1
|
Urwyler P, Leimbacher M, Charitos P, Moser S, Heijnen IAFM, Trendelenburg M, Thoma R, Sumer J, Camacho-Ortiz A, Bacci MR, Huber LC, Stüssi-Helbling M, Albrich WC, Sendi P, Osthoff M. Recombinant C1 inhibitor in the prevention of severe COVID-19: a randomized, open-label, multi-center phase IIa trial. Front Immunol 2023; 14:1255292. [PMID: 37965347 PMCID: PMC10641758 DOI: 10.3389/fimmu.2023.1255292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 10/12/2023] [Indexed: 11/16/2023] Open
Abstract
Background Conestat alfa (ConA), a recombinant human C1 inhibitor, may prevent thromboinflammation. Methods We conducted a randomized, open-label, multi-national clinical trial in which hospitalized adults at risk for progression to severe COVID-19 were assigned in a 2:1 ratio to receive either 3 days of ConA plus standard of care (SOC) or SOC alone. Primary and secondary endpoints were day 7 disease severity on the WHO Ordinal Scale, time to clinical improvement within 14 days, and safety, respectively. Results The trial was prematurely terminated because of futility after randomization of 84 patients, 56 in the ConA and 28 in the control arm. At baseline, higher WHO Ordinal Scale scores were more frequently observed in the ConA than in the control arm. On day 7, no relevant differences in the primary outcome were noted between the two arms (p = 0.11). The median time to defervescence was 3 days, and the median time to clinical improvement was 7 days in both arms (p = 0.22 and 0.56, respectively). Activation of plasma cascades and endothelial cells over time was similar in both groups. The incidence of adverse events (AEs) was higher in the intervention arm (any AE, 30% with ConA vs. 19% with SOC alone; serious AE, 27% vs. 15%; death, 11% vs. 0%). None of these were judged as being related to the study drug. Conclusion The study results do not support the use of ConA to prevent COVID-19 progression. Clinical trial registration https://clinicaltrials.gov, identifier NCT04414631.
Collapse
Affiliation(s)
- Pascal Urwyler
- Division of Internal Medicine, University Hospital Basel, Basel, Switzerland
| | - Marina Leimbacher
- Division of Internal Medicine, University Hospital Basel, Basel, Switzerland
| | | | - Stephan Moser
- Division of Internal Medicine, University Hospital Basel, Basel, Switzerland
| | - Ingmar A. F. M. Heijnen
- Division of Medical Immunology, Laboratory Medicine, University Hospital Basel, Basel, Switzerland
| | - Marten Trendelenburg
- Division of Internal Medicine, University Hospital Basel, Basel, Switzerland
- Department of Clinical Research, University of Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Reto Thoma
- Division of Infectious Diseases and Hospital Epidemiology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Johannes Sumer
- Division of Infectious Diseases and Hospital Epidemiology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Adrián Camacho-Ortiz
- Servicio de Infectologia, Hospital Universitario Dr. José Eleuterio González, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | - Marcelo R. Bacci
- Department of General Practice, Centro Universitário em Saúde do ABC, Santo André, Brazil
| | - Lars C. Huber
- Clinic for Internal Medicine, City Hospital Triemli, Zurich, Switzerland
| | | | - Werner C. Albrich
- Division of Infectious Diseases and Hospital Epidemiology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Parham Sendi
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Michael Osthoff
- Division of Internal Medicine, University Hospital Basel, Basel, Switzerland
- Department of Clinical Research, University of Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
| |
Collapse
|
2
|
Popova J, Bets V, Kozhevnikova E. Perspectives in Genome-Editing Techniques for Livestock. Animals (Basel) 2023; 13:2580. [PMID: 37627370 PMCID: PMC10452040 DOI: 10.3390/ani13162580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/08/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Genome editing of farm animals has undeniable practical applications. It helps to improve production traits, enhances the economic value of livestock, and increases disease resistance. Gene-modified animals are also used for biomedical research and drug production and demonstrate the potential to be used as xenograft donors for humans. The recent discovery of site-specific nucleases that allow precision genome editing of a single-cell embryo (or embryonic stem cells) and the development of new embryological delivery manipulations have revolutionized the transgenesis field. These relatively new approaches have already proven to be efficient and reliable for genome engineering and have wide potential for use in agriculture. A number of advanced methodologies have been tested in laboratory models and might be considered for application in livestock animals. At the same time, these methods must meet the requirements of safety, efficiency and availability of their application for a wide range of farm animals. This review aims at covering a brief history of livestock animal genome engineering and outlines possible future directions to design optimal and cost-effective tools for transgenesis in farm species.
Collapse
Affiliation(s)
- Julia Popova
- Laboratory of Bioengineering, Novosibirsk State Agrarian University, 630039 Novosibirsk, Russia; (J.P.); (V.B.)
| | - Victoria Bets
- Laboratory of Bioengineering, Novosibirsk State Agrarian University, 630039 Novosibirsk, Russia; (J.P.); (V.B.)
- Center of Technological Excellence, Novosibirsk State Technical University, 630073 Novosibirsk, Russia
| | - Elena Kozhevnikova
- Laboratory of Bioengineering, Novosibirsk State Agrarian University, 630039 Novosibirsk, Russia; (J.P.); (V.B.)
- Laboratory of Experimental Models of Cognitive and Emotional Disorders, Scientific-Research Institute of Neurosciences and Medicine, 630117 Novosibirsk, Russia
| |
Collapse
|
3
|
Hereditary Angioedema During Pregnancy: Considerations in Management. Immunol Allergy Clin North Am 2023; 43:145-157. [PMID: 36411000 DOI: 10.1016/j.iac.2022.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In recent years, hereditary angioedema (HAE) management has substantially advanced but also become more complex with additional therapeutic options. Pregnancy significantly influences the clinical symptoms of HAE in many women because of estrogen effects or other physiologic factors, and also introduces important safety concerns related to HAE medications. Management of HAE during pregnancy requires clinicians to be familiar with the potential clinical course, triggers, and recommended treatment strategies to provide guidance and optimal medical management to women and families affected by the condition. This review provides an overview of data, considerations, and recommendations related to HAE and pregnancy.
Collapse
|
4
|
Urwyler P, Moser S, Trendelenburg M, Sendi P, Osthoff M. Targeting thromboinflammation in COVID-19 - A narrative review of the potential of C1 inhibitor to prevent disease progression. Mol Immunol 2022; 150:99-113. [PMID: 36030710 PMCID: PMC9393183 DOI: 10.1016/j.molimm.2022.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/07/2022] [Accepted: 08/15/2022] [Indexed: 11/30/2022]
Abstract
Coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 is associated with a clinical spectrum ranging from asymptomatic carriers to critically ill patients with complications including thromboembolic events, myocardial injury, multisystemic inflammatory syndromes and death. Since the beginning of the pandemic several therapeutic options emerged, with a multitude of randomized trials, changing the medical landscape of COVID-19. The effect of various monoclonal antibodies, antiviral, anti-inflammatory and anticoagulation drugs have been studied, and to some extent, implemented into clinical practice. In addition, a multitude of trials improved the understanding of the disease and emerging evidence points towards a significant role of the complement system, kallikrein-kinin, and contact activation system as drivers of disease in severe COVID-19. Despite their involvement in COVID-19, treatments targeting these plasmatic cascades have neither been systematically studied nor introduced into clinical practice, and randomized studies with regards to these treatments are scarce. Given the multiple-action, multiple-target nature of C1 inhibitor (C1-INH), the natural inhibitor of these cascades, this drug may be an interesting candidate to prevent disease progression and combat thromboinflammation in COVID-19. This narrative review will discuss the current evidence with regards to the involvement of these plasmatic cascades as well as endothelial cells in COVID-19. Furthermore, we summarize the evidence of C1-INH in COVID-19 and potential benefits and pitfalls of C1-INH treatment in COVID-19.
Collapse
Affiliation(s)
- Pascal Urwyler
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, Basel, Switzerland; Department of Clinical Research and Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Stephan Moser
- Department of Clinical Research and Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Marten Trendelenburg
- Department of Clinical Research and Department of Biomedicine, University of Basel, Basel, Switzerland; Division of Internal Medicine, University Hospital Basel, Basel, Switzerland
| | - Parham Sendi
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Michael Osthoff
- Department of Clinical Research and Department of Biomedicine, University of Basel, Basel, Switzerland; Division of Internal Medicine, University Hospital Basel, Basel, Switzerland.
| |
Collapse
|
5
|
Chen J, Huang Y, Shu Y, Hu X, Wu D, Jiang H, Wang K, Liu W, Fu W. Recent Progress on Systems and Synthetic Biology of Diatoms for Improving Algal Productivity. Front Bioeng Biotechnol 2022; 10:908804. [PMID: 35646842 PMCID: PMC9136054 DOI: 10.3389/fbioe.2022.908804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
Microalgae have drawn much attention for their potential applications as a sustainable source for developing bioactive compounds, functional foods, feeds, and biofuels. Diatoms, as one major group of microalgae with high yields and strong adaptability to the environment, have shown advantages in developing photosynthetic cell factories to produce value-added compounds, including heterologous bioactive products. However, the commercialization of diatoms has encountered several obstacles that limit the potential mass production, such as the limitation of algal productivity and low photosynthetic efficiency. In recent years, systems and synthetic biology have dramatically improved the efficiency of diatom cell factories. In this review, we discussed first the genome sequencing and genome-scale metabolic models (GEMs) of diatoms. Then, approaches to optimizing photosynthetic efficiency are introduced with a focus on the enhancement of biomass productivity in diatoms. We also reviewed genome engineering technologies, including CRISPR (clustered regularly interspaced short palindromic repeats) gene-editing to produce bioactive compounds in diatoms. Finally, we summarized the recent progress on the diatom cell factory for producing heterologous compounds through genome engineering to introduce foreign genes into host diatoms. This review also pinpointed the bottlenecks in algal engineering development and provided critical insights into the future direction of algal production.
Collapse
Affiliation(s)
- Jiwei Chen
- Department of Marine Science, Ocean College, Zhejiang University, Hangzhou, China
| | - Yifan Huang
- Department of Marine Science, Ocean College, Zhejiang University, Hangzhou, China
| | - Yuexuan Shu
- Department of Marine Science, Ocean College, Zhejiang University, Hangzhou, China
| | - Xiaoyue Hu
- Center for Data Science, Zhejiang University, Hangzhou, China
- School of Mathematical Sciences, Zhejiang University, Hangzhou, China
| | - Di Wu
- Department of Marine Science, Ocean College, Zhejiang University, Hangzhou, China
| | - Hangjin Jiang
- Center for Data Science, Zhejiang University, Hangzhou, China
| | - Kui Wang
- Department of Marine Science, Ocean College, Zhejiang University, Hangzhou, China
| | - Weihua Liu
- School of Mathematical Sciences, Zhejiang University, Hangzhou, China
| | - Weiqi Fu
- Department of Marine Science, Ocean College, Zhejiang University, Hangzhou, China
- Center for Systems Biology and Faculty of Industrial Engineering, Mechanical Engineering and Computer Science, School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
- *Correspondence: Weiqi Fu,
| |
Collapse
|
6
|
Lu R, Li X, Hu J, Zhang Y, Wang Y, Jin L. Expression of a triple mutational des-pGlu brazzein in transgenic mouse milk. FEBS Open Bio 2022; 12:1336-1343. [PMID: 35417094 PMCID: PMC9249319 DOI: 10.1002/2211-5463.13411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/27/2022] [Accepted: 04/12/2022] [Indexed: 11/29/2022] Open
Abstract
Brazzein has excellent potential for use as a sweetener because of its high level of sweetening potency and stability against extreme temperature and pH. It is extracted from the tropical and difficult—to‐cultivate African plant Pentadiplandra brazzeana, which hampers its commercial viability. Here we report the mammary‐specific expression of wildtype or triple mutational (H31R/E36D/E41A) des‐pGlu brazzeins in the milk of transgenic mice. Using enzyme‐linked immunoassay (ELISA), western blot, and sweetness intensity testing, we confirmed that the triple mutation made the des‐pGlu brazzein molecule 10,000 times sweeter than sucrose in a weight base, even after 10 min of incubation at 100 °C; in addition, the triple mutant was also significantly sweeter than the wildtype des‐pGlu brazzein. This study provides new insights for producing brazzein or brazzein‐sweetened milk from animals for use in food and healthcare applications.
