L-asparaginases (L-ASNases; EC 3.5.1.1) are aminohydrolases that catalyze the hydrolysis of L-asparagine (L-Asn) to L-aspartic acid and ammonia, resulting in the death of acute lymphoblastic leukemic cells and other blood cancer cells. In this study, Bacillus sonorensis (accession number MK523484) uncharacterized L-ASNase gene (accession number MN562875) was isolated by polymerase chain reaction (PCR), cloned into pET28a (+) vector, and expressed in Escherichia coli as a cytosolic protein. The recombinant enzyme was purified by affinity chromatography at 23.79-fold and 49.37% recovery. Denaturing polyacrylamide gel (10%) analysis of the purified enzyme resulted in a single protein band at 36 kDa that immunoreacted strongly with 6His-tag monoclonal antibody. The purified enzyme exhibited optimal activity at 45 °C and pH 7.0 and retained 92% and 85% of its initial activity after incubation for 60 min at 37 °C and 45 °C, respectively. The purified enzyme exhibited substrate specificity toward L-asparagine and low glutaminase activity (15.72%) toward L-glutamine at a concentration of 10 mM. The Km and Vmax values were 2.004 mM and 3723 µmol min1-, respectively.
Collapse
Affiliation(s)
- Nihal Aly
- Botany and Microbiology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Amani El-Ahwany
- Botany and Microbiology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Farid Shokry Ataya
- Biochemistry Department, College of Science, King Saud University, Bld. 5, Lab AA10, P.O. Box: 2454, Riyadh, Kingdom of Saudi Arabia.,National Research Centre, 33 El-Bohouth St. (former El-Tahrir St.), Dokki, P.O. 12622, Giza, Egypt
| | - Hesham Saeed
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
24
|
Characterization of a novel type I l-asparaginase from Acinetobacter soli and its ability to inhibit acrylamide formation in potato chips. J Biosci Bioeng 2020; 129:672-678. [DOI: 10.1016/j.jbiosc.2020.01.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/28/2019] [Accepted: 01/26/2020] [Indexed: 12/20/2022]
|
25
|
Dumina MV, Eldarov MA, Zdanov DD, Sokolov NN. [L-asparaginases of extremophilic microorganisms in biomedicine]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2020; 66:105-123. [PMID: 32420891 DOI: 10.18097/pbmc20206602105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
L-asparaginase is extensively used in the treatment of acute lymphoblastic leukemia and several other lymphoproliferative diseases. In addition to its biomedical application, L-asparaginase is also of prospective use in food industry to reduce the formation of acrylamide, which is classified as probably neurotoxic and carcinogenic to human, and in biosensors for determination of L-asparagine level in medicine and food chemistry. The importance of L-asparaginases in different fields, disadvantages of commercial ferments, and the fact that they are widespread in nature stimuli the search for biobetter L-asparaginases from new producing microorganisms. In this regard, extremofile microorganisms exhibit unique physiological properties such as thermal stability, adaptability to extreme cold conditions, salt and pH tolerance and so provide one of the most valuable sources for novel L-asparaginases. The present review summarizes the recent results on studying the structural, functional, physicochemical and kinetic properties, stability of extremophilic L-asparaginases in comparison with their mesophilic homologues.
Collapse
Affiliation(s)
- M V Dumina
- Research Center of Biotechnology RAS, Moscow, Russia
| | - M A Eldarov
- Research Center of Biotechnology RAS, Moscow, Russia
| | - D D Zdanov
- Institute of Biomedical Chemistry, Moscow, Russia
| | - N N Sokolov
- Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
26
|
Microbial l-asparaginase: purification, characterization and applications. Arch Microbiol 2020; 202:967-981. [DOI: 10.1007/s00203-020-01814-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/02/2020] [Accepted: 01/21/2020] [Indexed: 10/25/2022]
|
27
|
Arif M, Bashir Q, Siddiqui MA, Rashid N. Molecular characterization of a highly efficient and thermostable phosphoribosyl anthranilate isomerase from Geobacillus thermopakistaniensis. Protein Expr Purif 2020; 166:105523. [DOI: 10.1016/j.pep.2019.105523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/18/2019] [Accepted: 10/23/2019] [Indexed: 11/17/2022]
|
28
|
Chohan SM, Sajed M, Naeem SU, Rashid N. Heterologous gene expression and characterization of TK2246, a highly active and thermostable plant type l-asparaginase from Thermococcus kodakarensis. Int J Biol Macromol 2020; 147:131-137. [PMID: 31923515 DOI: 10.1016/j.ijbiomac.2020.01.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/02/2020] [Accepted: 01/03/2020] [Indexed: 11/24/2022]
Abstract
The genome sequence of the hyperthermophilic archaeon Thermococcus kodakarensis contains two putative genes, TK1656 and TK2246, annotated as l-asparaginases. TK1656 has been reported previously. The current report is focused on TK2246, a plant-type l-asparaginase, which consists of 918 nucleotides corresponding to a polypeptide of 306 amino acids. The gene was cloned, expressed in Escherichia coli and the purified gene product was used to determine the properties of the recombinant enzyme. TK2246 was optimally active at 85 °C and pH 7.0 with a specific activity of 767 μmol min-1 mg-1 towards l-asparagine. The enzyme exhibited a 10% activity towards d-asparagine as compared to 100% against l-asparagine. No detectable activity was observed towards l- or d-glutamine. Half-life of the enzyme was nearly 18 h at 85 °C. TK2246 exhibited apparent Km and Vmax values of 3.1 mM and 833 μmol min-1 mg-1, respectively. Activation energy of the reaction, determined from the Arrhenius plot, was 28.3 kJ mol-1. To the best of our knowledge, this is the first characterization of a plant-type l-asparaginase from class Thermococci of phylum Euryarchaeota.
