1
|
Sahoo A, Das PK, Dasu VV, Patra S. Insulin evolution: A holistic view of recombinant production advancements. Int J Biol Macromol 2024; 277:133951. [PMID: 39032893 DOI: 10.1016/j.ijbiomac.2024.133951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/29/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
The increased prevalence of diabetes and the growing popularity of non-invasive methods of recombinant human insulin uptake, such as oral insulin, have increased insulin demand, further limiting the affordability of insulin. Over 40 years have passed since the development of engineered microorganisms that replaced the animal pancreas as the primary source of insulin. To stay ahead of the need for insulin in the present and the future, a few drawbacks with the existing expression systems need to be alleviated, including the inclusion body formation, the use of toxic inducers, and high process costs. To address these bottlenecks and improve insulin production, a variety of techniques are being used in bacteria, yeasts, transgenic plants and animals, mammalian cell lines, and cell-free expression systems. Different approaches for the production of insulin, including two-chain, proinsulin or mini-proinsulin, preproinsulin coupled with fusion protein, chaperone, signal peptide, and purification tags, are explored in upstream, whereas downstream processing takes into account the recovery of intact protein in its bioactive form and purity. This article focuses on the strategies used in the upstream and downstream phases of the bioprocess to produce recombinant human insulin. This review also covers a range of analytical methods and tools employed in investigating the genuity of recombinant human insulin.
Collapse
Affiliation(s)
- Ansuman Sahoo
- Biochemical Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, 781039, Assam, India
| | - Prabir Kumar Das
- Biochemical Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, 781039, Assam, India
| | - Veeranki Venkata Dasu
- Biochemical Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, 781039, Assam, India.
| | - Sanjukta Patra
- Enzyme & Microbial Technology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, 781039, Assam, India
| |
Collapse
|
2
|
Üstüntanır Dede AF, Arslanyolu M. Recombinant production of hormonally active human insulin from pre-proinsulin by Tetrahymena thermophila. Enzyme Microb Technol 2023; 170:110303. [PMID: 37562115 DOI: 10.1016/j.enzmictec.2023.110303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/12/2023]
Abstract
Alternative cell factories, such as the unicellular ciliate eukaryotic Tetrahymena thermophila, may be required for the production of protein therapeutics that are challenging to produce in conventional expression systems. T. thermophila (Tt) can secrete proteins with the post-translational modifications necessary for their function in humans. In this study, we tested if T. thermophila could process the human pre-proinsulin to produce hormonally active human insulin (hINS) with correct modifications. Flask and bioreactor culture of T. thermophila were used to produce the recombinant Tt-hINS either with or without an affinity tag from a codon-adapted pre-proinsulin sequence. Our results indicate that T. thermophila can produce a 6 kDa Tt-hINS monomer with the appropriate disulfide bonds after removal of the human insulin signal sequence or endogenous phospholipase A signal sequence, and the C-peptide of the human insulin. Additionally, Tt-hINS can form 12 kDa dimeric, 24 kDa tetrameric, and 36 kDa hexameric complexes. Tt-hINS-sfGFP fusion protein was localized to the vesicles within the cytoplasm and was secreted extracellularly. Assessing the affinity-purified Tt-hINS activity using the in vivo T. thermophila extracellular glucose drop assay, we observed that Tt-hINS induced a significant reduction (approximately 21 %) in extracellular glucose levels, indicative of its functional insulin activity. Our results demonstrate that T. thermophila is a promising candidate for the pharmaceutical and biotechnology industries as a host organism for the production of human protein drugs.
Collapse
Affiliation(s)
- Ayça Fulya Üstüntanır Dede
- Department of Biology, Institute of Graduate Programs, Eskisehir Technical University, Yunus Emre Campus, Eskisehir 26470, Turkey,.
| | - Muhittin Arslanyolu
- Department of Biology, Faculty of Sciences, Eskisehir Technical University, Yunus Emre Campus, Eskisehir 26470, Turkey.
| |
Collapse
|
3
|
Production of neutralizing antibody fragment variants in the cytoplasm of E. coli for rapid screening: SARS-CoV-2 a case study. Sci Rep 2023; 13:4408. [PMID: 36927743 PMCID: PMC10019796 DOI: 10.1038/s41598-023-31369-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
Global health challenges such as the coronavirus pandemic warrant the urgent need for a system that allows efficient production of diagnostic and therapeutic interventions. Antibody treatments against SARS-CoV-2 were developed with an unprecedented pace and this enormous progress was achieved mainly through recombinant protein production technologies combined with expeditious screening approaches. A heterologous protein production system that allows efficient soluble production of therapeutic antibody candidates against rapidly evolving variants of deadly pathogens is an important step in preparedness towards future pandemic challenges. Here, we report cost and time-effective soluble production of SARS-CoV-2 receptor binding domain (RBD) variants as well as an array of neutralizing antibody fragments (Fabs) based on Casirivimab and Imdevimab using the CyDisCo system in the cytoplasm of E. coli. We also report variants of the two Fabs with higher binding affinity against SARS-CoV-2 RBD and suggest this cytoplasmic production of disulfide containing antigens and antibodies can be broadly applied towards addressing future global public health threats.
