1
|
Adamczyk PA, Hwang HJ, Chang TH, Gao Y, Baidoo EEK, Kim J, Webb-Robertson BJM, Flores JE, Quijano KC, Burnet MC, Munoz N, Sundstrom E, Gladden JM, Liu D. The oleaginous yeast Rhodosporidium toruloides engineered for biomass hydrolysate-derived (E)-α-bisabolene production. Metab Eng 2025; 90:92-105. [PMID: 40044027 DOI: 10.1016/j.ymben.2025.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/18/2025] [Accepted: 02/28/2025] [Indexed: 03/19/2025]
Abstract
The oleaginous yeast Rhodosporidiumtoruloides has been exploited for many bioproducts, including several terpenes, owing to its oleaginous nature and biomass inhibitor tolerance. Here, we built upon previous (E)-α-bisabolene work by iteratively stacking the complete mevalonate pathway from Saccharomyces cerevisiae onto a multicopy bisabolene synthase parent strain. Metabolomics and proteomics verified heterologous pathway expression and identified metabolic bottlenecks at three intermediate steps, with candidate feedback-resistant mevalonate kinases screening improving titers 15%. Subtle differences in codon optimization, and preliminary attenuation of competing flux toward lipids resulted in 6-fold, 7-fold higher titers relative to controls, respectively. Media optimization led to modest improvements, with zinc identified as the most promising at 10% titer improvement. Ultimately, high-performance strains were cultivated with corn-stover biomass hydrolysate in microtiter plates at 300 g/L total sugar, achieving 20.8 g/L bisabolene, the highest reported titer in the literature. A 2 L glucose minimal medium bioreactor achieved 19.3 g/L bisabolene and a literature-high productivity of 0.11 g/L/h.
Collapse
Affiliation(s)
- Paul A Adamczyk
- Agile Biofoundry, Emeryville, CA, USA; Sandia National Laboratories, Livermore, CA, USA
| | - Hee Jin Hwang
- Agile Biofoundry, Emeryville, CA, USA; Sandia National Laboratories, Livermore, CA, USA
| | - Ta-Hsuan Chang
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA; Advanced Biofuels and Bioproducts Process Development Unit, Emeryville, CA, USA
| | - Yuqian Gao
- Agile Biofoundry, Emeryville, CA, USA; Pacific Northwest National Laboratory, Richland, WA, USA
| | - Edward E K Baidoo
- Agile Biofoundry, Emeryville, CA, USA; Joint BioEnergy Institute, Emeryville, CA, USA; Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Joonhoon Kim
- Agile Biofoundry, Emeryville, CA, USA; Pacific Northwest National Laboratory, Richland, WA, USA
| | | | - Javier E Flores
- Agile Biofoundry, Emeryville, CA, USA; Pacific Northwest National Laboratory, Richland, WA, USA
| | - Kirch Czarina Quijano
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA; Advanced Biofuels and Bioproducts Process Development Unit, Emeryville, CA, USA
| | - Meagan C Burnet
- Agile Biofoundry, Emeryville, CA, USA; Pacific Northwest National Laboratory, Richland, WA, USA
| | - Nathalie Munoz
- Agile Biofoundry, Emeryville, CA, USA; Pacific Northwest National Laboratory, Richland, WA, USA
| | - Eric Sundstrom
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA; Advanced Biofuels and Bioproducts Process Development Unit, Emeryville, CA, USA
| | - John M Gladden
- Agile Biofoundry, Emeryville, CA, USA; Sandia National Laboratories, Livermore, CA, USA; Joint BioEnergy Institute, Emeryville, CA, USA
| | - Di Liu
- Agile Biofoundry, Emeryville, CA, USA; Sandia National Laboratories, Livermore, CA, USA.
| |
Collapse
|
2
|
Gong G, Wu B, Liu L, Li J, He M. Engineering oleaginous red yeasts as versatile chassis for the production of oleochemicals and valuable compounds: Current advances and perspectives. Biotechnol Adv 2024; 76:108432. [PMID: 39163921 DOI: 10.1016/j.biotechadv.2024.108432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/04/2024] [Accepted: 08/16/2024] [Indexed: 08/22/2024]
Abstract
Enabling the transition towards a future circular bioeconomy based on industrial biomanufacturing necessitates the development of efficient and versatile microbial platforms for sustainable chemical and fuel production. Recently, there has been growing interest in engineering non-model microbes as superior biomanufacturing platforms due to their broad substrate range and high resistance to stress conditions. Among these non-conventional microbes, red yeasts belonging to the genus Rhodotorula have emerged as promising industrial chassis for the production of specialty chemicals such as oleochemicals, organic acids, fatty acid derivatives, terpenoids, and other valuable compounds. Advancements in genetic and metabolic engineering techniques, coupled with systems biology analysis, have significantly enhanced the production capacity of red yeasts. These developments have also expanded the range of substrates and products that can be utilized or synthesized by these yeast species. This review comprehensively examines the current efforts and recent progress made in red yeast research. It encompasses the exploration of available substrates, systems analysis using multi-omics data, establishment of genome-scale models, development of efficient molecular tools, identification of genetic elements, and engineering approaches for the production of various industrially relevant bioproducts. Furthermore, strategies to improve substrate conversion and product formation both with systematic and synthetic biology approaches are discussed, along with future directions and perspectives in improving red yeasts as more versatile biotechnological chassis in contributing to a circular bioeconomy. The review aims to provide insights and directions for further research in this rapidly evolving field. Ultimately, harnessing the capabilities of red yeasts will play a crucial role in paving the way towards next-generation sustainable bioeconomy.
Collapse
Affiliation(s)
- Guiping Gong
- Biomass Energy Technology Research Centre, Rural Energy and Ecology Research Center of CAAS, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China.
| | - Bo Wu
- Biomass Energy Technology Research Centre, Rural Energy and Ecology Research Center of CAAS, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Linpei Liu
- Biomass Energy Technology Research Centre, Rural Energy and Ecology Research Center of CAAS, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Jianting Li
- Biomass Energy Technology Research Centre, Rural Energy and Ecology Research Center of CAAS, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Mingxiong He
- Biomass Energy Technology Research Centre, Rural Energy and Ecology Research Center of CAAS, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| |
Collapse
|
3
|
Wankhede L, Bhardwaj G, Saini R, Osorio-Gonzalez CS, Brar SK. Technological modes and processes to enhance the Rhodosporidium toruloides based lipid accumulation. Microbiol Res 2024; 287:127840. [PMID: 39032267 DOI: 10.1016/j.micres.2024.127840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/21/2024] [Accepted: 07/13/2024] [Indexed: 07/23/2024]
Abstract
Rhodosporidium toruloides has emerged as an excellent option for microbial lipid production due to its ability to accumulate up to 70 % of lipids per cell dry weight, consume multiple substrates such as glucose and xylose, and tolerate toxic compounds. Despite the potential of Rhodosporidium toruloides for high lipid yields, achieving these remains is a significant hurdle. A comprehensive review is essential to thoroughly evaluate the advancements in processes and technologies to enhance lipid production in R. toruloides. The review covers various strategies for enhancing lipid production like co-culture, adaptive evolution, carbon flux analysis, as well as different modes of fermentation. This review will help researchers to better understand the recent developments in technologies for sustainable and scalable lipid production from R. toruloides and simultaneously emphasize the need for developing an efficient and sustainable bioprocess.