Collapse
Affiliation(s)
- Rui Lu
- Jiangsu Food and Pharmaceutical Science College, Huaian, Jiangsu, China
| | - Xiaoming Li
- Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, Jiangsu, China
| | - Jian Hu
- Jiangsu Food and Pharmaceutical Science College, Huaian, Jiangsu, China
| | - Yong Zhang
- Jiangsu Food and Pharmaceutical Science College, Huaian, Jiangsu, China
| | - Yancui Wang
- Jiangsu Food and Pharmaceutical Science College, Huaian, Jiangsu, China
| | - Le Jin
- Jiangsu Food and Pharmaceutical Science College, Huaian, Jiangsu, China
| |
Collapse
|
7
|
Maurer M, Magerl M, Betschel S, Aberer W, Ansotegui IJ, Aygören-Pürsün E, Banerji A, Bara NA, Boccon-Gibod I, Bork K, Bouillet L, Boysen HB, Brodszki N, Busse PJ, Bygum A, Caballero T, Cancian M, Castaldo AJ, Cohn DM, Csuka D, Farkas H, Gompels M, Gower R, Grumach AS, Guidos-Fogelbach G, Hide M, Kang HR, Kaplan AP, Katelaris CH, Kiani-Alikhan S, Lei WT, Lockey RF, Longhurst H, Lumry W, MacGinnitie A, Malbran A, Martinez Saguer I, Matta Campos JJ, Nast A, Nguyen D, Nieto-Martinez SA, Pawankar R, Peter J, Porebski G, Prior N, Reshef A, Riedl M, Ritchie B, Sheikh FR, Smith WB, Spaeth PJ, Stobiecki M, Toubi E, Varga LA, Weller K, Zanichelli A, Zhi Y, Zuraw B, Craig T. The international WAO/EAACI guideline for the management of hereditary angioedema - The 2021 revision and update. World Allergy Organ J 2022; 15:100627. [PMID: 35497649 PMCID: PMC9023902 DOI: 10.1016/j.waojou.2022.100627] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/05/2021] [Accepted: 12/21/2021] [Indexed: 12/21/2022] Open
Abstract
Hereditary Angioedema (HAE) is a rare and disabling disease for which early diagnosis and effective therapy are critical. This revision and update of the global WAO/EAACI guideline on the diagnosis and management of HAE provides up-to-date guidance for the management of HAE. For this update and revision of the guideline, an international panel of experts reviewed the existing evidence, developed 28 recommendations, and established consensus by an online DELPHI process. The goal of these recommendations and guideline is to help physicians and their patients in making rational decisions in the management of HAE with deficient C1-inhibitor (type 1) and HAE with dysfunctional C1-inhibitor (type 2), by providing guidance on common and important clinical issues, such as: 1) How should HAE be diagnosed? 2) When should HAE patients receive prophylactic on top of on-demand treatment and what treatments should be used? 3) What are the goals of treatment? 4) Should HAE management be different for special HAE patient groups such as children or pregnant/breast feeding women? 5) How should HAE patients monitor their disease activity, impact, and control? It is also the intention of this guideline to help establish global standards for the management of HAE and to encourage and facilitate the use of recommended diagnostics and therapies for all patients.
Collapse
Affiliation(s)
- Marcus Maurer
- Institute of Allergology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Frauhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Markus Magerl
- Institute of Allergology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Frauhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | | | - Werner Aberer
- Department of Dermatology, Medical University of Graz, Graz, Austria
| | - Ignacio J. Ansotegui
- Department of Allergy & Immunology, Hospital Quironsalúd Bizkaia, Bilbao-Errandio, Spain
| | - Emel Aygören-Pürsün
- Center for Children and Adolescents, University Hospital Frankfurt, Frankfurt, Germany
| | - Aleena Banerji
- Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Boston, MA, United States
| | - Noémi-Anna Bara
- Romanian Hereditary Angioedema Expertise Centre, Mediquest Clinical Research Center, Sangeorgiu de Mures, Romania
| | - Isabelle Boccon-Gibod
- National Reference Center for Angioedema (CREAK), Angioedema Center of Reference and Excellence (ACARE), Grenoble Alpes, France
- University Hospital, Grenoble, France
| | - Konrad Bork
- Department of Dermatology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Laurence Bouillet
- National Reference Center for Angioedema (CREAK), Angioedema Center of Reference and Excellence (ACARE), Grenoble Alpes, France
- University Hospital, Grenoble, France
| | | | - Nicholas Brodszki
- Department of Pediatric Immunology, Childrens Hospital, Skåne University Hospital, Lund, Sweden
| | - Paula J. Busse
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Anette Bygum
- Clinical Institute, University of Southern Denmark, Odense, Denmark
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Teresa Caballero
- Allergy Department, Hospital Universitario La Paz, IdiPaz, CIBERER U754, Madrid, Spain
| | - Mauro Cancian
- Department of Systems Medicine, University Hospital of Padua, Padua, Italy
| | | | - Danny M. Cohn
- Department of Vascular Medicine, Amsterdam UMC/University of Amsterdam, Amsterdam, the Netherlands
| | - Dorottya Csuka
- Department of Internal Medicine and Haematology, Hungarian Angioedema Center of Reference and Excellence, Semmelweis University, Budapest, Hungary
| | - Henriette Farkas
- Department of Internal Medicine and Haematology, Hungarian Angioedema Center of Reference and Excellence, Semmelweis University, Budapest, Hungary
| | - Mark Gompels
- Clinical Immunology, North Bristol NHS Trust, Bristol, United Kingdom
| | - Richard Gower
- Marycliff Clinical Research, Principle Research Solutions, Spokane, WA, United States
| | - Anete S. Grumach
- Clinical Immunology, Centro Universitario FMABC, Sao Paulo, Brazil
| | | | - Michihiro Hide
- Department of Dermatology, Hiroshima Citizens Hospital, Hiroshima, Japan
- Department of Dermatology, Hiroshima University, Hiroshima, Japan
| | - Hye-Ryun Kang
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Allen P. Kaplan
- Division of Pulmonary, Critical Care, Allergy and Immunology, Medical University of South Carolina, Charleston, SC, United States
| | - Constance H. Katelaris
- Department of Medicine, Campbelltown Hospital and Western Sydney University, Sydney, NSW, Australia
| | | | - Wei-Te Lei
- Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics, Mackay Memorial Hospital, Hsinchu, Taiwan
| | - Richard F. Lockey
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Hilary Longhurst
- Department of Immunology, Auckland District Health Board and Department of Medicine, University of Auckland, Auckland, New Zealand
| | - William Lumry
- Internal Medicine, Allergy Division, University of Texas Health Science Center, Dallas, TX, United States
| | - Andrew MacGinnitie
- Division of Immunology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Alejandro Malbran
- Unidad de Alergia, Asma e Inmunología Clínica, Buenos Aires, Argentina
| | | | | | - Alexander Nast
- Department of Dermatology, Venereology and Allergology, Division of Evidence-Based Medicine Charité–Universitätsmedizin, Berlin, Germany
- Corporate Member of Free University of Berlin, Humboldt University of Berlin, Berlin Institute of Health, Berlin, Germany
| | - Dinh Nguyen
- Respiratory, Allergy and Clinical Immunology Unit, Internal Medicine Department, Vinmec Healthcare System, College of Health Sciences, VinUniversity, Hanoi, Viet Nam
| | | | - Ruby Pawankar
- Department of Pediatrics, Nippon Medical School, Tokyo, Japan
| | - Jonathan Peter
- Division of Allergy and Clinical Immunology, University of Cape Town, Cape Town, South Africa
- Allergy and Immunology Unit, University of Cape Town Lung Institute, Cape Town, South Africa
| | - Grzegorz Porebski
- Department of Clinical and Environmental Allergology, Jagiellonian University Medical College, Krakow, Poland
| | - Nieves Prior
- Allergy, Hospital Universitario Severo Ochoa, Madrid, Spain
| | - Avner Reshef
- Angiedema Center, Barzilai University Medical Center, Ashkelon, Israel
| | - Marc Riedl
- Division of Rheumatology, Allergy and Immunology, University of California San Diego, La Jolla, CA, USA
| | - Bruce Ritchie
- Departments of Medicine and Medical Oncology, University of Alberta, Edmonton, AB, Canada
| | - Farrukh Rafique Sheikh
- Section of Adult Allergy & Immunology, Department of Medicine, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - William B. Smith
- Clinical Immunology and Allergy, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Peter J. Spaeth
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Marcin Stobiecki
- Department of Clinical and Environmental Allergology, Jagiellonian University Medical College, Krakow, Poland
| | - Elias Toubi
- Division of Allergy and Clinical Immunology, Bnai Zion Medical Center, Affiliated with Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Lilian Agnes Varga
- Department of Internal Medicine and Haematology, Hungarian Angioedema Center of Reference and Excellence, Semmelweis University, Budapest, Hungary
| | - Karsten Weller
- Institute of Allergology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Frauhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Andrea Zanichelli
- Department of Internal Medicine, ASST Fatebenefratelli Sacco, Ospedale Luigi Sacco-University of Milan, Milan, Italy
| | - Yuxiang Zhi
- Department of Allergy and Clinical Immunology, Bejing Union Medical College Hospital, Chinese Academy of Medical Sciences, Bejing, China
| | - Bruce Zuraw
- University of California, San Diego, San Diego, CA, United States
| | - Timothy Craig
- Departments of Medicine and Pediatrics, Penn State University, Hershey, PA, USA
| |
Collapse
|
8
|
Maurer M, Magerl M, Betschel S, Aberer W, Ansotegui IJ, Aygören‐Pürsün E, Banerji A, Bara N, Boccon‐Gibod I, Bork K, Bouillet L, Boysen HB, Brodszki N, Busse PJ, Bygum A, Caballero T, Cancian M, Castaldo A, Cohn DM, Csuka D, Farkas H, Gompels M, Gower R, Grumach AS, Guidos‐Fogelbach G, Hide M, Kang H, Kaplan AP, Katelaris C, Kiani‐Alikhan S, Lei W, Lockey R, Longhurst H, Lumry WB, MacGinnitie A, Malbran A, Martinez Saguer I, Matta JJ, Nast A, Nguyen D, Nieto‐Martinez SA, Pawankar R, Peter J, Porebski G, Prior N, Reshef A, Riedl M, Ritchie B, Rafique Sheikh F, Smith WR, Spaeth PJ, Stobiecki M, Toubi E, Varga LA, Weller K, Zanichelli A, Zhi Y, Zuraw B, Craig T. The international WAO/EAACI guideline for the management of hereditary angioedema-The 2021 revision and update. Allergy 2022; 77:1961-1990. [PMID: 35006617 DOI: 10.1111/all.15214] [Citation(s) in RCA: 238] [Impact Index Per Article: 79.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/22/2021] [Accepted: 12/08/2021] [Indexed: 12/11/2022]
Abstract
Hereditary angioedema (HAE) is a rare and disabling disease for which early diagnosis and effective therapy are critical. This revision and update of the global WAO/EAACI guideline on the diagnosis and management of HAE provides up-to-date guidance for the management of HAE. For this update and revision of the guideline, an international panel of experts reviewed the existing evidence, developed 28 recommendations, and established consensus by an online DELPHI process. The goal of these recommendations and guideline is to help physicians and their patients in making rational decisions in the management of HAE with deficient C1 inhibitor (type 1) and HAE with dysfunctional C1 inhibitor (type 2), by providing guidance on common and important clinical issues, such as: (1) How should HAE be diagnosed? (2) When should HAE patients receive prophylactic on top of on-demand treatment and what treatments should be used? (3) What are the goals of treatment? (4) Should HAE management be different for special HAE patient groups such as children or pregnant/breast-feeding women? and (5) How should HAE patients monitor their disease activity, impact, and control? It is also the intention of this guideline to help establish global standards for the management of HAE and to encourage and facilitate the use of recommended diagnostics and therapies for all patients.