Collapse
|
4
|
Implementation of a Practical Teaching Course on Protein Engineering. BIOLOGY 2022; 11:biology11030387. [PMID: 35336761 PMCID: PMC8944992 DOI: 10.3390/biology11030387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/21/2022] [Accepted: 02/25/2022] [Indexed: 11/20/2022]
Abstract
Simple Summary Proteins are the workhorses of the cell. With different combinations of the 20 common amino acids and some modifications of these amino acids, proteins have evolved with a staggering array of new functions and capabilities due to Protein Engineering techniques. The practical course presented was offered to undergraduate bioengineering and chemical students at the Faculty of Engineering of the University of Porto (Portugal) and consists of sequential laboratory sessions to learn the basic skills related to the expression and purification of recombinant proteins in bacterial hosts. These experiments were successfully applied by students as all working groups were able to isolate a model recombinant protein (the enhanced green fluorescent protein) from a cell lysate containing a mixture of proteins and other biomolecules produced by an Escherichia coli strain and evaluate the performance of the extraction and purification procedures they learned. Abstract Protein Engineering is a highly evolved field of engineering aimed at developing proteins for specific industrial, medical, and research applications. Here, we present a practical teaching course to demonstrate fundamental techniques used to express, purify and analyze a recombinant protein produced in Escherichia coli—the enhanced green fluorescent protein (eGFP). The methodologies used for eGFP production were introduced sequentially over six laboratory sessions and included (i) bacterial growth, (ii) sonication (for cell lysis), (iii) affinity chromatography and dialysis (for eGFP purification), (iv) bicinchoninic acid (BCA) and fluorometry assays for total protein and eGFP quantification, respectively, and (v) sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) for qualitative analysis. All groups were able to isolate the eGFP from the cell lysate with purity levels up to 72%. Additionally, a mass balance analysis performed by the students showed that eGFP yields up to 46% were achieved at the end of the purification process following the adopted procedures. A sensitivity analysis was performed to pinpoint the most critical steps of the downstream processing.
Collapse
|
5
|
Khalilvand AB, Aminzadeh S, Sanati MH, Mahboudi F. Cytoplasmic soluble Lispro insulin production in Escherichia coli, product yield optimization and physiochemical characterization. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
6
|
Siew YY, Rai A, Pek HB, Ow DSW, Zhang W. New and efficient purification process for recombinant human insulin produced in Escherichia coli. Appl Microbiol Biotechnol 2021; 105:9137-9151. [PMID: 34821966 DOI: 10.1007/s00253-021-11697-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 01/22/2023]
Abstract
A new and efficient purification process for recombinant human insulin production was developed by exploring new resins and optimizing purification steps from E. coli inclusion body washing to insulin polishing. A combined additives inclusion body wash protocol drastically improved efficiency in clarifying ZZ-proinsulin samples. ZZ-proinsulin recovery increased three-fold under optimized solubilization and sulfitolysis incubation temperature and duration. Desalting with Bio-Gel P4 and P6 resulted in higher sample loading and product recovery compared to conventional resins. A higher recovery (96%) and purity (81%) of ZZ-proinsulin were achievable with the Nuvia S cation exchanger for proinsulin purification compared to a reported process using expensive affinity chromatography resin. As the first step for insulin purification, process scale-up is more economical and practical when Nuvia HR-S cation exchanger was used instead of commonly used reversed-phase chromatography. Nuvia HR-S was highly effective in removing ZZ fusion protein (90% removal) after enzymatic cleavage, although ZZ fusion protein has a very close theoretical pI to human insulin, which was supposedly challenging to be removed by cation exchange chromatography. Also, insulin can be eluted at a lower ethanol % using Nuvia HR-S compared to other reported processes and is thus more environmentally sustainable. Recombinant human insulin was obtained with over 98% purity in just a single reversed-phase polishing step, which is comparable to the reference standard. The process workflow presented here can be potentially applied for the development of purification workflow for insulin analogs or other peptide products derived from E. coli inclusion body.Key points• Drastic efficiency improvement for inclusion body wash with combined additives.• High recovery of proinsulin purification with high capacity cation exchange resin.• Effective removal of fusion tag at lower ethanol % with high-resolution resin.
