1
|
Meyer F, Schmitt I, Wendisch VF, Henke NA. Response surface-based media optimization for astaxanthin production in Corynebacterium glutamicum. Front Bioeng Biotechnol 2025; 13:1516522. [PMID: 40134774 PMCID: PMC11933003 DOI: 10.3389/fbioe.2025.1516522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 02/17/2025] [Indexed: 03/27/2025] Open
Abstract
Introduction Astaxanthin is a C40 carotenoid that is used in animal feeds or cosmetics. Due to its high antioxidant property it is used for, e.g., anti-aging formulations and due to its intense red color it is used, e.g., in animal feed. While about 95% of commercial astaxanthin is currently chemically synthesized from fossil sources, the interest in natural and sustainable astaxanthin is growing. Corynebacterium glutamicum, an attractive host used in large-scale processes, e.g., industrial amino acid production, has been engineered for astaxanthin production. Methods Here, a design of experiment (DoE) approach was applied to optimize the standard minimal medium for astaxanthin production. The concentrations of carbon, nitrogen and phosphorus sources, magnesium, calcium, the iron chelator protocatechuic acid, the vitamin biotin, and the trace metals were varied and astaxanthin production was evaluated. Results and discussion By increasing the concentration of iron and decreasing that of manganese especially, it was possible to increase astaxanthin titers from 7.9 mg L-1-39.6 mg L-1 in a micro cultivation system and from 62 mg L-1-176 mg L-1 in a fed-batch fermentation.
Collapse
|
2
|
Park J, Lim S. Review of the Proteomics and Metabolic Properties of Corynebacterium glutamicum. Microorganisms 2024; 12:1681. [PMID: 39203523 PMCID: PMC11356982 DOI: 10.3390/microorganisms12081681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024] Open
Abstract
Corynebacterium glutamicum (C. glutamicum) has become industrially important in producing glutamic acid and lysine since its discovery and has been the subject of proteomics and central carbon metabolism studies. The proteome changes depending on environmental conditions, nutrient availability, and stressors. Post-translational modification (PTMs), such as phosphorylation, methylation, and glycosylation, alter the function and activity of proteins, allowing them to respond quickly to environmental changes. Proteomics techniques, such as mass spectrometry and two-dimensional gel electrophoresis, have enabled the study of proteomes, identification of proteins, and quantification of the expression levels. Understanding proteomes and central carbon metabolism in microorganisms provides insight into their physiology, ecology, and biotechnological applications, such as biofuels, pharmaceuticals, and industrial enzyme production. Several attempts have been made to create efficient production strains to increase productivity in several research fields, such as genomics and proteomics. In addition to amino acids, C. glutamicum is used to produce vitamins, nucleotides, organic acids, and alcohols, expanding its industrial applications. Considerable information has been accumulated, but recent research has focused on proteomes and central carbon metabolism. The development of genetic engineering technologies, such as CRISPR-Cas9, has improved production efficiency by allowing precise manipulation of the metabolic pathways of C. glutamicum. In addition, methods for designing new metabolic pathways and developing customized strains using synthetic biology technology are gradually expanding. This review is expected to enhance the understanding of C. glutamicum and its industrial potential and help researchers identify research topics and design studies.
Collapse
Affiliation(s)
| | - Sooa Lim
- Department of Pharmaceutical Engineering, Hoseo University, Asan-si 31499, Chungnam, Republic of Korea
| |
Collapse
|
3
|
da Silva SN, de Oliveira LF, Repke RA, Pereira AK, Barbosa LD, Nunes RL, Sussulini A, Pinheiro F, Fill TP. Metabolomic analysis reveals stress tolerance mechanisms in common bean ( Phaseolus vulgaris L.) related to treatment with a biostimulant obtained from Corynebacterium glutamicum. Mol Omics 2023; 19:743-755. [PMID: 37581345 DOI: 10.1039/d3mo00110e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Microbial biostimulants have emerged as a sustainable alternative to increase the productivity and quality of important crops. Despite this, the effects of the treatment on plant metabolism are poorly understood. Thus, this study investigated the metabolic response of common bean (Phaseolus vulgaris) related to the treatment with a biostimulant obtained from the extract of Corynebacterium glutamicum that showed positive effects on the development, growth, and yield of crops previously. By untargeted metabolomic analysis using UHPLC-MS/MS, plants and seeds were subjected to treatment with the biostimulant. Under ideal growth conditions, the plants treated exhibited higher concentration levels of glutamic acid, nicotiflorin and glycosylated lipids derived from linolenic acid. The foliar application of the biostimulant under water stress conditions increased the chlorophyll content by 17% and induced the accumulation of flavonols, mainly quercetin derivatives. Also, germination seed assays exhibited longer radicle lengths for seeds treated compared to the untreated control even in the absence of light (13-18% increase, p-value <0.05). Metabolomic analysis of the seeds indicated changes in concentration levels of amino acids (tryptophan, phenylalanine, tyrosine, glutamine, and arginine) and their derivatives. The results point out the enhancement of abiotic stress tolerance and the metabolic processes triggered in this crop associated with the treatment with the biostimulant, giving the first insights into stress tolerance mechanisms in P. vulgaris.
Collapse
Affiliation(s)
| | | | | | - Alana Kelyene Pereira
- Instituto de Química, Universidade Estadual de Campinas;, Campinas, São Paulo, 13083-970, Brazil.
| | - Luidy Darlan Barbosa
- Instituto de Química, Universidade Estadual de Campinas;, Campinas, São Paulo, 13083-970, Brazil.
| | | | - Alessandra Sussulini
- Instituto de Química, Universidade Estadual de Campinas;, Campinas, São Paulo, 13083-970, Brazil.
| | - Fabio Pinheiro
- Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, 13083-862, Brazil
| | - Taicia Pacheco Fill
- Instituto de Química, Universidade Estadual de Campinas;, Campinas, São Paulo, 13083-970, Brazil.
| |
Collapse
|
4
|
Ren X, Wei Y, Zhao H, Shao J, Zeng F, Wang Z, Li L. A comprehensive review and comparison of L-tryptophan biosynthesis in Saccharomyces cerevisiae and Escherichia coli. Front Bioeng Biotechnol 2023; 11:1261832. [PMID: 38116200 PMCID: PMC10729320 DOI: 10.3389/fbioe.2023.1261832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/22/2023] [Indexed: 12/21/2023] Open
Abstract
L-tryptophan and its derivatives are widely used in the chemical, pharmaceutical, food, and feed industries. Microbial fermentation is the most commonly used method to produce L-tryptophan, which calls for an effective cell factory. The mechanism of L-tryptophan biosynthesis in Escherichia coli, the widely used producer of L-tryptophan, is well understood. Saccharomyces cerevisiae also plays a significant role in the industrial production of biochemicals. Because of its robustness and safety, S. cerevisiae is favored for producing pharmaceuticals and food-grade biochemicals. However, the biosynthesis of L-tryptophan in S. cerevisiae has been rarely summarized. The synthetic pathways and engineering strategies of L-tryptophan in E. coli and S. cerevisiae have been reviewed and compared in this review. Furthermore, the information presented in this review pertains to the existing understanding of how L-tryptophan affects S. cerevisiae's stress fitness, which could aid in developing a novel plan to produce more resilient industrial yeast and E. coli cell factories.
Collapse
Affiliation(s)
- Xinru Ren
- College of Science and Technology, Hebei Agricultural University, Cangzhou, China
| | - Yue Wei
- College of Science and Technology, Hebei Agricultural University, Cangzhou, China
| | - Honglu Zhao
- College of Science and Technology, Hebei Agricultural University, Cangzhou, China
| | - Juanjuan Shao
- College of Science and Technology, Hebei Agricultural University, Cangzhou, China
| | - Fanli Zeng
- College of Life Sciences, Hebei Agricultural University, Baoding, China
- Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Baoding, China
| | - Zhen Wang
- College of Science and Technology, Hebei Agricultural University, Cangzhou, China
- Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Baoding, China
| | - Li Li
- College of Science and Technology, Hebei Agricultural University, Cangzhou, China
| |
Collapse
|
5
|
Shikina E, Kovalevsky R, Shirkovskaya A, Toukach P. Prospective bacterial and fungal sources of hyaluronic acid: A review. Comput Struct Biotechnol J 2022; 20:6214-6236. [PMID: 36420162 PMCID: PMC9676211 DOI: 10.1016/j.csbj.2022.11.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/05/2022] [Accepted: 11/05/2022] [Indexed: 11/11/2022] Open
Abstract
The unique biological and rheological properties make hyaluronic acid a sought-after material for medicine and cosmetology. Due to very high purity requirements for hyaluronic acid in medical applications, the profitability of streptococcal fermentation is reduced. Production of hyaluronic acid by recombinant systems is considered a promising alternative. Variations in combinations of expressed genes and fermentation conditions alter the yield and molecular weight of produced hyaluronic acid. This review is devoted to the current state of hyaluronic acid production by recombinant bacterial and fungal organisms.