Collapse
Affiliation(s)
- Lachi Wankhede
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario M3J 1P3, Canada
| | - Gaurav Bhardwaj
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario M3J 1P3, Canada
| | - Rahul Saini
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario M3J 1P3, Canada
| | - Carlos S Osorio-Gonzalez
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario M3J 1P3, Canada
| | - Satinder Kaur Brar
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario M3J 1P3, Canada.
| |
Collapse
|
4
|
Castañeda MT, Nuñez S, Jamilis M, De Battista H. Computational assessment of lipid production in Rhodosporidium toruloides in two-stage and one-stage batch bioprocesses. Biotechnol Bioeng 2024; 121:238-249. [PMID: 37902687 DOI: 10.1002/bit.28579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 09/04/2023] [Accepted: 10/14/2023] [Indexed: 10/31/2023]
Abstract
Oleaginous yeasts are promising platforms for microbial lipids production as a renewable and sustainable alternative to vegetable oils in biodiesel production. In this paper, a thorough in silico assessment of lipid production in batch cultivation by Rhodosporidium toruloides was developed. By means of dynamic flux balance analysis, the traditional two-stage bioprocess (TSB) performed by the native strain was contrasted with one-stage bioprocess (OSB) using four designed strains obtained by gene knockout strategies. Lipid titer, yield, content, and productivity were analyzed at different initial C/N ratios as relevant performance indicators used in bioprocesses. By weighting these indicators, a global lipid efficiency metric (GLEM) was defined to consider different scenarios. Under simulated conditions, designed strains for lipid overproduction in OSB outperformed the TSB in terms of lipid title (up to threefold), lipid yield (up to 2.4-fold), lipid content (up to 2.8-fold, with a maximum of 76%), and productivity (up to 1.3-fold), depending on C/N ratios. Using these efficiency parameters and the proposed GLEM, the process of selecting the most suitable candidates for lipid production could be carried out before experimental assays. This methodology holds the potential to be extended to other oleaginous microorganisms and diverse strain design techniques.
Collapse
Affiliation(s)
- María Teresita Castañeda
- Grupo de Control Aplicado (GCA), Instituto LEICI, UNLP-CONICET, Facultad de Ingeniería, Universidad Nacional de La Plata, La Plata, Argentina
| | - Sebastián Nuñez
- Grupo de Control Aplicado (GCA), Instituto LEICI, UNLP-CONICET, Facultad de Ingeniería, Universidad Nacional de La Plata, La Plata, Argentina
| | - Martín Jamilis
- Grupo de Control Aplicado (GCA), Instituto LEICI, UNLP-CONICET, Facultad de Ingeniería, Universidad Nacional de La Plata, La Plata, Argentina
| | - Hernán De Battista
- Grupo de Control Aplicado (GCA), Instituto LEICI, UNLP-CONICET, Facultad de Ingeniería, Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
5
|
Brink DP, Mierke F, Norbeck J, Siewers V, Andlid T. Expanding the genetic toolbox of Rhodotorula toruloides by identification and validation of six novel promoters induced or repressed under nitrogen starvation. Microb Cell Fact 2023; 22:160. [PMID: 37598166 PMCID: PMC10440040 DOI: 10.1186/s12934-023-02175-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/09/2023] [Indexed: 08/21/2023] Open
Abstract
BACKGROUND The non-conventional yeast Rhodotorula toruloides is an emerging host organism in biotechnology by merit of its natural capacity to accumulate high levels of carotenoids and intracellular storage lipids from a variety of carbon sources. While the number of genetic engineering strategies that employ R. toruloides is increasing, the lack of genetic tools available for modification of this yeast is still limiting strain development. For instance, several strong, constitutive R. toruloides promoters have been characterized, but to date, only five inducible promoters have been identified. Although nitrogen-limited cultivation conditions are commonly used to induce lipid accumulation in this yeast, no promoters regulated by nitrogen starvation have been described for R. toruloides. RESULTS In this study, we used a combination of genomics and transcriptomics methods to identify novel R. toruloides promoter sequences that are either inducible or repressible by nitrogen starvation. RNA sequencing was used to assess gene expression in the recently isolated strain R. toruloides BOT-A2 during exponential growth and during nitrogen starvation, when cultivated with either glucose or xylose as the carbon source. The genome of BOT-A2 was sequenced using a combination of long- and short-read sequencing and annotated with support of the RNAseq data. Differential expression analysis was used to identify genes with a |log2 fold change|≥ 2 when comparing their expression during nitrogen depletion to that during exponential growth. The promoter regions from 16 of these genes were evaluated for their ability to drive the expression of a fluorescent reporter gene. Three promoters that were clearly upregulated under nitrogen starvation and three that were downregulated were selected and further characterized. One promoter, derived from gene RTBOTA2_003877, was found to function like an on-off switch, as it was only upregulated under full nitrogen depletion and downregulated in the presence of the nitrogen source. CONCLUSIONS Six new R. toruloides promoters that were either upregulated or downregulated under nitrogen-starvation were identified. These substantially contribute to the available promoters when engineering this organism and are foreseen to be particularly useful for future engineering strategies requiring specific regulation of target genes in accordance with nitrogen availability.
Collapse
Affiliation(s)
- Daniel P Brink
- Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
- Applied Microbiology, Department of Chemistry, Lund University, Lund, Sweden
| | - Friederike Mierke
- Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
- Food and Nutrition Science, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Joakim Norbeck
- Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Verena Siewers
- Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden.
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark.
| | - Thomas Andlid
- Food and Nutrition Science, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
6
|
Yu Y, Shi S. Development and Perspective of Rhodotorula toruloides as an Efficient Cell Factory. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1802-1819. [PMID: 36688927 DOI: 10.1021/acs.jafc.2c07361] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Rhodotorula toruloides is receiving significant attention as a novel cell factory because of its high production of lipids and carotenoids, fast growth and high cell density, as well as the ability to utilize a wide variety of substrates. These attractive traits of R. toruloides make it possible to become a low-cost producer that can be engineered for the production of various fuels and chemicals. However, the lack of understanding and genetic engineering tools impedes its metabolic engineering applications. A number of research efforts have been devoted to filling these gaps. This review focuses on recent developments in genetic engineering tools, advances in systems biology for improved understandings, and emerging engineered strains for metabolic engineering applications. Finally, future trends and barriers in developing R. toruloides as a cell factory are also discussed.