Collapse
Affiliation(s)
- Yin Yin Siew
- Downstream Processing Group, Bioprocessing Technology Institute, A*STAR Research Entities, Singapore, Singapore
| | - Amrita Rai
- Downstream Processing Group, Bioprocessing Technology Institute, A*STAR Research Entities, Singapore, Singapore
| | - Han Bin Pek
- Microbial Cell Bioprocessing Group, Bioprocessing Technology Institute, A*STAR Research Entities, Singapore, Singapore
| | - Dave Siak-Wei Ow
- Microbial Cell Bioprocessing Group, Bioprocessing Technology Institute, A*STAR Research Entities, Singapore, Singapore
| | - Wei Zhang
- Downstream Processing Group, Bioprocessing Technology Institute, A*STAR Research Entities, Singapore, Singapore.
| |
Collapse
|
7
|
Siew YY, Zhang W. Downstream processing of recombinant human insulin and its analogues production from E. coli inclusion bodies. BIORESOUR BIOPROCESS 2021; 8:65. [PMID: 34336550 PMCID: PMC8313369 DOI: 10.1186/s40643-021-00419-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/20/2021] [Indexed: 11/10/2022] Open
Abstract
The Global Diabetes Compact was launched by the World Health Organization in April 2021 with one of its important goals to increase the accessibility and affordability of life-saving medicine-insulin. The rising prevalence of diabetes worldwide is bound to escalate the demand for recombinant insulin therapeutics, and currently, the majority of recombinant insulin therapeutics are produced from E. coli inclusion bodies. Here, a comprehensive review of downstream processing of recombinant human insulin/analogue production from E. coli inclusion bodies is presented. All the critical aspects of downstream processing, starting from proinsulin recovery from inclusion bodies, inclusion body washing, inclusion body solubilization and oxidative sulfitolysis, cyanogen bromide cleavage, buffer exchange, purification by chromatography, pH precipitation and zinc crystallization methods, proinsulin refolding, enzymatic cleavage, and formulation, are explained in this review. Pertinent examples are summarized and the practical aspects of integrating every procedure into a multimodal purification scheme are critically discussed. In the face of increasing global demand for insulin product, there is a pressing need to develop a more efficient and economical production process. The information presented would be insightful to all the manufacturers and stakeholders for the production of human insulins, insulin analogues or biosimilars, as they strive to make further progresses in therapeutic recombinant insulin development and production.
Collapse
Affiliation(s)
- Yin Yin Siew
- Downstream Processing Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Singapore
| | - Wei Zhang
- Downstream Processing Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Singapore
| |
Collapse
|
8
|
Horga LG, Halliwell S, Castiñeiras TS, Wyre C, Matos CFRO, Yovcheva DS, Kent R, Morra R, Williams SG, Smith DC, Dixon N. Tuning recombinant protein expression to match secretion capacity. Microb Cell Fact 2018; 17:199. [PMID: 30577801 PMCID: PMC6303999 DOI: 10.1186/s12934-018-1047-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 12/14/2018] [Indexed: 03/08/2023] Open
Abstract
Background The secretion of recombinant disulfide-bond containing proteins into the periplasm of Gram-negative bacterial hosts, such as E. coli, has many advantages that can facilitate product isolation, quality and activity. However, the secretion machinery of E. coli has a limited capacity and can become overloaded, leading to cytoplasmic retention of product; which can negatively impact cell viability and biomass accumulation. Fine control over recombinant gene expression offers the potential to avoid this overload by matching expression levels to the host secretion capacity. Results Here we report the application of the RiboTite gene expression control system to achieve this by finely controlling cellular expression levels. The level of control afforded by this system allows cell viability to be maintained, permitting production of high-quality, active product with enhanced volumetric titres. Conclusions The methods and systems reported expand the tools available for the production of disulfide-bond containing proteins, including antibody fragments, in bacterial hosts. Electronic supplementary material The online version of this article (10.1186/s12934-018-1047-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Luminita Gabriela Horga
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester, M1 7DN, UK
| | - Samantha Halliwell
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester, M1 7DN, UK
| | | | | | | | | | - Ross Kent
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester, M1 7DN, UK
| | - Rosa Morra
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester, M1 7DN, UK
| | | | | | - Neil Dixon
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester, M1 7DN, UK.
| |
Collapse
|
9
|
Improvement in the production of the human recombinant enzyme N-acetylgalactosamine-6-sulfatase (rhGALNS) in Escherichia coli using synthetic biology approaches. Sci Rep 2017; 7:5844. [PMID: 28724898 PMCID: PMC5517531 DOI: 10.1038/s41598-017-06367-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 06/20/2017] [Indexed: 01/16/2023] Open
Abstract
Previously, we demonstrated production of an active recombinant human N-acetylgalactosamine-6-sulfatase (rhGALNS) enzyme in Escherichia coli as a potential therapeutic alternative for mucopolysaccharidosis IVA. However, most of the rhGALNS produced was present as protein aggregates. Here, several methods were investigated to improve production and activity of rhGALNS. These methods involved the use of physiologically-regulated promoters and alternatives to improve protein folding including global stress responses (osmotic shock), overexpression of native chaperones, and enhancement of cytoplasmic disulfide bond formation. Increase of rhGALNS activity was obtained when a promoter regulated under σs was implemented. Additionally, improvements were observed when osmotic shock was applied. Noteworthy, overexpression of chaperones did not have any effect on rhGALNS activity, suggesting that the effect of osmotic shock was probably due to a general stress response and not to the action of an individual chaperone. Finally, it was observed that high concentrations of sucrose in conjunction with the physiological-regulated promoter proUmod significantly increased the rhGALNS production and activity. Together, these results describe advances in the current knowledge on the production of human recombinant enzymes in a prokaryotic system such as E. coli, and could have a significant impact on the development of enzyme replacement therapies for lysosomal storage diseases.
