1
|
Guo Q, Zhang MJ, Zheng LJ, Chen WX, Zheng H, Fan LH. Enhanced Synthesis of Rare d-Allose from d-Glucose by Positively Pulling and Forcing Reversible Epimerization in Engineered Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:6072-6080. [PMID: 40017091 DOI: 10.1021/acs.jafc.4c11883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
d-Allose has great potential for application in the food and pharmaceutical industries owing to its remarkable physiological properties. Most studies on d-allose production have primarily focused on enzyme catalysis using the Izumoring strategy, which typically requires the use of expensive d-allulose as a substrate. Herein, a metabolically engineered strain of Escherichia coli was developed to synthesize d-allose directly from inexpensive d-glucose. The synthesis pathway was systematically optimized through a modular metabolic engineering. The functionality of the isomerases involved in the conversion of d-allulose to d-allose was confirmed in vivo, while the byproduct and transporter pathways were blocked to positively pull the reversible epimerization. Gene knockouts were employed to weaken glycolytic pathways, redirecting the carbon flux toward product synthesis. Additionally, the nonphosphorylated transport of d-glucose was introduced to enhance substrate utilization. In fed-batch fermentation, the engineered strain achieved a d-allose titer of 4.17 g/L, with a yield of 0.103 g/g from d-glucose. Our achievements are expected to advance the industrial production of d-allose, and this strategy is also applicable for producing other rare sugars.
Collapse
Affiliation(s)
- Qiang Guo
- College of Chemical Engineering, Fuzhou University, Fuzhou 350108, China
| | - Meng-Jun Zhang
- College of Chemical Engineering, Fuzhou University, Fuzhou 350108, China
| | - Ling-Jie Zheng
- College of Chemical Engineering, Fuzhou University, Fuzhou 350108, China
- Qingyuan Innovation Laboratory, Quanzhou 362801, China
| | - Wei-Xiang Chen
- College of Chemical Engineering, Fuzhou University, Fuzhou 350108, China
| | - Huidong Zheng
- College of Chemical Engineering, Fuzhou University, Fuzhou 350108, China
- Qingyuan Innovation Laboratory, Quanzhou 362801, China
| | - Li-Hai Fan
- College of Chemical Engineering, Fuzhou University, Fuzhou 350108, China
- Qingyuan Innovation Laboratory, Quanzhou 362801, China
| |
Collapse
|
2
|
Tang X, Ravikumar Y, Zhang G, Yun J, Zhao M, Qi X. D-allose, a typical rare sugar: properties, applications, and biosynthetic advances and challenges. Crit Rev Food Sci Nutr 2024; 65:2785-2812. [PMID: 38764407 DOI: 10.1080/10408398.2024.2350617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
D-allose, a C-3 epimer of D-glucose and an aldose-ketose isomer of D-allulose, exhibits 80% of sucrose's sweetness while being remarkably low in calories and nontoxic, making it an appealing sucrose substitute. Its diverse physiological functions, particularly potent anticancer and antitumor effects, render it a promising candidate for clinical treatment, garnering sustained attention. However, its limited availability in natural sources and the challenges associated with chemical synthesis necessitate exploring biosynthetic strategies to enhance production. This overview encapsulates recent advancements in D-allose's physicochemical properties, physiological functions, applications, and biosynthesis. It also briefly discusses the crucial role of understanding aldoketose isomerase structure and optimizing its performance in D-allose synthesis. Furthermore, it delves into the challenges and future perspectives in D-allose bioproduction. Early efforts focused on identifying and characterizing enzymes responsible for D-allose production, followed by detailed crystal structure analysis to improve performance through molecular modification. Strategies such as enzyme immobilization and implementing multi-enzyme cascade reactions, utilizing more cost-effective feedstocks, were explored. Despite progress, challenges remain, including the lack of efficient high-throughput screening methods for enzyme modification, the need for food-grade expression systems, the establishment of ordered substrate channels in multi-enzyme cascade reactions, and the development of downstream separation and purification processes.
Collapse
Affiliation(s)
- Xinrui Tang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Yuvaraj Ravikumar
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Guoyan Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Junhua Yun
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Mei Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Xianghui Qi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- School of Life Sciences, Guangzhou University, Guangzhou, China
| |
Collapse
|
3
|
Duan S, Chen Y, Wang G, Li Z, Dong S, Wu Y, Wang Y, Ma C, Wang R. A study of targeted mutation of l-rhamnose isomerase to improve the conversion efficiency of D-allose. Enzyme Microb Technol 2023; 168:110259. [PMID: 37245327 DOI: 10.1016/j.enzmictec.2023.110259] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/30/2023]
Abstract
D-Allose is a rare cis-caprose with a wide range of physiological functions, which has a wide range of applications in medicine, food, and other industries. L-Rhamnose isomerase (L-Rhi) is the earliest enzyme found to catalyze the production of D-allose from D-psicose. This catalyst has a high conversion rate, but its specificity for substrates is limited; thus, it cannot fulfill the requirements of industrial production of D-allose. In this study, L-Rhi derived from Bacillus subtilis was employed as the research subject, and D-psicose as the conversion substrate. Two mutant libraries were constructed through alanine scanning, saturation mutation, and rational design based on the analysis of the secondary structure, tertiary structure, and interactions with ligands of the enzyme. The yield of D-allose produced by these mutants was assessed; it was found that the conversion rate of mutant D325M to D-allose was increased by 55.73 %, and the D325S improved by 15.34 %, while mutant W184H increased by 10.37 % at 55 °C, respectively. According to modeling analysis, manganese (Mn2+) had no significant effect on the production of D-psicose from D-psicose by L-Rhi. The results of molecular dynamics simulation demonstrated that the mutants W184H, D325M, and D325S had more stable protein structures while binding with the substrate D-psicose, as evidenced by its root mean square deviation (RMSD), root mean square fluctuation (RMSF), and binding free energy values. It was more conducive to binding D-psicose and facilitating its conversion to D-allose, providing the basis for the production of D-allose.