Collapse
Affiliation(s)
- Shahid Mahmood Chohan
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Muhammad Sajed
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Sabeel Un Naeem
- Institute of Biochemistry and Biotechnology, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Naeem Rashid
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan.
| |
Collapse
|
29
|
Lu X, Chen J, Jiao L, Zhong L, Lu Z, Zhang C, Lu F. Improvement of the activity of l-asparaginase I improvement of the catalytic activity of l-asparaginase I from Bacillus megaterium H-1 by in vitro directed evolution. J Biosci Bioeng 2019; 128:683-689. [DOI: 10.1016/j.jbiosc.2019.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 05/17/2019] [Accepted: 06/04/2019] [Indexed: 10/26/2022]
|
30
|
Sharma D, Singh K, Singh K, Mishra A. Insights into the Microbial L-Asparaginases: from Production to Practical Applications. Curr Protein Pept Sci 2019; 20:452-464. [PMID: 30426897 DOI: 10.2174/1389203720666181114111035] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 11/01/2018] [Accepted: 11/04/2018] [Indexed: 01/10/2023]
Abstract
L-asparaginase is a valuable protein therapeutic drug utilized for the treatment of leukemia and lymphomas. Administration of asparaginase leads to asparagine starvation causing inhibition of protein synthesis, growth, and proliferation of tumor cells. Besides its clinical significance, the enzyme also finds application in the food sector for mitigation of a cancer-causing agent acrylamide. The numerous applications ensue huge market demands and create a continued interest in the production of costeffective, more specific, less immunogenic and stable formulations which can cater both the clinical and food processing requirements. The current review article approaches the process parameters of submerged and solid-state fermentation strategies for the microbial production of the L-asparaginase from diverse sources, genetic engineering approaches used for the production of L-asparaginase enzyme and major applications in clinical and food sectors. The review also addresses the immunological issues associated with the L-asparaginase usage and the immobilization strategies, drug delivery systems employed to circumvent the toxicity complications are also discussed. The future prospects for microbial Lasparaginase production are discussed at the end of the review article.
Collapse
Affiliation(s)
- Deepankar Sharma
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi-221005, India
| | - Kushagri Singh
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi-221005, India
| | - Kavita Singh
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi-221005, India
| | - Abha Mishra
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi-221005, India
| |
Collapse
|
31
|
Shaeer A, Aslam M, Rashid N. A highly stable manganese catalase from Geobacillus thermopakistaniensis: molecular cloning and characterization. Extremophiles 2019; 23:707-718. [DOI: 10.1007/s00792-019-01124-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/26/2019] [Indexed: 01/08/2023]
|
32
|
Recombinant Tk0522, a carbohydrate esterase homologue from Thermococcus kodakarensis, does not require a signal sequence for translocation to periplasmic space in Escherichia coli. Biologia (Bratisl) 2019. [DOI: 10.2478/s11756-019-00243-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
33
|
An overview of 25 years of research on Thermococcus kodakarensis, a genetically versatile model organism for archaeal research. Folia Microbiol (Praha) 2019; 65:67-78. [PMID: 31286382 DOI: 10.1007/s12223-019-00730-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 06/17/2019] [Indexed: 10/26/2022]
Abstract
Almost 25 years have passed since the discovery of a planktonic, heterotrophic, hyperthermophilic archaeon named Thermococcus kodakarensis KOD1, previously known as Pyrococcus sp. KOD1, by Imanaka and coworkers. T. kodakarensis is one of the most studied archaeon in terms of metabolic pathways, available genomic resources, established genetic engineering techniques, reporter constructs, in vitro transcription/translation machinery, and gene expression/gene knockout systems. In addition to all these, ease of growth using various carbon sources makes it a facile archaeal model organism. Here, in this review, an attempt is made to reflect what we have learnt from this hyperthermophilic archaeon.