Collapse
|
6
|
Henke NA, Göttl VL, Schmitt I, Peters-Wendisch P, Wendisch VF. A synthetic biology approach to study carotenoid production in Corynebacterium glutamicum: Read-out by a genetically encoded biosensor combined with perturbing native gene expression by CRISPRi. Methods Enzymol 2022; 671:383-419. [DOI: 10.1016/bs.mie.2021.11.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
7
|
Advances in metabolic engineering of Corynebacterium glutamicum to produce high-value active ingredients for food, feed, human health, and well-being. Essays Biochem 2021; 65:197-212. [PMID: 34096577 PMCID: PMC8313993 DOI: 10.1042/ebc20200134] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 12/12/2022]
Abstract
The soil microbe Corynebacterium glutamicum is a leading workhorse in industrial biotechnology and has become famous for its power to synthetise amino acids and a range of bulk chemicals at high titre and yield. The product portfolio of the microbe is continuously expanding. Moreover, metabolically engineered strains of C. glutamicum produce more than 30 high value active ingredients, including signature molecules of raspberry, savoury, and orange flavours, sun blockers, anti-ageing sugars, and polymers for regenerative medicine. Herein, we highlight recent advances in engineering of the microbe into novel cell factories that overproduce these precious molecules from pioneering proofs-of-concept up to industrial productivity.
Collapse
|
8
|
Göttl VL, Schmitt I, Braun K, Peters-Wendisch P, Wendisch VF, Henke NA. CRISPRi-Library-Guided Target Identification for Engineering Carotenoid Production by Corynebacterium glutamicum. Microorganisms 2021; 9:670. [PMID: 33805131 PMCID: PMC8064071 DOI: 10.3390/microorganisms9040670] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/19/2021] [Accepted: 03/21/2021] [Indexed: 01/24/2023] Open
Abstract
Corynebacterium glutamicum is a prominent production host for various value-added compounds in white biotechnology. Gene repression by dCas9/clustered regularly interspaced short palindromic repeats (CRISPR) interference (CRISPRi) allows for the identification of target genes for metabolic engineering. In this study, a CRISPRi-based library for the repression of 74 genes of C. glutamicum was constructed. The chosen genes included genes encoding enzymes of glycolysis, the pentose phosphate pathway, and the tricarboxylic acid cycle, regulatory genes, as well as genes of the methylerythritol phosphate and carotenoid biosynthesis pathways. As expected, CRISPRi-mediated repression of the carotenogenesis repressor gene crtR resulted in increased pigmentation and cellular content of the native carotenoid pigment decaprenoxanthin. CRISPRi screening identified 14 genes that affected decaprenoxanthin biosynthesis when repressed. Carotenoid biosynthesis was significantly decreased upon CRISPRi-mediated repression of 11 of these genes, while repression of 3 genes was beneficial for decaprenoxanthin production. Largely, but not in all cases, deletion of selected genes identified in the CRISPRi screen confirmed the pigmentation phenotypes obtained by CRISPRi. Notably, deletion of pgi as well as of gapA improved decaprenoxanthin levels 43-fold and 9-fold, respectively. The scope of the designed library to identify metabolic engineering targets, transfer of gene repression to stable gene deletion, and limitations of the approach were discussed.
Collapse
Affiliation(s)
| | | | | | | | - Volker F. Wendisch
- Genetics of Prokaryotes, Faculty of Biology & CeBiTec, Bielefeld University, 33615 Bielefeld, Germany; (V.L.G.); (I.S.); (K.B.); (P.P.-W.); (N.A.H.)
| | | |
Collapse
|
9
|
Complete and Draft Genome Sequences of Amino Acid-Producing Corynebacterium glutamicum Strains ATCC 21799 and ATCC 31831 and Their Genomic Islands. Microbiol Resour Announc 2020; 9:9/32/e00430-20. [PMID: 32763926 PMCID: PMC7409843 DOI: 10.1128/mra.00430-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We determined the complete and draft genome sequences of two strains of Corynebacterium glutamicum and revealed their genomic islands (GEIs). The two strains, ATCC 21799 and ATCC 31831, were found to have 3,079 and 3,109 coding sequences, respectively, with 13 GEIs each not present in the reference strain, ATCC 13032. We determined the complete and draft genome sequences of two strains of Corynebacterium glutamicum and revealed their genomic islands (GEIs). The two strains, ATCC 21799 and ATCC 31831, were found to have 3,079 and 3,109 coding sequences, respectively, with 13 GEIs each not present in the reference strain, ATCC 13032.
Collapse
|
10
|
Du L, Zhang Z, Xu Q, Chen N. Central metabolic pathway modification to improve L-tryptophan production in Escherichia coli. Bioengineered 2019; 10:59-70. [PMID: 30866700 PMCID: PMC6527064 DOI: 10.1080/21655979.2019.1592417] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 02/28/2019] [Accepted: 03/05/2019] [Indexed: 11/07/2022] Open
Abstract
Tryptophan, an aromatic amino acid, has been widely used in food industry because it participates in the regulation of protein synthesis and metabolic network in vivo. In this study, we obtained a strain named TRP03 by enhancing the tryptophan synthesis pathway, which could accumulate tryptophan at approximately 35 g/L in a 5 L bioreactor. We then modified the central metabolic pathway of TRP03, to increase the supply of the precursor phosphoenolpyruvate (PEP), the genes related to PEP were modified. Furthermore, citric acid transport system and TCA were upregulated to effectively increase cell growth. We observed that strain TRP07 that could accumulate tryptophan at approximately 49 g/L with a yield of 0.186 g tryptophan/g glucose in a 5 L bioreactor. By-products such as glutamate and acetic acid were reduced to 0.8 g/L and 2.2 g/L, respectively.
Collapse
Affiliation(s)
- Lihong Du
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Zhen Zhang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Qingyang Xu
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Ning Chen
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
11
|
Pérez-García F, Wendisch VF. Transport and metabolic engineering of the cell factory Corynebacterium glutamicum. FEMS Microbiol Lett 2018; 365:5047308. [DOI: 10.1093/femsle/fny166] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 06/28/2018] [Indexed: 12/16/2022] Open
Affiliation(s)
- Fernando Pérez-García
- Genetics of Prokaryotes, Faculty of Biology and Center for Biotechnology (CeBiTec), Bielefeld University, Universitaetsstr. 25, 33615, Bielefeld, Germany
| | - Volker F Wendisch
- Genetics of Prokaryotes, Faculty of Biology and Center for Biotechnology (CeBiTec), Bielefeld University, Universitaetsstr. 25, 33615, Bielefeld, Germany
| |
Collapse
|
12
|
Lange J, Münch E, Müller J, Busche T, Kalinowski J, Takors R, Blombach B. Deciphering the Adaptation of Corynebacterium glutamicum in Transition from Aerobiosis via Microaerobiosis to Anaerobiosis. Genes (Basel) 2018; 9:E297. [PMID: 29899275 PMCID: PMC6027265 DOI: 10.3390/genes9060297] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/31/2018] [Accepted: 06/07/2018] [Indexed: 01/02/2023] Open
Abstract
Zero-growth processes are a promising strategy for the production of reduced molecules and depict a steady transition from aerobic to anaerobic conditions. To investigate the adaptation of Corynebacterium glutamicum to altering oxygen availabilities, we conceived a triple-phase fermentation process that describes a gradual reduction of dissolved oxygen with a shift from aerobiosis via microaerobiosis to anaerobiosis. The distinct process phases were clearly bordered by the bacteria’s physiologic response such as reduced growth rate, biomass substrate yield and altered yield of fermentation products. During the process, sequential samples were drawn at six points and analyzed via RNA-sequencing, for metabolite concentrations and for enzyme activities. We found transcriptional alterations of almost 50% (1421 genes) of the entire protein coding genes and observed an upregulation of fermentative pathways, a rearrangement of respiration, and mitigation of the basic cellular mechanisms such as transcription, translation and replication as a transient response related to the installed oxygen dependent process phases. To investigate the regulatory regime, 18 transcriptionally altered (putative) transcriptional regulators were deleted, but none of the deletion strains showed noticeable growth kinetics under an oxygen restricted environment. However, the described transcriptional adaptation of C. glutamicum resolved to varying oxygen availabilities provides a useful basis for future process and strain engineering.