Collapse
Affiliation(s)
- Shuangshuang Duan
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, PR China; Shandong Provincial Key Laboratory of Microbial Engineering, Department of Bioengineering, Qilu University of Technology (Shandong Academy of Science) Jinan 250353, PR China
| | - Yonghua Chen
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, PR China; Shandong Provincial Key Laboratory of Microbial Engineering, Department of Bioengineering, Qilu University of Technology (Shandong Academy of Science) Jinan 250353, PR China
| | - Guodong Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, PR China; Shandong Provincial Key Laboratory of Microbial Engineering, Department of Bioengineering, Qilu University of Technology (Shandong Academy of Science) Jinan 250353, PR China
| | - Zebin Li
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, PR China; Shandong Provincial Key Laboratory of Microbial Engineering, Department of Bioengineering, Qilu University of Technology (Shandong Academy of Science) Jinan 250353, PR China
| | - Shitong Dong
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, PR China; Shandong Provincial Key Laboratory of Microbial Engineering, Department of Bioengineering, Qilu University of Technology (Shandong Academy of Science) Jinan 250353, PR China
| | - Yingshuai Wu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, PR China; Shandong Provincial Key Laboratory of Microbial Engineering, Department of Bioengineering, Qilu University of Technology (Shandong Academy of Science) Jinan 250353, PR China
| | - Yuanwei Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, PR China; Shandong Provincial Key Laboratory of Microbial Engineering, Department of Bioengineering, Qilu University of Technology (Shandong Academy of Science) Jinan 250353, PR China
| | - Chunling Ma
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, PR China; Shandong Provincial Key Laboratory of Microbial Engineering, Department of Bioengineering, Qilu University of Technology (Shandong Academy of Science) Jinan 250353, PR China.
| | - Ruiming Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, PR China; Shandong Provincial Key Laboratory of Microbial Engineering, Department of Bioengineering, Qilu University of Technology (Shandong Academy of Science) Jinan 250353, PR China.
| |
Collapse
|
4
|
Nagarajan D, Chen CY, Ariyadasa TU, Lee DJ, Chang JS. Macroalgal biomass as a potential resource for lactic acid fermentation. CHEMOSPHERE 2022; 309:136694. [PMID: 36206920 DOI: 10.1016/j.chemosphere.2022.136694] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/25/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Lactic acid is an essential platform chemical with various applications in the chemicals, food, pharmaceutical, and cosmetic industries. Currently, the demand for lactic acid is driven by the role of lactic acid as the starting material for the production of bioplastic polylactide. Microbial fermentation for lactic acid production is favored due to the production of enantiomerically pure lactic acid required for polylactide synthesis, as opposed to the racemic mixture obtained via chemical synthesis. The utilization of first-generation feedstock for commercial lactic acid production is challenged by feedstock costs and sustainability issues. Macroalgae are photosynthetic benthic aquatic plants that contribute tremendously towards carbon capture with subsequent carbon-rich biomass production. Macroalgae are commercially cultivated to extract hydrocolloids, and recent studies have focused on applying biomass as a fermentation feedstock. This review provides comprehensive information on the design and development of sustainable and cost-effective, algae-based lactic acid production. The central carbon regulation in lactic acid bacteria and the metabolism of seaweed-derived sugars are described. An exhaustive compilation of lactic acid fermentation of macroalgae hydrolysates revealed that lactic acid bacteria can effectively ferment the mixture of sugars present in the hydrolysate with comparable yields. The environmental impacts and economic prospects of macroalgal lactic acid are analyzed. Valorization of the vast amounts of spent macroalgal biomass residue post hydrocolloid extraction in a biorefinery is a viable strategy for cost-effective lactic acid production.
Collapse
Affiliation(s)
- Dillirani Nagarajan
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan.
| | - Chun-Yen Chen
- University Center for Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan; Research Center for Circular Economy, National Cheng Kung University, Tainan, Taiwan
| | - Thilini U Ariyadasa
- Department of Chemical and Process Engineering, Faculty of Engineering, University of Moratuwa, Moratuwa, 10400, Sri Lanka
| | - Duu-Jong Lee
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tang, Hong Kong
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan; Department of Chemical and Materials Engineering, Tunghai University, Taichung, 407, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, 407, Taiwan; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li, 32003, Taiwan.