Collapse
Affiliation(s)
- Yi Yu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shuobo Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
7
|
Osorio-González CS, Saini R, Hegde K, Brar SK, Avalos Ramirez A. Furfural degradation and its effect on Rhodosporidium toruloides-1588 during microbial growth and lipid accumulation. BIORESOURCE TECHNOLOGY 2022; 359:127496. [PMID: 35718247 DOI: 10.1016/j.biortech.2022.127496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
The presence of furfural in the hydrolysates obtained from lignocellulosic biomass sources represents an enormous challenge during their fermentation because furfural is a toxic compound for different microorganisms. Rhodosporidium toruloides-1588 can grow and accumulate lipids using wood hydrolysate as a substrate containing up to 1 g/L of furfural. In this study, the capacity of R. toruloides-1588 to grow and accumulate lipids using furfural without glucose in the media has been observed. R. toruloides-1588 degraded up to 3 g/L of furfural into furfuryl alcohol (1.8 g/L) and 2-furoic acid (0.9 g/L). Furthermore, R. toruloides-1588 accumulated 52% and 30% of its dry weight into lipids using YM media and YM media without glucose, respectively. Fatty acids such as palmitic, stearic and oleic were the most abundant. Finally, R. toruloides-1588 could potentially utilize furfural as a carbon source.
Collapse
Affiliation(s)
- Carlos S Osorio-González
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario M3J 1P3, Canada
| | - Rahul Saini
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario M3J 1P3, Canada
| | - Krishnamoorthy Hegde
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario M3J 1P3, Canada
| | - Satinder K Brar
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario M3J 1P3, Canada; INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec G1K 9A9, Canada.
| | - Antonio Avalos Ramirez
- Centre National en Électrochimie et en technologies environnementales, 2263, Avenue du Collège, Shawinigan, G9N 6V8, QC, Canada
| |
Collapse
|
8
|
Zhao Y, Song B, Li J, Zhang J. Rhodotorula toruloides: an ideal microbial cell factory to produce oleochemicals, carotenoids, and other products. World J Microbiol Biotechnol 2021; 38:13. [PMID: 34873661 DOI: 10.1007/s11274-021-03201-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/29/2021] [Indexed: 12/20/2022]
Abstract
Requirement of clean energy sources urges us to find substitutes for fossil fuels. Microorganisms provide an option to produce feedstock for biofuel production by utilizing inexpensive, renewable biomass. Rhodotorula toruloides (Rhodosporidium toruloides), a non-conventional oleaginous yeast, can accumulate intracellular lipids (single cell oil, SCO) more than 70% of its cell dry weight. At present, the SCO-based biodiesel is not a price-competitive fuel to the petroleum diesel. Many efforts are made to cut the cost of SCO by strengthening the performance of genetically modified R. toruloides strains and by valorization of low-cost biomass, including crude glycerol, lignocellulosic hydrolysates, food and agro waste, wastewater, and volatile fatty acids. Besides, optimization of fermentation and SCO recovery processes are carefully studied as well. Recently, new R. toruloides strains are developed via metabolic engineering and synthetic biology methods to produce value-added chemicals, such as sesquiterpenes, fatty acid esters, fatty alcohols, carotenoids, and building block chemicals. This review summarizes recent advances in the main aspects of R. toruloides studies, namely, construction of strains with new traits, valorization of low-cost biomass, process detection and optimization, and product recovery. In general, R. toruloides is a promising microbial cell factory for production of biochemicals.
Collapse
Affiliation(s)
- Yu Zhao
- Center for Molecular Metabolism, Nanjing University of Science & Technology, 200 Xiaolingwei Street, Nanjing, 210094, China.,Key Laboratory of Metabolic Engineering and Biosynthesis Technology of Ministry of Industry and Information Technology, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China
| | - Baocai Song
- Center for Molecular Metabolism, Nanjing University of Science & Technology, 200 Xiaolingwei Street, Nanjing, 210094, China.,Key Laboratory of Metabolic Engineering and Biosynthesis Technology of Ministry of Industry and Information Technology, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China
| | - Jing Li
- Center for Molecular Metabolism, Nanjing University of Science & Technology, 200 Xiaolingwei Street, Nanjing, 210094, China. .,Key Laboratory of Metabolic Engineering and Biosynthesis Technology of Ministry of Industry and Information Technology, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China.
| | - Jianfa Zhang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, 200 Xiaolingwei Street, Nanjing, 210094, China.,Key Laboratory of Metabolic Engineering and Biosynthesis Technology of Ministry of Industry and Information Technology, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China
| |
Collapse
|
9
|
Shan L, Dai Z, Wang Q. Advances and Opportunities of CRISPR/Cas Technology in Bioengineering Non-conventional Yeasts. Front Bioeng Biotechnol 2021; 9:765396. [PMID: 34708030 PMCID: PMC8542773 DOI: 10.3389/fbioe.2021.765396] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 09/27/2021] [Indexed: 12/26/2022] Open
Abstract
Non-conventional yeasts have attracted a growing interest on account of their excellent characteristics. In recent years, the emerging of CRISPR/Cas technology has improved the efficiency and accuracy of genome editing. Utilizing the advantages of CRISPR/Cas in bioengineering of non-conventional yeasts, quite a few advancements have been made. Due to the diversity in their genetic background, the ways for building a functional CRISPR/Cas system of various species non-conventional yeasts were also species-specific. Herein, we have summarized the different strategies for optimizing CRISPR/Cas systems in different non-conventional yeasts and their biotechnological applications in the construction of cell factories. In addition, we have proposed some potential directions for broadening and improving the application of CRISPR/Cas technology in non-conventional yeasts.
Collapse
Affiliation(s)
- Lu Shan
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Zongjie Dai
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Qinhong Wang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| |
Collapse
|
10
|
Jagtap SS, Deewan A, Liu JJ, Walukiewicz HE, Yun EJ, Jin YS, Rao CV. Integrating transcriptomic and metabolomic analysis of the oleaginous yeast Rhodosporidium toruloides IFO0880 during growth under different carbon sources. Appl Microbiol Biotechnol 2021; 105:7411-7425. [PMID: 34491401 DOI: 10.1007/s00253-021-11549-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 08/18/2021] [Accepted: 08/22/2021] [Indexed: 12/31/2022]
Abstract
Rhodosporidium toruloides is an oleaginous yeast capable of producing a variety of biofuels and bioproducts from diverse carbon sources. Despite numerous studies showing its promise as a platform microorganism, little is known about its metabolism and physiology. In this work, we investigated the central carbon metabolism in R. toruloides IFO0880 using transcriptomics and metabolomics during growth on glucose, xylose, acetate, or soybean oil. These substrates were chosen because they can be derived from plants. Significant changes in gene expression and metabolite concentrations were observed during growth on these four substrates. We mapped these changes onto the governing metabolic pathways to better understand how R. toruloides reprograms its metabolism to enable growth on these substrates. One notable finding concerns xylose metabolism, where poor expression of xylulokinase induces a bypass leading to arabitol production. Collectively, these results further our understanding of central carbon metabolism in R. toruloides during growth on different substrates. They may also help guide the metabolic engineering and development of better models of metabolism for R. toruloides.Key points• Gene expression and metabolite concentrations were significantly changed.• Reduced expression of xylulokinase induces a bypass leading to arabitol production.• R. toruloides reprograms its metabolism to allow growth on different substrates.