Collapse
Affiliation(s)
- Julian Lange
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany.
| | - Eugenia Münch
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany.
| | - Jan Müller
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany.
| | - Tobias Busche
- Center for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615 Bielefeld, Germany.
- Institute for Biology-Microbiology, Freie Universität Berlin, Königin-Luise-Str. 12-16, 14195 Berlin, Germany.
| | - Jörn Kalinowski
- Center for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615 Bielefeld, Germany.
| | - Ralf Takors
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany.
| | - Bastian Blombach
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany.
| |
Collapse
|
13
|
Metabolic engineering of Corynebacterium glutamicum for fermentative production of chemicals in biorefinery. Appl Microbiol Biotechnol 2018; 102:3915-3937. [DOI: 10.1007/s00253-018-8896-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 02/23/2018] [Accepted: 02/26/2018] [Indexed: 01/22/2023]
|
14
|
Lange J, Müller F, Takors R, Blombach B. Harnessing novel chromosomal integration loci to utilize an organosolv-derived hemicellulose fraction for isobutanol production with engineered Corynebacterium glutamicum. Microb Biotechnol 2018; 11:257-263. [PMID: 29115043 PMCID: PMC5743825 DOI: 10.1111/1751-7915.12879] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 10/06/2017] [Accepted: 10/08/2017] [Indexed: 01/09/2023] Open
Abstract
A successful bioeconomy depends on the manifestation of biorefineries that entirely convert renewable resources to valuable products and energies. Here, the poorly exploited hemicellulose fraction (HF) from beech wood organosolv processing was applied for isobutanol production with Corynebacterium glutamicum. To enable growth of C. glutamicum on HF, we integrated genes required for D-xylose and l-arabinose metabolization into two of 16 systematically identified and novel chromosomal integration loci. Under aerobic conditions, this engineered strain CArXy reached growth rates up to 0.34 ± 0.02 h-1 on HF. Based on CArXy, we developed the isobutanol producer strain CIsArXy, which additionally (over)expresses genes of the native l-valine biosynthetic and the heterologous Ehrlich pathway. CIsArXy produced 7.2 ± 0.2 mM (0.53 ± 0.02 g L-1 ) isobutanol on HF at a carbon molar yield of 0.31 ± 0.02 C-mol isobutanol per C-mol substrate (d-xylose + l-arabinose) in an anaerobic zero-growth production process.
Collapse
Affiliation(s)
- Julian Lange
- Institute of Biochemical EngineeringUniversity of StuttgartD‐70569StuttgartGermany
| | - Felix Müller
- Institute of Biochemical EngineeringUniversity of StuttgartD‐70569StuttgartGermany
| | - Ralf Takors
- Institute of Biochemical EngineeringUniversity of StuttgartD‐70569StuttgartGermany
| | - Bastian Blombach
- Institute of Biochemical EngineeringUniversity of StuttgartD‐70569StuttgartGermany
| |
Collapse
|
15
|
Lange J, Müller F, Bernecker K, Dahmen N, Takors R, Blombach B. Valorization of pyrolysis water: a biorefinery side stream, for 1,2-propanediol production with engineered Corynebacterium glutamicum. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:277. [PMID: 29201141 PMCID: PMC5697356 DOI: 10.1186/s13068-017-0969-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 11/14/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND A future bioeconomy relies on the efficient use of renewable resources for energy and material product supply. In this context, biorefineries have been developed and play a key role in converting lignocellulosic residues. Although a holistic use of the biomass feed is desired, side streams evoke in current biorefinery approaches. To ensure profitability, efficiency, and sustainability of the overall conversion process, a meaningful valorization of these materials is needed. Here, a so far unexploited side stream derived from fast pyrolysis of wheat straw-pyrolysis water-was used for production of 1,2-propanediol in microbial fermentation with engineered Corynebacterium glutamicum. RESULTS A protocol for pretreatment of pyrolysis water was established and enabled growth on its major constituents, acetate and acetol, with rates up to 0.36 ± 0.04 h-1. To convert acetol to 1,2-propanediol, the plasmid pJULgldA expressing the glycerol dehydrogenase from Escherichia coli was introduced into C. glutamicum. 1,2-propanediol was formed in a growth-coupled biotransformation and production was further increased by construction of C. glutamicum Δpqo ΔaceE ΔldhA Δmdh pJULgldA. In a two-phase aerobic/microaerobic fed-batch process with pyrolysis water as substrate, this strain produced 18.3 ± 1.2 mM 1,2-propanediol with a yield of 0.96 ± 0.05 mol 1,2-propanediol per mol acetol and showed an overall volumetric productivity of 1.4 ± 0.1 mmol 1,2-propanediol L-1 h-1. CONCLUSIONS This study implements microbial fermentation into a biorefinery based on pyrolytic liquefaction of lignocellulosic biomass and accesses a novel value chain by valorizing the side stream pyrolysis water for 1,2-PDO production with engineered C. glutamicum. The established bioprocess operated at maximal product yield and accomplished the so far highest overall volumetric productivity for microbial 1,2-PDO production with an engineered producer strain. Besides, the results highlight the potential of microbial conversion of this biorefinery side stream to other valuable products.
Collapse
Affiliation(s)
- Julian Lange
- Institute of Biochemical Engineering, University of Stuttgart, 70569 Stuttgart, Germany
| | - Felix Müller
- Institute of Biochemical Engineering, University of Stuttgart, 70569 Stuttgart, Germany
| | - Kerstin Bernecker
- Institute of Biochemical Engineering, University of Stuttgart, 70569 Stuttgart, Germany
| | - Nicolaus Dahmen
- Institute for Catalysis Research and Technology, Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
| | - Ralf Takors
- Institute of Biochemical Engineering, University of Stuttgart, 70569 Stuttgart, Germany
| | - Bastian Blombach
- Institute of Biochemical Engineering, University of Stuttgart, 70569 Stuttgart, Germany
| |
Collapse
|
16
|
Microbial Production of Amino Acid-Related Compounds. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2017; 159:255-269. [PMID: 27872963 DOI: 10.1007/10_2016_34] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Corynebacterium glutamicum is the workhorse of the production of proteinogenic amino acids used in food and feed biotechnology. After more than 50 years of safe amino acid production, C. glutamicum has recently also been engineered for the production of amino acid-derived compounds, which find various applications, e.g., as synthons for the chemical industry in several markets including the polymer market. The amino acid-derived compounds such as non-proteinogenic ω-amino acids, α,ω-diamines, and cyclic or hydroxylated amino acids have similar carbon backbones and functional groups as their amino acid precursors. Decarboxylation of amino acids may yield ω-amino acids such as β-alanine, γ-aminobutyrate, and δ-aminovalerate as well as α,ω-diamines such as putrescine and cadaverine. Since transamination is the final step in several amino acid biosynthesis pathways, 2-keto acids as immediate amino acid precursors are also amenable to production using recombinant C. glutamicum strains. Approaches for metabolic engineering of C. glutamicum for production of amino acid-derived compounds will be described, and where applicable, production from alternative carbon sources or use of genome streamline will be referred to. The excellent large-scale fermentation experience with C. glutamicum offers the possibility that these amino acid-derived speciality products may enter large-volume markets.
Collapse
|
17
|
Improved fermentative production of the compatible solute ectoine by Corynebacterium glutamicum from glucose and alternative carbon sources. J Biotechnol 2017; 258:59-68. [DOI: 10.1016/j.jbiotec.2017.04.039] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 04/30/2017] [Accepted: 04/30/2017] [Indexed: 11/23/2022]
|
18
|
Albersmeier A, Pfeifer-Sancar K, Rückert C, Kalinowski J. Genome-wide determination of transcription start sites reveals new insights into promoter structures in the actinomycete Corynebacterium glutamicum. J Biotechnol 2017; 257:99-109. [PMID: 28412515 DOI: 10.1016/j.jbiotec.2017.04.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 04/06/2017] [Accepted: 04/11/2017] [Indexed: 12/21/2022]
Abstract
The genome-wide identification of transcription start sites, enabled by high-throughput sequencing of a cDNA library enriched for native 5' transcript ends, is ideally suited for the analysis of promoters. Here, the transcriptome of Corynebacterium glutamicum, a non-pathogenic soil bacterium from the actinomycetes branch that is used in industry for the production of amino acids, was analysed by transcriptome sequencing of the 5'-ends of native transcripts. Total RNA samples were harvested from the exponential phase of growth, therefore the study mainly addressed promoters recognized by the main house-keeping sigma factor σA. The identification of 2454 transcription start sites (TSS) allowed the detailed analysis of most promoters recognized by σA and furthermore enabled us to form different promoter groups according to their location relative to protein-coding regions. These groups included leaderless transcripts (546 promoters), short-leadered (<500 bases) transcripts (917), and long-leadered (>500 bases) transcripts (173) as well as intragenic (557) and antisense transcripts (261). All promoters and the individual groups were searched for information, e.g. conserved residues and promoter motifs, and general design features as well as group-specific preferences were identified. A purine was found highly favored as TSS, whereas the -1 position was dominated by pyrimidines. The spacer between TSS and -10 region were consistently 6-7 bases and the -10 promoter motif was generally visible, whereas a recognizable -35 region was only occurring in a smaller fraction of promoters (7.5%) and enriched for leadered and antisense transcripts but depleted for leaderless transcripts. Promoters showing an extended -10 region were especially frequent in case of non-canonical -10 motifs (45.5%). Two bases downstream of the -10 core region, a G was conserved, exceeding 40% abundance in most groups. This fraction reached 74.6% for a group of putative σB-dependent promoters, thus giving a hint to a specific property of these promoters. In addition, the high number of promoters analysed allowed finding of subtle signals only showing up significantly with this large set. This included the observation of a periodically changing A+T-content with maxima spaced by a full turn of the DNA helix. This periodic structure includes the A+T-rich UP-element of bacterial promoters known before but was found to extend up to -100, indicating hitherto unknown constraints influencing promoter architecture and possibly also promoter function.