Collapse
|
34
|
Li X, Zhang X, Xu S, Xu M, Yang T, Wang L, Zhang H, Fang H, Osire T, Rao Z. Insight into the thermostability of thermophilic L-asparaginase and non-thermophilic L-asparaginase II through bioinformatics and structural analysis. Appl Microbiol Biotechnol 2019; 103:7055-7070. [DOI: 10.1007/s00253-019-09967-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/29/2019] [Accepted: 06/10/2019] [Indexed: 01/16/2023]
|
35
|
Feng Y, Liu S, Jiao Y, Wang Y, Wang M, Du G. Gene cloning and expression of the l-asparaginase from Bacillus cereus BDRD-ST26 in Bacillus subtilis WB600. J Biosci Bioeng 2019; 127:418-424. [DOI: 10.1016/j.jbiosc.2018.09.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 09/09/2018] [Accepted: 09/12/2018] [Indexed: 01/04/2023]
|
36
|
Liu C, Luo L, Lin Q. Antitumor activity and ability to prevent acrylamide formation in fried foods of asparaginase from soybean root nodules. J Food Biochem 2019; 43:e12756. [PMID: 31353561 DOI: 10.1111/jfbc.12756] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 11/12/2018] [Accepted: 11/20/2018] [Indexed: 11/29/2022]
Abstract
A novel asparaginase (designated srnASNase) has been purified from soybean root nodules and identified by MALDI-TOF/TOF-MS. And the enzymatic properties, antitumor activity and the ability to prevent acrylamide formation in fried foods of srnASNase were evaluated. SrnASNase had high specific activity (531.37 U/mg) toward L-asparagine under optimum conditions (pH 8.0 and 40°C), no activity toward L-glutamine and D-glutamine, but trace activity toward D-asparagine. It was stable in the pH range of 7.0-9.0 and up to 40°C. The Km and Vmax of srnASNase were 0.36 mM and 51.64 mM/min, respectively. Further, in vitro anti-proliferative activity on human cancer cells assay showed that srnASNase was superior to commercial asparaginase in solution by controlling the tumor cell growth with time. In addition, srnASNase showed more effective acrylamide mitigation than commercial asparaginase in fried foods. These results indicate that srnASNase is a potential candidate for applications in the food processing and pharmaceutical industry. PRACTICAL APPLICATIONS: L-asparaginase (L-asparagine amidohydrolase; EC 3.5.1.1) is an enzyme that catalyzes the hydrolysis of the amide group of the side-chain of L-asparagine into aspartic acid and ammonia. It has long been used as a primary component in the treatment of acute lymphoblastic leukemia (All) and other related blood cancers. Apart from its clinical usage, L-asparaginase has attracted more attention in the food processing industries as a promising acrylamide-mitigating agent in recent years. This research revealed that soybean root nodules might be good sources of novel asparaginase.