Collapse
|
10
|
Gomes L, Mergulhão F. Heterologous protein production in Escherichia coli biofilms: A non-conventional form of high cell density cultivation. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.03.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
11
|
C. Gomes L, LEPABE-Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal, J. Mergulhão F. Effect of heterologous protein expression on <em>Escherichia coli</em> biofilm formation and biocide susceptibility. AIMS Microbiol 2016. [DOI: 10.3934/microbiol.2016.4.434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
12
|
Adams JP, Holder AL, Catchpole B. Recombinant canine single chain insulin analogues: Insulin receptor binding capacity and ability to stimulate glucose uptake. Vet J 2014; 202:436-42. [DOI: 10.1016/j.tvjl.2014.09.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 09/24/2014] [Accepted: 09/29/2014] [Indexed: 10/24/2022]
|
13
|
Baeshen NA, Baeshen MN, Sheikh A, Bora RS, Ahmed MMM, Ramadan HAI, Saini KS, Redwan EM. Cell factories for insulin production. Microb Cell Fact 2014; 13:141. [PMID: 25270715 PMCID: PMC4203937 DOI: 10.1186/s12934-014-0141-0] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Accepted: 09/16/2014] [Indexed: 12/17/2022] Open
Abstract
The rapid increase in the number of diabetic patients globally and exploration of alternate insulin delivery methods such as inhalation or oral route that rely on higher doses, is bound to escalate the demand for recombinant insulin in near future. Current manufacturing technologies would be unable to meet the growing demand of affordable insulin due to limitation in production capacity and high production cost. Manufacturing of therapeutic recombinant proteins require an appropriate host organism with efficient machinery for posttranslational modifications and protein refolding. Recombinant human insulin has been produced predominantly using E. coli and Saccharomyces cerevisiae for therapeutic use in human. We would focus in this review, on various approaches that can be exploited to increase the production of a biologically active insulin and its analogues in E. coli and yeast. Transgenic plants are also very attractive expression system, which can be exploited to produce insulin in large quantities for therapeutic use in human. Plant-based expression system hold tremendous potential for high-capacity production of insulin in very cost-effective manner. Very high level of expression of biologically active proinsulin in seeds or leaves with long-term stability, offers a low-cost technology for both injectable as well as oral delivery of proinsulin.
Collapse
Affiliation(s)
- Nabih A Baeshen
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia.
| | - Mohammed N Baeshen
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia.
| | - Abdullah Sheikh
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia.
| | - Roop S Bora
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia.
| | - Mohamed Morsi M Ahmed
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia. .,Nucleic Acids Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City for Scientific Research and Technology Applications, Alexandria, Egypt.
| | - Hassan A I Ramadan
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia. .,Cell Biology Department, Genetic Engineering and Biotechnology Division, National Research Centre, Tahrir St. Dokki, Cairo, 12311, Egypt.
| | - Kulvinder Singh Saini
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia.
| | - Elrashdy M Redwan
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia. .,Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Applied Technology, New Borg AL-Arab, Alexandria, Egypt.
| |
Collapse
|
14
|
Trabucchi A, Guerra LL, Faccinetti NI, Iacono RF, Poskus E, Valdez SN. Expression and characterization of human proinsulin fused to thioredoxin in Escherichia coli. Appl Microbiol Biotechnol 2011; 94:1565-76. [PMID: 22139017 DOI: 10.1007/s00253-011-3721-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 10/25/2011] [Accepted: 11/08/2011] [Indexed: 11/29/2022]
Abstract
Native proinsulin (PI) belongs to the class of the difficult-to-express proteins in Escherichia coli. Problems mainly arise due to its high proteolytic decay and troubles to reproduce the native disulphide pattern. In the present study, human PI was produced in E. coli as a fusion thioredoxin protein (Trx-PI). Such chimeric protein was obtained from the intracellular soluble fraction, and it was purified in one step by affinity chromatography on immobilized phenylarsine oxide. Trx-PI was also recovered from inclusion bodies and purified by anion exchange chromatography. The product identity and integrity were verified by mass analysis (22,173.5 Da) and mapping with Staphylococcus aureus V8 protease. Native PI folding was evaluated by biochemical and also by immunochemical analysis using specific sera from PI antibody-positive diabetic patients that recognise conformational discontinue epitopes. Dose-response curves showed identity between standard PI and Trx-PI. Moreover, surface plasmon resonance technique verified the correct conformation of the recombinant protein. The biochemical and immunochemical assays demonstrated the integrity of the chimera and the epitopes involved in the interaction with antibodies. In conclusion, it was possible to obtain with high-yield purified human PI as a fusion protein in E. coli and useful for analytical purposes.