Collapse
Affiliation(s)
- Marcus Maurer
- Institute of Allergology Charité—Universitätsmedizin Berlincorporate member of Freie Universität Berlin and Humboldt‐Universität zu Berlin Berlin Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology Berlin Germany
| | - Markus Magerl
- Institute of Allergology Charité—Universitätsmedizin Berlincorporate member of Freie Universität Berlin and Humboldt‐Universität zu Berlin Berlin Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology Berlin Germany
| | | | - Werner Aberer
- Department of Dermatology Medical University of Graz Graz Austria
| | | | - Emel Aygören‐Pürsün
- Center for Children and Adolescents University Hospital Frankfurt Frankfurt Germany
| | - Aleena Banerji
- Division of Rheumatology, Allergy and Immunology Massachusetts General Hospital Boston Massachusetts USA
| | - Noémi‐Anna Bara
- Romanian Hereditary Angioedema Expertise CentreMediquest Clinical Research Center Sangeorgiu de Mures Romania
| | - Isabelle Boccon‐Gibod
- National Reference Center for Angioedema (CREAK) Angioedema Center of Reference and Excellence (ACARE) Grenoble Alpes University Hospital Grenoble France
| | - Konrad Bork
- Department of Dermatology University Medical CenterJohannes Gutenberg University Mainz Germany
| | - Laurence Bouillet
- National Reference Center for Angioedema (CREAK) Angioedema Center of Reference and Excellence (ACARE) Grenoble Alpes University Hospital Grenoble France
| | | | - Nicholas Brodszki
- Department of Pediatric Immunology Childrens HospitalSkåne University Hospital Lund Sweden
| | | | - Anette Bygum
- Clinical Institute University of Southern Denmark Odense Denmark
- Department of Clinical Genetics Odense University Hospital Odense Denmark
| | - Teresa Caballero
- Allergy Department Hospital Universitario La PazIdiPaz, CIBERER U754 Madrid Spain
| | - Mauro Cancian
- Department of Systems Medicine University Hospital of Padua Padua Italy
| | | | - Danny M. Cohn
- Department of Vascular Medicine Amsterdam UMC/University of Amsterdam Amsterdam The Netherlands
| | - Dorottya Csuka
- Department of Internal Medicine and Haematology Hungarian Angioedema Center of Reference and Excellence Semmelweis University Budapest Hungary
| | - Henriette Farkas
- Department of Internal Medicine and Haematology Hungarian Angioedema Center of Reference and Excellence Semmelweis University Budapest Hungary
| | - Mark Gompels
- Clinical Immunology North Bristol NHS Trust Bristol UK
| | - Richard Gower
- Marycliff Clinical ResearchPrinciple Research Solutions Spokane Washington USA
| | | | | | - Michihiro Hide
- Department of Dermatology Hiroshima Citizens Hospital Hiroshima Japan
- Department of Dermatology Hiroshima University Hiroshima Japan
| | - Hye‐Ryun Kang
- Department of Internal Medicine Seoul National University College of Medicine Seoul Korea
| | - Allen Phillip Kaplan
- Division of Pulmonary, Critical Care, Allergy and Immunology Medical university of South Carolina Charleston South Carolina USA
| | - Constance Katelaris
- Department of Medicine Campbelltown Hospital and Western Sydney University Sydney NSW Australia
| | | | - Wei‐Te Lei
- Division of Allergy, Immunology, and Rheumatology Department of Pediatrics Mackay Memorial Hospital Hsinchu Taiwan
| | - Richard Lockey
- Division of Allergy and Immunology Department of Internal Medicine Morsani College of MedicineUniversity of South Florida Tampa Florida USA
| | - Hilary Longhurst
- Department of Immunology Auckland District Health Board and Department of MedicineUniversity of Auckland Auckland New Zealand
| | - William B. Lumry
- Internal Medicine Allergy Division University of Texas Health Science Center Dallas Texas USA
| | - Andrew MacGinnitie
- Division of Immunology Department of Pediatrics Boston Children's HospitalHarvard Medical School Boston Massachusetts USA
| | - Alejandro Malbran
- Unidad de Alergia, Asma e Inmunología Clínica Buenos Aires Argentina
| | | | | | - Alexander Nast
- Department of Dermatology, Venereology and Allergology Division of Evidence‐Based Medicine Charité ‐ Universitätsmedizin Berlincorporate member of Free University of BerlinHumboldt University of Berlin, and Berlin Institute of Health Berlin Germany
| | - Dinh Nguyen
- Respiratory, Allergy and Clinical Immunology Unit Internal Medicine Department Vinmec Healthcare System College of Health SciencesVinUniversity Hanoi Vietnam
| | | | - Ruby Pawankar
- Department of Pediatrics Nippon Medical School Tokyo Japan
| | - Jonathan Peter
- Division of Allergy and Clinical Immunology University of Cape Town Cape Town South Africa
- Allergy and Immunology Unit University of Cape Town Lung Institute Cape Town South Africa
| | - Grzegorz Porebski
- Department of Clinical and Environmental Allergology Jagiellonian University Medical College Krakow Poland
| | - Nieves Prior
- Allergy Hospital Universitario Severo Ochoa Madrid Spain
| | - Avner Reshef
- Angioderma CenterBarzilai University Medical Center Ashkelon Israel
| | - Marc Riedl
- Division of Rheumatology, Allergy and Immunology University of California San Diego La Jolla California USA
| | - Bruce Ritchie
- Departments of Medicine and Medical Oncology University of Alberta Edmonton AB Canada
| | - Farrukh Rafique Sheikh
- Section of Adult Allergy & Immunology Department of Medicine King Faisal Specialist Hospital & Research Centre Riyadh Saudi Arabia
| | - William R. Smith
- Clinical Immunology and Allergy Royal Adelaide Hospital Adelaide SA Australia
| | - Peter J. Spaeth
- Institute of PharmacologyUniversity of Bern Bern Switzerland
| | - Marcin Stobiecki
- Department of Clinical and Environmental Allergology Jagiellonian University Medical College Krakow Poland
| | - Elias Toubi
- Division of Allergy and Clinical Immunology Bnai Zion Medical CenterAffiliated with Rappaport Faculty of MedicineTechnion‐Israel Institute of Technology Haifa Israel
| | - Lilian Agnes Varga
- Department of Internal Medicine and Haematology Hungarian Angioedema Center of Reference and Excellence Semmelweis University Budapest Hungary
| | - Karsten Weller
- Institute of Allergology Charité—Universitätsmedizin Berlincorporate member of Freie Universität Berlin and Humboldt‐Universität zu Berlin Berlin Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology Berlin Germany
| | - Andrea Zanichelli
- Department of Internal Medicine ASST Fatebenefratelli Sacco Ospedale Luigi Sacco‐University of Milan Milan Italy
| | - Yuxiang Zhi
- Department of Allergy and Clinical Immunology Bejing Union Medical College Hospital & Chinese Academy of Medical Sciences Bejing China
| | - Bruce Zuraw
- University of California, San Diego San Diego California USA
| | - Timothy Craig
- Departments of Medicine and Pediatrics Penn State University Hershey Pennsylvania USA
| |
Collapse
|
9
|
Towards progressive regulatory approaches for agricultural applications of animal biotechnology. Transgenic Res 2022; 31:167-199. [PMID: 35000100 PMCID: PMC8742713 DOI: 10.1007/s11248-021-00294-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 12/07/2021] [Indexed: 12/19/2022]
Abstract
Traditional breeding techniques, applied incrementally over thousands of years, have yielded huge benefits in the characteristics of agricultural animals. This is a result of significant, measurable changes to the genomes of those animal species and breeds. Genome editing techniques may now be applied to achieve targeted DNA sequence alterations, with the potential to affect traits of interest to production of agricultural animals in just one generation. New opportunities arise to improve characteristics difficult to achieve or not amenable to traditional breeding, including disease resistance, and traits that can improve animal welfare, reduce environmental impact, or mitigate impacts of climate change. Countries and supranational institutions are in the process of defining regulatory approaches for genome edited animals and can benefit from sharing approaches and experiences to institute progressive policies in which regulatory oversight is scaled to the particular level of risk involved. To facilitate information sharing and discussion on animal biotechnology, an international community of researchers, developers, breeders, regulators, and communicators recently held a series of seven virtual workshop sessions on applications of biotechnology for animal agriculture, food and environmental safety assessment, regulatory approaches, and market and consumer acceptance. In this report, we summarize the topics presented in the workshop sessions, as well as discussions coming out of the breakout sessions. This is framed within the context of past and recent scientific and regulatory developments. This is a pivotal moment for determination of regulatory approaches and establishment of trust across the innovation through-chain, from researchers, developers, regulators, breeders, farmers through to consumers.
Collapse
|
10
|
Use of Genome Editing Techniques to Produce Transgenic Farm Animals. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1354:279-297. [PMID: 34807447 PMCID: PMC9810480 DOI: 10.1007/978-3-030-85686-1_14] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Recombinant proteins are essential for the treatment and diagnosis of clinical human ailments. The availability and biological activity of recombinant proteins is heavily influenced by production platforms. Conventional production platforms such as yeast, bacteria, and mammalian cells have biological and economical challenges. Transgenic livestock species have been explored as an alternative production platform for recombinant proteins, predominantly through milk secretion; the strategy has been demonstrated to produce large quantities of biologically active proteins. The major limitation of utilizing livestock species as bioreactors has been efforts required to alter the genome of livestock. Advancements in the genome editing field have drastically improved the ability to genetically engineer livestock species. Specifically, genome editing tools such as the CRISPR/Cas9 system have lowered efforts required to generate genetically engineered livestock, thus minimizing restrictions on the type of genetic modification in livestock. In this review, we discuss characteristics of transgenic animal bioreactors and how the use of genome editing systems enhances design and availability of the animal models.
Collapse
|
11
|
Zubareva E, Degterev M, Kazarov A, Zhiliaeva M, Ulyanova K, Simonov V, Lyagoskin I, Smolov M, Iskakova M, Azarova A, Shukurov R. Physicochemical and Biological Characterization of rhC1INH Expressed in CHO Cells. Pharmaceuticals (Basel) 2021; 14:ph14111180. [PMID: 34832963 PMCID: PMC8621594 DOI: 10.3390/ph14111180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/14/2021] [Accepted: 11/16/2021] [Indexed: 11/16/2022] Open
Abstract
The disfunction or deficiency of the C1 esterase inhibitor (C1INH) is associated with hereditary or acquired angioedema (HAE/AAE), a rare life-threatening condition characterized by swelling in the skin, respiratory and gastrointestinal tracts. The current treatment options may carry the risks of either viral infection (plasma-derived Berinert®) or immune reaction (human recombinant C1INH from rabbit milk, Ruconest®). This study describes the physicochemical and biological characterization of a novel recombinant human C1 esterase inhibitor (rhC1INH) from Chinese hamster ovary (CHO) cells for the treatment of hereditary angioedema compared to the marketed products Berinert® and Ruconest®. The mass spectrometry results of total deglycosylated rhC1INH revealed a protein with a molecular mass of 52,846 Da. Almost full sequence coverage (98.6%) by nanoLC-MS/MS peptide mapping was achieved. The purity and C1s inhibitory activity of rhC1INH from CHO cells are comparable with Ruconest®, although we found differences in charge isoforms distribution, intact mass values, and N-glycans profile. Comparison of the specific activity (IC50 value) of the rhC1INH with human C1 esterase inhibitor from blood serum showed similar inhibitory properties. These data allow us to conclude that the novel rhC1INH molecule could become a potential therapeutic option for patients with HAE/AAE.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Anna Azarova
- Correspondence: (E.Z.); (A.A.); (R.S.); Tel.: +7-495-988-47-94 (E.Z.)
| | - Rahim Shukurov
- Correspondence: (E.Z.); (A.A.); (R.S.); Tel.: +7-495-988-47-94 (E.Z.)
| |
Collapse
|
12
|
Karnaukhova E. C1-Inhibitor: Structure, Functional Diversity and Therapeutic Development. Curr Med Chem 2021; 29:467-488. [PMID: 34348603 DOI: 10.2174/0929867328666210804085636] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/24/2021] [Accepted: 05/13/2021] [Indexed: 11/22/2022]
Abstract
Human C1-Inhibitor (C1INH), also known as C1-esterase inhibitor, is an important multifunctional plasma glycoprotein that is uniquely involved in a regulatory network of complement, contact, coagulation, and fibrinolytic systems. C1INH belongs to a superfamily of serine proteinase inhibitor (serpins) and exhibits its inhibitory activities towards several target proteases of plasmatic cascades, operating as a major anti-inflammatory protein in the circulation. In addition to its inhibitory activities, C1INH is also involved in non-inhibitory interactions with some endogenous proteins, polyanions, cells and infectious agents. While C1INH is essential for multiple physiological processes, it is better known for its deficiency with regards to Hereditary Angioedema (HAE), a rare autosomal dominant disease clinically manifested by recurrent acute attacks of increased vascular permeability and edema. Since the link was first established between functional C1INH deficiency in plasma and HAE in the 1960s, tremendous progress has been made in the biochemical characterization of C1INH and its therapeutic development for replacement therapies in patients with C1INH-dependent HAE. Various C1INH biological activities, recent advances in the HAE-targeted therapies, and availability of C1INH commercial products have prompted intensive investigation of the C1INH potential for treatment of clinical conditions other than HAE. This article provides an updated overview of the structure and biological activities of C1INH, its role in HAE pathogenesis, and recent advances in the research and therapeutic development of C1INH; it also considers some trends for using C1INH therapeutic preparations for applications other than angioedema, from sepsis and endotoxin shock to severe thrombotic complications in COVID-19 patients.
Collapse
Affiliation(s)
- Elena Karnaukhova
- Laboratory of Biochemistry and Vascular Biology, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland 20993. United States
| |
Collapse
|
13
|
Xu W, Cui J, Liu B, Yang L. An Event-Specific Real-Time PCR Method for Measuring Transgenic Lysozyme Goat Content in Trace Samples. Foods 2021; 10:foods10050925. [PMID: 33922422 PMCID: PMC8146569 DOI: 10.3390/foods10050925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/23/2021] [Accepted: 03/27/2021] [Indexed: 12/26/2022] Open
Abstract
Lysozymes are used in sterilisation, antisepsis, dairy additives, inflammation, and cancer. One transgenic goat line expressing high levels of human lysozyme (hLZ) in goat milk has been developed in China. Herein, we established an event-specific real-time polymerase chain reaction (real-time PCR) method to detect the transgenic hLZ goat line. The developed method has high specificity, sensitivity and accuracy, and a wide quantitative dynamic range. The limit of detection and limit of quantification was 5 and 10 copies per reaction, respectively. The practical sample analysis results showed that the method could identify and quantify transgenic lysozyme content in trace samples in routine lab analyses. Furthermore, the potential applicability in risk assessment, such as molecular characterisation and gene horizontal transfer, was confirmed. We believe that this method is suitable for the detection of transgenic hLZ goat line and its derivate.
Collapse
Affiliation(s)
- Wenting Xu
- Joint International Research Laboratory, Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Jinjie Cui
- State Key Laboratory, Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China;
| | - Biao Liu
- Key Laboratory on Biosafety, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China;
| | - Litao Yang
- Joint International Research Laboratory, Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China;
- Correspondence:
| |
Collapse
|
14
|
Lu R, Li X, Wang Y, Jin L. Expression of functional plant sweet protein thaumatin II in the milk of transgenic mice. FOOD AND BIOPRODUCTS PROCESSING 2021. [DOI: 10.1016/j.fbp.2020.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Van Eenennaam AL, De Figueiredo Silva F, Trott JF, Zilberman D. Genetic Engineering of Livestock: The Opportunity Cost of Regulatory Delay. Annu Rev Anim Biosci 2020; 9:453-478. [PMID: 33186503 DOI: 10.1146/annurev-animal-061220-023052] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Genetically engineered (GE) livestock were first reported in 1985, and yet only a single GE food animal, the fast-growing AquAdvantage salmon, has been commercialized. There are myriad interconnected reasons for the slow progress in this once-promising field, including technical issues, the structure of livestock industries, lack of public research funding and investment, regulatory obstacles, and concern about public opinion. This review focuses on GE livestock that have been produced and documents the difficulties that researchers and developers have encountered en route. Additionally, the costs associated with delayed commercialization of GE livestock were modeled using three case studies: GE mastitis-resistant dairy cattle, genome-edited porcine reproductive and respiratory syndrome virus-resistant pigs, and the AquAdvantage salmon. Delays of 5 or 10 years in the commercialization of GE livestock beyond the normative 10-year GE product evaluation period were associated with billions of dollars in opportunity costs and reduced global food security.