Collapse
Affiliation(s)
- Sujit Sadashiv Jagtap
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois At Urbana-Champaign, Urbana, IL, USA
- Department of Chemical and Biomolecular Engineering, University of Illinois At Urbana-Champaign, Urbana, IL, USA
| | - Anshu Deewan
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois At Urbana-Champaign, Urbana, IL, USA
- Department of Chemical and Biomolecular Engineering, University of Illinois At Urbana-Champaign, Urbana, IL, USA
| | - Jing-Jing Liu
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois At Urbana-Champaign, Urbana, IL, USA
| | - Hanna E Walukiewicz
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois At Urbana-Champaign, Urbana, IL, USA
- Department of Chemical and Biomolecular Engineering, University of Illinois At Urbana-Champaign, Urbana, IL, USA
| | - Eun Ju Yun
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois At Urbana-Champaign, Urbana, IL, USA
- Department of Biotechnology, Graduate School, Korea University, Seoul, Republic of Korea
| | - Yong-Su Jin
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois At Urbana-Champaign, Urbana, IL, USA
- Department of Food Science and Human Nutrition, University of Illinois At Urbana-Champaign, Urbana, IL, USA
| | - Christopher V Rao
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois At Urbana-Champaign, Urbana, IL, USA.
- Department of Chemical and Biomolecular Engineering, University of Illinois At Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
11
|
Zhou W, Wang Y, Zhang J, Zhao M, Tang M, Zhou W, Gong Z. A metabolic model of Lipomyces starkeyi for predicting lipogenesis potential from diverse low-cost substrates. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:148. [PMID: 34210354 PMCID: PMC8247262 DOI: 10.1186/s13068-021-01997-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/17/2021] [Indexed: 05/08/2023]
Abstract
BACKGROUND Lipomyces starkeyi has been widely regarded as a promising oleaginous yeast with broad industrial application prospects because of its wide substrate spectrum, good adaption to fermentation inhibitors, excellent fatty acid composition for high-quality biodiesel, and negligible lipid remobilization. However, the currently low experimental lipid yield of L. starkeyi prohibits its commercial success. Metabolic model is extremely valuable to comprehend the complex biochemical processes and provide great guidance for strain modification to facilitate the lipid biosynthesis. RESULTS A small-scale metabolic model of L. starkeyi NRRL Y-11557 was constructed based on the genome annotation information. The theoretical lipid yields of glucose, cellobiose, xylose, glycerol, and acetic acid were calculated according to the flux balance analysis (FBA). The optimal flux distribution of the lipid synthesis showed that pentose phosphate pathway (PPP) independently met the necessity of NADPH for lipid synthesis, resulting in the relatively low lipid yields. Several targets (NADP-dependent oxidoreductases) beneficial for oleaginicity of L. starkeyi with significantly higher theoretical lipid yields were compared and elucidated. The combined utilization of acetic acid and other carbon sources and a hypothetical reverse β-oxidation (RBO) pathway showed outstanding potential for improving the theoretical lipid yield. CONCLUSIONS The lipid biosynthesis potential of L. starkeyi can be significantly improved through appropriate modification of metabolic network, as well as combined utilization of carbon sources according to the metabolic model. The prediction and analysis provide valuable guidance to improve lipid production from various low-cost substrates.
Collapse
Affiliation(s)
- Wei Zhou
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Road, Wuhan, 430081 People’s Republic of China
| | - Yanan Wang
- State Key Laboratory Breeding Base of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 People’s Republic of China
| | - Junlu Zhang
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Road, Wuhan, 430081 People’s Republic of China
| | - Man Zhao
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Road, Wuhan, 430081 People’s Republic of China
| | - Mou Tang
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Road, Wuhan, 430081 People’s Republic of China
| | - Wenting Zhou
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Road, Wuhan, 430081 People’s Republic of China
- HuBei Province Key Laboratory of Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan, 430081 People’s Republic of China
| | - Zhiwei Gong
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Road, Wuhan, 430081 People’s Republic of China
- HuBei Province Key Laboratory of Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan, 430081 People’s Republic of China
| |
Collapse
|
12
|
Zhao Y, Zhao Y, Fu R, Zhang T, Li J, Zhang J. Transcriptomic and metabolomic profiling of a Rhodotorula color mutant to improve its lipid productivity in fed-batch fermentation. World J Microbiol Biotechnol 2021; 37:77. [PMID: 33792794 DOI: 10.1007/s11274-021-03043-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 03/19/2021] [Indexed: 11/24/2022]
Abstract
Lipids produced by oleaginous microorganisms enrich the supply of feedstock for bio-fuel. In this study, a mutant (Mut) obtained by UV-nitrosoguanidine mutagenesis turned its colony color from orange-red to light-yellow and showed higher lipid productivity at 37 °C than the original strain Rhodotorula sp. U13N3 (Rht) in the glycerol medium. The metabolic changes between Mut and Rht in batch fermentation were investigated by transcriptomic and metabolomic profiling at the biomass accumulation (30 h) and lipid production (96 h) stages. The average base number in each strain was 5.80 × 109 ± 0.38 × 109 bp (mean ± SD) with 62.43% ± 0.13% GC ratio, and 7499 unigenes were assembled after Illumina sequencing. Moreover, 33 metabolites were quantified by 1H NMR-based profiling. The multi-omics results demonstrated that Mut showed increased glycerol transport and utilization capabilities especially at the first stage (30 h). Then the carbon flux shifted from the TCA cycle to lipid production (96 h). The increased lipid productivity of Mut was partially attributed to the down-regulation of mannitol biosynthesis. However, the mechanism for color change was elusive. At 96 h, the low level of cytosol glycerol probably restricted the lipid production. As a result, supplementation of glycerol in fed-batch fermentation remarkably improved the biomass, lipid production, and lipid content to 34.60 g/L, 25.72 g/L, and 74.3% (w/w dcw), respectively. The cell morphology implied that excessively prolonging the fermentation time was detrimental to the final lipid yield due to cell breakage. In conclusion, the Rhodotorula mutant provided a candidate strain for lipid production with glycerol as the carbon source.