Collapse
Affiliation(s)
- Aldana Trabucchi
- School of Pharmacy and Biochemistry, University of Buenos Aires (UBA), Junín 956, 4to piso (C1113AAD), Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
15
|
Thermococcus kodakarensis as a host for gene expression and protein secretion. Appl Environ Microbiol 2011; 77:2392-8. [PMID: 21278271 DOI: 10.1128/aem.01005-10] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Taking advantage of the gene manipulation system developed in Thermococcus kodakarensis, here, we developed a system for gene expression and efficient protein secretion using this hyperthermophilic archaeon as a host cell. DNA fragments encoding the C-terminal domain of chitinase (ChiAΔ4), which exhibits endochitinase activity, and the putative signal sequence of a subtilisin-like protease (TK1675) were fused and positioned under the control of the strong constitutive promoter of the cell surface glycoprotein gene. This gene cassette was introduced into T. kodakarensis, and secretion of the ChiAΔ4 protein was examined. ChiAΔ4 was found exclusively in the culture supernatant and was not detected in the soluble and membrane fractions of the cell extract. The signal peptide was specifically cleaved at the C-terminal peptide bond following the Ala-Ser-Ala sequence. Efficient secretion of the orotidine-5'-monophosphate decarboxylase protein was also achieved with the same strategy. We next individually overexpressed two genes (TK1675 and TK1689) encoding proteases with putative signal sequences. By comparing protein degradation activities in the host cells and transformants in both solid and liquid media, as well as measuring peptidase activity using synthetic peptide substrates, we observed dramatic increases in protein degradation activity in the two transformants. This study displays an initial demonstration of cell engineering in hyperthermophiles.
Collapse
|
16
|
Increased expression, folding and enzyme reaction rate of recombinant human insulin by selecting appropriate leader peptide. J Biotechnol 2011; 151:350-6. [PMID: 21219941 DOI: 10.1016/j.jbiotec.2010.12.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 12/13/2010] [Accepted: 12/20/2010] [Indexed: 11/20/2022]
Abstract
Five new expression vectors for recombinant human insulin production (pPT-B5Kpi, pPT-T10Rpi, pPT-T13Rpi, pPT-H27Rpi, pPT-B5Rpi), which have different sizes and leader peptide structure, were constructed and compared based on their expression level, yields of S-sulfonated preproinsulin (SSPPI) and folded proinsulin and enzymatic conversion rate. The ranking of expression level of the five fused proinsulins was H27R≫T10R > B5K >T13R≈B5R. In particular, the expression level of H27R was more than double (60-70%) the level of the other fused proinsulins, and this high expression level led to large amounts of SSPPI, folded proinsulin and insulin. Changes to the leader peptide structure affected not only protein expression level, but also refolding yield because the leader peptide affects protein conformation and hydrophobicity. The refolding yield of H27R was 85% at 500L pilot scale. This high refolding yield was caused by the hydrophilic character of H27R. However, the β-mercaptoethanol concentration needed for refolding and the pH required to precipitate impurities after refolding had to be changed for high refolding yield. To avoid using CNBr, which is used to cleave fusion proteins, we used lysine and arginine linkers to connect the fusion protein and proinsulin. This fusion protein could be simultaneously cleaved by trypsin during enzymatic conversion to eliminate the C-peptide. The length and kind of leader peptide did not affect the enzyme reaction rate. Only the leader peptide linker connecting the B-chain influenced enzyme reaction rate. By testing several leader peptides, we constructed a new strain with 30% increased productivity based on expression level, refolding yield and enzyme reaction.
Collapse
|
17
|
Teodósio JS, Simões M, Melo LF, Mergulhão FJ. Flow cell hydrodynamics and their effects on E. coli biofilm formation under different nutrient conditions and turbulent flow. BIOFOULING 2011; 27:1-11. [PMID: 21082456 DOI: 10.1080/08927014.2010.535206] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Biofilm formation is a major factor in the growth and spread of both desirable and undesirable bacteria as well as in fouling and corrosion. In order to simulate biofilm formation in industrial settings a flow cell system coupled to a recirculating tank was used to study the effect of a high (550 mg glucose l⁻¹) and a low (150 mg glucose l⁻¹) nutrient concentration on the relative growth of planktonic and attached biofilm cells of Escherichia coli JM109(DE3). Biofilms were obtained under turbulent flow (a Reynolds number of 6000) and the hydrodynamic conditions of the flow cell were simulated by using computational fluid dynamics. Under these conditions, the flow cell was subjected to wall shear stresses of 0.6 Pa and an average flow velocity of 0.4 m s⁻¹ was reached. The system was validated by studying flow development on the flow cell and the applicability of chemostat model assumptions. Full development of the flow was assessed by analysis of velocity profiles and by monitoring the maximum and average wall shear stresses. The validity of the chemostat model assumptions was performed through residence time analysis and identification of biofilm forming areas. These latter results were obtained through wall shear stress analysis of the system and also by assessment of the free energy of interaction between E. coli and the surfaces. The results show that when the system was fed with a high nutrient concentration, planktonic cell growth was favored. Additionally, the results confirm that biofilms adapt their architecture in order to cope with the hydrodynamic conditions and nutrient availability. These results suggest that until a certain thickness was reached nutrient availability dictated biofilm architecture but when that critical thickness was exceeded mechanical resistance to shear stress (ie biofilm cohesion) became more important.