Collapse
Affiliation(s)
- Andreas Albersmeier
- Microbial Genomics Biotechnology, Centrum für Biotechnologie Universität Bielefeld, Sequenz 1, 33615 Bielefeld, Germany
| | - Katharina Pfeifer-Sancar
- Microbial Genomics Biotechnology, Centrum für Biotechnologie Universität Bielefeld, Sequenz 1, 33615 Bielefeld, Germany
| | - Christian Rückert
- Microbial Genomics Biotechnology, Centrum für Biotechnologie Universität Bielefeld, Sequenz 1, 33615 Bielefeld, Germany
| | - Jörn Kalinowski
- Microbial Genomics Biotechnology, Centrum für Biotechnologie Universität Bielefeld, Sequenz 1, 33615 Bielefeld, Germany.
| |
Collapse
|
19
|
Liu X, Yang S, Wang F, Dai X, Yang Y, Bai Z. RETRACTED ARTICLE: Comparative analysis of the Corynebacterium glutamicum transcriptome in response to changes in dissolved oxygen levels. ACTA ACUST UNITED AC 2017; 44:181-195. [DOI: 10.1007/s10295-016-1854-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 10/30/2016] [Indexed: 12/13/2022]
Abstract
Abstract
The dissolved oxygen (DO) level of a culture of Corynebacterium glutamicum (C. glutamicum) in a bioreactor has a significant impact on the cellular redox potential and the distribution of energy and metabolites. In this study, to gain a deeper understanding of the effects of DO on the metabolism of C. glutamicum, we sought to systematically explore the influence of different DO concentrations on genetic regulation and metabolism through transcriptomic analysis. The results revealed that after 20 h of fermentation, oxygen limitation enhanced the glucose metabolism, pyruvate metabolism and carbon overflow, and restricted NAD+ availability. A high oxygen supply enhanced the TCA cycle and reduced glyoxylate metabolism. Several key genes involved in response of C. glutamicum to different oxygen concentrations were examined, which provided suggestions for target site modifications in developing optimized oxygen supply strategies. These data provided new insights into the relationship between oxygen supply and metabolism of C. glutamicum.
Collapse
Affiliation(s)
- Xiuxia Liu
- grid.258151.a 0000000107081323 National Engineering Laboratory for Cereal Fermentation Technology Jiangnan University 214122 Wuxi China
- grid.258151.a 0000000107081323 The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology Jiangnan University 214122 Wuxi China
- grid.258151.a 0000000107081323 The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology Jiangnan University 214122 Wuxi China
| | - Sun Yang
- grid.258151.a 0000000107081323 National Engineering Laboratory for Cereal Fermentation Technology Jiangnan University 214122 Wuxi China
- grid.258151.a 0000000107081323 The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology Jiangnan University 214122 Wuxi China
- grid.258151.a 0000000107081323 The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology Jiangnan University 214122 Wuxi China
| | - Fen Wang
- grid.258151.a 0000000107081323 National Engineering Laboratory for Cereal Fermentation Technology Jiangnan University 214122 Wuxi China
- grid.258151.a 0000000107081323 The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology Jiangnan University 214122 Wuxi China
- grid.258151.a 0000000107081323 The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology Jiangnan University 214122 Wuxi China
| | - Xiaofeng Dai
- grid.258151.a 0000000107081323 National Engineering Laboratory for Cereal Fermentation Technology Jiangnan University 214122 Wuxi China
- grid.258151.a 0000000107081323 The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology Jiangnan University 214122 Wuxi China
- grid.258151.a 0000000107081323 The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology Jiangnan University 214122 Wuxi China
| | - Yankun Yang
- grid.258151.a 0000000107081323 National Engineering Laboratory for Cereal Fermentation Technology Jiangnan University 214122 Wuxi China
- grid.258151.a 0000000107081323 The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology Jiangnan University 214122 Wuxi China
- grid.258151.a 0000000107081323 The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology Jiangnan University 214122 Wuxi China
| | - Zhonghu Bai
- grid.258151.a 0000000107081323 National Engineering Laboratory for Cereal Fermentation Technology Jiangnan University 214122 Wuxi China
- grid.258151.a 0000000107081323 The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology Jiangnan University 214122 Wuxi China
- grid.258151.a 0000000107081323 The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology Jiangnan University 214122 Wuxi China
| |
Collapse
|
20
|
Engineering Corynebacterium glutamicum for fast production of l-lysine and l-pipecolic acid. Appl Microbiol Biotechnol 2016; 100:8075-90. [DOI: 10.1007/s00253-016-7682-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/07/2016] [Accepted: 06/13/2016] [Indexed: 11/25/2022]
|
21
|
Lysine Fermentation: History and Genome Breeding. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2016; 159:73-102. [DOI: 10.1007/10_2016_27] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
22
|
Toyoda K, Inui M. Regulons of global transcription factors in Corynebacterium glutamicum. Appl Microbiol Biotechnol 2015; 100:45-60. [DOI: 10.1007/s00253-015-7074-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 10/03/2015] [Accepted: 10/07/2015] [Indexed: 10/22/2022]
|
23
|
Heider SAE, Wendisch VF. Engineering microbial cell factories: Metabolic engineering ofCorynebacterium glutamicumwith a focus on non-natural products. Biotechnol J 2015. [DOI: 10.1002/biot.201400590] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
24
|
Liu X, Yang Y, Zhang W, Sun Y, Peng F, Jeffrey L, Harvey L, McNeil B, Bai Z. Expression of recombinant protein using Corynebacterium Glutamicum: progress, challenges and applications. Crit Rev Biotechnol 2015; 36:652-64. [PMID: 25714007 DOI: 10.3109/07388551.2015.1004519] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Corynebacterium glutamicum (C. glutamicum) is a highly promising alternative prokaryotic host for recombinant protein expression, as it possesses several significant advantages over Escherichia coli (E. coli), the currently leading bacterial protein expression system. During the past decades, several experimental techniques and vector components for genetic manipulation of C. glutamicum have been developed and validated, including strong promoters for tightly regulating target gene expression, various types of plasmid vectors, protein secretion systems and methods of genetically modifying the host strain genome to improve protein production potential. This review critically discusses current progress in establishing C. glutamicum as a host for recombinant protein expression, and examines, in depth, some successful case studies of actual application of this expression system. The established "expression tool box" for developing novel constructs based on C. glutamicum as a host are also evaluated. Finally, the existing issues and solutions in process development with C. glutamicum as a host are specifically addressed.