Collapse
Affiliation(s)
- Yihan Zhao
- Center for Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China
| | - Yu Zhao
- Center for Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China
| | - Renjie Fu
- Center for Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China
| | - Tao Zhang
- Center for Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China
| | - Jing Li
- Center for Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China. .,School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China.
| | - Jianfa Zhang
- Center for Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China.,School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China
| |
Collapse
|
13
|
Simensen V, Voigt A, Almaas E. High-quality genome-scale metabolic model of Aurantiochytrium sp. T66. Biotechnol Bioeng 2021; 118:2105-2117. [PMID: 33624839 DOI: 10.1002/bit.27726] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/21/2021] [Accepted: 02/14/2021] [Indexed: 01/17/2023]
Abstract
The long-chain, ω-3 polyunsaturated fatty acids (PUFAs) (e.g., eicosapentaenoic acid [EPA] and docosahexaenoic acid [DHA]), are essential for humans and animals, including marine fish species. Presently, the primary source of these PUFAs is fish oils. As the global production of fish oils appears to be reaching its limits, alternative sources of high-quality ω-3 PUFAs is paramount to support the growing aquaculture industry. Thraustochytrids are a group of heterotrophic protists with the capability to synthesize and accrue large amounts of DHA. Thus, the thraustochytrids are prime candidates to solve the increasing demand for ω-3 PUFAs using microbial cell factories. However, a systems-level understanding of their metabolic shift from cellular growth into lipid accumulation is, to a large extent, unclear. Here, we reconstructed a high-quality genome-scale metabolic model of the thraustochytrid Aurantiochytrium sp. T66 termed iVS1191. Through iterative rounds of model refinement and extensive manual curation, we significantly enhanced the metabolic scope and coverage of the reconstruction from that of previously published models, making considerable improvements with stoichiometric consistency, metabolic connectivity, and model annotations. We show that iVS1191 is highly consistent with experimental growth data, reproducing in vivo growth phenotypes as well as specific growth rates on minimal carbon media. The availability of iVS1191 provides a solid framework for further developing our understanding of T66's metabolic properties, as well as exploring metabolic engineering and process-optimization strategies in silico for increased ω-3 PUFA production.
Collapse
Affiliation(s)
- Vetle Simensen
- Department of Biotechnology and Food Science, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
| | - André Voigt
- Department of Biotechnology and Food Science, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
| | - Eivind Almaas
- Department of Biotechnology and Food Science, NTNU - Norwegian University of Science and Technology, Trondheim, Norway.,Department of Public Health and General Practice, K.G. Jebsen Center for Genetic Epidemiology, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
14
|
Domenzain I, Li F, Kerkhoven EJ, Siewers V. Evaluating accessibility, usability and interoperability of genome-scale metabolic models for diverse yeasts species. FEMS Yeast Res 2021; 21:foab002. [PMID: 33428734 PMCID: PMC7943257 DOI: 10.1093/femsyr/foab002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 01/08/2021] [Indexed: 12/18/2022] Open
Abstract
Metabolic network reconstructions have become an important tool for probing cellular metabolism in the field of systems biology. They are used as tools for quantitative prediction but also as scaffolds for further knowledge contextualization. The yeast Saccharomyces cerevisiae was one of the first organisms for which a genome-scale metabolic model (GEM) was reconstructed, in 2003, and since then 45 metabolic models have been developed for a wide variety of relevant yeasts species. A systematic evaluation of these models revealed that-despite this long modeling history-the sequential process of tracing model files, setting them up for basic simulation purposes and comparing them across species and even different versions, is still not a generalizable task. These findings call the yeast modeling community to comply to standard practices on model development and sharing in order to make GEMs accessible and useful for a wider public.
Collapse
Affiliation(s)
- Iván Domenzain
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE-412 96, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Kemivägen 10, SE-412 96, Gothenburg, Sweden
| | - Feiran Li
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE-412 96, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Kemivägen 10, SE-412 96, Gothenburg, Sweden
| | - Eduard J Kerkhoven
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE-412 96, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Kemivägen 10, SE-412 96, Gothenburg, Sweden
| | - Verena Siewers
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE-412 96, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Kemivägen 10, SE-412 96, Gothenburg, Sweden
| |
Collapse
|
15
|
Patra P, Das M, Kundu P, Ghosh A. Recent advances in systems and synthetic biology approaches for developing novel cell-factories in non-conventional yeasts. Biotechnol Adv 2021; 47:107695. [PMID: 33465474 DOI: 10.1016/j.biotechadv.2021.107695] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 12/14/2020] [Accepted: 01/09/2021] [Indexed: 12/14/2022]
Abstract
Microbial bioproduction of chemicals, proteins, and primary metabolites from cheap carbon sources is currently an advancing area in industrial research. The model yeast, Saccharomyces cerevisiae, is a well-established biorefinery host that has been used extensively for commercial manufacturing of bioethanol from myriad carbon sources. However, its Crabtree-positive nature often limits the use of this organism for the biosynthesis of commercial molecules that do not belong in the fermentative pathway. To avoid extensive strain engineering of S. cerevisiae for the production of metabolites other than ethanol, non-conventional yeasts can be selected as hosts based on their natural capacity to produce desired commodity chemicals. Non-conventional yeasts like Kluyveromyces marxianus, K. lactis, Yarrowia lipolytica, Pichia pastoris, Scheffersomyces stipitis, Hansenula polymorpha, and Rhodotorula toruloides have been considered as potential industrial eukaryotic hosts owing to their desirable phenotypes such as thermotolerance, assimilation of a wide range of carbon sources, as well as ability to secrete high titers of protein and lipid. However, the advanced metabolic engineering efforts in these organisms are still lacking due to the limited availability of systems and synthetic biology methods like in silico models, well-characterised genetic parts, and optimized genome engineering tools. This review provides an insight into the recent advances and challenges of systems and synthetic biology as well as metabolic engineering endeavours towards the commercial usage of non-conventional yeasts. Particularly, the approaches in emerging non-conventional yeasts for the production of enzymes, therapeutic proteins, lipids, and metabolites for commercial applications are extensively discussed here. Various attempts to address current limitations in designing novel cell factories have been highlighted that include the advances in the fields of genome-scale metabolic model reconstruction, flux balance analysis, 'omics'-data integration into models, genome-editing toolkit development, and rewiring of cellular metabolisms for desired chemical production. Additionally, the understanding of metabolic networks using 13C-labelling experiments as well as the utilization of metabolomics in deciphering intracellular fluxes and reactions have also been discussed here. Application of cutting-edge nuclease-based genome editing platforms like CRISPR/Cas9, and its optimization towards efficient strain engineering in non-conventional yeasts have also been described. Additionally, the impact of the advances in promising non-conventional yeasts for efficient commercial molecule synthesis has been meticulously reviewed. In the future, a cohesive approach involving systems and synthetic biology will help in widening the horizon of the use of unexplored non-conventional yeast species towards industrial biotechnology.