Collapse
Affiliation(s)
- J S Teodósio
- LEPAE, Department of Chemical Engineering, University of Porto, Portugal
| | | | | | | |
Collapse
|
18
|
Production of recombinant proteins and metabolites in yeasts. Appl Microbiol Biotechnol 2010; 89:939-48. [DOI: 10.1007/s00253-010-3019-z] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2010] [Revised: 11/12/2010] [Accepted: 11/15/2010] [Indexed: 12/27/2022]
|
19
|
Soluble cytoplasmic expression, rapid purification, and characterization of cyanovirin-N as a His-SUMO fusion. Appl Microbiol Biotechnol 2009; 85:1051-60. [PMID: 19547966 PMCID: PMC7080120 DOI: 10.1007/s00253-009-2078-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 06/02/2009] [Accepted: 06/03/2009] [Indexed: 11/14/2022]
Abstract
Cyanovirin-N (CVN) is a promising antiviral candidate that has an extremely low sequence homology with any other known proteins. The efficient and soluble expression of biologically functional recombinant CVN (rCVN) is still an obstacle due to insufficient yield, aggregation, and abnormal modification. Here, we describe an improved approach to preparing native rCVN from Escherichia coli more efficiently. A fusion gene consisting of cvn and sumo (small ubiquitin-related modifier) and a hexahistidine tag was constructed according to the codon bias of the host cell. This small ubiquitin-related modifier (SUMO)-fused CVN is expressed in the cytoplasm of E. coli in a folded and soluble form (>30% of the total soluble protein), yielding 3 to 4 mg of native rCVN from 1 g of wet cells to a purity up to 97.6%. Matrix-assisted laser desorption ionization coupled to time-of-flight mass spectrometry and reverse-phase high-performance liquid chromatographic analysis showed that the purified rCVN was an intact and homogeneous protein with a molecular weight of 11,016.68 Da. Potent antiviral activity of rCVN against herpes simplex virus type 1 and human immunodeficiency virus type 1/IIIB was confirmed in a dose-dependent manner at nanomolar concentrations. Thus, the His-SUMO double-fused CVN provides an efficient approach for the soluble expression of rCVN in the cytoplasm of E. coli, allowing an alternative system to develop bioprocess for the large-scale production of this antiviral candidate.
Collapse
|
20
|
de Marco A. Strategies for successful recombinant expression of disulfide bond-dependent proteins in Escherichia coli. Microb Cell Fact 2009; 8:26. [PMID: 19442264 PMCID: PMC2689190 DOI: 10.1186/1475-2859-8-26] [Citation(s) in RCA: 265] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Accepted: 05/14/2009] [Indexed: 12/22/2022] Open
Abstract
Bacteria are simple and cost effective hosts for producing recombinant proteins. However, their physiological features may limit their use for obtaining in native form proteins of some specific structural classes, such as for instance polypeptides that undergo extensive post-translational modifications. To some extent, also the production of proteins that depending on disulfide bridges for their stability has been considered difficult in E. coli. Both eukaryotic and prokaryotic organisms keep their cytoplasm reduced and, consequently, disulfide bond formation is impaired in this subcellular compartment. Disulfide bridges can stabilize protein structure and are often present in high abundance in secreted proteins. In eukaryotic cells such bonds are formed in the oxidizing environment of endoplasmic reticulum during the export process. Bacteria do not possess a similar specialized subcellular compartment, but they have both export systems and enzymatic activities aimed at the formation and at the quality control of disulfide bonds in the oxidizing periplasm. This article reviews the available strategies for exploiting the physiological mechanisms of bactera to produce properly folded disulfide-bonded proteins.
Collapse
Affiliation(s)
- Ario de Marco
- Cogentech, IFOM-IEO Campus for Oncogenomic, via Adamello, 16 - 20139, Milano, Italy.
| |
Collapse
|
21
|
Malik A, Jenzsch M, Lübbert A, Rudolph R, Söhling B. Periplasmic production of native human proinsulin as a fusion to E. coli ecotin. Protein Expr Purif 2007; 55:100-11. [PMID: 17509894 DOI: 10.1016/j.pep.2007.04.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Revised: 04/02/2007] [Accepted: 04/03/2007] [Indexed: 10/23/2022]
Abstract
Native proinsulin belongs to the class of the difficult-to-express proteins in Escherichia coli. Problems mainly arise due to its small size, a high proteolytic decay, and the necessity to form a native disulfide pattern. In the present study, human proinsulin was produced in the periplasm of E. coli as a fusion to ecotin, which is a small periplasmic protein of 16 kDa encoded by the host, containing one disulfide bond. The fusion protein was secreted to the periplasm and native proinsulin was determined by ELISA. Cultivation parameters were studied in parallel batch mode fermentations using E. coli BL21(DE3)Gold as a host. After improvement of fed-batch high density fermentation conditions, 153 mg fusion protein corresponding to 51.5mg native proinsulin was obtained per L. Proteins were extracted from the periplasm by osmotic shock treatment. The fusion protein was purified in one step by ecotin affinity chromatography on immobilized trypsinogen. After thrombin cleavage of the fusion protein, the products were separated by Ni-NTA chromatography. Proinsulin was quantified by ELISA and characterized by mass spectrometry. To evaluate the influence of periplasmic proteases, the amount of ecotin-proinsulin was determined in E. coli BL21(DE3)Gold and in a periplasmic protease deficient strain, E. coli SF120.