| |
Collapse
|
5
|
Characterization of a Recombinant l-rhamnose Isomerase from Paenibacillus baekrokdamisoli to Produce d-allose from d-allulose. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-021-0341-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
6
|
Choi MN, Shin KC, Kim DW, Kim BJ, Park CS, Yeom SJ, Kim YS. Production of D-Allose From D-Allulose Using Commercial Immobilized Glucose Isomerase. Front Bioeng Biotechnol 2021; 9:681253. [PMID: 34336800 PMCID: PMC8320891 DOI: 10.3389/fbioe.2021.681253] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/24/2021] [Indexed: 11/13/2022] Open
Abstract
Rare sugars are regarded as functional biological materials due to their potential applications as low-calorie sweeteners, antioxidants, nucleoside analogs, and immunosuppressants. D-Allose is a rare sugar that has attracted substantial attention in recent years, owing to its pharmaceutical activities, but it is still not widely available. To address this limitation, we continuously produced D-allose from D-allulose using a packed bed reactor with commercial glucose isomerase (Sweetzyme IT). The optimal conditions for D-allose production were determined to be pH 8.0 and 60°C, with 500 g/L D-allulose as a substrate at a dilution rate of 0.24/h. Using these optimum conditions, the commercial glucose isomerase produced an average of 150 g/L D-allose over 20 days, with a productivity of 36 g/L/h and a conversion yield of 30%. This is the first report of the successful continuous production of D-allose from D-allulose by commercial glucose isomerase using a packed bed reactor, which can potentially provide a continuous production system for industrial applications of D-allose.
Collapse
Affiliation(s)
- Mi Na Choi
- Wild Plants Industrialization Research Division, Baekdudaegan National Arboretum, Bonghwa, South Korea
| | - Kyung-Chul Shin
- Department of Integrative Bioscience and Biotechnology, Konkuk University, Seoul, South Korea
| | - Dae Wook Kim
- Wild Plants Industrialization Research Division, Baekdudaegan National Arboretum, Bonghwa, South Korea
| | - Baek-Joong Kim
- Starch and Sweetener Research Department, Ingredient R&D Center, DAESANG Corporation, Icheon, South Korea
| | - Chang-Su Park
- Department of Food Science and Technology, Daegu Catholic University, Gyeongsan, South Korea
| | - Soo-Jin Yeom
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, South Korea
| | - Yeong-Su Kim
- Wild Plants Industrialization Research Division, Baekdudaegan National Arboretum, Bonghwa, South Korea
| |
Collapse
|
7
|
Mijailovic N, Nesler A, Perazzolli M, Aït Barka E, Aziz A. Rare Sugars: Recent Advances and Their Potential Role in Sustainable Crop Protection. Molecules 2021; 26:molecules26061720. [PMID: 33808719 PMCID: PMC8003523 DOI: 10.3390/molecules26061720] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 02/06/2023] Open
Abstract
Rare sugars are monosaccharides with a limited availability in the nature and almost unknown biological functions. The use of industrial enzymatic and microbial processes greatly reduced their production costs, making research on these molecules more accessible. Since then, the number of studies on their medical/clinical applications grew and rare sugars emerged as potential candidates to replace conventional sugars in human nutrition thanks to their beneficial health effects. More recently, the potential use of rare sugars in agriculture was also highlighted. However, overviews and critical evaluations on this topic are missing. This review aims to provide the current knowledge about the effects of rare sugars on the organisms of the farming ecosystem, with an emphasis on their mode of action and practical use as an innovative tool for sustainable agriculture. Some rare sugars can impact the plant growth and immune responses by affecting metabolic homeostasis and the hormonal signaling pathways. These properties could be used for the development of new herbicides, plant growth regulators and resistance inducers. Other rare sugars also showed antinutritional properties on some phytopathogens and biocidal activity against some plant pests, highlighting their promising potential for the development of new sustainable pesticides. Their low risk for human health also makes them safe and ecofriendly alternatives to agrochemicals.
Collapse
Affiliation(s)
- Nikola Mijailovic
- Induced Resistance and Plant Bioprotection, USC RIBP 1488, University of Reims, UFR Sciences, CEDEX 02, 51687 Reims, France; (N.M.); (E.A.B.)
- Bi-PA nv, Londerzee l1840, Belgium;
| | | | - Michele Perazzolli
- Department of Sustainable Agro-Ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy;
- Center Agriculture Food Environment (C3A), University of Trento, 38098 San Michele all’Adige, Italy
| | - Essaid Aït Barka
- Induced Resistance and Plant Bioprotection, USC RIBP 1488, University of Reims, UFR Sciences, CEDEX 02, 51687 Reims, France; (N.M.); (E.A.B.)
| | - Aziz Aziz
- Induced Resistance and Plant Bioprotection, USC RIBP 1488, University of Reims, UFR Sciences, CEDEX 02, 51687 Reims, France; (N.M.); (E.A.B.)
- Correspondence: ; Tel.: +33-326-918-525
| |
Collapse
|
8
|
Phosphate sugar isomerases and their potential for rare sugar bioconversion. J Microbiol 2020; 58:725-733. [PMID: 32583284 DOI: 10.1007/s12275-020-0226-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 10/23/2022]
Abstract
Phosphate sugar isomerases, catalyzing the isomerization between ketopentose/ketohexose phosphate and aldopentose/aldohexose phosphate, play an important role in microbial sugar metabolism. They are present in a wide range of microorganisms. They have attracted increasing research interest because of their broad substrate specificity and great potential in the enzymatic production of various rare sugars. Here, the enzymatic properties of various phosphate sugar isomerases are reviewed in terms of their substrate specificities and their applications in the production of valuable rare sugars because of their functions such as low-calorie sweeteners, bulking agents, and pharmaceutical precursor. Specifically, we focused on the industrial applications of D-ribose-5-phosphate isomerase and D-mannose-6-phosphate isomerase to produce D-allose and L-ribose, respectively.