Collapse
Affiliation(s)
| | | | - Josephine F Trott
- Department of Animal Science, University of California, Davis, California 95616, USA; ,
| | - David Zilberman
- Department of Agricultural and Resource Economics, University of California, Berkeley, California 94720, USA;
| |
Collapse
|
16
|
Laible G, Cole S, Brophy B, Maclean P, How Chen L, Pollock DP, Cavacini L, Fournier N, De Romeuf C, Masiello NC, Gavin WG, Wells DN, Meade HM. Transgenic goats producing an improved version of cetuximab in milk. FASEB Bioadv 2020; 2:638-652. [PMID: 33205005 PMCID: PMC7655094 DOI: 10.1096/fba.2020-00059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 08/05/2020] [Indexed: 11/24/2022] Open
Abstract
Therapeutic monoclonal antibodies (mAbs) represent one of the most important classes of pharmaceutical proteins to treat human diseases. Most are produced in cultured mammalian cells which is expensive, limiting their availability. Goats, striking a good balance between a relatively short generation time and copious milk yield, present an alternative platform for the cost-effective, flexible, large-scale production of therapeutic mAbs. Here, we focused on cetuximab, a mAb against epidermal growth factor receptor, that is commercially produced under the brand name Erbitux and approved for anti-cancer treatments. We generated several transgenic goat lines that produce cetuximab in their milk. Two lines were selected for detailed characterization. Both showed stable genotypes and cetuximab production levels of up to 10 g/L. The mAb could be readily purified and showed improved characteristics compared to Erbitux. The goat-produced cetuximab (gCetuximab) lacked a highly immunogenic epitope that is part of Erbitux. Moreover, it showed enhanced binding to CD16 and increased antibody-dependent cell-dependent cytotoxicity compared to Erbitux. This indicates that these goats produce an improved cetuximab version with the potential for enhanced effectiveness and better safety profile compared to treatments with Erbitux. In addition, our study validates transgenic goats as an excellent platform for large-scale production of therapeutic mAbs.
Collapse
Affiliation(s)
- Götz Laible
- AgResearchRuakura Research CentreHamiltonNew Zealand
- School of Medical SciencesUniversity of AucklandAucklandNew Zealand
- Maurice Wilkins Centre for Molecular BiodiscoveryAucklandNew Zealand
| | - Sally Cole
- AgResearchRuakura Research CentreHamiltonNew Zealand
| | - Brigid Brophy
- AgResearchRuakura Research CentreHamiltonNew Zealand
| | - Paul Maclean
- AgResearchRuakura Research CentreHamiltonNew Zealand
| | | | | | - Lisa Cavacini
- MassBiologics of the University of Massachusetts Medical SchoolBostonMAUSA
| | | | | | | | | | | | | |
Collapse
|
17
|
Urwyler P, Moser S, Charitos P, Heijnen IAFM, Rudin M, Sommer G, Giannetti BM, Bassetti S, Sendi P, Trendelenburg M, Osthoff M. Treatment of COVID-19 With Conestat Alfa, a Regulator of the Complement, Contact Activation and Kallikrein-Kinin System. Front Immunol 2020; 11:2072. [PMID: 32922409 PMCID: PMC7456998 DOI: 10.3389/fimmu.2020.02072] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 07/30/2020] [Indexed: 12/14/2022] Open
Abstract
A dysregulated immune response with hyperinflammation is observed in patients with severe coronavirus disease 2019 (COVID-19). The aim of the present study was to assess the safety and potential benefits of human recombinant C1 esterase inhibitor (conestat alfa), a complement, contact activation and kallikrein-kinin system regulator, in severe COVID-19. Patients with evidence of progressive disease after 24 h including an oxygen saturation <93% at rest in ambient air were included at the University Hospital Basel, Switzerland in April 2020. Conestat alfa was administered by intravenous injections of 8400 IU followed by 3 additional doses of 4200 IU in 12-h intervals. Five patients (age range, 53-85 years; one woman) with severe COVID-19 pneumonia (11-39% lung involvement on computed tomography scan of the chest) were treated a median of 1 day (range 1-7 days) after admission. Treatment was well-tolerated. Immediate defervescence occurred, and inflammatory markers and oxygen supplementation decreased or stabilized in 4 patients (e.g., median C-reactive protein 203 (range 31-235) mg/L before vs. 32 (12-72) mg/L on day 5). Only one patient required mechanical ventilation. All patients recovered. C1INH concentrations were elevated before conestat alfa treatment. Levels of complement activation products declined after treatment. Viral loads in nasopharyngeal swabs declined in 4 patients. In this uncontrolled case series, targeting multiple inflammatory cascades by conestat alfa was safe and associated with clinical improvements in the majority of severe COVID-19 patients. Controlled clinical trials are needed to assess its safety and efficacy in preventing disease progression.
Collapse
Affiliation(s)
- Pascal Urwyler
- Division of Internal Medicine, University Hospital Basel, Basel, Switzerland
| | - Stephan Moser
- Division of Internal Medicine, University Hospital Basel, Basel, Switzerland
| | | | - Ingmar A. F. M. Heijnen
- Laboratory Medicine, Division of Medical Immunology, University Hospital Basel, Basel, Switzerland
| | - Melanie Rudin
- Laboratory Medicine, Division of Medical Immunology, University Hospital Basel, Basel, Switzerland
| | - Gregor Sommer
- Clinic of Radiology and Nuclear Medicine, University Hospital Basel, Basel, Switzerland
| | | | - Stefano Bassetti
- Division of Internal Medicine, University Hospital Basel, Basel, Switzerland
- Department of Clinical Research and Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Parham Sendi
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, Basel, Switzerland
| | - Marten Trendelenburg
- Division of Internal Medicine, University Hospital Basel, Basel, Switzerland
- Department of Clinical Research and Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Michael Osthoff
- Division of Internal Medicine, University Hospital Basel, Basel, Switzerland
- Department of Clinical Research and Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
18
|
De Marco Verissimo C, Jewhurst HL, Tikhonova IG, Urbanus RT, Maule AG, Dalton JP, Cwiklinski K. Fasciola hepatica serine protease inhibitor family (serpins): Purposely crafted for regulating host proteases. PLoS Negl Trop Dis 2020; 14:e0008510. [PMID: 32760059 PMCID: PMC7437470 DOI: 10.1371/journal.pntd.0008510] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 08/18/2020] [Accepted: 06/22/2020] [Indexed: 11/18/2022] Open
Abstract
Serine protease inhibitors (serpins) regulate proteolytic events within diverse biological processes, including digestion, coagulation, inflammation and immune responses. The presence of serpins in Fasciola hepatica excretory-secretory products indicates that the parasite exploits these to regulate proteases encountered during its development within vertebrate hosts. Interrogation of the F. hepatica genome identified a multi-gene serpin family of seven members that has expanded by gene duplication and divergence to create an array of inhibitors with distinct specificities. We investigated the molecular properties and functions of two representatives, FhSrp1 and FhSrp2, highly expressed in the invasive newly excysted juvenile (NEJ). Consistent with marked differences in the reactive centre loop (RCL) that executes inhibitor-protease complexing, the two recombinant F. hepatica serpins displayed distinct inhibitory profiles against an array of mammalian serine proteases. In particular, rFhSrp1 efficiently inhibited kallikrein (Ki = 40 nM) whilst rFhSrp2 was a highly potent inhibitor of chymotrypsin (Ki = 0.07 nM). FhSrp1 and FhSrp2 are both expressed on the NEJ surface, predominantly around the oral and ventral suckers, suggesting that these inhibitors protect the parasites from the harmful proteolytic effects of host proteases, such as chymotrypsin, during invasion. Furthermore, the unusual inhibition of kallikrein suggests that rFhSrp1 modulates host responses such as inflammation and vascular permeability by interfering with the kallikrein-kinin system. A vaccine combination of rFhSrp1 and rFhSrp2 formulated in the adjuvant Montanide ISA 206VG elicited modest but non-significant protection against a challenge infection in a rat model, but did induce some protection against liver pathogenesis when compared to a control group and a group vaccinated with two well-studied vaccine candidates, F. hepatica cathepsin L2 and L3. This work highlights the importance of F. hepatica serpins to regulate host responses that enables parasite survival during infection and, coupled with the vaccine data, encourages future vaccine trials in ruminants. Serpins are protease inhibitors that regulate various biological processes, including digestion, blood coagulation, inflammation and immune responses. The liver fluke, Fasciola hepatica, produces an array of inhibitors to regulate proteolytic enzymes they encounter during development within the mammalian host. In this study, we identified seven different serpins that have evolved to inhibit a range of host proteases. In particular, we characterized two representatives, FhSrp1 and FhSrp2, that we found highly expressed on the surface of the invasive newly excysted juvenile (NEJ), suggesting that they protect the parasites from harmful proteolytic effects during invasion. Contrasting inhibitory profiles were observed; while recombinant FhSrp1 inhibited kallikrein, recombinant FhSrp2 was a highly potent inhibitor of chymotrypsin. The unusual inhibition of kallikrein suggests that rFhSrp1 influences host responses such as inflammation and vascular permeability by interfering with the kallikrein-kinin system. Conversely, chymotrypsin is typically inhibited by trematode-specific serpins, implying a conserved mechanism to regulate digestive enzymes. The ability of the liver fluke serpin family to inhibit such an array of proteases highlights the importance of these inhibitors in parasite-host interactions and encourages future investigations of serpins as candidate anti-parasite vaccine targets for the control of fasciolosis in ruminants.
Collapse
Affiliation(s)
- Carolina De Marco Verissimo
- Centre for One Health and Ryan Institute, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
- * E-mail:
| | - Heather L. Jewhurst
- Centre for One Health and Ryan Institute, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Irina G. Tikhonova
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, Belfast, United Kingdom
| | - Rolf T. Urbanus
- Thrombosis and Hemostasis Laboratory, Department of Clinical Chemistry and Hematology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Aaron G. Maule
- Microbe & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - John P. Dalton
- Centre for One Health and Ryan Institute, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Krystyna Cwiklinski
- Centre for One Health and Ryan Institute, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
19
|
Hor L, Pan J, Whisstock JC, Pike RN, Wijeyewickrema LC. Mapping the binding site of C1-inhibitor for polyanion cofactors. Mol Immunol 2020; 126:8-13. [PMID: 32717572 DOI: 10.1016/j.molimm.2020.06.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 05/28/2020] [Accepted: 06/16/2020] [Indexed: 11/30/2022]
Abstract
The serpin, C1-inhibitor (also known as SERPING1), plays a vital anti-inflammatory role in the body by controlling pro-inflammatory pathways such as complement and coagulation. The inhibitor's action is enhanced in the presence of polyanionic cofactors, such as heparin and polyphosphate, by increasing the rate of association with key enzymes such as C1s of the classical pathway of complement. The cofactor binding site of the serpin has never been mapped. Here we show that residues Lys284, Lys285 and Arg287 of C1-inhibitor play key roles in binding heparin and delivering the rate enhancement seen in the presence of polyanions and thus most likely represent the key cofactor binding residues for the serpin. We also show that simultaneous binding of the anion binding site of C1s by the polyanion is required to deliver the rate enhancement. Finally, we have shown that it is unlikely that the two positively charged zones of C1-inhibitor and C1s interact in the encounter complex between molecules as ablation of the charged zones did not in itself deliver a rate enhancement as might have been expected if the zones interacted. These insights provide crucial information as to the mechanism of action of this key serpin in the presence and absence of cofactor molecules.