Collapse
Affiliation(s)
- Ajamaluddin Malik
- Institute for Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str 3, D-06120 Halle (Saale), Germany
| | | | | | | | | |
Collapse
|
22
|
Abstract
Targeting recombinant protein production to the periplasmic space of Escherichia coli presents several advantages over cytoplasmic production in inclusion bodies and at the same time overcomes the low productivity problem often associated with culture medium secretion. This chapter presents a strategy for periplasmic production of recombinant proteins fused to synthetic Z domains derived from staphylococcal protein A. Expression, purification, and monitoring strategies are discussed using green fluorescent protein and human proinsulin as model proteins.
Collapse
Affiliation(s)
- Filipe J Mergulhão
- LEPAE, Faculty of Engineering of the University of Porto, Chemical Engineering Department, Porto, Portugal
| | | |
Collapse
|
23
|
Malik A, Rudolph R, Söhling B. A novel fusion protein system for the production of native human pepsinogen in the bacterial periplasm. Protein Expr Purif 2006; 47:662-71. [PMID: 16600627 DOI: 10.1016/j.pep.2006.02.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2005] [Revised: 02/20/2006] [Accepted: 02/21/2006] [Indexed: 10/24/2022]
Abstract
Human pepsinogen is the secreted inactive precursor of pepsin. Under the acidic conditions present in the stomach it is autocatalytically cleaved into the active protease. Pepsinogen contains three consecutive disulfides, and was used here as a model protein to investigate the production of aspartic proteases in the Escherichia coli periplasm. Various N-terminal translocation signals were applied and several different expression vectors were tested. After fusion to pelB, dsbA or ompT signal peptides no recombinant product could be obtained in the periplasm using the T7 promoter. As a new approach, human pepsinogen was fused to E. coli ecotin (E. coli trypsin inhibitor), which is a periplasmic homodimeric protein of 142 amino acids per monomer containing one disulfide bridge. The fusion protein was expressed in pTrc99a. After induction, the ecotin-pepsinogen fusion protein was translocated into the periplasm and the ecotin signal peptide was cleaved. Upon acid treatment, the fusion protein was converted into pepsin, indicating that pepsinogen was produced in its native form. In shake flasks experiments, the amount of active fusion protein present in the periplasm was 100 microg per litre OD 1, corresponding to 70 microg pepsinogen. After large scale cultivation, the fusion protein was isolated from the periplasmic extract. It was purified to homogeneity with a yield of 20%. The purified protein was native. Acid-induced activation of the fusion protein proceeded very fast. As soon as pepsin was present, the ecotin part of the fusion protein was rapidly digested, followed by a further activation of pepsinogen.
Collapse
Affiliation(s)
- Ajamaluddin Malik
- Institut für Biotechnologie, Martin-Luther Universität Halle, Germany
| | | | | |
Collapse
|
24
|
Huang QL, Chen C, Chen YZ, Gong CG, Cao L, Wang J, Hua ZC. Application to immunoassays of the fusion protein between protein ZZ and enhanced green fluorescent protein. J Immunol Methods 2006; 309:130-8. [PMID: 16445935 DOI: 10.1016/j.jim.2005.11.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2005] [Revised: 10/17/2005] [Accepted: 11/28/2005] [Indexed: 10/25/2022]
Abstract
Enhanced green fluorescent protein (EGFP) from Aequorea victoria was fused to the C terminal region of protein ZZ, an artificial synthetic IgG Fc fragment binding protein derived from tandem repeats of the B domain of protein A. The ZZ-EGFP fusion protein was expressed in Escherichia coli with a His(6) tag and purified in high yield by one-step Ni(2+) chelating affinity chromatography. It was then used in the immunoblot analysis of GST and TNFalpha as well as in immunofluorescent assays of 293T cells transfected with IRF3, an interferon regulatory factor which localized in cytoplasm without virus infection. The fusion protein also performed effectively in FACS analysis of surface integrin beta3 subunit on 293 T cells. The chimeric protein bound various antibodies from different animal sources, directed against a variety of proteins. Thus, ZZ-EGFP showed broad promise in potential immunological applications.