Collapse
Affiliation(s)
- Pradipta Patra
- School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Manali Das
- School of Bioscience, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Pritam Kundu
- School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Amit Ghosh
- School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, West Bengal 721302, India; P.K. Sinha Centre for Bioenergy and Renewables, Indian Institute of Technology Kharagpur, West Bengal 721302, India.
| |
Collapse
|
16
|
Zhang L, Loh KC, Kuroki A, Dai Y, Tong YW. Microbial biodiesel production from industrial organic wastes by oleaginous microorganisms: Current status and prospects. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123543. [PMID: 32739727 DOI: 10.1016/j.jhazmat.2020.123543] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/16/2020] [Accepted: 07/20/2020] [Indexed: 06/11/2023]
Abstract
This review aims to encourage the technical development of microbial biodiesel production from industrial-organic-wastes-derived volatile fatty acids (VFAs). To this end, this article summarizes the current status of several key technical steps during microbial biodiesel production, including (1) acidogenic fermentation of bio-wastes for VFA collection, (2) lipid accumulation in oleaginous microorganisms, (3) microbial lipid extraction, (4) transesterification of microbial lipids into crude biodiesel, and (5) crude biodiesel purification. The emerging membrane-based bioprocesses such as electrodialysis, forward osmosis and membrane distillation, are promising approaches as they could help tackle technical challenges related to the separation and recovery of VFAs from the fermentation broth. The genetic engineering and metabolic engineering approaches could be applied to design microbial species with higher lipid productivity and rapid growth rate for enhanced fatty acids synthesis. The enhanced in situ transesterification technologies aided by microwave, ultrasound and supercritical solvents are also recommended for future research. Technical limitations and cost-effectiveness of microbial biodiesel production from bio-wastes are also discussed, in regard to its potential industrial development. Based on the overview on microbial biodiesel technologies, an integrated biodiesel production line incorporating all the critical technical steps is proposed for unified management and continuous optimization for highly efficient biodiesel production.
Collapse
Affiliation(s)
- Le Zhang
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, 138602, Singapore
| | - Kai-Chee Loh
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, 138602, Singapore; Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore
| | - Agnès Kuroki
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, 138602, Singapore
| | - Yanjun Dai
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yen Wah Tong
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, 138602, Singapore; Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore.
| |
Collapse
|
17
|
Lee JW, Yook S, Koh H, Rao CV, Jin YS. Engineering xylose metabolism in yeasts to produce biofuels and chemicals. Curr Opin Biotechnol 2020; 67:15-25. [PMID: 33246131 DOI: 10.1016/j.copbio.2020.10.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/18/2020] [Accepted: 10/25/2020] [Indexed: 10/22/2022]
Abstract
Xylose is the second most abundant sugar in lignocellulosic biomass. Efficient and rapid xylose utilization is essential for the economic bioconversion of lignocellulosic biomass into value-added products. Building on previous pathway engineering efforts to enable xylose fermentation in Saccharomyces cerevisiae, recent work has focused on reprogramming regulatory networks to enhance xylose utilization by engineered S. cerevisiae. Also, potential benefits of using xylose for the production of various value-added products have been demonstrated. With increasing needs of lipid-derived bioproducts, activation and enhancement of xylose metabolism in oleaginous yeasts have been attempted. This review highlights recent progress of metabolic engineering to achieve efficient and rapid xylose utilization by S. cerevisiae and oleaginous yeasts, such as Yarrowia lipolytica, Rhodosporidium toruloides, and Lipomyces starkeyi.
Collapse
Affiliation(s)
- Jae Won Lee
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Sangdo Yook
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Hyungi Koh
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Christopher V Rao
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yong-Su Jin
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
18
|
Tang M, Wang Y, Zhou W, Yang M, Liu Y, Gong Z. Efficient conversion of chitin-derived carbon sources into microbial lipid by the oleaginous yeast Cutaneotrichosporon oleaginosum. BIORESOURCE TECHNOLOGY 2020; 315:123897. [PMID: 32736322 DOI: 10.1016/j.biortech.2020.123897] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/17/2020] [Accepted: 07/18/2020] [Indexed: 05/21/2023]
Abstract
Chitin represents the second most abundant biomass after lignocelluloses in the biosphere. It can be depolymerized into either N-acetylglucosamine (GlcNAc) or glucosamine (GlcN) and acetate by different degradation strategies. However, these chitin-derived carbon sources have been scarcely compared for lipid production. Here, GlcNAc was found superior to GlcN or acetate for lipid accumulation by Cutaneotrichosporon oleaginosum. The lipid accumulation potential of these carbon sources was calculated based on a small scale metabolic model of C. oleaginosum. Co-fermentation of GlcN and acetate under phosphate limitation rendered improved lipid production. GlcN and acetate were assimilated simultaneously. The highest lipid titer and yield of 10.1 g/L and 0.25 g/g, respectively, was reached when GlcNAc was used under phosphate limitation. The fatty acids composition of the lipid samples showed similarities to vegetable oils, demonstrating the suitability in biodiesel industry. This study provides profitable guidance for the design of chitin-to-lipids routes.
Collapse
Affiliation(s)
- Mou Tang
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Road, Wuhan 430081, People's Republic of China
| | - Yanan Wang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, People's Republic of China
| | - Wenting Zhou
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Road, Wuhan 430081, People's Republic of China; HuBei Province Key Laboratory of Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan 430081, People's Republic of China
| | - Mian Yang
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Road, Wuhan 430081, People's Republic of China
| | - Yi Liu
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Road, Wuhan 430081, People's Republic of China; College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Zhiwei Gong
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Road, Wuhan 430081, People's Republic of China; HuBei Province Key Laboratory of Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan 430081, People's Republic of China.
| |
Collapse
|
19
|
Pinheiro MJ, Bonturi N, Belouah I, Miranda EA, Lahtvee PJ. Xylose Metabolism and the Effect of Oxidative Stress on Lipid and Carotenoid Production in Rhodotorula toruloides: Insights for Future Biorefinery. Front Bioeng Biotechnol 2020; 8:1008. [PMID: 32974324 PMCID: PMC7466555 DOI: 10.3389/fbioe.2020.01008] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/31/2020] [Indexed: 12/04/2022] Open
Abstract
The use of cell factories to convert sugars from lignocellulosic biomass into chemicals in which oleochemicals and food additives, such as carotenoids, is essential for the shift toward sustainable processes. Rhodotorula toruloides is a yeast that naturally metabolises a wide range of substrates, including lignocellulosic hydrolysates, and converts them into lipids and carotenoids. In this study, xylose, the main component of hemicellulose, was used as the sole substrate for R. toruloides, and a detailed physiology characterisation combined with absolute proteomics and genome-scale metabolic models was carried out to understand the regulation of lipid and carotenoid production. To improve these productions, oxidative stress was induced by hydrogen peroxide and light irradiation and further enhanced by adaptive laboratory evolution. Based on the online measurements of growth and CO2 excretion, three distinct growth phases were identified during batch cultivations. Majority of the intracellular flux estimations showed similar trends with the measured protein levels and demonstrated improved NADPH regeneration, phosphoketolase activity and reduced β-oxidation, correlating with increasing lipid yields. Light irradiation resulted in 70% higher carotenoid and 40% higher lipid content compared to the optimal growth conditions. The presence of hydrogen peroxide did not affect the carotenoid production but culminated in the highest lipid content of 0.65 g/gDCW. The adapted strain showed improved fitness and 2.3-fold higher carotenoid content than the parental strain. This work presents a holistic view of xylose conversion into microbial oil and carotenoids by R. toruloides, in a process toward renewable and cost-effective production of these molecules.