Collapse
|
9
|
Chen J, Wu H, Zhang W, Mu W. Ribose-5-phosphate isomerases: characteristics, structural features, and applications. Appl Microbiol Biotechnol 2020; 104:6429-6441. [PMID: 32533303 DOI: 10.1007/s00253-020-10735-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/02/2020] [Accepted: 06/07/2020] [Indexed: 01/21/2023]
Abstract
Ribose-5-phosphate isomerase (Rpi, EC 5.3.1.6) is widespread in microorganisms, animals, and plants. It has a pivotal role in the pentose phosphate pathway and responsible for catalyzing the isomerization between D-ribulose 5-phosphate and D-ribose 5-phosphate. In recent years, Rpi has received considerable attention as a multipurpose biocatalyst for production of rare sugars, including D-allose, L-rhamnulose, L-lyxose, and L-tagatose. Besides, it has been thought of as a potential drug target in the treatment of trypanosomatid-caused diseases such as Chagas' disease, leishmaniasis, and human African trypanosomiasis. Despite increased research activities, up to now, no systematic review of Rpi has been published. To fill this gap, this paper provides detailed information about the enzymatic properties of various Rpis. Furthermore, structural features, catalytic mechanism, and molecular modifications of Rpis are summarized based on extensive crystal structure research. Additionally, the applications of Rpi in rare sugar production and the role of Rpi in trypanocidal drug design are reviewed. Key points • Fundamental properties of various ribose-5-phosphate isomerases (Rpis). • Differences in crystal structure and catalytic mechanism between RpiA and RpiB. • Application of Rpi as a rare sugar producer and a potential drug target.
Collapse
Affiliation(s)
- Jiajun Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Hao Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China.
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, Jiangsu, China
| |
Collapse
|
10
|
Production of D-allose from D-fructose using immobilized L-rhamnose isomerase and D-psicose 3-epimerase. Bioprocess Biosyst Eng 2019; 43:645-653. [PMID: 31797048 DOI: 10.1007/s00449-019-02262-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 11/24/2019] [Indexed: 01/28/2023]
Abstract
D-Allose is a rare sugar, can be used as an ingredient in a range of foods and dietary supplements, has alimentary activities, especially excellent anti-cancer effects and used in assisting cancer chemotherapy and radiotherapy, etc. To develop a simple and low-cost process for D-allose production, a one-pot enzymatic process using the substrate of D-fructose, and the recombinant enzymes of D-psicose 3-epimerase (DPE) and L-rhamnose isomerase (L-RhI) was developed. These enzymes were cloned from Ruminococcus sp. and B. subtilis, respectively, successfully expressed in E. coli, extracted and immobilized using anion exchange resin and amino resin, respectively. The mass ratio of D-fructose, D-psicose and D-allose was 6.6:2.4:1.0 when the reaction reached equilibrium after 5 h of reaction. Using the low-cost substrate of D-fructose, the reusable immobilized enzymes and the one-pot reaction, the production process is simplified and the production cost is decreased. In addition, to simplify the enzyme extraction and immobilization processes, new methods for enzyme capture and immobilization were developed especially for DPE immobilization. This is the first report for one-pot D-allose production using immobilized L-RhI and DPE.
Collapse
|
11
|
Multi-enzyme systems and recombinant cells for synthesis of valuable saccharides: Advances and perspectives. Biotechnol Adv 2019; 37:107406. [DOI: 10.1016/j.biotechadv.2019.06.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/30/2019] [Accepted: 06/08/2019] [Indexed: 02/07/2023]
|
12
|
Chen Z, Chen J, Zhang W, Zhang T, Guang C, Mu W. Recent research on the physiological functions, applications, and biotechnological production of D-allose. Appl Microbiol Biotechnol 2018; 102:4269-4278. [PMID: 29577167 DOI: 10.1007/s00253-018-8916-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/05/2018] [Accepted: 03/06/2018] [Indexed: 02/06/2023]
Abstract
D-Allose is a rare monosaccharide, which rarely appears in the natural environment. D-Allose has an 80% sweetness relative to table sugar but is ultra-low calorie and non-toxic and is thus an ideal candidate to take the place of table sugar in food products. It displays unique health benefits and physiological functions in various fields, including food systems, clinical treatment, and the health care fields. However, it is difficult to produce chemically. The biotechnological production of D-allose has become a research hotspot in recent years. Therefore, an overview of recent studies on the physiological functions, applications, and biotechnological production of D-allose is presented. In this review, the physiological functions of D-allose are introduced in detail. In addition, the different types of D-allose-producing enzymes are compared for their enzymatic properties and for the biotechnological production of D-allose. To date, very little information is available on the molecular modification and food-grade expression of D-allose-producing enzymes, representing a very large research space yet to be explored.