Collapse
Affiliation(s)
- Xiuxia Liu
- a National Engineering Laboratory of Cereal Fermentation Technology , School of Biotechnology, JiangNan University , Wuxi , China and
| | - Yankun Yang
- a National Engineering Laboratory of Cereal Fermentation Technology , School of Biotechnology, JiangNan University , Wuxi , China and
| | - Wei Zhang
- a National Engineering Laboratory of Cereal Fermentation Technology , School of Biotechnology, JiangNan University , Wuxi , China and
| | - Yang Sun
- a National Engineering Laboratory of Cereal Fermentation Technology , School of Biotechnology, JiangNan University , Wuxi , China and
| | - Feng Peng
- a National Engineering Laboratory of Cereal Fermentation Technology , School of Biotechnology, JiangNan University , Wuxi , China and
| | - Laura Jeffrey
- b Institute of Pharmacy & Biomedical Sciences, Strathclyde University , Glasgow , UK
| | - Linda Harvey
- b Institute of Pharmacy & Biomedical Sciences, Strathclyde University , Glasgow , UK
| | - Brian McNeil
- b Institute of Pharmacy & Biomedical Sciences, Strathclyde University , Glasgow , UK
| | - Zhonghu Bai
- a National Engineering Laboratory of Cereal Fermentation Technology , School of Biotechnology, JiangNan University , Wuxi , China and
| |
Collapse
|
25
|
Unthan S, Baumgart M, Radek A, Herbst M, Siebert D, Brühl N, Bartsch A, Bott M, Wiechert W, Marin K, Hans S, Krämer R, Seibold G, Frunzke J, Kalinowski J, Rückert C, Wendisch VF, Noack S. Chassis organism from Corynebacterium glutamicum--a top-down approach to identify and delete irrelevant gene clusters. Biotechnol J 2015; 10:290-301. [PMID: 25139579 PMCID: PMC4361050 DOI: 10.1002/biot.201400041] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 07/25/2014] [Accepted: 08/19/2014] [Indexed: 01/05/2023]
Abstract
For synthetic biology applications, a robust structural basis is required, which can be constructed either from scratch or in a top-down approach starting from any existing organism. In this study, we initiated the top-down construction of a chassis organism from Corynebacterium glutamicum ATCC 13032, aiming for the relevant gene set to maintain its fast growth on defined medium. We evaluated each native gene for its essentiality considering expression levels, phylogenetic conservation, and knockout data. Based on this classification, we determined 41 gene clusters ranging from 3.7 to 49.7 kbp as target sites for deletion. 36 deletions were successful and 10 genome-reduced strains showed impaired growth rates, indicating that genes were hit, which are relevant to maintain biological fitness at wild-type level. In contrast, 26 deleted clusters were found to include exclusively irrelevant genes for growth on defined medium. A combinatory deletion of all irrelevant gene clusters would, in a prophage-free strain, decrease the size of the native genome by about 722 kbp (22%) to 2561 kbp. Finally, five combinatory deletions of irrelevant gene clusters were investigated. The study introduces the novel concept of relevant genes and demonstrates general strategies to construct a chassis suitable for biotechnological application.
Collapse
Affiliation(s)
- Simon Unthan
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Systems BiotechnologyForschungszentrum Jülich, Jülich, Germany
| | - Meike Baumgart
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Systemic MicrobiologyForschungszentrum Jülich, Jülich, Germany
| | - Andreas Radek
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Systems BiotechnologyForschungszentrum Jülich, Jülich, Germany
| | - Marius Herbst
- Chair of Genetics of Prokaryotes, Faculty of Biology & CeBiTec, Bielefeld UniversityBielefeld, Germany
| | - Daniel Siebert
- Chair of Genetics of Prokaryotes, Faculty of Biology & CeBiTec, Bielefeld UniversityBielefeld, Germany
| | - Natalie Brühl
- Institute of Biochemistry, University of CologneCologne, Germany
| | - Anna Bartsch
- Institute of Biochemistry, University of CologneCologne, Germany
| | - Michael Bott
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Systemic MicrobiologyForschungszentrum Jülich, Jülich, Germany
| | - Wolfgang Wiechert
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Systems BiotechnologyForschungszentrum Jülich, Jülich, Germany
| | - Kay Marin
- Evonik Degussa GmbHHalle/Westphalia, Germany
| | | | - Reinhard Krämer
- Institute of Biochemistry, University of CologneCologne, Germany
| | - Gerd Seibold
- Institute of Biochemistry, University of CologneCologne, Germany
| | - Julia Frunzke
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Systemic MicrobiologyForschungszentrum Jülich, Jülich, Germany
| | - Jörn Kalinowski
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld UniversityBielefeld, Germany
| | - Christian Rückert
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld UniversityBielefeld, Germany
| | - Volker F Wendisch
- Chair of Genetics of Prokaryotes, Faculty of Biology & CeBiTec, Bielefeld UniversityBielefeld, Germany
| | - Stephan Noack
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Systems BiotechnologyForschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
26
|
Handtke S, Volland S, Methling K, Albrecht D, Becher D, Nehls J, Bongaerts J, Maurer KH, Lalk M, Liesegang H, Voigt B, Daniel R, Hecker M. Cell physiology of the biotechnological relevant bacterium Bacillus pumilus-an omics-based approach. J Biotechnol 2014; 192 Pt A:204-14. [PMID: 25281541 DOI: 10.1016/j.jbiotec.2014.08.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 08/15/2014] [Accepted: 08/22/2014] [Indexed: 12/18/2022]
Abstract
Members of the species Bacillus pumilus get more and more in focus of the biotechnological industry as potential new production strains. Based on exoproteome analysis, B. pumilus strain Jo2, possessing a high secretion capability, was chosen for an omics-based investigation. The proteome and metabolome of B. pumilus cells growing either in minimal or complex medium was analyzed. In total, 1542 proteins were identified in growing B. pumilus cells, among them 1182 cytosolic proteins, 297 membrane and lipoproteins and 63 secreted proteins. This accounts for about 43% of the 3616 proteins encoded in the B. pumilus Jo2 genome sequence. By using GC-MS, IP-LC/MS and H NMR methods numerous metabolites were analyzed and assigned to reconstructed metabolic pathways. In the genome sequence a functional secretion system including the components of the Sec- and Tat-secretion machinery was found. Analysis of the exoproteome revealed secretion of about 70 proteins with predicted secretion signals. In addition, selected production-relevant genome features such as restriction modification systems and NRPS clusters of B. pumilus Jo2 are discussed.
Collapse
Affiliation(s)
- Stefan Handtke
- Institute for Microbiology, Ernst-Moritz-Arndt University, Greifswald, Germany.
| | - Sonja Volland
- Department of Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Göttingen, Germany.
| | - Karen Methling
- Institute of Biochemistry, Ernst-Moritz-Arndt University, Greifswald, Germany.
| | - Dirk Albrecht
- Institute for Microbiology, Ernst-Moritz-Arndt University, Greifswald, Germany.
| | - Dörte Becher
- Institute for Microbiology, Ernst-Moritz-Arndt University, Greifswald, Germany.
| | - Jenny Nehls
- Institute of Biochemistry, Ernst-Moritz-Arndt University, Greifswald, Germany.
| | - Johannes Bongaerts
- Department of Chemistry and Biotechnology, Aachen University of Applied Sciences, Heinrich-Mußmannstr. 1, 52428 Jülich, Germany.
| | | | - Michael Lalk
- Institute of Biochemistry, Ernst-Moritz-Arndt University, Greifswald, Germany.
| | - Heiko Liesegang
- Department of Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Göttingen, Germany.
| | - Birgit Voigt
- Institute for Microbiology, Ernst-Moritz-Arndt University, Greifswald, Germany.
| | - Rolf Daniel
- Department of Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Göttingen, Germany.
| | - Michael Hecker
- Institute for Microbiology, Ernst-Moritz-Arndt University, Greifswald, Germany.
| |
Collapse
|
27
|
Eikmanns BJ, Blombach B. The pyruvate dehydrogenase complex of Corynebacterium glutamicum: an attractive target for metabolic engineering. J Biotechnol 2014; 192 Pt B:339-45. [PMID: 24486441 DOI: 10.1016/j.jbiotec.2013.12.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 12/12/2013] [Accepted: 12/16/2013] [Indexed: 11/18/2022]
Abstract
The pyruvate dehydrogenase complex (PDHC) catalyzes the oxidative thiamine pyrophosphate-dependent decarboxylation of pyruvate to acetyl-CoA and CO2. Since pyruvate is a key metabolite of the central metabolism and also the precursor for several relevant biotechnological products, metabolic engineering of this multienzyme complex is a promising strategy to improve microbial production processes. This review summarizes the current knowledge and achievements on metabolic engineering approaches to tailor the PDHC of Corynebacterium glutamicum for the bio-based production of l-valine, 2-ketosiovalerate, pyruvate, succinate and isobutanol and to improve l-lysine production.