Collapse
Affiliation(s)
- Marina Julio Pinheiro
- Institute of Technology, University of Tartu, Tartu, Estonia
- Department of Materials and Bioprocess Engineering, School of Chemical Engineering, University of Campinas, Campinas, Brazil
| | | | - Isma Belouah
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Everson Alves Miranda
- Department of Materials and Bioprocess Engineering, School of Chemical Engineering, University of Campinas, Campinas, Brazil
| | | |
Collapse
|
20
|
Wen Z, Zhang S, Odoh CK, Jin M, Zhao ZK. Rhodosporidium toruloides - A potential red yeast chassis for lipids and beyond. FEMS Yeast Res 2020; 20:foaa038. [PMID: 32614407 PMCID: PMC7334043 DOI: 10.1093/femsyr/foaa038] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 06/12/2020] [Indexed: 12/19/2022] Open
Abstract
The red yeast Rhodosporidium toruloides naturally produces microbial lipids and carotenoids. In the past decade or so, many studies demonstrated R. toruloides as a promising platform for lipid production owing to its diverse substrate appetites, robust stress resistance and other favorable features. Also, significant progresses have been made in genome sequencing, multi-omic analysis and genome-scale modeling, thus illuminating the molecular basis behind its physiology, metabolism and response to environmental stresses. At the same time, genetic parts and tools are continuously being developed to manipulate this distinctive organism. Engineered R. toruloides strains are emerging for enhanced production of conventional lipids, functional lipids as well as other interesting metabolites. This review updates those progresses and highlights future directions for advanced biotechnological applications.
Collapse
Affiliation(s)
- Zhiqiang Wen
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, 200 Xiaolingwei St, Nanjing 210094, China
| | - Sufang Zhang
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Rd, Dalian 116023, China
| | - Chuks Kenneth Odoh
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Rd, Dalian 116023, China
| | - Mingjie Jin
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, 200 Xiaolingwei St, Nanjing 210094, China
| | - Zongbao K Zhao
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Rd, Dalian 116023, China
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Rd, Dalian 116023, China
| |
Collapse
|
21
|
Dinh HV, Suthers PF, Chan SHJ, Shen Y, Xiao T, Deewan A, Jagtap SS, Zhao H, Rao CV, Rabinowitz JD, Maranas CD. A comprehensive genome-scale model for Rhodosporidium toruloides IFO0880 accounting for functional genomics and phenotypic data. Metab Eng Commun 2019; 9:e00101. [PMID: 31720216 PMCID: PMC6838544 DOI: 10.1016/j.mec.2019.e00101] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 12/21/2022] Open
Abstract
Rhodosporidium toruloides is a red, basidiomycetes yeast that can accumulate a large amount of lipids and produce carotenoids. To better assess this non-model yeast's metabolic capabilities, we reconstructed a genome-scale model of R. toruloides IFO0880's metabolic network (iRhto1108) accounting for 2204 reactions, 1985 metabolites and 1108 genes. In this work, we integrated and supplemented the current knowledge with in-house generated biomass composition and experimental measurements pertaining to the organism's metabolic capabilities. Predictions of genotype-phenotype relations were improved through manual curation of gene-protein-reaction rules for 543 reactions leading to correct recapitulations of 84.5% of gene essentiality data (sensitivity of 94.3% and specificity of 53.8%). Organism-specific macromolecular composition and ATP maintenance requirements were experimentally measured for two separate growth conditions: (i) carbon and (ii) nitrogen limitations. Overall, iRhto1108 reproduced R. toruloides's utilization capabilities for 18 alternate substrates, matched measured wild-type growth yield, and recapitulated the viability of 772 out of 819 deletion mutants. As a demonstration to the model's fidelity in guiding engineering interventions, the OptForce procedure was applied on iRhto1108 for triacylglycerol overproduction. Suggested interventions recapitulated many of the previous successful implementations of genetic modifications and put forth a few new ones.
Collapse
Affiliation(s)
- Hoang V. Dinh
- Department of Chemical Engineering, The Pennsylvania State University, University Park, 306 Chemical and Biomedical Engineering Building, PA, 16802-4400, USA
| | - Patrick F. Suthers
- Department of Chemical Engineering, The Pennsylvania State University, University Park, 306 Chemical and Biomedical Engineering Building, PA, 16802-4400, USA
| | - Siu Hung Joshua Chan
- Department of Chemical Engineering, The Pennsylvania State University, University Park, 306 Chemical and Biomedical Engineering Building, PA, 16802-4400, USA
| | - Yihui Shen
- Department of Chemistry, Princeton University, 285 Frick Laboratory, Princeton, NJ, 08544, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08540, USA
| | - Tianxia Xiao
- Department of Chemistry, Princeton University, 285 Frick Laboratory, Princeton, NJ, 08544, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08540, USA
| | - Anshu Deewan
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champagne, 114 Roger Adams Laboratory MC 712, Urbana, IL, 61801, USA
| | - Sujit S. Jagtap
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champagne, 114 Roger Adams Laboratory MC 712, Urbana, IL, 61801, USA
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champagne, 114 Roger Adams Laboratory MC 712, Urbana, IL, 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Christopher V. Rao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champagne, 114 Roger Adams Laboratory MC 712, Urbana, IL, 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Joshua D. Rabinowitz
- Department of Chemistry, Princeton University, 285 Frick Laboratory, Princeton, NJ, 08544, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08540, USA
| | - Costas D. Maranas
- Department of Chemical Engineering, The Pennsylvania State University, University Park, 306 Chemical and Biomedical Engineering Building, PA, 16802-4400, USA
| |
Collapse
|
22
|
Arbter P, Sinha A, Troesch J, Utesch T, Zeng AP. Redox governed electro-fermentation improves lipid production by the oleaginous yeast Rhodosporidium toruloides. BIORESOURCE TECHNOLOGY 2019; 294:122122. [PMID: 31525584 DOI: 10.1016/j.biortech.2019.122122] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/03/2019] [Accepted: 09/04/2019] [Indexed: 06/10/2023]
Abstract
Electro-fermentation (EF) is a promising technique to increase the performance of bioprocesses. Here, the effect of EF on the lipid production by the yeast Rhodosporidium toruloides is studied. First, an in silico analysis was performed to unveil possible lipid yield increase and metabolic shifts by EF. Subsequently, cathodic EF (CEF) and anodic EF (AEF) were experimentally tested at different pO2 levels. CEF enabled artificial lowering of the extracellular redox potential to less than -200 mV even under strictly aerobic conditions. CEF and AEF both positively affected lipid yield and productivity. Additional CEF cultivations with the redox mediator Neutral Red yielded an immense increase in the ratio of saturated fatty acids (from 37% to 50%). Overall, this work demonstrates that EF offers broad potential to improve microbial lipid production. In this context, the use of redox mediators might be of special future interest for the production of cocoa-butter equivalents.