Collapse
Affiliation(s)
- Ziwei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Jiajun Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Tao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Cuie Guang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China. .,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
13
|
Characterization of L-rhamnose isomerase from Clostridium stercorarium and its application to the production of D-allose from D-allulose (D-psicose). Biotechnol Lett 2017; 40:325-334. [PMID: 29124517 DOI: 10.1007/s10529-017-2468-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 10/26/2017] [Indexed: 10/18/2022]
Abstract
OBJECTIVE To characterize L-rhamnose isomerase (L-RI) from the thermophilic bacterium Clostridium stercorarium and apply it to produce D-allose from D-allulose. RESULTS A recombinant L-RI from C. stercorarium exhibited the highest specific activity and catalytic efficiency (k cat/K m) for L-rhamnose among the reported L-RIs. The L-RI was applied to the high-level production of D-allose from D-allulose. The isomerization activity for D-allulose was maximal at pH 7, 75 °C, and 1 mM Mn2+ over 10 min reaction time. The half-lives of the L-RI at 65, 70, 75, and 80 °C were 22.8, 9.5, 1.9, and 0.2 h, respectively. To ensure full stability during 2.5 h incubation, the optimal temperature was set at 70 °C. Under the optimized conditions of pH 7, 70 °C, 1 mM Mn2+, 27 U L-RI l-1, and 600 g D-allulose l-1, L-RI from C. stercorarium produced 199 g D-allose l-1 without by-products over 2.5 h, with a conversion yield of 33% and a productivity of 79.6 g l-1 h-1. CONCLUSION To the best of our knowledge, this is the highest concentration and productivity of D-allose reported thus far.
Collapse
|
14
|
Kimoto-Nira H, Moriya N, Hayakawa S, Kuramasu K, Ohmori H, Yamasaki S, Ogawa M. Effects of rare sugar D-allulose on acid production and probiotic activities of dairy lactic acid bacteria. J Dairy Sci 2017; 100:5936-5944. [DOI: 10.3168/jds.2016-12214] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 03/08/2017] [Indexed: 11/19/2022]
|
15
|
Characterization of a novel thermostable l-rhamnose isomerase from Thermobacillus composti KWC4 and its application for production of d-allose. Process Biochem 2017. [DOI: 10.1016/j.procbio.2016.11.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
16
|
Advances in the enzymatic production of L-hexoses. Appl Microbiol Biotechnol 2016; 100:6971-9. [PMID: 27344591 DOI: 10.1007/s00253-016-7694-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 06/15/2016] [Accepted: 06/17/2016] [Indexed: 10/21/2022]
Abstract
Rare sugars have recently drawn attention because of their potential applications and huge market demands in the food and pharmaceutical industries. All L-hexoses are considered rare sugars, as they rarely occur in nature and are thus very expensive. L-Hexoses are important components of biologically relevant compounds as well as being used as precursors for certain pharmaceutical drugs and thus play an important role in the pharmaceutical industry. Many general strategies have been established for the synthesis of L-hexoses; however, the only one used in the biotechnology industry is the Izumoring strategy. In hexose Izumoring, four entrances link the D- to L-enantiomers, ketose 3-epimerases catalyze the C-3 epimerization of L-ketohexoses, and aldose isomerases catalyze the specific bioconversion of L-ketohexoses and the corresponding L-aldohexoses. In this article, recent studies on the enzymatic production of various L-hexoses are reviewed based on the Izumoring strategy.
Collapse
|
17
|
Bioproduction of D-Tagatose from D-Galactose Using Phosphoglucose Isomerase from Pseudomonas aeruginosa PAO1. Appl Biochem Biotechnol 2016; 179:715-27. [PMID: 26922727 DOI: 10.1007/s12010-016-2026-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 02/18/2016] [Indexed: 10/22/2022]
Abstract
Pseudomonas aeruginosa PAO1 phosphoglucose isomerase was purified as an active soluble form by a single-step purification using Ni-NTA chromatography that showed homogeneity on SDS-PAGE with molecular mass ∼62 kDa. The optimum temperature and pH for the maximum isomerization activity with D-galactose were 60 °C and 7.0, respectively. Generally, sugar phosphate isomerases show metal-independent activity but PA-PGI exhibited metal-dependent isomerization activity with aldosugars and optimally catalyzed the D-galactose isomerization in the presence of 1.0 mM MnCl2. The apparent Km and Vmax for D-galactose under standardized conditions were calculated to be 1029 mM (±31.30 with S.E.) and 5.95 U/mg (±0.9 with S.E.), respectively. Equilibrium reached after 180 min with production of 567.51 μM D-tagatose from 1000 mM of D-galactose. Though, the bioconversion ratio is low but it can be increased by immobilization and enzyme engineering. Although various L-arabinose isomerases have been characterized for bioproduction of D-tagatose, P. aeruginosa glucose phosphate isomerase is distinguished from the other L-arabinose isomerases by its optimal temperature (60 °C) for D-tagatose production being mesophilic bacteria, making it an alternate choice for bulk production.