Collapse
Affiliation(s)
- Chun Liu
- National Engineering Laboratory for Rice and By-product Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, School of Food Science and Engineering, Center South University of Forestry and Technology, Changsha, China
| | - Lijuan Luo
- National Engineering Laboratory for Rice and By-product Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, School of Food Science and Engineering, Center South University of Forestry and Technology, Changsha, China
| | - Qinlu Lin
- National Engineering Laboratory for Rice and By-product Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, School of Food Science and Engineering, Center South University of Forestry and Technology, Changsha, China
| |
Collapse
|
37
|
L-asparaginase – A promising biocatalyst for industrial and clinical applications. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2018.11.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
38
|
Pcal_0970: an extremely thermostable l-asparaginase from Pyrobaculum calidifontis with no detectable glutaminase activity. Folia Microbiol (Praha) 2018; 64:313-320. [DOI: 10.1007/s12223-018-0656-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 10/08/2018] [Indexed: 10/28/2022]
|
39
|
Extremely stable indole-3-glycerol-phosphate synthase from hyperthermophilic archaeon Pyrococcus furiosus. Extremophiles 2018; 23:69-77. [DOI: 10.1007/s00792-018-1061-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 09/24/2018] [Indexed: 10/28/2022]
|
40
|
Expression and Functional Characterization of Pseudomonas aeruginosa Recombinant l.Asparaginase. Protein J 2018; 37:461-471. [DOI: 10.1007/s10930-018-9789-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
41
|
Gene cloning and characterization of recombinant L-Asparaginase from Bacillus subtilis strain R5. Biologia (Bratisl) 2018. [DOI: 10.2478/s11756-018-0054-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
42
|
Bibi T, Ali M, Rashid N, Muhammad MA, Akhtar M. Enhancement of gene expression in Escherichia coli and characterization of highly stable ATP-dependent glucokinase from Pyrobaculum calidifontis. Extremophiles 2017; 22:247-257. [DOI: 10.1007/s00792-017-0993-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 12/08/2017] [Indexed: 11/30/2022]
|
43
|
Aziz I, Rashid N, Ashraf R, Siddiqui MA, Imanaka T, Akhtar M. Pcal_0632, a phosphorylating glyceraldehyde-3-phosphate dehydrogenase from Pyrobaculum calidifontis. Extremophiles 2017; 22:121-129. [DOI: 10.1007/s00792-017-0982-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 11/20/2017] [Indexed: 11/25/2022]
|
44
|
Guo J, Coker AR, Wood SP, Cooper JB, Chohan SM, Rashid N, Akhtar M. Structure and function of the thermostableL-asparaginase fromThermococcus kodakarensis. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2017; 73:889-895. [DOI: 10.1107/s2059798317014711] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Accepted: 10/11/2017] [Indexed: 11/10/2022]
Abstract
L-Asparaginases catalyse the hydrolysis of asparagine to aspartic acid and ammonia. In addition, L-asparaginase is involved in the biosynthesis of amino acids such as lysine, methionine and threonine. These enzymes have been used as chemotherapeutic agents for the treatment of acute lymphoblastic leukaemia and other haematopoietic malignancies since the tumour cells cannot synthesize sufficient L-asparagine and are thus killed by deprivation of this amino acid. L-Asparaginases are also used in the food industry and have potential in the development of biosensors, for example for asparagine levels in leukaemia. The thermostable type I L-asparaginase fromThermococcus kodakarensis(TkA) is composed of 328 amino acids and forms homodimers in solution, with the highest catalytic activity being observed at pH 9.5 and 85°C. It has aKmvalue of 5.5 mMfor L-asparagine, with no glutaminase activity being observed. The crystal structure of TkA has been determined at 2.18 Å resolution, confirming the presence of two α/β domains connected by a short linker region. The N-terminal domain contains a highly flexible β-hairpin which adopts `open' and `closed' conformations in different subunits of the solved TkA structure. In previously solved L-asparaginase structures this β-hairpin was only visible when in the `closed' conformation, whilst it is characterized with good electron density in all of the subunits of the TkA structure. A phosphate anion resides at the active site, which is formed by residues from both of the neighbouring monomers in the dimer. The high thermostability of TkA is attributed to the high arginine and salt-bridge content when compared with related mesophilic enzymes.
Collapse
|
45
|
Ashraf R, Rashid N, Kanai T, Imanaka T, Akhtar M. Pcal_1311, an alcohol dehydrogenase homologue from Pyrobaculum calidifontis, displays NADH-dependent high aldehyde reductase activity. Extremophiles 2017; 21:1101-1110. [PMID: 29022135 DOI: 10.1007/s00792-017-0970-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 09/25/2017] [Indexed: 10/18/2022]
Abstract
Genome sequence of Pyrobaculum calidifontis, a hyperthermophilic archaeon, harbors three open-reading frames annotated as alcohol dehydrogenases. One of them, Pcal_1311, does not display a significantly high homology with any of the characterized alcohol dehydrogenases. Highest homology of 38% was found with the characterized counterpart from Geobacillus stearothermophilus. To examine the biochemical properties of Pcal_1311, we have cloned and functionally expressed the gene in Escherichia coli. Purified recombinant Pcal_1311 catalyzed the NAD(H)-dependent oxidation of various alcohols and reduction of aldehydes, with a marked preference for substrates with functional group at the terminal carbon. Highest activity for the oxidation reaction (3 μmol min-1 mg-1) was found with 1,4-butanediol and for the reduction reaction (150 μmol min-1 mg-1) with glutaraldehyde. Both the oxidation and reduction activities increased with the increase in temperature up to 80 °C. Recombinant Pcal_1311 was highly stable and retained more than 90% activity even after incubation of 180 min at 90 °C. In addition to the thermostabilty, Pcal_1311 was highly stable in the presence of known denaturants including urea and guanidine hydrochloride. The high stability, particularly thermostability, and the NADH-dependent aldehyde reduction activity make Pcal_1311 a unique member in the alcohol dehydrogenase family.