Collapse
Affiliation(s)
- Bernhard J Eikmanns
- Institute of Microbiology and Biotechnology, University of Ulm, 89069 Ulm, Germany
| | - Bastian Blombach
- Institute of Biochemical Engineering, University of Stuttgart, 70569 Stuttgart, Germany.
| |
Collapse
|
28
|
Pfeifer-Sancar K, Mentz A, Rückert C, Kalinowski J. Comprehensive analysis of the Corynebacterium glutamicum transcriptome using an improved RNAseq technique. BMC Genomics 2013; 14:888. [PMID: 24341750 PMCID: PMC3890552 DOI: 10.1186/1471-2164-14-888] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 12/03/2013] [Indexed: 01/16/2023] Open
Abstract
Background The use of RNAseq to resolve the transcriptional organization of an organism was established in recent years and also showed the complexity and dynamics of bacterial transcriptomes. The aim of this study was to comprehensively investigate the transcriptome of the industrially relevant amino acid producer and model organism Corynebacterium glutamicum by RNAseq in order to improve its genome annotation and to describe important features for transcription and translation. Results RNAseq data sets were obtained by two methods, one that focuses on 5′-ends of primary transcripts and another that provides the overall transcriptome with an improved resolution of 3′-ends of transcripts. Subsequent data analysis led to the identification of more than 2,000 transcription start sites (TSSs), the definition of 5′-UTRs (untranslated regions) for annotated protein-coding genes, operon structures and many novel transcripts located between or in antisense orientation to protein-coding regions. Interestingly, a high number of mRNAs (33%) is transcribed as leaderless transcripts. From the data, consensus promoter and ribosome binding site (RBS) motifs were identified and it was shown that the majority of genes in C. glutamicum are transcribed monocistronically, but operons containing up to 16 genes are also present. Conclusions The comprehensive transcriptome map of C. glutamicum established in this study represents a major step forward towards a complete definition of genetic elements (e.g. promoter regions, gene starts and stops, 5′-UTRs, RBSs, transcript starts and ends) and provides the ideal basis for further analyses on transcriptional regulatory networks in this organism. The methods developed are easily applicable for other bacteria and have the potential to be used also for quantification of transcriptomes, replacing microarrays in the near future.
Collapse
Affiliation(s)
| | | | | | - Jörn Kalinowski
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615, Bielefeld, Germany.
| |
Collapse
|
29
|
Becker J, Schäfer R, Kohlstedt M, Harder BJ, Borchert NS, Stöveken N, Bremer E, Wittmann C. Systems metabolic engineering of Corynebacterium glutamicum for production of the chemical chaperone ectoine. Microb Cell Fact 2013; 12:110. [PMID: 24228689 PMCID: PMC4225761 DOI: 10.1186/1475-2859-12-110] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 11/05/2013] [Indexed: 11/14/2022] Open
Abstract
Background The stabilizing and function-preserving effects of ectoines have attracted considerable biotechnological interest up to industrial scale processes for their production. These rely on the release of ectoines from high-salinity-cultivated microbial producer cells upon an osmotic down-shock in rather complex processor configurations. There is growing interest in uncoupling the production of ectoines from the typical conditions required for their synthesis, and instead design strains that naturally release ectoines into the medium without the need for osmotic changes, since the use of high-salinity media in the fermentation process imposes notable constraints on the costs, design, and durability of fermenter systems. Results Here, we used a Corynebacterium glutamicum strain as a cellular chassis to establish a microbial cell factory for the biotechnological production of ectoines. The implementation of a mutant aspartokinase enzyme ensured efficient supply of L-aspartate-beta-semialdehyde, the precursor for ectoine biosynthesis. We further engineered the genome of the basic C. glutamicum strain by integrating a codon-optimized synthetic ectABCD gene cluster under expressional control of the strong and constitutive C. glutamicum tuf promoter. The resulting recombinant strain produced ectoine and excreted it into the medium; however, lysine was still found as a by-product. Subsequent inactivation of the L-lysine exporter prevented the undesired excretion of lysine while ectoine was still exported. Using the streamlined cell factory, a fed-batch process was established that allowed the production of ectoine with an overall productivity of 6.7 g L-1 day-1 under growth conditions that did not rely on the use of high-salinity media. Conclusions The present study describes the construction of a stable microbial cell factory for recombinant production of ectoine. We successfully applied metabolic engineering strategies to optimize its synthetic production in the industrial workhorse C. glutamicum and thereby paved the way for further improvements in ectoine yield and biotechnological process optimization.
Collapse
Affiliation(s)
- Judith Becker
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Braunschweig, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
High-level secretory production of recombinant single-chain variable fragment (scFv) in Corynebacterium glutamicum. Appl Microbiol Biotechnol 2013; 98:273-84. [PMID: 24380967 DOI: 10.1007/s00253-013-5315-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 10/01/2013] [Accepted: 10/02/2013] [Indexed: 01/08/2023]
Abstract
We describe the development of a new secretory production system for the enhanced production of a single-chain variable fragment (scFv) against the anthrax toxin in Corynebacterium glutamicum. For efficient secretory production of the antibody fragment, the following components were examined: (1) signal peptides, (2) codon usage of antibody fragment, (3) promoters, (4) 5' untranslated region (5' UTR) sequence, and (5) transcriptional terminator. Among all the systems examined, the use of a codon-optimized gene sequence, a Sec-dependent PorB signal peptide, and a fully synthetic H36 promoter, allowed the highest production of antibody fragments in a culture medium. For large-scale production, fed-batch cultivations were also conducted in a 5-L lab-scale bioreactor. When cells were cultivated in semi-defined media, cells could grow up to an OD600 of 179 for 32 h and an antibody fragment concentration as high as 68 mg/L could be obtained in a culture medium with high purity. From the culture medium, the secreted antibody was successfully purified using a simple purification procedure, with correct binding activity confirmed by enzyme-linked immunosorbent assay. To the best of our knowledge, this is the first report of a fed-batch cultivation for antibody fragment production in C. glutamicum.
Collapse
|
31
|
Unthan S, Grünberger A, van Ooyen J, Gätgens J, Heinrich J, Paczia N, Wiechert W, Kohlheyer D, Noack S. Beyond growth rate 0.6: What drivesCorynebacterium glutamicumto higher growth rates in defined medium. Biotechnol Bioeng 2013; 111:359-71. [DOI: 10.1002/bit.25103] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 08/07/2013] [Accepted: 08/19/2013] [Indexed: 11/07/2022]
Affiliation(s)
- Simon Unthan
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Systems Biotechnology; Forschungszentrum Jülich; 52425 Jülich Germany
| | - Alexander Grünberger
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Systems Biotechnology; Forschungszentrum Jülich; 52425 Jülich Germany
| | - Jan van Ooyen
- Systemic Microbiology; Forschungszentrum Jülich; Jülich Germany
| | - Jochem Gätgens
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Systems Biotechnology; Forschungszentrum Jülich; 52425 Jülich Germany
| | - Johanna Heinrich
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Systems Biotechnology; Forschungszentrum Jülich; 52425 Jülich Germany
| | - Nicole Paczia
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Systems Biotechnology; Forschungszentrum Jülich; 52425 Jülich Germany
| | - Wolfgang Wiechert
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Systems Biotechnology; Forschungszentrum Jülich; 52425 Jülich Germany
| | - Dietrich Kohlheyer
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Systems Biotechnology; Forschungszentrum Jülich; 52425 Jülich Germany
| | - Stephan Noack
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Systems Biotechnology; Forschungszentrum Jülich; 52425 Jülich Germany
| |
Collapse
|
32
|
Ahmed S, Afzal M, Rajoka MI. Kinetic and Thermodynamic Characterization of Lysine Production Process in Brevibacterium lactofermentum. Appl Biochem Biotechnol 2013; 170:81-90. [DOI: 10.1007/s12010-013-0169-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 02/27/2013] [Indexed: 11/28/2022]
|
33
|
Pátek M, Holátko J, Busche T, Kalinowski J, Nešvera J. Corynebacterium glutamicum promoters: a practical approach. Microb Biotechnol 2013; 6:103-17. [PMID: 23305350 PMCID: PMC3917453 DOI: 10.1111/1751-7915.12019] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 11/05/2012] [Accepted: 11/08/2012] [Indexed: 11/27/2022] Open
Abstract
Transcription initiation is the key step in gene expression in bacteria, and it is therefore studied for both theoretical and practical reasons. Promoters, the traffic lights of transcription initiation, are used as construction elements in biotechnological efforts to coordinate ‘green waves’ in the metabolic pathways leading to the desired metabolites. Detailed analyses of Corynebacterium glutamicum promoters have already provided large amounts of data on their structures, regulatory mechanisms and practical capabilities in metabolic engineering. In this minireview the main aspects of promoter studies, the methods developed for their analysis and their practical use in C. glutamicum are discussed. These include definitions of the consensus sequences of the distinct promoter classes, promoter localization and characterization, activity measurements, the functions of transcriptional regulators and examples of practical uses of constitutive, inducible and modified promoters in biotechnology. The implications of the introduction of novel techniques, such as in vitro transcription and RNA sequencing, to C. glutamicum promoter studies are outlined.