Collapse
Affiliation(s)
- Lilian Hor
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia; ARC Centre of Excellence in Advanced Molecular Imaging, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Jing Pan
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - James C Whisstock
- ARC Centre of Excellence in Advanced Molecular Imaging, La Trobe University, Melbourne, Victoria 3086, Australia; Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia; EMBL Australia, Monash University, Melbourne, VIC, 3800, Australia
| | - Robert N Pike
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia; ARC Centre of Excellence in Advanced Molecular Imaging, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Lakshmi C Wijeyewickrema
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia; ARC Centre of Excellence in Advanced Molecular Imaging, La Trobe University, Melbourne, Victoria 3086, Australia.
| |
Collapse
|
20
|
Towards a new avenue for producing therapeutic proteins: Microalgae as a tempting green biofactory. Biotechnol Adv 2020; 40:107499. [DOI: 10.1016/j.biotechadv.2019.107499] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 10/02/2019] [Accepted: 12/17/2019] [Indexed: 02/08/2023]
|
21
|
Tanaka KA, Mondal S, Morita Y, Williams B, Strauss ER, Cicardi M. Perioperative Management of Patients With Hereditary Angioedema With Special Considerations for Cardiopulmonary Bypass. Anesth Analg 2020; 131:155-169. [DOI: 10.1213/ane.0000000000004710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
22
|
Suva LJ, Westhusin ME, Long CR, Gaddy D. Engineering bone phenotypes in domestic animals: Unique resources for enhancing musculoskeletal research. Bone 2020; 130:115119. [PMID: 31712131 PMCID: PMC8805042 DOI: 10.1016/j.bone.2019.115119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/16/2019] [Accepted: 10/21/2019] [Indexed: 10/25/2022]
Affiliation(s)
- Larry J Suva
- Department of Veterinary Physiology and Pharmacology, College Station, TX, 77843, United States.
| | - Mark E Westhusin
- Department of Veterinary Physiology and Pharmacology, College Station, TX, 77843, United States
| | - Charles R Long
- Department of Veterinary Physiology and Pharmacology, College Station, TX, 77843, United States
| | - Dana Gaddy
- Department of Veterinary Integrative Biosciences Texas A&M University, College Station, TX 77843, United States
| |
Collapse
|
23
|
Nicola S, Rolla G, Brussino L. Breakthroughs in hereditary angioedema management: a systematic review of approved drugs and those under research. Drugs Context 2019; 8:212605. [PMID: 31645881 PMCID: PMC6788388 DOI: 10.7573/dic.212605] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/16/2019] [Accepted: 08/27/2019] [Indexed: 01/01/2023] Open
Abstract
Hereditary angioedema (HAE) is a rare genetic disorder, characterized by recurrent and unexpected potentially life-threatening mucosal swelling. The impairment underlying HAE could be a defect in C1-inhibitor activity, or in its serum concentration. Patients affected by HAE should be treated with on-demand or prophylactic drugs. Lifelong C1-inhibitor supplementation is sometimes required. In this review, we review the currently approved drugs for HAE due to C1-inhibitor defect and to describe those under research. In particular, we focused on the mechanisms of action, routes of administration, and efficacy of these therapies. A systematic review of the literature was performed using the PubMed database for original articles and clinical trials of HAE treatments from 2005 to 2019. The approved HAE treatments can minimize the risk of death, but they are not effective in complete healing from the disease. The new gene therapies seem to provide promising opportunities for the treatment of hereditary angioedema. However, there are still many unmet needs, including efficacy, route, and timing of administration.
Collapse
Affiliation(s)
- Stefania Nicola
- Dipartimento di Scienze Mediche - SSDDU Allergologia e Immunologia Clinica, Università degli Studi di Torino, AO Ordine Mauriziano Umberto I di Torino, Torino, Italy
| | - Giovanni Rolla
- Dipartimento di Scienze Mediche - SSDDU Allergologia e Immunologia Clinica, Università degli Studi di Torino, AO Ordine Mauriziano Umberto I di Torino, Torino, Italy
| | - Luisa Brussino
- Dipartimento di Scienze Mediche - SSDDU Allergologia e Immunologia Clinica, Università degli Studi di Torino, AO Ordine Mauriziano Umberto I di Torino, Torino, Italy
| |
Collapse
|
24
|
Henry Li H, Riedl M, Kashkin J. Update on the Use of C1-Esterase Inhibitor Replacement Therapy in the Acute and Prophylactic Treatment of Hereditary Angioedema. Clin Rev Allergy Immunol 2019; 56:207-218. [PMID: 29909591 DOI: 10.1007/s12016-018-8684-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the vast majority of patients with hereditary angioedema (HAE), angioedema attacks are due to the quantitative or functional deficiency of C1-esterase inhibitor (C1-INH), which leads to increased vascular permeability and unregulated release of bradykinin. Exogenous administration of C1-INH is a rational way to restore the concentration and functional activity of this protein, regulate the release of bradykinin, and attenuate or prevent subcutaneous and submucosal edema associated with HAE. Recent international guidelines for the management of HAE include C1-INH as an option for acute treatment of HAE. In addition, these guidelines recommend C1-INH as first-line treatment for long-term prophylaxis and as the therapy of choice for short-term/preprocedural prophylaxis. Several C1-INH products are available, with approved indications varying across regions. For the acute treatment of HAE, both plasma-derived and recombinant C1-INH formulations have been shown to be effective and well tolerated in adolescents and adults with HAE, with onset of relief within 30 min to a few hours. Plasma-derived C1-INH is approved for use in children, and recombinant C1-INH is being evaluated in this population. Intravenous (IV) and subcutaneous (SC) formulations of C1-INH have been approved for routine prophylaxis to prevent HAE attacks in adolescents and adults. Both formulations when administered twice weekly have been shown to reduce the frequency and severity of HAE attacks. The SC formulation of C1-INH obviates the need for repeated venous access and may facilitate self-administration of HAE prophylaxis at home, as recommended in HAE treatment guidelines. As with most rare diseases, the costs of HAE treatment are high; however, the development of additional acute and prophylactic medications for HAE may result in competitive pricing and help drive down the costs of HAE treatment.
Collapse
Affiliation(s)
- H Henry Li
- Institute for Asthma and Allergy, P.C., 2 Wisconsin Cir, Suite 250, Chevy Chase, MD, 20815, USA.
| | - Marc Riedl
- Division of Rheumatology, Allergy & Immunology, University of California, San Diego, 8899 University Center Lane, Suite 230, San Diego, CA, 92122, USA
| | - Jay Kashkin
- Allergy, Asthma and Immunology, 23-00 Route 208 South, Fair Lawn, NJ, 07410, USA
| |
Collapse
|
25
|
Amann T, Schmieder V, Faustrup Kildegaard H, Borth N, Andersen MR. Genetic engineering approaches to improve posttranslational modification of biopharmaceuticals in different production platforms. Biotechnol Bioeng 2019; 116:2778-2796. [PMID: 31237682 DOI: 10.1002/bit.27101] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/27/2019] [Accepted: 06/18/2019] [Indexed: 12/18/2022]
Abstract
The number of approved biopharmaceuticals, where product quality attributes remain of major importance, is increasing steadily. Within the available variety of expression hosts, the production of biopharmaceuticals faces diverse limitations with respect to posttranslational modifications (PTM), while different biopharmaceuticals demand different forms and specifications of PTMs for proper functionality. With the growing toolbox of genetic engineering technologies, it is now possible to address general as well as host- or biopharmaceutical-specific product quality obstacles. In this review, we present diverse expression systems derived from mammalians, bacteria, yeast, plants, and insects as well as available genetic engineering tools. We focus on genes for knockout/knockdown and overexpression for meaningful approaches to improve biopharmaceutical PTMs and discuss their applicability as well as future trends in the field.
Collapse
Affiliation(s)
- Thomas Amann
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Valerie Schmieder
- acib GmbH-Austrian Centre of Industrial Biotechnology, Graz, Austria.,Department of Biotechnology, BOKU University of Natural Resources and Life Sciences, Vienna, Austria
| | - Helene Faustrup Kildegaard
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Nicole Borth
- Department of Biotechnology, BOKU University of Natural Resources and Life Sciences, Vienna, Austria
| | - Mikael Rørdam Andersen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
26
|
Valerieva A, Caccia S, Cicardi M. Recombinant human C1 esterase inhibitor (Conestat alfa) for prophylaxis to prevent attacks in adult and adolescent patients with hereditary angioedema. Expert Rev Clin Immunol 2018; 14:707-718. [DOI: 10.1080/1744666x.2018.1503055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Anna Valerieva
- Medical University of Sofia, Clinical Center of Allergology, University Hospital “Alexandrovska”, Sofia, Bulgaria
| | - Sonia Caccia
- Department of Biomedical and Clinical Sciences, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, University of Milan, Milan, Italy
| | - Marco Cicardi
- Department of Biomedical and Clinical Sciences, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, University of Milan, Milan, Italy
| |
Collapse
|
27
|
Zhang R, Tang C, Guo H, Tang B, Hou S, Zhao L, Wang J, Ding F, Zhao J, Wang H, Chen Z, Dai Y, Li N. A novel glycosylated anti-CD20 monoclonal antibody from transgenic cattle. Sci Rep 2018; 8:13208. [PMID: 30181542 PMCID: PMC6123398 DOI: 10.1038/s41598-018-31417-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 07/23/2018] [Indexed: 12/20/2022] Open
Abstract
The monoclonal antibody (mAb) against CD20 known as Rituxan is widely used to treat autoimmune diseases and lymphomas. However, further application of Rituxan faces challenges of high production cost, which limits its availability in developing countries. Here, we report a new approach for large production of a recombinant anti-CD20 mAb in the milk of transgenic cattle (at a yield of up to ~6.8 mg/mL), with ~80% recovery rate and >99% purity. Crystallography study showed that our recombinant mAb is structurally nearly identical to Rituxan with only minor differences in N-linked glycosylation pattern. Functional study showed that, while our mAb shared similar target-cell binding capacities and complement-dependent cytotoxicity with Rituxan, our product exhibited a higher binding affinity for FcγRIIIα and a greater antibody-dependent cellular cytotoxicity. Accordingly, our recombinant mAb demonstrated a superior efficacy over Rituxan against B-cell lymphomas in severe combined immunodeficiency mice. Taken together, our data supports transgenic cattle as a novel model for cost-competitive, large-scale production of therapeutic antibodies.
Collapse
MESH Headings
- Animals
- Animals, Genetically Modified/genetics
- Animals, Genetically Modified/immunology
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/genetics
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/therapeutic use
- Antigens, CD20/immunology
- Antineoplastic Agents, Immunological/chemistry
- Antineoplastic Agents, Immunological/immunology
- Antineoplastic Agents, Immunological/metabolism
- Antineoplastic Agents, Immunological/therapeutic use
- Biotechnology/methods
- Cattle/genetics
- Cattle/immunology
- Female
- Gene Expression
- Glycosylation
- Lymphoma, B-Cell/drug therapy
- Mice, SCID
- Milk/immunology
- Milk/metabolism
- Rituximab/chemistry
- Rituximab/genetics
- Rituximab/immunology
- Rituximab/therapeutic use
Collapse
Affiliation(s)
- Ran Zhang
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100194, China
| | - Chenjun Tang
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100194, China
| | - Huaizu Guo
- State Key Laboratory of Antibody Medicine and Targeted Therapy, Shanghai Key Laboratory of Cell Engineering, Shanghai, 200433, China
| | - Bo Tang
- Wuxi KGBIO biotechnology Limited Liability Company, Wuxi, 214145, China
| | - Sheng Hou
- State Key Laboratory of Antibody Medicine and Targeted Therapy, Shanghai Key Laboratory of Cell Engineering, Shanghai, 200433, China
| | - Lei Zhao
- National Clinical Research Center for Normal Aging and Geriatric, Institute of Geriatric, PLA General Hospital, Beijing, 100853, China
| | - Jianwu Wang
- Wuxi KGBIO biotechnology Limited Liability Company, Wuxi, 214145, China
| | - Fangrong Ding
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100194, China
| | - Jianmin Zhao
- Wuxi KGBIO biotechnology Limited Liability Company, Wuxi, 214145, China
| | - Haiping Wang
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100194, China
| | - Zhongzhou Chen
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100194, China
| | - Yunping Dai
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100194, China.
| | - Ning Li
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100194, China.
| |
Collapse
|
28
|
Lamas-Toranzo I, Ramos-Ibeas P, Pericuesta E, Bermejo-Álvarez P. Directions and applications of CRISPR technology in livestock research. Anim Reprod 2018; 15:292-300. [PMID: 34178152 PMCID: PMC8202460 DOI: 10.21451/1984-3143-ar2018-0075] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The ablation (KO) or targeted insertion (KI) of specific genes or sequences has been essential
to test their roles on a particular biological process. Unfortunately, such genome modifications
have been largely limited to the mouse model, as the only way to achieve targeted mutagenesis
in other mammals required from somatic cell nuclear transfer, a time- and resource-consuming
technique. This difficulty has left research in livestock species largely devoided of KO
and targeted KI models, crucial tools to uncover the molecular roots of any physiological
or pathological process. Luckily, the eruption of site-specific endonucleases, and particularly
CRISPR technology, has empowered farm animal scientists to consider projects that could
not develop before. In this sense, the availability of genome modification in livestock species
is meant to change the way research is performed on many fields, switching from descriptive
and correlational approaches to experimental research. In this review we will provide some
guidance about how the genome can be edited by CRISPR and the possible strategies to achieve
KO or KI, paying special attention to an initially overlooked phenomenon: mosaicism. Mosaicism
is produced when the zygote´s genome edition occurs after its DNA has replicated,
and is characterized by the presence of more than two alleles in the same individual, an undesirable
outcome when attempting direct KO generation. Finally, the possible applications on different
fields of livestock research, such as reproduction or infectious diseases are discussed.