Collapse
|
18
|
Xu W, Zhang W, Zhang T, Jiang B, Mu W. l-Rhamnose isomerase and its use for biotechnological production of rare sugars. Appl Microbiol Biotechnol 2016; 100:2985-92. [DOI: 10.1007/s00253-016-7369-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 01/27/2016] [Accepted: 01/30/2016] [Indexed: 10/22/2022]
|
19
|
Mu W, Yu L, Zhang W, Zhang T, Jiang B. Isomerases for biotransformation of D-hexoses. Appl Microbiol Biotechnol 2015; 99:6571-84. [DOI: 10.1007/s00253-015-6788-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 06/18/2015] [Accepted: 06/19/2015] [Indexed: 10/23/2022]
|
20
|
Li Z, Gao Y, Nakanishi H, Gao X, Cai L. Biosynthesis of rare hexoses using microorganisms and related enzymes. Beilstein J Org Chem 2013; 9:2434-45. [PMID: 24367410 PMCID: PMC3869271 DOI: 10.3762/bjoc.9.281] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 10/15/2013] [Indexed: 01/06/2023] Open
Abstract
Rare sugars, referred to as monosaccharides and their derivatives that rarely exist in nature, can be applied in many areas ranging from foodstuffs to pharmaceutical and nutrition industry, or as starting materials for various natural products and drug candidates. Unfortunately, an important factor restricting the utilization of rare sugars is their limited availability, resulting from limited synthetic methods. Nowadays, microbial and enzymatic transformations have become a very powerful tool in this field. This article reviews the biosynthesis and enzymatic production of rare ketohexoses, aldohexoses and sugar alcohols (hexitols), including D-tagatose, D-psicose, D-sorbose, L-tagatose, L-fructose, 1-deoxy-L-fructose, D-allose, L-glucose, L-talose, D-gulose, L-galactose, L-fucose, allitol, D-talitol, and L-sorbitol. New systems and robust catalysts resulting from advancements in genomics and bioengineering are also discussed.
Collapse
Affiliation(s)
- Zijie Li
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Yahui Gao
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Hideki Nakanishi
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Xiaodong Gao
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Li Cai
- Division of Mathematics and Science, University of South Carolina Salkehatchie, Walterboro, South Carolina, 29488, USA
| |
Collapse
|
21
|
Jung WS, Singh RK, Lee JK, Pan CH. Crystal structure and substrate specificity of D-galactose-6-phosphate isomerase complexed with substrates. PLoS One 2013; 8:e72902. [PMID: 24015281 PMCID: PMC3755991 DOI: 10.1371/journal.pone.0072902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 07/14/2013] [Indexed: 11/29/2022] Open
Abstract
D-Galactose-6-phosphate isomerase from Lactobacillus rhamnosus (LacAB; EC 5.3.1.26), which is encoded by the tagatose-6-phosphate pathway gene cluster (lacABCD), catalyzes the isomerization of D-galactose-6-phosphate to D-tagatose-6-phosphate during lactose catabolism and is used to produce rare sugars as low-calorie natural sweeteners. The crystal structures of LacAB and its complex with D-tagatose-6-phosphate revealed that LacAB is a homotetramer of LacA and LacB subunits, with a structure similar to that of ribose-5-phosphate isomerase (Rpi). Structurally, LacAB belongs to the RpiB/LacAB superfamily, having a Rossmann-like αβα sandwich fold as has been identified in pentose phosphate isomerase and hexose phosphate isomerase. In contrast to other family members, the LacB subunit also has a unique α7 helix in its C-terminus. One active site is distinctly located at the interface between LacA and LacB, whereas two active sites are present in RpiB. In the structure of the product complex, the phosphate group of D-tagatose-6-phosphate is bound to three arginine residues, including Arg-39, producing a different substrate orientation than that in RpiB, where the substrate binds at Asp-43. Due to the proximity of the Arg-134 residue and backbone Cα of the α6 helix in LacA to the last Asp-172 residue of LacB with a hydrogen bond, a six-carbon sugar-phosphate can bind in the larger pocket of LacAB, compared with RpiB. His-96 in the active site is important for ring opening and substrate orientation, and Cys-65 is essential for the isomerization activity of the enzyme. Two rare sugar substrates, D-psicose and D-ribulose, show optimal binding in the LacAB-substrate complex. These findings were supported by the results of LacA activity assays.
Collapse
Affiliation(s)
- Woo-Suk Jung
- Functional Food Center, Korea Institute of Science and Technology Gangneung Institute, Gangneung, Korea
| | - Raushan Kumar Singh
- Department of Chemical Engineering, Konkuk University, Gwangjin-Gu, Seoul, Korea
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, Gwangjin-Gu, Seoul, Korea
| | - Cheol-Ho Pan
- Functional Food Center, Korea Institute of Science and Technology Gangneung Institute, Gangneung, Korea
| |
Collapse
|
22
|
Development of novel sugar isomerases by optimization of active sites in phosphosugar isomerases for monosaccharides. Appl Environ Microbiol 2012. [PMID: 23204422 DOI: 10.1128/aem.02539-12] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phosphosugar isomerases can catalyze the isomerization of not only phosphosugar but also of monosaccharides, suggesting that the phosphosugar isomerases can be used as sugar isomerases that do not exist in nature. Determination of active-site residues of phosphosugar isomerases, including ribose-5-phosphate isomerase from Clostridium difficile (CDRPI), mannose-6-phosphate isomerase from Bacillus subtilis (BSMPI), and glucose-6-phosphate isomerase from Pyrococcus furiosus (PFGPI), was accomplished by docking of monosaccharides onto the structure models of the isomerases. The determinant residues, including Arg133 of CDRPI, Arg192 of BSMPI, and Thr85 of PFGPI, were subjected to alanine substitutions and found to act as phosphate-binding sites. R133D of CDRPI, R192 of BSMPI, and T85Q of PFGPI displayed the highest catalytic efficiencies for monosaccharides at each position. These residues exhibited 1.8-, 3.5-, and 4.9-fold higher catalytic efficiencies, respectively, for the monosaccharides than the wild-type enzyme. However, the activities of these 3 variant enzymes for phosphosugars as the original substrates disappeared. Thus, R133D of CDRPI, R192 of BSMPI, and T85Q of PFGPI are no longer phosphosugar isomerases; instead, they are changed to a d-ribose isomerase, an l-ribose isomerase, and an l-talose isomerase, respectively. In this study, we used substrate-tailored optimization to develop novel sugar isomerases which are not found in nature based on phosphosugar isomerases.