Collapse
Affiliation(s)
- Miroslav Pátek
- Institute of Microbiology AS CR, vvi, Prague 4, Czech Republic.
| | | | | | | | | |
Collapse
|
34
|
Adaptive evolution of Corynebacterium glutamicum resistant to oxidative stress and its global gene expression profiling. Biotechnol Lett 2013; 35:709-17. [DOI: 10.1007/s10529-012-1135-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 12/20/2012] [Indexed: 10/27/2022]
|
35
|
Ikeda M, Takeno S. Amino Acid Production by Corynebacterium glutamicum. CORYNEBACTERIUM GLUTAMICUM 2013. [DOI: 10.1007/978-3-642-29857-8_4] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
36
|
Wieschalka S, Blombach B, Bott M, Eikmanns BJ. Bio-based production of organic acids with Corynebacterium glutamicum. Microb Biotechnol 2012. [PMID: 23199277 PMCID: PMC3917452 DOI: 10.1111/1751-7915.12013] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The shortage of oil resources, the steadily rising oil prices and the impact of its use on the environment evokes an increasing political, industrial and technical interest for development of safe and efficient processes for the production of chemicals from renewable biomass. Thus, microbial fermentation of renewable feedstocks found its way in white biotechnology, complementing more and more traditional crude oil-based chemical processes. Rational strain design of appropriate microorganisms has become possible due to steadily increasing knowledge on metabolism and pathway regulation of industrially relevant organisms and, aside from process engineering and optimization, has an outstanding impact on improving the performance of such hosts. Corynebacterium glutamicum is well known as workhorse for the industrial production of numerous amino acids. However, recent studies also explored the usefulness of this organism for the production of several organic acids and great efforts have been made for improvement of the performance. This review summarizes the current knowledge and recent achievements on metabolic engineering approaches to tailor C. glutamicum for the bio-based production of organic acids. We focus here on the fermentative production of pyruvate, L- and D-lactate, 2-ketoisovalerate, 2-ketoglutarate, and succinate. These organic acids represent a class of compounds with manifold application ranges, e.g. in pharmaceutical and cosmetics industry, as food additives, and economically very interesting, as precursors for a variety of bulk chemicals and commercially important polymers.
Collapse
Affiliation(s)
- Stefan Wieschalka
- Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
| | | | | | | |
Collapse
|
37
|
Witthoff S, Eggeling L, Bott M, Polen T. Corynebacterium glutamicum harbours a molybdenum cofactor-dependent formate dehydrogenase which alleviates growth inhibition in the presence of formate. Microbiology (Reading) 2012; 158:2428-2439. [DOI: 10.1099/mic.0.059196-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Sabrina Witthoff
- Institut für Bio- und Geowissenschaften, IBG-1: Biotechnologie, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Lothar Eggeling
- Institut für Bio- und Geowissenschaften, IBG-1: Biotechnologie, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Michael Bott
- Institut für Bio- und Geowissenschaften, IBG-1: Biotechnologie, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Tino Polen
- Institut für Bio- und Geowissenschaften, IBG-1: Biotechnologie, Forschungszentrum Jülich, D-52425 Jülich, Germany
| |
Collapse
|
38
|
Bott M, Brocker M. Two-component signal transduction in Corynebacterium glutamicum and other corynebacteria: on the way towards stimuli and targets. Appl Microbiol Biotechnol 2012; 94:1131-50. [PMID: 22539022 PMCID: PMC3353115 DOI: 10.1007/s00253-012-4060-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 03/26/2012] [Accepted: 03/27/2012] [Indexed: 11/30/2022]
Abstract
In bacteria, adaptation to changing environmental conditions is often mediated by two-component signal transduction systems. In the prototypical case, a specific stimulus is sensed by a membrane-bound histidine kinase and triggers autophosphorylation of a histidine residue. Subsequently, the phosphoryl group is transferred to an aspartate residue of the cognate response regulator, which then becomes active and mediates a specific response, usually by activating and/or repressing a set of target genes. In this review, we summarize the current knowledge on two-component signal transduction in Corynebacterium glutamicum. This Gram-positive soil bacterium is used for the large-scale biotechnological production of amino acids and can also be applied for the synthesis of a wide variety of other products, such as organic acids, biofuels, or proteins. Therefore, C. glutamicum has become an important model organism in industrial biotechnology and in systems biology. The type strain ATCC 13032 possesses 13 two-component systems and the role of five has been elucidated in recent years. They are involved in citrate utilization (CitAB), osmoregulation and cell wall homeostasis (MtrAB), adaptation to phosphate starvation (PhoSR), adaptation to copper stress (CopSR), and heme homeostasis (HrrSA). As C. glutamicum does not only face changing conditions in its natural environment, but also during cultivation in industrial bioreactors of up to 500 m(3) volume, adaptability can also be crucial for good performance in biotechnological production processes. Detailed knowledge on two-component signal transduction and regulatory networks therefore will contribute to both the application and the systemic understanding of C. glutamicum and related species.
Collapse
Affiliation(s)
- Michael Bott
- Institut für Bio- und Geowissenschaften, IBG-1: Biotechnologie, Forschungszentrum Jülich, Jülich, Germany.
| | | |
Collapse
|
39
|
Quantification of proteome dynamics in Corynebacterium glutamicum by (15)N-labeling and selected reaction monitoring. J Proteomics 2012; 75:2660-9. [PMID: 22476105 DOI: 10.1016/j.jprot.2012.03.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 02/22/2012] [Accepted: 03/12/2012] [Indexed: 11/23/2022]
Abstract
Selected reaction monitoring allows quantitative measurements of proteins over several orders of magnitude in complex biological samples. Here we present a targeted approach for quantification of 19 enzymes from Corynebacterium glutamicum applying isotope dilution mass spectrometry coupled to high performance liquid chromatography (IDMS-LC-MS/MS). Investigations of protein dynamics upon growth on acetate and glucose as sole carbon source shows highly stable peptide amounts for enzymes of the central carbon metabolism during the transition phase and after substrate depletion. However significant adaptations of protein amounts are observed between both growth conditions well agreeing with known changes in metabolic fluxes. Time-resolved measurements of protein expression after metabolic switch from glycolytic to gluconeogenetic conditions reveal fast responses in protein synthesis rates for glyoxylate shunt enzymes.
Collapse
|
40
|
Bernardini G, Braconi D, Lusini P, Santucci A. Post-genomics of Neisseria meningitidis: an update. Expert Rev Proteomics 2011; 8:803-11. [PMID: 22087663 DOI: 10.1586/epr.11.59] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Neisseria meningitidis infection still remains a major life-threatening bacterial disease worldwide. The availability of bacterial genomic sequences generated a paradigm shift in microbiological and vaccines sciences, and post-genomics (comparative genomics, functional genomics, proteomics and a combination/evolution of these techniques) played important roles in elucidating bacterial biological complexity and pathogenic traits, at the same time accelerating the development of therapeutic drugs and vaccines. This article summarizes the most recent technological and scientific advances in meningococcal biology and pathogenesis aimed at the development and characterization of vaccines against the pathogenic meningococci.
Collapse
Affiliation(s)
- Giulia Bernardini
- Dipartimento di Biologia Molecolare, via Fiorentina 1, Università degli Studi di Siena, 53100 Siena, Italy
| | | | | | | |
Collapse
|
41
|
Genome shuffling improves thermotolerance and glutamic acid production of Corynebacteria glutamicum. World J Microbiol Biotechnol 2011; 28:1035-43. [DOI: 10.1007/s11274-011-0902-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 09/16/2011] [Indexed: 10/17/2022]
|
42
|
Baumgart M, Bott M. Biochemical characterisation of aconitase from Corynebacterium glutamicum. J Biotechnol 2011; 154:163-70. [DOI: 10.1016/j.jbiotec.2010.07.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Accepted: 07/01/2010] [Indexed: 10/19/2022]
|
43
|
Tools for genetic manipulations in Corynebacterium glutamicum and their applications. Appl Microbiol Biotechnol 2011; 90:1641-54. [DOI: 10.1007/s00253-011-3272-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 03/21/2011] [Accepted: 03/23/2011] [Indexed: 01/26/2023]
|
44
|
Bussmann M, Baumgart M, Bott M. RosR (Cg1324), a hydrogen peroxide-sensitive MarR-type transcriptional regulator of Corynebacterium glutamicum. J Biol Chem 2010; 285:29305-18. [PMID: 20643656 PMCID: PMC2937963 DOI: 10.1074/jbc.m110.156372] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2010] [Revised: 07/14/2010] [Indexed: 11/06/2022] Open
Abstract
The cg1324 gene (rosR) of Corynebacterium glutamicum encodes a MarR-type transcriptional regulator. By a comparative transcriptome analysis with DNA microarrays of a ΔrosR mutant and the wild type and subsequent EMSAs with purified RosR protein, direct target genes of RosR were identified. The narKGHJI operon, which encodes a nitrate/nitrite transporter and the dissimilatory nitrate reductase complex, was activated by RosR. All other target genes were repressed by RosR. They encode four putative monooxygenases, two putative FMN reductases, a protein of the glutathione S-transferase family, a putative polyisoprenoid-binding protein, and RosR itself. The DNA binding site of RosR was characterized as an 18-bp inverted repeat with the consensus sequence TTGTTGAYRYRTCAACWA. The in vitro DNA binding activity of RosR was reversibly inhibited by the oxidant H(2)O(2). Mutational analysis of the three cysteine residues present in RosR (Cys-64, Cys-92, and Cys-151) showed that these are responsible for the inhibition of DNA binding by H(2)O(2). A deletion mutant (Δcg1322) lacking the putative polyisoprenoid-binding protein showed an increased sensitivity to H(2)O(2), supporting the role of RosR in the oxidative stress response of C. glutamicum.