Collapse
Affiliation(s)
- Philipp Arbter
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Denickestraße 15, D-21073 Hamburg, Germany
| | - Aakanksha Sinha
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Denickestraße 15, D-21073 Hamburg, Germany
| | - Julie Troesch
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Denickestraße 15, D-21073 Hamburg, Germany
| | - Tyll Utesch
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Denickestraße 15, D-21073 Hamburg, Germany
| | - An-Ping Zeng
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Denickestraße 15, D-21073 Hamburg, Germany; Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, 100029 Beijing, China.
| |
Collapse
|
23
|
Ma X, Gao Z, Gao M, Wu C, Wang Q. Microbial lipid production from food waste saccharified liquid under two-stage process. BIORESOURCE TECHNOLOGY 2019; 289:121626. [PMID: 31220765 DOI: 10.1016/j.biortech.2019.121626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 06/09/2023]
Abstract
This study aimed to clarify the composition changes of food waste after being placed for few days and propose a two-stage fermentation method to effectively convert food waste saccharified liquid (FWSL) into lipids by Rhodosporidium toruloides. Food waste generally needs 3-5 days to be transported and stored before treatment. The lactic acid concentration of FWSL produced from 5-days-placed-at-room-temperature food waste reached to 15 g/L. Lactic acid promoted yeast proliferation, and its main mechanism was the conversion of lactic acid into pyruvic acid, which could provide energy for yeast growth through TCA cycle. The optimal lipid concentration in the two-stage fermentation reached to 9.19 g/L, and lipid yield amounted to 0.204 g lipid/g total sugar; the values increased by 44.27% and 60.63%, respectively, when compared with those in traditional fermentation. This study could provide a strategy for food waste treatment closer to industrial production.
Collapse
Affiliation(s)
- Xiaoyu Ma
- Department of Environmental Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Zhen Gao
- Department of Environmental Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Ming Gao
- Department of Environmental Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Chuanfu Wu
- Department of Environmental Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Qunhui Wang
- Department of Environmental Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China.
| |
Collapse
|
24
|
Tiukova IA, Prigent S, Nielsen J, Sandgren M, Kerkhoven EJ. Genome‐scale model of
Rhodotorula toruloides
metabolism. Biotechnol Bioeng 2019; 116:3396-3408. [DOI: 10.1002/bit.27162] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 08/08/2019] [Accepted: 09/05/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Ievgeniia A. Tiukova
- Systems and Synthetic Biology, Department of Biology and Biological EngineeringChalmers University of TechnologyGothenburg Sweden
- Department of Molecular SciencesSwedish University of Agricultural SciencesUppsala Sweden
| | | | - Jens Nielsen
- Systems and Synthetic Biology, Department of Biology and Biological EngineeringChalmers University of TechnologyGothenburg Sweden
| | - Mats Sandgren
- Department of Molecular SciencesSwedish University of Agricultural SciencesUppsala Sweden
| | - Eduard J. Kerkhoven
- Systems and Synthetic Biology, Department of Biology and Biological EngineeringChalmers University of TechnologyGothenburg Sweden
| |
Collapse
|
25
|
Tsakona S, Papadaki A, Kopsahelis N, Kachrimanidou V, Papanikolaou S, Koutinas A. Development of a Circular Oriented Bioprocess for Microbial Oil Production Using Diversified Mixed Confectionery Side-Streams. Foods 2019; 8:E300. [PMID: 31370368 PMCID: PMC6723147 DOI: 10.3390/foods8080300] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 07/25/2019] [Accepted: 07/29/2019] [Indexed: 01/27/2023] Open
Abstract
Diversified mixed confectionery waste streams were utilized in a two-stage bioprocess to formulate a nutrient-rich fermentation media for microbial oil production. Solid-state fermentation was conducted for the production of crude enzyme consortia to be subsequently applied in hydrolytic reactions to break down starch, disaccharides, and proteins into monosaccharides, amino acids, and peptides. Crude hydrolysates were evaluated in bioconversion processes using the red yeast Rhodosporidium toruloides DSM 4444 both in batch and fed-batch mode. Under nitrogen-limiting conditions, during fed-batch cultures, the concentration of microbial lipids reached 16.6-17 g·L-1 with the intracellular content being more than 40% (w/w) in both hydrolysates applied. R. toruloides was able to metabolize mixed carbon sources without catabolite repression. The fatty acid profile of the produced lipids was altered based on the substrate employed in the bioconversion process. Microbial lipids were rich in polyunsaturated fatty acids, with oleic acid being the major fatty acid (61.7%, w/w). This study showed that mixed food side-streams could be valorized for the production of microbial oil with high unsaturation degree, pointing towards the potential to produce tailor-made lipids for specific food applications. Likewise, the proposed process conforms unequivocally to the principles of the circular economy, as the entire quantity of confectionery by-products are implemented to generate added-value compounds that will find applications in the same original industry, thus closing the loop.
Collapse
Affiliation(s)
- Sofia Tsakona
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Aikaterini Papadaki
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece.
- Department of Food Science and Technology, Ionian University, 28100 Argostoli, Greece.
| | - Nikolaos Kopsahelis
- Department of Food Science and Technology, Ionian University, 28100 Argostoli, Greece
| | | | - Seraphim Papanikolaou
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Apostolis Koutinas
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece.
| |
Collapse
|
26
|
Oleaginous yeast for biofuel and oleochemical production. Curr Opin Biotechnol 2019; 57:73-81. [DOI: 10.1016/j.copbio.2019.02.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/27/2019] [Accepted: 02/05/2019] [Indexed: 01/01/2023]
|
27
|
Castillo S, Patil KR, Jouhten P. Yeast Genome-Scale Metabolic Models for Simulating Genotype-Phenotype Relations. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2019; 58:111-133. [PMID: 30911891 DOI: 10.1007/978-3-030-13035-0_5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Understanding genotype-phenotype dependency is a universal aim for all life sciences. While the complete genotype-phenotype relations remain challenging to resolve, metabolic phenotypes are moving within the reach through genome-scale metabolic model simulations. Genome-scale metabolic models are available for commonly investigated yeasts, such as model eukaryote and domesticated fermentation species Saccharomyces cerevisiae, and automatic reconstruction methods facilitate obtaining models for any sequenced species. The models allow for investigating genotype-phenotype relations through simulations simultaneously considering the effects of nutrient availability, and redox and energy homeostasis in cells. Genome-scale models also offer frameworks for omics data integration to help to uncover how the translation of genotypes to the apparent phenotypes is regulated at different levels. In this chapter, we provide an overview of the yeast genome-scale metabolic models and the simulation approaches for using these models to interrogate genotype-phenotype relations. We review the methodological approaches according to the underlying biological reasoning in order to inspire formulating novel questions and applications that the genome-scale metabolic models could contribute to. Finally, we discuss current challenges and opportunities in the genome-scale metabolic model simulations.
Collapse
Affiliation(s)
- Sandra Castillo
- VTT Technical Research Centre of Finland Ltd., Tietotie 2, 02044, Espoo, Finland
| | - Kiran Raosaheb Patil
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Paula Jouhten
- VTT Technical Research Centre of Finland Ltd., Tietotie 2, 02044, Espoo, Finland.
| |
Collapse
|