Collapse
Affiliation(s)
- Qi-Lai Huang
- The State Key Laboratory of Pharmaceutical Biotechnology and Department of Biochemistry, College of Life Sciences, Nanjing University, 22 Hankou Road, Nanjing 210093, P.R. China
| | | | | | | | | | | | | |
Collapse
|
25
|
Huang QL, Chen C, Chen YZ, Gong CG, Wang J, Hua ZC. Fusion protein between protein ZZ and red fluorescent protein DsRed and its application to immunoassays. Biotechnol Appl Biochem 2006; 43:121-7. [PMID: 16218907 DOI: 10.1042/ba20050136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In the present study, a red fluorescent protein (DsRed) from the coral Discosoma was fused to the C-terminus of protein ZZ, a synthetic artificial IgG-Fc-fragment-binding protein derived from the B-domain of staphylococcal Protein A. The chimaeric protein, tagged with six histidine residues at the N-terminus, was expressed in Escherichia coli and easily purified by one-step Ni2+-chelating affinity chromatography. Its fluorescence and IgG-binding activities were validated using fluorescence-spectrum analysis, ELISA and dot-blot analysis. Furthermore, in subsequent dot-blotting immunoanalysis of glutathione S-transferase and tumour necrosis factor-alpha, and immunofluorescent microscopy assay of interferon regulatory factor 3, the chimaeric protein enabled effective detection of target molecules. Compared with fluorescence-conjugated antibodies, ZZ-DsRed is less susceptible to photobleaching and easy to produce. In addition, unlike HRP (horseradish peroxidase)-conjugated antibodies, using ZZ-DsRed needs no addition of a chromogenic reagent. Our results indicate that ZZ-DsRed shows a wide and promising application potential in immunological detection as a substitute for fluorescent or HRP-conjugated anti-IgGs.
Collapse
Affiliation(s)
- Qi-Lai Huang
- The State Key Laboratory of Pharmaceutical Biotechnology and Department of Biochemistry, College of Life Sciences, Nanjing University, Nanjing 210093, People's Republic of China
| | | | | | | | | | | |
Collapse
|
26
|
Fu ZB, Ng KL, Lam TL, Wong WKR. Cell death caused by hyper-expression of a secretory exoglucanase in Escherichia coli. Protein Expr Purif 2005; 42:67-77. [PMID: 15882948 DOI: 10.1016/j.pep.2005.03.029] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2005] [Revised: 03/26/2005] [Accepted: 03/28/2005] [Indexed: 11/18/2022]
Abstract
Induced expression of a gene fusion between the ompA leader sequence and the Cellulomonas fimi cex gene encoding a secretory exoglucanase, Exg, engineered in the Tac-cassette excretion vector was lethal to Escherichia coli. An exponentially growing culture harboring the recombinant construct suffered slow growth and 99.9% of its cells died within 60-100 min after induction. This abnormality was found to have a close correlation with the rapid increase in the relative amount of the OmpA/Exg fusion precursor (Pre-Exg) compared to its processed product (Mat-Exg). Analysis of subcellular fractions revealed the presence of Pre-Exg in the inner membrane of cultures expressing high levels but not low levels of Pre-Exg. As only Pre-Exg but not Mat-Exg was detectable in the cytoplasm, and Exg was shown by cross-linking experiments to be physically associated with the Sec proteins, it was concluded that secretion and processing of Pre-Exg took place in the SecYEG translocation machinery. The results were in line with the previous speculation that accumulation of unprocessed precursor proteins in the cytoplasmic membrane was detrimental, and supported the idea that cell death was caused by some unusual tie-up of Pre-Exg with the SecYEG translocation machinery, thus imposing an inhibitory effect on the secretion of endogenous secretory proteins. A new model, designated "Saturated Translocation," was proposed to explain the interchangeable lethal and non-lethal properties of Pre-Exg, and to address the possible scenarios that might occur in the course of cell death triggered by secretion of Pre-Exg.
Collapse
Affiliation(s)
- Z B Fu
- Department of Biochemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, China
| | | | | | | |
Collapse
|
27
|
Mergulhão FJM, Summers DK, Monteiro GA. Recombinant protein secretion in Escherichia coli. Biotechnol Adv 2005; 23:177-202. [PMID: 15763404 DOI: 10.1016/j.biotechadv.2004.11.003] [Citation(s) in RCA: 334] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2004] [Revised: 11/23/2004] [Accepted: 11/30/2004] [Indexed: 10/25/2022]
Abstract
The secretory production of recombinant proteins by the Gram-negative bacterium Escherichia coli has several advantages over intracellular production as inclusion bodies. In most cases, targeting protein to the periplasmic space or to the culture medium facilitates downstream processing, folding, and in vivo stability, enabling the production of soluble and biologically active proteins at a reduced process cost. This review presents several strategies that can be used for recombinant protein secretion in E. coli and discusses their advantages and limitations depending on the characteristics of the target protein to be produced.
Collapse
Affiliation(s)
- F J M Mergulhão
- Centro de Engenharia Biológica e Química, Instituto Superior Técnico, Av. Rovisco Pais, Lisbon 1049-001, Portugal.
| | | | | |
Collapse
|