Collapse
Affiliation(s)
| | | | - Eva Pericuesta
- Department Reproducción Animal, INIA, 28040 Madrid, Spain
| | | |
Collapse
|
29
|
Maurer M, Magerl M, Ansotegui I, Aygören-Pürsün E, Betschel S, Bork K, Bowen T, Balle Boysen H, Farkas H, Grumach AS, Hide M, Katelaris C, Lockey R, Longhurst H, Lumry WR, Martinez-Saguer I, Moldovan D, Nast A, Pawankar R, Potter P, Riedl M, Ritchie B, Rosenwasser L, Sánchez-Borges M, Zhi Y, Zuraw B, Craig T. The international WAO/EAACI guideline for the management of hereditary angioedema-The 2017 revision and update. Allergy 2018; 73:1575-1596. [PMID: 29318628 DOI: 10.1111/all.13384] [Citation(s) in RCA: 315] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2017] [Indexed: 12/25/2022]
Abstract
Hereditary Angioedema (HAE) is a rare and disabling disease. Early diagnosis and appropriate therapy are essential. This update and revision of the global guideline for HAE provides up-to-date consensus recommendations for the management of HAE. In the development of this update and revision of the guideline, an international expert panel reviewed the existing evidence and developed 20 recommendations that were discussed, finalized and consented during the guideline consensus conference in June 2016 in Vienna. The final version of this update and revision of the guideline incorporates the contributions of a board of expert reviewers and the endorsing societies. The goal of this guideline update and revision is to provide clinicians and their patients with guidance that will assist them in making rational decisions in the management of HAE with deficient C1-inhibitor (type 1) and HAE with dysfunctional C1-inhibitor (type 2). The key clinical questions covered by these recommendations are: (1) How should HAE-1/2 be defined and classified?, (2) How should HAE-1/2 be diagnosed?, (3) Should HAE-1/2 patients receive prophylactic and/or on-demand treatment and what treatment options should be used?, (4) Should HAE-1/2 management be different for special HAE-1/2 patient groups such as pregnant/lactating women or children?, and (5) Should HAE-1/2 management incorporate self-administration of therapies and patient support measures?
Collapse
Affiliation(s)
- M. Maurer
- Department of Dermatology and Allergy; Charité-Universitätsmedizin Berlin; Berlin Germany
| | - M. Magerl
- Department of Dermatology and Allergy; Charité-Universitätsmedizin Berlin; Berlin Germany
| | - I. Ansotegui
- Department of Allergy and Immunology; Hospital Quironsalud Bizkaia; Bilbao Spain
| | - E. Aygören-Pürsün
- Center for Children and Adolescents; University Hospital Frankfurt; Frankfurt Germany
| | - S. Betschel
- Division of Clinical Immunology and Allergy; St. Michael's Hospital; University of Toronto; Toronto ON Canada
| | - K. Bork
- Department of Dermatology; Johannes Gutenberg University Mainz; Mainz Germany
| | - T. Bowen
- Department of Medicine and Pediatrics; University of Calgary; Calgary AB Canada
| | | | - H. Farkas
- Hungarian Angioedema Center; 3rd Department of Internal Medicine; Semmelweis University; Budapest Hungary
| | - A. S. Grumach
- Clinical Immunology; Faculdade de Medicina ABC; São Paulo Brazil
| | - M. Hide
- Department of Dermatology; Hiroshima University; Hiroshima Japan
| | - C. Katelaris
- Department of Medicine; Campbelltown Hospital and Western Sydney University; Sydney NSW Australia
| | - R. Lockey
- Department of Internal Medicine; University of South Florida Morsani College of Medicine; Tampa FL USA
| | - H. Longhurst
- Department of Clinical Biochemistry and Immunology; Addenbrooke's Hospital; Cambridge University Hospitals NHS Foundation Trust; UK
| | - W. R. Lumry
- Department of Internal Medicine; Allergy/Immunology Division; Southwestern Medical School; University of Texas; Dallas TX USA
| | | | - D. Moldovan
- University of Medicine and Pharmacy; Tîrgu Mures Romania
| | - A. Nast
- Berlin Institute of Health; Department of Dermatology, Venereology und Allergy; Division of Evidence based Medicine (dEBM); Corporate Member of Freie Universität Berlin; Humboldt-Universität zu Berlin; Charité-Universitätsmedizin Berlin; Berlin Germany
| | - R. Pawankar
- Department of Pediatrics; Nippon Medical School; Tokyo Japan
| | - P. Potter
- Department of Medicine; University of Cape Town; Cape Town South Africa
| | - M. Riedl
- Department of Medicine; University of California-San Diego; La Jolla CA USA
| | - B. Ritchie
- Division of Hematology; University of Alberta; Edmonton AB Canada
| | - L. Rosenwasser
- Allergy and Immunology Department; University of Missouri at Kansas City School of Medicine; Kansas City MO USA
| | - M. Sánchez-Borges
- Allergy and Clinical Immunology Department; Centro Medico Docente La Trinidad; Caracas Venezuela
| | - Y. Zhi
- Department of Allergy; Peking Union Medical College Hospital and Chinese Academy of Medical Sciences; Beijing China
| | - B. Zuraw
- Department of Medicine; University of California-San Diego; La Jolla CA USA
- San Diego VA Healthcare; San Diego CA USA
| | - T. Craig
- Department of Medicine and Pediatrics; Penn State University; Hershey PA USA
| |
Collapse
|
30
|
Panagiotou A, Trendelenburg M, Osthoff M. The Lectin Pathway of Complement in Myocardial Ischemia/Reperfusion Injury-Review of Its Significance and the Potential Impact of Therapeutic Interference by C1 Esterase Inhibitor. Front Immunol 2018; 9:1151. [PMID: 29910807 PMCID: PMC5992395 DOI: 10.3389/fimmu.2018.01151] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 05/08/2018] [Indexed: 01/19/2023] Open
Abstract
Acute myocardial infarction (AMI) remains a leading cause of morbidity and mortality in modern medicine. Early reperfusion accomplished by primary percutaneous coronary intervention is pivotal for reducing myocardial damage in ST elevation AMI. However, restoration of coronary blood flow may paradoxically trigger cardiomyocyte death secondary to a reperfusion-induced inflammatory process, which may account for a significant proportion of the final infarct size. Unfortunately, recent human trials targeting myocardial ischemia/reperfusion (I/R) injury have yielded disappointing results. In experimental models of myocardial I/R injury, the complement system, and in particular the lectin pathway, have been identified as major contributors. In line with this, C1 esterase inhibitor (C1INH), the natural inhibitor of the lectin pathway, was shown to significantly ameliorate myocardial I/R injury. However, the hypothesis of a considerable augmentation of myocardial I/R injury by activation of the lectin pathway has not yet been confirmed in humans, which questions the efficacy of a therapeutic strategy solely aimed at the inhibition of the lectin pathway after human AMI. Thus, as C1INH is a multiple-action inhibitor targeting several pathways and mediators simultaneously in addition to the lectin pathway, such as the contact and coagulation system and tissue leukocyte infiltration, this may be considered as being advantageous over exclusive inhibition of the lectin pathway. In this review, we summarize current concepts and evidence addressing the role of the lectin pathway as a potent mediator/modulator of myocardial I/R injury in animal models and in patients. In addition, we focus on the evidence and the potential advantages of using the natural inhibitor of the lectin pathway, C1INH, as a future therapeutic approach in AMI given its ability to interfere with several plasmatic cascades. Ameliorating myocardial I/R injury by targeting the complement system and other plasmatic cascades remains a valid option for future therapeutic interventions.
Collapse
Affiliation(s)
- Anneza Panagiotou
- Division of Internal Medicine, University Hospital Basel, Basel, Switzerland
| | - Marten Trendelenburg
- Division of Internal Medicine, University Hospital Basel, Basel, Switzerland.,Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Michael Osthoff
- Division of Internal Medicine, University Hospital Basel, Basel, Switzerland.,Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| |
Collapse
|
31
|
Pharmacological Management of Hereditary Angioedema with C1-Inhibitor Deficiency in Pediatric Patients. Paediatr Drugs 2018; 20:135-151. [PMID: 29214395 DOI: 10.1007/s40272-017-0273-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Hereditary angioedema with C1-inhibitor deficiency (C1-INH-HAE) is a form of bradykinin-mediated angioedema. It is a rare disorder with an onset during childhood in most instances. Therefore, familiarity with the options for the management of pediatric cases is indispensable. The recurrent angioedematous episodes do not respond to conventional treatments and may evolve into a life-threatening condition. In view of the recommendations adopted by international consensus in 2016, patient management and follow-up should be guided by an individualized strategy. During the last decade, various medicinal products with novel modes of action and different posology have been developed for the treatment of C1-INH-HAE. These drugs either inhibit the release of bradykinin (plasma-derived C1-inhibitors, recombinant C1-inhibitors, kallikrein inhibitors) or prevent the released bradykinin from binding to its receptor (bradykinin B2 receptor antagonists). This review summarizes the properties of the medicinal products currently available for the treatment of C1-INH-HAE, the indications for their use in pediatric patients, and the findings of the clinical trials conducted in this patient population. It is concluded by a brief outline of future therapeutic options.
Collapse
|
32
|
Maurer M, Magerl M, Ansotegui I, Aygören-Pürsün E, Betschel S, Bork K, Bowen T, Boysen HB, Farkas H, Grumach AS, Hide M, Katelaris C, Lockey R, Longhurst H, Lumry WR, Martinez-Saguer I, Moldovan D, Nast A, Pawankar R, Potter P, Riedl M, Ritchie B, Rosenwasser L, Sánchez-Borges M, Zhi Y, Zuraw B, Craig T. The international WAO/EAACI guideline for the management of hereditary angioedema – the 2017 revision and update. World Allergy Organ J 2018. [DOI: 10.1186/s40413-017-0180-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
33
|
Farkas H, Debreczeni ML, Kőhalmi KV. Investigational drugs in phase I and phase II clinical trials for hereditary angioedema. Expert Opin Investig Drugs 2017; 27:87-103. [PMID: 29226721 DOI: 10.1080/13543784.2018.1415325] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Hereditary angioedema (HAE) with C1-inhibitor deficiency (C1-INH-HAE) is a rare bradykinin-mediated disease characterized by recurrent subcutaneous and/or submucosal angioedematous attacks (HAE attacks), which occur unpredictably. The recurrent HAE attacks do not respond to conventional treatments, and may evolve into a life-threatening condition; therefore, special therapy is required. AREAS COVERED The agents used so far for the acute management of HAE attacks act by blocking the release of bradykinin, or its binding to its receptor. By contrast, the investigational medicinal products under evaluation in Phase I and II clinical trials are targeted at the prevention of HAE attacks. Chemically, these new drugs are small synthetic molecules, oligonucleotides, or antibodies, which inhibit either kallikrein, or Factor XII. EXPERT OPINION The key considerations for the development of new medicinal products include more straightforward dosing, self-administration, longer duration of action, and keeping the patient attack-free. This review summarizes the status and the findings of the currently ongoing Phase I and Phase II clinical trials of C1-INH-HAE.
Collapse
Affiliation(s)
- Henriette Farkas
- a Hungarian Angioedema Center, 3rd Department of Internal Medicine , Semmelweis University , Budapest , Hungary
| | - Márta Lídia Debreczeni
- a Hungarian Angioedema Center, 3rd Department of Internal Medicine , Semmelweis University , Budapest , Hungary
| | - Kinga Viktória Kőhalmi
- a Hungarian Angioedema Center, 3rd Department of Internal Medicine , Semmelweis University , Budapest , Hungary
| |
Collapse
|
34
|
Lamas-Toranzo I, Guerrero-Sánchez J, Miralles-Bover H, Alegre-Cid G, Pericuesta E, Bermejo-Álvarez P. CRISPR is knocking on barn door. Reprod Domest Anim 2017; 52 Suppl 4:39-47. [DOI: 10.1111/rda.13047] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
| | | | | | - G Alegre-Cid
- Departamento de Reproducción Animal; INIA; Madrid Spain
| | - E Pericuesta
- Departamento de Reproducción Animal; INIA; Madrid Spain
| | | |
Collapse
|
35
|
Telugu BP, Park KE, Park CH. Genome editing and genetic engineering in livestock for advancing agricultural and biomedical applications. Mamm Genome 2017; 28:338-347. [PMID: 28712062 DOI: 10.1007/s00335-017-9709-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 07/08/2017] [Indexed: 01/23/2023]
Abstract
Genetic modification of livestock has a longstanding and successful history, starting with domestication several thousand years ago. Modern animal breeding strategies predominantly based on marker-assisted and genomic selection, artificial insemination, and embryo transfer have led to significant improvement in the performance of domestic animals, and are the basis for regular supply of high quality animal derived food. However, the current strategy of breeding animals over multiple generations to introduce novel traits is not realistic in responding to the unprecedented challenges such as changing climate, pandemic diseases, and feeding an anticipated 3 billion increase in global population in the next three decades. Consequently, sophisticated genetic modifications that allow for seamless introgression of novel alleles or traits and introduction of precise modifications without affecting the overall genetic merit of the animal are required for addressing these pressing challenges. The requirement for precise modifications is especially important in the context of modeling human diseases for the development of therapeutic interventions. The animal science community envisions the genome editors as essential tools in addressing these critical priorities in agriculture and biomedicine, and for advancing livestock genetic engineering for agriculture, biomedical as well as "dual purpose" applications.