Collapse
Affiliation(s)
- Raza Ashraf
- School of Biological Sciences, University of the Punjab, Lahore, 54590, Pakistan
| | - Naeem Rashid
- School of Biological Sciences, University of the Punjab, Lahore, 54590, Pakistan.
| | - Tamotsu Kanai
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Tadayuki Imanaka
- The Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Muhammad Akhtar
- School of Biological Sciences, University of the Punjab, Lahore, 54590, Pakistan.,School of Biological Sciences, University of Southampton, Southampton, SO16 7PX, UK
| |
Collapse
|
46
|
Zhdanov DD, Pokrovsky VS, Pokrovskaya MV, Alexandrova SS, Eldarov MA, Grishin DV, Basharov MM, Gladilina YA, Podobed OV, Sokolov NN. Rhodospirillum rubruml-asparaginase targets tumor growth by a dual mechanism involving telomerase inhibition. Biochem Biophys Res Commun 2017; 492:282-288. [PMID: 28837806 DOI: 10.1016/j.bbrc.2017.08.078] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 08/21/2017] [Indexed: 01/20/2023]
Abstract
Rhodospirillum rubruml-asparaginase mutant RrA E149R, V150P, F151T (RrA) was previously identified to down-regulate telomerase activity along with catalyzing the hydrolysis of l-asparagine. The aim of this study was to define the effect of prolonged RrA exposure on telomerase activity, maintenance of telomeres and proliferation of cancer cells in vitro and in vivo. RrA could inhibit telomerase activity in SCOV-3, SkBr-3 and A549 human cancer cell lines due to its ability to down-regulate the expression of telomerase catalytic subunit hTERT. Telomerase activity in treated cells did not exceeded 29.63 ± 12.3% of control cells. Continuous RrA exposure of these cells resulted in shortening of telomeres followed by cell death in vitro. Using real time PCR we showed that length of telomeres in SCOV-3 cells has been gradually decreasing from 10105 ± 2530 b.p. to 1233 ± 636 b.p. after 35 days of cultivation. RrA treatment of xenograft models in vivo showed slight inhibition of tumor growth accompanied with 49.5-53.3% of decrease in hTERT expression in the all tumors. However down-regulation of hTERT expression, inhibition of telomerase activity and the loss of telomeres was significant in response to RrA administration in xenograft models. These results should facilitate further investigations of RrA as a potent therapeutic protein.
Collapse
Affiliation(s)
| | - Vadim S Pokrovsky
- Institute of Biomedical Chemistry, Moscow, Russia; N.N. Blokhin Cancer Research Center, Moscow, Russia; Peoples' Friendship University of Russia, Moscow, Russia
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Shi R, Liu Y, Mu Q, Jiang Z, Yang S. Biochemical characterization of a novel L-asparaginase from Paenibacillus barengoltzii being suitable for acrylamide reduction in potato chips and mooncakes. Int J Biol Macromol 2017; 96:93-99. [DOI: 10.1016/j.ijbiomac.2016.11.115] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 11/30/2016] [Accepted: 11/30/2016] [Indexed: 01/08/2023]
|
48
|
Chohan SM, Nisar MA, Rashid N, Gharib G, Bashir Q, Siddiqui MA. TK1656, an L-asparaginase from Thermococcus kodakarensis, a novel candidate for therapeutic applications. Biologia (Bratisl) 2016. [DOI: 10.1515/biolog-2016-0168] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
49
|
Sun Z, Qin R, Li D, Ji K, Wang T, Cui Z, Huang Y. A novel bacterial type II l -asparaginase and evaluation of its enzymatic acrylamide reduction in French fries. Int J Biol Macromol 2016; 92:232-239. [DOI: 10.1016/j.ijbiomac.2016.07.031] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 07/06/2016] [Accepted: 07/07/2016] [Indexed: 11/17/2022]
|
50
|
Enhanced extracellular production of L-asparaginase from Bacillus subtilis 168 by B. subtilis WB600 through a combined strategy. Appl Microbiol Biotechnol 2016; 101:1509-1520. [DOI: 10.1007/s00253-016-7816-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 08/08/2016] [Accepted: 08/12/2016] [Indexed: 11/27/2022]
|