Collapse
|
23
|
Beerens K, Desmet T, Soetaert W. Enzymes for the biocatalytic production of rare sugars. ACTA ACUST UNITED AC 2012; 39:823-34. [DOI: 10.1007/s10295-012-1089-x] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 01/13/2012] [Indexed: 11/24/2022]
Abstract
Abstract
Carbohydrates are much more than just a source of energy as they also mediate a variety of recognition processes that are central to human health. As such, saccharides can be applied in the food and pharmaceutical industries to stimulate our immune system (e.g., prebiotics), to control diabetes (e.g., low-calorie sweeteners), or as building blocks for anticancer and antiviral drugs (e.g., l-nucleosides). Unfortunately, only a small number of all possible monosaccharides are found in nature in sufficient amounts to allow their commercial exploitation. Consequently, so-called rare sugars have to be produced by (bio)chemical processes starting from cheap and widely available substrates. Three enzyme classes that can be used for rare sugar production are keto–aldol isomerases, epimerases, and oxidoreductases. In this review, the recent developments in rare sugar production with these biocatalysts are discussed.
Collapse
Affiliation(s)
- Koen Beerens
- grid.5342.0 0000000120697798 Centre for Industrial Biotechnology and Biocatalysis, Faculty of Bioscience Engineering Ghent University Coupure links 653 9000 Gent Belgium
| | - Tom Desmet
- grid.5342.0 0000000120697798 Centre for Industrial Biotechnology and Biocatalysis, Faculty of Bioscience Engineering Ghent University Coupure links 653 9000 Gent Belgium
| | - Wim Soetaert
- grid.5342.0 0000000120697798 Centre for Industrial Biotechnology and Biocatalysis, Faculty of Bioscience Engineering Ghent University Coupure links 653 9000 Gent Belgium
| |
Collapse
|
24
|
Microbial metabolism and biotechnological production of d-allose. Appl Microbiol Biotechnol 2011; 91:229-35. [DOI: 10.1007/s00253-011-3370-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2011] [Revised: 05/04/2011] [Accepted: 05/05/2011] [Indexed: 10/18/2022]
|
25
|
Yeom SJ, Seo ES, Kim YS, Oh DK. Increased D-allose production by the R132E mutant of ribose-5-phosphate isomerase from Clostridium thermocellum. Appl Microbiol Biotechnol 2010; 89:1859-66. [PMID: 21132286 DOI: 10.1007/s00253-010-3026-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 11/02/2010] [Accepted: 11/22/2010] [Indexed: 10/18/2022]
Abstract
Ribose-5-phosphate isomerase from Clostridium thermocellum converted D-psicose to D-allose, which may be useful as a pharmaceutical compound, with no by-product. The 12 active-site residues, which were obtained by molecular modeling on the basis of the solved three-dimensional structure of the enzyme, were substituted individually with Ala. Among the 12 Ala-substituted mutants, only the R132A mutant exhibited an increase in D-psicose isomerization activity. The R132E mutant showed the highest activity when the residue at position 132 was substituted with Ala, Gln, Ile, Lys, Glu, or Asp. The maximal activity of the wild-type and R132E mutant enzymes for D-psicose was observed at pH 7.5 and 80°C. The half-lives of the wild-type enzyme at 60°C, 65°C, 70°C, 75°C, and 80°C were 11, 7.0, 4.2, 1.5, and 0.6 h, respectively, whereas those of the R132E mutant enzymes were 13, 8.2, 5.1, 3.1, and 0.9 h, respectively. The specific activity and catalytic efficiency (k(cat)/K(m)) of the R132E mutant for D-psicose were 1.4- and 1.5-fold higher than those of the wild-type enzyme, respectively. When the same amount of enzyme was used, the conversion yield of D-psicose to D-allose was 32% for the R132E mutant enzyme and 25% for the wild-type enzyme after 80 min.