Collapse
Affiliation(s)
- Bhanu P Telugu
- Animal and Avian Science, University of Maryland, Bhanu Telugu, 2121 ANSC Building, College Park, MD, 20742, USA. .,Animal Bioscience and Biotechnology Laboratory, ARS, USDA, Beltsville, MD, USA. .,RenOVAte Biosciences Inc, Reisterstown, MD, USA.
| | - Ki-Eun Park
- Animal and Avian Science, University of Maryland, Bhanu Telugu, 2121 ANSC Building, College Park, MD, 20742, USA.,Animal Bioscience and Biotechnology Laboratory, ARS, USDA, Beltsville, MD, USA.,RenOVAte Biosciences Inc, Reisterstown, MD, USA
| | - Chi-Hun Park
- Animal and Avian Science, University of Maryland, Bhanu Telugu, 2121 ANSC Building, College Park, MD, 20742, USA.,Animal Bioscience and Biotechnology Laboratory, ARS, USDA, Beltsville, MD, USA
| |
Collapse
|
36
|
Lagassé HAD, Alexaki A, Simhadri VL, Katagiri NH, Jankowski W, Sauna ZE, Kimchi-Sarfaty C. Recent advances in (therapeutic protein) drug development. F1000Res 2017; 6:113. [PMID: 28232867 PMCID: PMC5302153 DOI: 10.12688/f1000research.9970.1] [Citation(s) in RCA: 328] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/27/2017] [Indexed: 01/11/2023] Open
Abstract
Therapeutic protein drugs are an important class of medicines serving patients most in need of novel therapies. Recently approved recombinant protein therapeutics have been developed to treat a wide variety of clinical indications, including cancers, autoimmunity/inflammation, exposure to infectious agents, and genetic disorders. The latest advances in protein-engineering technologies have allowed drug developers and manufacturers to fine-tune and exploit desirable functional characteristics of proteins of interest while maintaining (and in some cases enhancing) product safety or efficacy or both. In this review, we highlight the emerging trends and approaches in protein drug development by using examples of therapeutic proteins approved by the U.S. Food and Drug Administration over the previous five years (2011–2016, namely January 1, 2011, through August 31, 2016).
Collapse
Affiliation(s)
- H A Daniel Lagassé
- Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Aikaterini Alexaki
- Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Vijaya L Simhadri
- Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Nobuko H Katagiri
- Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Wojciech Jankowski
- Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Zuben E Sauna
- Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Chava Kimchi-Sarfaty
- Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| |
Collapse
|
37
|
Dijk M, Holkers J, Voskamp P, Giannetti B, Waterreus WJ, van Veen H, Pannu N. How Dextran Sulfate Affects C1-inhibitor Activity: A Model for Polysaccharide Potentiation. Structure 2016; 24:2182-2189. [DOI: 10.1016/j.str.2016.09.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 07/14/2016] [Accepted: 10/05/2016] [Indexed: 11/25/2022]
|
38
|
Delpech PO, Thuillier R, SaintYves T, Danion J, Le Pape S, van Amersfoort ES, Oortwijn B, Blancho G, Hauet T. Inhibition of complement improves graft outcome in a pig model of kidney autotransplantation. J Transl Med 2016; 14:277. [PMID: 27663514 PMCID: PMC5035455 DOI: 10.1186/s12967-016-1013-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 08/16/2016] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Ischemia reperfusion injury (IRI) induced immune response is a critical issue in transplantation. Complement and contact system activation are among its key mechanisms. STUDY DESIGN We investigated the benefits of pre-reperfusion treatment with recombinant human C1INH (rhC1INH), inhibitor of both complement and contact activation, in a pig model of kidney autotransplantation, subjecting the organ to 60 min warm ischemia prior to 24 h static preservation to maximize damage. RESULTS Serum creatinine measurement showed that treated animals recovered glomerular function quicker than the Vehicle group. However, no difference was observed in tubular function recovery, and elevated level of urinary NGal (Neutrophil gelatinase-associated lipocalin) and plasma AST (Aspartate Aminotransferase) were detected, indicating that treatment did not influence IRI-mediated tubular cell necrosis. Regarding chronic graft outcome, rhC1INH significantly prevented fibrosis development and improved function. Immunohistochemistry and western blot showed decreased invasion by macrophages and T lymphocytes, and reduction of epithelial to mesenchymal transition. We determined the effect of treatment on complement activation with immunofluorescence analyses at 30 min post reperfusion, showing an inhibition of C4d deposition and MBL staining in treated animals. CONCLUSIONS In this model, the inhibition of complement activation by rhC1INH at reperfusion, while not completely counteracting IRI, limited immune system activation, significantly improving graft outcome on the short and long term.
Collapse
Affiliation(s)
- Pierre-Olivier Delpech
- Département d'Urologie, CHU de Poitiers, 86000, Poitiers, France.,Inserm U1082, 86000, Poitiers, France
| | - Raphael Thuillier
- Inserm U1082, 86000, Poitiers, France.,Service de Biochimie, CHU Poitiers, 86000, Poitiers, France.,Faculté de Médecine et de Pharmacie, Université de Poitiers, 86000, Poitiers, France.,Fédération Hospitalo-Universitaire SUPORT, 86000, Poitiers, France
| | | | - Jerome Danion
- Service de Chirurgie Viscérale, CHU de Poitiers, 86000, Poitiers, France
| | - Sylvain Le Pape
- Inserm U1082, 86000, Poitiers, France.,Faculté de Médecine et de Pharmacie, Université de Poitiers, 86000, Poitiers, France
| | | | | | - Gilles Blancho
- Institut de Transplantation Urologie et Néphrologie (ITUN), CHU de Nantes, Faculté de Médecine et des Techniques Médicales de Nantes, Université de Nantes, Inserm U1064, 44000, Nantes, France
| | - Thierry Hauet
- Inserm U1082, 86000, Poitiers, France. .,Service de Biochimie, CHU Poitiers, 86000, Poitiers, France. .,Faculté de Médecine et de Pharmacie, Université de Poitiers, 86000, Poitiers, France. .,Fédération Hospitalo-Universitaire SUPORT, 86000, Poitiers, France. .,Institut National de La Recherche Agronomique, Unité Expérimentale Génétique, Expérimentations et Systèmes Innovants, Domaine Expérimental Du Magneraud, Plateforme IBiSA 'MOPICT', 17700, Surgères, France. .,INSERM U1082, CHU de Poitiers, 2 Rue de La Miletrie, 86021, Poitiers Cedex, France.
| |
Collapse
|
39
|
Abstract
Hereditary angioedema (HAE), a rare autosomal dominant genetic disorder, is caused by a deficiency in functional C1 esterase inhibitor (C1-INH). This potentially life-threatening condition manifests as recurrent attacks of subcutaneous and submucosal swelling of the skin, gastrointestinal tract and larynx. The management of HAE includes treatment of acute episodes, short-term prophylaxis in preparation for exposure to known triggers and long-term prophylaxis to decrease the incidence and severity of HAE attacks. Four products are approved in the USA for the treatment of acute attacks of HAE, including one human plasma-derived C1-INH therapy, a recombinant human C1-INH product (rhC1-INH), a plasma kallikrein inhibitor and a bradykinin B2 receptor antagonist. In addition, one human plasma-derived C1-INH therapy and danazol are approved for prophylaxis of HAE attacks. rhC1-INH, extracted from the milk of transgenic rabbits, is a glycoprotein of 478 amino acids with an identical amino acid sequence to the endogenous human C1-INH protein. Population pharmacokinetic analysis of rhC1-INH supports an intravenous dosing strategy of 50 U/kg (maximum 4200 U). The safety and efficacy of rhC1-INH in the treatment of acute attacks in patients with HAE were demonstrated in three randomized, double-blind, placebo-controlled studies and two open-label extension studies. In a pilot prophylaxis study, weekly administration of rhC1-INH 50 U/kg for 8 weeks reduced the incidence of HAE attacks and was well tolerated. Administration of rhC1-INH has not been associated with the development of anti-drug antibodies or antibodies to anti-host-related impurities.
Collapse
|
40
|
Strategies to enable the adoption of animal biotechnology to sustainably improve global food safety and security. Transgenic Res 2016; 25:575-95. [PMID: 27246007 DOI: 10.1007/s11248-016-9965-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 05/21/2016] [Indexed: 10/21/2022]
Abstract
The ability to generate transgenic animals has existed for over 30 years, and from those early days many predicted that the technology would have beneficial applications in agriculture. Numerous transgenic agricultural animals now exist, however to date only one product from a transgenic animal has been approved for the food chain, due in part to cumbersome regulations. Recently, new techniques such as precision breeding have emerged, which enables the introduction of desired traits without the use of transgenes. The rapidly growing human population, environmental degradation, and concerns related to zoonotic and pandemic diseases have increased pressure on the animal agriculture sector to provide a safe, secure and sustainable food supply. There is a clear need to adopt transgenic technologies as well as new methods such as gene editing and precision breeding to meet these challenges and the rising demand for animal products. To achieve this goal, cooperation, education, and communication between multiple stakeholders-including scientists, industry, farmers, governments, trade organizations, NGOs and the public-is necessary. This report is the culmination of concepts first discussed at an OECD sponsored conference and aims to identify the main barriers to the adoption of animal biotechnology, tactics for navigating those barriers, strategies to improve public perception and trust, as well as industry engagement, and actions for governments and trade organizations including the OECD to harmonize regulations and trade agreements. Specifically, the report focuses on animal biotechnologies that are intended to improve breeding and genetics and currently are not routinely used in commercial animal agriculture. We put forward recommendations on how scientists, regulators, and trade organizations can work together to ensure that the potential benefits of animal biotechnology can be realized to meet the future needs of agriculture to feed the world.
Collapse
|
41
|
Farkas H. Conestat alfa: an orphan drug for the treatment of hereditary angioedema. Expert Opin Orphan Drugs 2016. [DOI: 10.1517/21678707.2016.1153965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
42
|
Versatile microscale screening platform for improving recombinant protein productivity in Chinese hamster ovary cells. Sci Rep 2015; 5:18016. [PMID: 26657798 PMCID: PMC4676018 DOI: 10.1038/srep18016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 11/10/2015] [Indexed: 11/09/2022] Open
Abstract
Chinese hamster ovary (CHO) cells are widely used as cell factories for the production of biopharmaceuticals. In contrast to the highly optimized production processes for monoclonal antibody (mAb)-based biopharmaceuticals, improving productivity of non-mAb therapeutic glycoproteins is more likely to reduce production costs significantly. The aim of this study was to establish a versatile target gene screening platform for improving productivity for primarily non-mAb glycoproteins with complete interchangeability of model proteins and target genes using transient expression. The platform consists of four techniques compatible with 96-well microplates: lipid-based transient transfection, cell cultivation in microplates, cell counting and antibody-independent product titer determination based on split-GFP complementation. We were able to demonstrate growth profiles and volumetric productivity of CHO cells in 96-half-deepwell microplates comparable with those obtained in shake flasks. In addition, we demonstrate that split-GFP complementation can be used to accurately measure relative titers of therapeutic glycoproteins. Using this platform, we were able to detect target gene-specific increase in titer and specific productivity of two non-mAb glycoproteins. In conclusion, the platform provides a novel miniaturized and parallelisable solution for screening target genes and holds the potential to unravel genes that can enhance the secretory capacity of CHO cells.
Collapse
|
43
|
Moldovan D, Bernstein JA, Cicardi M. Recombinant replacement therapy for hereditary angioedema due to C1 inhibitor deficiency. Immunotherapy 2015; 7:739-52. [DOI: 10.2217/imt.15.44] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Hereditary angioedema is a rare genetic condition transmitted as an autosomal dominant trait and characterized most commonly by the production of either inadequate or nonfunctioning C1 esterase inhibitor (C1-INH), a blood protein that regulates proteases in the complement, fibrinolytic and contact systems. Patients with hereditary angioedema suffer from episodic, unpredictable manifestations of edema affecting multiple anatomical locations, including the GI tract, facial tissue, the upper airway, oropharynx, urogenital region and/or the arms and legs. A rational approach to treatment is replacement of C1-INH protein, to normalize the levels of C1-INH activity and halt the progression of the biochemical activation processes underlying the edema formation. Ruconest is a highly purified recombinant human C1-INH. This article will focus on the results of ten clinical studies demonstrating the efficacy and safety of Ruconest® (Pharming Group NV, Leiden, the Netherlands), which is now approved for use in Europe, Israel and the USA.
Collapse
Affiliation(s)
- Dumitru Moldovan
- University of Medicine & Pharmacy, Mures County Hospital, 1 Marinescu St, 540103 Tîrgu Mures, Romania
| | - Jonathan A Bernstein
- Allergy Section, Division of Immunology, Department of Internal Medicine, College of Medicine, University of Cincinnati, 231 Albert Sabin Way ML#563 Room 7413, Cincinnati, OH 45267-0563, USA
| | - Marco Cicardi
- Department of Biomedical & Clinical Sciences Luigi Sacco, University of Milan, Luigi Sacco Hospital, Via G.B. Grassi 74, 20157 Milan, Italy
| |
Collapse
|
44
|
Reshef A, Zanichelli A, Longhurst H, Relan A, Hack CE. Elevated D-dimers in attacks of hereditary angioedema are not associated with increased thrombotic risk. Allergy 2015; 70:506-13. [PMID: 25640891 PMCID: PMC4409094 DOI: 10.1111/all.12587] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2015] [Indexed: 12/23/2022]
Abstract
Background Recommended management of attacks of hereditary angioedema (HAE) due to C1 esterase inhibitor (C1-INH) deficiency (C1-INH-HAE) includes therapy with exogenous C1INH. Thrombotic/thromboembolic events (TEE) have been reported with plasma-derived C1INH, but so far none with recombinant human C1INH (rhC1INH). This phase III, randomized, placebo (saline)-controlled study evaluated the safety of rhC1INH 50 IU/kg for the treatment of acute attacks in 74 patients with C1-INH-HAE. Methods Monitoring for TEE and assessment of risk of deep vein thrombosis (DVT) by the Wells prediction rule were performed, and levels of fibrin degradation products (plasma D-dimers) were assessed before study drug administration (baseline), 2 h, and 7 days posttreatment. Results Plasma D-dimer levels were elevated in 80% of the patients (median [25th–75th percentiles]: 2149 [480–5105] μg/l; normal ≤250 μg/l) and were higher in patients with submucosal (abdominal, oropharyngeal–laryngeal) attacks (3095 [890–10000] μg/l; n = 29) compared with subcutaneous (peripheral, facial) attacks (960 [450–4060] μg/l; n = 35). Median plasma D-dimer levels were comparable across treatment groups at baseline (1874 [475–4568] μg/l rhC1INH; 2259 [586–7533] μg/l saline) and 2 h postinfusion (2389 [760–4974] μg/l rhC1INH; 2550 [310–8410] μg/l saline); median plasma D-dimer levels were decreased by Day 7 in both groups (425 [232–3240] μg/l rhC1INH; 418 [246–2318] μg/l saline). No increased risk of DVT was identified, nor any TEE reported in rhC1INH treated or controls. Conclusion Elevated plasma D-dimer levels were associated with acute C1-INH-HAE attacks, particularly with submucosal involvement. However, rhC1INH therapy was not associated with thrombotic events.