Collapse
Affiliation(s)
- Michael Bussmann
- From the Institut für Biotechnologie 1, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Meike Baumgart
- From the Institut für Biotechnologie 1, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Michael Bott
- From the Institut für Biotechnologie 1, Forschungszentrum Jülich, D-52425 Jülich, Germany
| |
Collapse
|
45
|
Park JH, Lee SY. Metabolic pathways and fermentative production of L-aspartate family amino acids. Biotechnol J 2010; 5:560-77. [PMID: 20518059 DOI: 10.1002/biot.201000032] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The L-aspartate family amino acids (AFAAs), L-threonine, L-lysine, L-methionine and L-isoleucine have recently been of much interest due to their wide spectrum of applications including food additives, components of cosmetics and therapeutic agents, and animal feed additives. Among them, L-threonine, L-lysine and L-methionine are three major amino acids produced currently throughout the world. Recent advances in systems metabolic engineering, which combine various high-throughput omics technologies and computational analysis, are now facilitating development of microbial strains efficiently producing AFAAs. Thus, a thorough understanding of the metabolic and regulatory mechanisms of the biosynthesis of these amino acids is urgently needed for designing system-wide metabolic engineering strategies. Here we review the details of AFAA biosynthetic pathways, regulations involved, and export and transport systems, and provide general strategies for successful metabolic engineering along with relevant examples. Finally, perspectives of systems metabolic engineering for developing AFAA overproducers are suggested with selected exemplary studies.
Collapse
Affiliation(s)
- Jin Hwan Park
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 program), BioProcess Engineering Research Center, and Center for Systems and Synthetic Biotechnology, Institute for the BioCentury, KAIST, Daejeon, Republic of Korea
| | | |
Collapse
|
46
|
Persicke M, Plassmeier J, Neuweger H, Rückert C, Pühler A, Kalinowski J. Size exclusion chromatography: an improved method to harvest Corynebacterium glutamicum cells for the analysis of cytosolic metabolites. J Biotechnol 2010; 154:171-8. [PMID: 20817050 DOI: 10.1016/j.jbiotec.2010.08.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Revised: 08/17/2010] [Accepted: 08/25/2010] [Indexed: 10/19/2022]
Abstract
The efficient separation of Corynebacterium glutamicum cells from culture medium by size exclusion chromatography (SEC) is presented. Residue analysis demonstrated that this method effectively depletes extracellular compounds. For evaluation, SEC was compared with the common methods cold methanol treatment, fast centrifugation and fast filtration. For this purpose, samples of C. glutamicum cells from fermenter cultures were harvested and subjected to a metabolome analysis. In particular, the wild type strain C. glutamicum ATCC13032 and the lysine production strain C. glutamicum DM1730 were grown in a minimal or in a complex medium. Comparison of metabolite pool sizes after harvesting C. glutamicum cells by the methods mentioned above by gas chromatography coupled to mass spectrometry (GC-MS) revealed that SEC is the most suitable method when intracellular metabolite pools are to be measured during growth in complex media or in the presence of significant amounts of secreted metabolites. In contrast to the other methods tested, the SEC method turned out to be fast and able to remove extracellular compounds almost completely.
Collapse
Affiliation(s)
- Marcus Persicke
- Institut für Genomforschung und Systembiologie, Centrum für Biotechnologie (CeBiTec), Universität Bielefeld, Universitätsstrasse 27, 33615 Bielefeld, Germany
| | | | | | | | | | | |
Collapse
|
47
|
Abstract
The advent of high throughput genome-scale bioinformatics has led to an exponential increase in available cellular system data. Systems metabolic engineering attempts to use data-driven approaches--based on the data collected with high throughput technologies--to identify gene targets and optimize phenotypical properties on a systems level. Current systems metabolic engineering tools are limited for predicting and defining complex phenotypes such as chemical tolerances and other global, multigenic traits. The most pragmatic systems-based tool for metabolic engineering to arise is the in silico genome-scale metabolic reconstruction. This tool has seen wide adoption for modeling cell growth and predicting beneficial gene knockouts, and we examine here how this approach can be expanded for novel organisms. This review will highlight advances of the systems metabolic engineering approach with a focus on de novo development and use of genome-scale metabolic reconstructions for metabolic engineering applications. We will then discuss the challenges and prospects for this emerging field to enable model-based metabolic engineering. Specifically, we argue that current state-of-the-art systems metabolic engineering techniques represent a viable first step for improving product yield that still must be followed by combinatorial techniques or random strain mutagenesis to achieve optimal cellular systems.
Collapse
Affiliation(s)
- John Blazeck
- Department of Chemical Engineering, The University of Texas at Austin, 1 University Station, Austin, TX 78712, USA
| | | |
Collapse
|
48
|
Dietz S, Panke S. Microbial systems engineering: First successes and the way ahead. Bioessays 2010; 32:356-62. [DOI: 10.1002/bies.200900174] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
49
|
Bartek T, Rudolf C, Kerssen U, Klein B, Blombach B, Lang S, Eikmanns BJ, Oldiges M. Studies on substrate utilisation in L-valine-producing Corynebacterium glutamicum strains deficient in pyruvate dehydrogenase complex. Bioprocess Biosyst Eng 2010; 33:873-83. [PMID: 20204663 DOI: 10.1007/s00449-010-0410-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Accepted: 01/21/2010] [Indexed: 11/29/2022]
Abstract
The pyruvate dehydrogenase complex was deleted to increase precursor availability in Corynebacterium glutamicum strains overproducing L: -valine. The resulting auxotrophy is treated by adding acetate in addition glucose for growth, resulting in the puzzling fact of gluconeogenic growth with strongly reduced glucose uptake in the presence of acetate in the medium. This result was proven by intracellular metabolite analysis and labelling experiments. To increase productivity, the SugR protein involved in negative regulation of the phosphotransferase system, was inactivated, resulting in enhanced consumption of glucose. However, the surplus in substrate uptake was not converted to L-valine; instead, the formation of up to 289 microM xylulose was observed for the first time in C. glutamicum. As an alternative to the genetic engineering solution, a straightforward process engineering approach is proposed. Acetate limitation resulted in a more efficient use of acetate as cosubstrate, shown by an increased biomass yield Y(X/Ac) and improved L-valine formation.
Collapse
Affiliation(s)
- Tobias Bartek
- Institute of Biotechnology 2, Forschungszentrum Jülich, 52425 Jülich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Wittmann C. Analysis and engineering of metabolic pathway fluxes in Corynebacterium glutamicum. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2010; 120:21-49. [PMID: 20140657 DOI: 10.1007/10_2009_58] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The Gram-positive soil bacterium Corynebacterium glutamicum was discovered as a natural overproducer of glutamate about 50 years ago. Linked to the steadily increasing economical importance of this microorganism for production of glutamate and other amino acids, the quest for efficient production strains has been an intense area of research during the past few decades. Efficient production strains were created by applying classical mutagenesis and selection and especially metabolic engineering strategies with the advent of recombinant DNA technology. Hereby experimental and computational approaches have provided fascinating insights into the metabolism of this microorganism and directed strain engineering. Today, C. glutamicum is applied to the industrial production of more than 2 million tons of amino acids per year. The huge achievements in recent years, including the sequencing of the complete genome and efficient post genomic approaches, now provide the basis for a new, fascinating era of research - analysis of metabolic and regulatory properties of C. glutamicum on a global scale towards novel and superior bioprocesses.
Collapse
Affiliation(s)
- Christoph Wittmann
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Gaussstrasse 17, 38106, Braunschweig, Germany,
| |
Collapse
|