Collapse
Affiliation(s)
- Soo-Jin Yeom
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| | | | | | | |
Collapse
|
26
|
Substrate specificity of a recombinant ribose-5-phosphate isomerase from Streptococcus pneumoniae and its application in the production of l-lyxose and l-tagatose. World J Microbiol Biotechnol 2010. [DOI: 10.1007/s11274-010-0511-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
27
|
Yeom SJ, Kim BN, Park CS, Oh DK. Substrate specificity of ribose-5-phosphate isomerases from Clostridium difficile and Thermotoga maritima. Biotechnol Lett 2010; 32:829-35. [DOI: 10.1007/s10529-010-0224-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Revised: 01/25/2010] [Accepted: 01/28/2010] [Indexed: 11/28/2022]
|
28
|
Jung J, Yeom SJ, Kim J, Kim JK, Natarajan S, Ahn YJ, Lim SB, Oh DK, Kang LW. Overexpression, crystallization and preliminary X-ray crystallographic analysis of D-ribose-5-phosphate isomerase from Clostridium thermocellum. Acta Crystallogr Sect F Struct Biol Cryst Commun 2009; 65:1141-4. [PMID: 19923736 DOI: 10.1107/s1744309109038093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Accepted: 09/21/2009] [Indexed: 11/10/2022]
Abstract
Rare sugars are used for many industrial and medical purposes and are produced by the interconversion between aldoses and ketoses catalyzed by sugar and sugar-phosphate isomerases. Recently, Clostridium thermocellum d-ribose-5-phosphate isomerase (CTRPI), an aldose-ketose isomerase, was cloned in order to synthesize d-allose and its substrate specificity was further characterized for industrial usage. CTRPI has a novel substrate specificity that differs from those of other isomerases, which have broad substrate specificities. CTRPI prefers aldose substrates such as l-talose, d-ribose and d-allose. CTRPI was purified and crystallized in order to determine its three-dimensional structure and thus to elucidate its enzymatic reaction mechanism and understand its substrate specificity. The crystal belonged to the trigonal space group P3(2)21, with unit-cell parameters a = b = 69.5, c = 154.4 angstrom, and diffracted to 1.9 angstrom resolution. According to Matthews coefficient calculations, the crystallographic structure consists of a dimer in the asymmetric unit, with a V(M) of 3.2 angstrom(3) Da(-1) and a solvent content of 61.7%.
Collapse
Affiliation(s)
- Junho Jung
- Department of Advanced Technology Fusion, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Substrate specificity of a mannose-6-phosphate isomerase from Bacillus subtilis and its application in the production of L-ribose. Appl Environ Microbiol 2009; 75:4705-10. [PMID: 19447949 DOI: 10.1128/aem.00310-09] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The uncharacterized gene previously proposed as a mannose-6-phosphate isomerase from Bacillus subtilis was cloned and expressed in Escherichia coli. The maximal activity of the recombinant enzyme was observed at pH 7.5 and 40 degrees C in the presence of 0.5 mM Co(2+). The isomerization activity was specific for aldose substrates possessing hydroxyl groups oriented in the same direction at the C-2 and C-3 positions, such as the d and l forms of ribose, lyxose, talose, mannose, and allose. The enzyme exhibited the highest activity for l-ribulose among all pentoses and hexoses. Thus, L-ribose, as a potential starting material for many L-nucleoside-based pharmaceutical compounds, was produced at 213 g/liter from 300-g/liter L-ribulose by mannose-6-phosphate isomerase at 40 degrees C for 3 h, with a conversion yield of 71% and a volumetric productivity of 71 g liter(-1) h(-1).
Collapse
|
30
|
Characterization of a mannose-6-phosphate isomerase from Geobacillus thermodenitrificans that converts monosaccharides. Biotechnol Lett 2009; 31:1273-8. [DOI: 10.1007/s10529-009-0003-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Revised: 03/31/2009] [Accepted: 03/31/2009] [Indexed: 10/20/2022]
|
31
|
Yoon RY, Yeom SJ, Park CS, Oh DK. Substrate specificity of a glucose-6-phosphate isomerase from Pyrococcus furiosus for monosaccharides. Appl Microbiol Biotechnol 2009; 83:295-303. [PMID: 19159927 DOI: 10.1007/s00253-009-1859-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Revised: 01/03/2009] [Accepted: 01/05/2009] [Indexed: 11/25/2022]
Abstract
We purified recombinant glucose-6-phosphate isomerase from Pyrococcus furiosus using heat treatment and Hi-Trap anion-exchange chromatography with a final specific activity of 0.39 U mg(-1). The activity of the glucose-6-phosphate isomerase for L: -talose isomerization was optimal at pH 7.0, 95 degrees C, and 1.5 mM Co(2+). The half-lives of the enzyme at 65 degrees C, 75 degrees C, 85 degrees C, and 95 degrees C were 170, 41, 19, and 7.9 h, respectively. Glucose-6-phosphate isomerase catalyzed the interconversion between two different aldoses and ketose for all pentoses and hexoses via two isomerization reactions. This enzyme has a unique activity order as follows: aldose substrates with hydroxyl groups oriented in the same direction at C2, C3, and C4 > C2 and C4 > C2 and C3 > C3 and C4. L: -Talose and D: -ribulose exhibited the most preferred substrates among the aldoses and ketoses, respectively. L: -Talose was converted to L: -tagatose and L: -galactose by glucose-6-phosphate isomerase with 80% and 5% conversion yields after about 420 min, respectively, whereas D: -ribulose was converted to D: -ribose and D: -arabinose with 53% and 8% conversion yields after about 240 min, respectively.
Collapse
Affiliation(s)
- Ran-Young Yoon
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 143-701, South Korea
| | | | | | | |
Collapse
|
32
|
Yoon RY, Yeom SJ, Kim HJ, Oh DK. Novel substrates of a ribose-5-phosphate isomerase from Clostridium thermocellum. J Biotechnol 2009; 139:26-32. [PMID: 18984017 DOI: 10.1016/j.jbiotec.2008.09.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2008] [Revised: 09/16/2008] [Accepted: 09/23/2008] [Indexed: 10/21/2022]
|