Collapse
Affiliation(s)
- A. Reshef
- Sheba Medical Center University of Tel Aviv Tel‐Hashomer Israel
| | - A. Zanichelli
- Department of Biomedical & Clinical Sciences Ospedale Luigi Sacco University of Milan Milan Italy
| | | | - A. Relan
- Pharming Technologies BV Leiden The Netherlands
| | - C. E. Hack
- Laboratory for Translational Immunology University Medical Center Utrecht Utrecht The Netherlands
| |
Collapse
|
45
|
Li HH, Moldovan D, Bernstein JA, Reshef A, Porebski G, Stobiecki M, Baker J, Levy R, Relan A, Riedl M. Recombinant human-C1 inhibitor is effective and safe for repeat hereditary angioedema attacks. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2015; 3:417-23. [PMID: 25680925 DOI: 10.1016/j.jaip.2014.12.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 11/23/2014] [Accepted: 12/31/2014] [Indexed: 11/29/2022]
Abstract
BACKGROUND Hereditary angioedema (HAE) caused by a deficiency in functional C1 esterase inhibitor (C1INH) is characterized by recurrent episodes of cutaneous and/or mucosal/submucosal tissue swelling affecting multiple anatomic locations. Previous studies demonstrated efficacy of recombinant human C1INH (rhC1INH) for acute HAE attacks. OBJECTIVE This study evaluated the efficacy and safety of rhC1INH (50 IU/kg) for the treatment of multiple HAE attacks in an open-label extension study. METHODS Time to onset of symptom relief and time to minimal symptoms were assessed using a Treatment Effect Questionnaire (TEQ), a visual analog scale, and a 6-point ordinal scale Investigator Score. RESULTS Forty-four patients received rhC1INH, and a single dose was administered for 215 of 224 (96%) attacks. Median time to beginning of symptom relief based on TEQ for the first 5 attacks was 75.0 (95% CI, 69-89) minutes, ranging from 62.5 (95% CI, 48-90) to 134.0 (95% CI, 32-119) minutes. Median time to minimal symptoms using TEQ for the first 3 attacks was 303.0 (95% CI, 211-367) minutes. rhC1INH was well tolerated. There were no discontinuations due to adverse events. No thrombotic or anaphylactic events were reported, and repeat rhC1INH treatments were not associated with neutralizing anti-C1INH antibodies. CONCLUSIONS A single 50-IU/kg dose rhC1INH was effective for improving symptoms of an HAE attack with sustained efficacy for treatment of subsequent attacks. rhC1INH had a positive safety profile throughout the study. This study supports repeated use of rhC1INH over time in patients with HAE attacks.
Collapse
Affiliation(s)
- H Henry Li
- Institute for Asthma and Allergy, P.C., Chevy Chase, Md.
| | | | | | - Avner Reshef
- Tel Aviv University, Sheba Medical Center, Tel-Hashomer, Israel
| | - Gregor Porebski
- Faculty of Medicine, Department of Clinical and Environmental Allergology, Jagiellonian University, Krakow, Poland
| | - Marcin Stobiecki
- Faculty of Medicine, Department of Clinical and Environmental Allergology, Jagiellonian University, Krakow, Poland
| | - James Baker
- Baker Allergy Asthma Dermatology, Lake Oswego, Ore
| | - Robyn Levy
- Family Allergy & Asthma Center, Atlanta, Ga
| | - Anurag Relan
- Pharming Technologies BV, Leiden, The Netherlands
| | - Marc Riedl
- UCSD School of Medicine, La Jolla, Calif
| |
Collapse
|
46
|
Sabharwal G, Craig T. Recombinant human C1 esterase inhibitor for the treatment of hereditary angioedema due to C1 inhibitor deficiency (C1-INH-HAE). Expert Rev Clin Immunol 2015; 11:319-27. [PMID: 25669442 DOI: 10.1586/1744666x.2015.1012502] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The lack of C1 inhibitor function that results in excessive production of bradykinin causing the angioedema seen in hereditary angioedema (HAE) is well established. Several drugs have been developed to treat and prevent attacks in patients suffering from HAE due to C1 inhibitor deficiency (C1-INH-HAE). Plasma-derived C1INH has been used to replace the deficiency of C1 inhibitor (C1INH) and has been approved for both treatment of attacks and for prophylactic therapy to prevent attacks. Plasma kallikrein inhibitor (ecallantide) and bradykinin receptor antagonist (icatibant) are both effective for treatment of acute attacks, but their short half-life limits the use for prophylaxis. Androgens, in particular danazol, are effective for long-term prophylaxis, but adverse event profile can limit its use. Recombinant C1 inhibitor derived from transgenic rabbits has recently been approved for use in treatment of C1-INH-HAE attacks and is effective and appears safe with minimal adverse event profile.
Collapse
Affiliation(s)
- Geetika Sabharwal
- Department of Pediatrics, Penn State University, 500 University Drive, 17033 Hershey, USA
| | | |
Collapse
|
47
|
Feussner A, Kalina U, Hofmann P, Machnig T, Henkel G. Biochemical comparison of four commercially available C1 esterase inhibitor concentrates for treatment of hereditary angioedema. Transfusion 2014; 54:2566-73. [PMID: 24805006 PMCID: PMC4285325 DOI: 10.1111/trf.12678] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 02/25/2014] [Accepted: 02/25/2014] [Indexed: 12/28/2022]
Abstract
Background For safe and efficacious treatment of hereditary angioedema, C1 esterase inhibitor (C1-INH) concentrates should have high purity and high amounts of functional protein. As no pharmacopoeia requirements exist for C1-INH concentrate lot release, biochemical characteristics as declared by the manufacturers may not be compared directly. This study compared the characteristics and purity profiles of four commercially available C1-INH concentrates. Study Design and Methods The analysis included one transgenic (Ruconest) and three plasma-derived (Berinert, Cetor, Cinryze) C1-INH concentrates. C1-INH antigen concentration was determined by nephelometry, total protein (specific activity) with a Bradford assay, purity by size-exclusion chromatography and gel electrophoresis, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry was performed. Results Functionality (inversely proportional to antigen-to-activity ratio) was lowest for Ruconest (1.67), followed by Cetor (1.42), Berinert (1.24), and Cinryze (1.22). Specific activity (U/mg) and purity (%) were highest in Ruconest (12.13; 98.6) and Berinert (11.57; 97.0), followed by Cinryze (10.41; 89.5) and Cetor (9.01; 88.6). Main protein bands were found for all plasma-derived products at approximately 105 kDa, and for Ruconest, at approximately 98 kDa. Additional bands in the plasma-derived products were α1-antichymotrypsin, ceruloplasmin, Factor C3 (Cinryze/Cetor), and immunoglobulin heavy constant mu (Berinert). Conclusion Ruconest has a very high purity profile but is not identical to the human C1-INH protein. Of the plasma-derived products, Berinert has the highest purity profile. The impact of the nontherapeutic proteins identified has not yet been evaluated. For harmonization of the analysis for drug release, we recommend the establishment of regulatory requirements for purity determination and the implementation of threshold levels in C1-INH concentrates.
Collapse
Affiliation(s)
- Annette Feussner
- Department of Preclinical Research and Development, Operations Support, CSL Behring, Marburg, Germany
| | | | | | | | | |
Collapse
|
48
|
Riedl MA, Bernstein JA, Li H, Reshef A, Lumry W, Moldovan D, Farkas H, Levy R, Baker J, Hardiman Y, Totoritis MC, Relan A, Cicardi M. Recombinant human C1-esterase inhibitor relieves symptoms of hereditary angioedema attacks: phase 3, randomized, placebo-controlled trial. Ann Allergy Asthma Immunol 2014; 112:163-169.e1. [PMID: 24468257 DOI: 10.1016/j.anai.2013.12.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 11/22/2013] [Accepted: 12/03/2013] [Indexed: 11/28/2022]
Abstract
BACKGROUND Hereditary angioedema (HAE), caused by C1 inhibitor (C1INH) deficiency or dysfunction, is characterized by recurrent attacks of tissue swelling affecting multiple anatomic locations. Recombinant human C1INH (rhC1INH) has been shown effective for acute treatment of HAE attacks. OBJECTIVE To evaluate the efficacy and safety of rhC1INH (50 IU/kg to maximum 4,200 IU/treatment) vs placebo in a larger HAE population. METHODS Seventy-five patients experiencing peripheral, abdominal, facial, and/or oropharyngeal laryngeal attacks were randomized (3:2) to rhC1INH (n = 44) or placebo (saline; n = 31). Efficacy was assessed by patient responses on a Treatment Effect Questionnaire (TEQ) and visual analog scale (VAS). Safety also was evaluated. RESULTS Median (95% confidence interval) time to beginning of symptom relief at the primary attack location was 90 minutes (61-150) in rhC1INH-treated patients vs 152 minutes (93, not estimable) in placebo-treated patients (P = .031) based on the TEQ and 75 minutes (60-105) vs 303 minutes (81-720, P = .003) based on a VAS decrease of at least 20 mm. Median time to minimal symptoms was 303 minutes (240-720) in rhC1INH-treated patients vs 483 minutes (300-1,440) in placebo-treated patients based on the TEQ (P = .078) and 240 minutes (177-270) vs 362 minutes (240, not estimable; P = .005), based on an overall VAS less than 20 mm. Overall, rhC1INH was safe and well tolerated; no thromboembolic events, anaphylaxis, or neutralizing antibodies were observed. CONCLUSION Relief of symptoms of HAE attacks was achieved faster with rhC1INH compared with placebo as assessed by the TEQ and VAS, with a positive safety profile. Results are consistent with previous studies showing efficacy and safety of rhC1INH in patients with HAE.
Collapse
Affiliation(s)
- Marc A Riedl
- University of California, San Diego, California.
| | | | - Henry Li
- Institute for Asthma and Allergy, PC, Chevy Chase, Maryland
| | | | | | - Dumitru Moldovan
- University of Medicine and Pharmacy, Mures County Hospital, Tirgu Mures, Romania
| | - Henriette Farkas
- Hungarian Angioedema Center, Semmelweis University, Budapest, Hungary
| | - Robyn Levy
- Family Allergy and Asthma Center, Atlanta, Georgia
| | - James Baker
- Baker Allergy Asthma Dermatology, Lake Oswego, Oregon
| | | | | | - Anurag Relan
- Pharming Technologies BV, Leiden, The Netherlands
| | | | | |
Collapse
|
49
|
Riedl MA, Levy RJ, Suez D, Lockey RF, Baker JW, Relan A, Zuraw BL. Efficacy and safety of recombinant C1 inhibitor for the treatment of hereditary angioedema attacks: a North American open-label study. Ann Allergy Asthma Immunol 2013; 110:295-9. [PMID: 23535096 DOI: 10.1016/j.anai.2013.02.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 02/02/2013] [Accepted: 02/10/2013] [Indexed: 11/21/2022]
Abstract
BACKGROUND The efficacy of recombinant human C1 inhibitor (rhC1INH) for the treatment of patients with acute hereditary angioedema (HAE) attacks has been demonstrated in 2 randomized, double-blind, placebo-controlled studies. OBJECTIVE To assess the safety and efficacy of rhC1INH for repeated treatment of acute attacks of HAE. METHODS In this open-label extension study, patients with eligible HAE attacks were treated with an intravenous 50-U/kg dose of rhC1INH with an option for an additional dose of 50 U/kg based on clinical response. Time to beginning of relief was assessed by patients using a 100-mm visual analogue scale (VAS). Safety evaluation was based on the clinical laboratory results and adverse events. RESULTS Sixty-two patients were treated for 168 attacks (range, 1-8 attacks per patient). A total of 90% of the attacks were treated with a single 50-U/kg dose of rhC1INH. Median times to beginning of symptom relief for the first 5 attacks were 37 to 67 minutes. More than 90% of attacks responded within 4 hours after treatment with rhC1INH. There was no requirement for increased dosing with successive treatments. Thirty-nine patients (63%) reported at least 1 treatment-emergent adverse event, with most events rated mild to moderate. Seven severe treatment-emergent adverse events were reported, and all were considered to be unrelated to treatment with rhC1INH. CONCLUSION The results of this open-label extension support continued efficacy of rhC1INH after repeated treatments for subsequent HAE attacks. There was no increase in adverse event reporting after repeated exposure to rhC1INH.
Collapse
Affiliation(s)
- Marc A Riedl
- University of California Los Angeles, David Geffen School of Medicine, Los Angeles, California 90095-1680, USA.
| | | | | | | | | | | | | |
Collapse
|
50
|
|