1
|
Poornima E, Chandra E, Rajendran P, Pankajavalli PB. Stomach cancer identification based on exhaled breath analysis: a review. J Breath Res 2025; 19:024002. [PMID: 40190017 DOI: 10.1088/1752-7163/adc979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 04/04/2025] [Indexed: 04/16/2025]
Abstract
Early prediction of cancer is crucial for effective treatment decisions. Stomach cancer is one of the worst malignancies in the world because it does not reveal the growth in symptoms. In recent years, non-invasive diagnostic methods, particularly exhaled breath analysis, have attracted interest in detecting stomach cancer. This review discusses invasive and non-invasive diagnostic methods for stomach cancer, with a special emphasis on breath analysis and electronic nose (e-nose) technology. Various analytical methods have been used to analyze volatile organic compounds (VOCs) associated with stomach cancer. Gas chromatography-mass Spectrometry is one of the most widely used techniques. These techniques enable the detection and analysis of VOCs, offering a promising route for early stomach cancer diagnosis. The e-nose system has been introduced as a cost-effective and portable alternative for VOC detection in stomach cancer to overcome the challenges associated with conventional methods. This review discusses the advantages and disadvantages of the e-nose system. This review recommends that e-nose sensors, combined with advanced pattern recognition techniques, be utilized to enable rapid and reliable diagnosis of stomach cancer.
Collapse
Affiliation(s)
- E Poornima
- Department of Computer Science, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - E Chandra
- Department of Computer Science, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Porkodi Rajendran
- Department of Computer Science, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - P B Pankajavalli
- Department of Computer Science, Bharathiar University, Coimbatore, Tamil Nadu, India
| |
Collapse
|
2
|
Balonov I, Mattis M, Jarmusch S, Koletzko B, Heinrich K, Neumann J, Werner J, Angele MK, Heiliger C, Jacob S. Metabolomic profiling of upper GI malignancies in blood and tissue: a systematic review and meta-analysis. J Cancer Res Clin Oncol 2024; 150:331. [PMID: 38951269 PMCID: PMC11217139 DOI: 10.1007/s00432-024-05857-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/17/2024] [Indexed: 07/03/2024]
Abstract
OBJECTIVE To conduct a systematic review and meta-analysis of case-control and cohort human studies evaluating metabolite markers identified using high-throughput metabolomics techniques on esophageal cancer (EC), cancer of the gastroesophageal junction (GEJ), and gastric cancer (GC) in blood and tissue. BACKGROUND Upper gastrointestinal cancers (UGC), predominantly EC, GEJ, and GC, are malignant tumour types with high morbidity and mortality rates. Numerous studies have focused on metabolomic profiling of UGC in recent years. In this systematic review and meta-analysis, we have provided a collective summary of previous findings on metabolites and metabolomic profiling associated with EC, GEJ and GC. METHODS Following the PRISMA procedure, a systematic search of four databases (Embase, PubMed, MEDLINE, and Web of Science) for molecular epidemiologic studies on the metabolomic profiles of EC, GEJ and GC was conducted and registered at PROSPERO (CRD42023486631). The Newcastle-Ottawa Scale (NOS) was used to benchmark the risk of bias for case-controlled and cohort studies. QUADOMICS, an adaptation of the QUADAS-2 (Quality Assessment of Diagnostic Accuracy) tool, was used to rate diagnostic accuracy studies. Original articles comparing metabolite patterns between patients with and without UGC were included. Two investigators independently completed title and abstract screening, data extraction, and quality evaluation. Meta-analysis was conducted whenever possible. We used a random effects model to investigate the association between metabolite levels and UGC. RESULTS A total of 66 original studies involving 7267 patients that met the required criteria were included for review. 169 metabolites were differentially distributed in patients with UGC compared to healthy patients among 44 GC, 9 GEJ, and 25 EC studies including metabolites involved in glycolysis, anaerobic respiration, tricarboxylic acid cycle, and lipid metabolism. Phosphatidylcholines, eicosanoids, and adenosine triphosphate were among the most frequently reported lipids and metabolites of cellular respiration, while BCAA, lysine, and asparagine were among the most commonly reported amino acids. Previously identified lipid metabolites included saturated and unsaturated free fatty acids and ketones. However, the key findings across studies have been inconsistent, possibly due to limited sample sizes and the majority being hospital-based case-control analyses lacking an independent replication group. CONCLUSION Thus far, metabolomic studies have provided new opportunities for screening, etiological factors, and biomarkers for UGC, supporting the potential of applying metabolomic profiling in early cancer diagnosis. According to the results of our meta-analysis especially BCAA and TMAO as well as certain phosphatidylcholines should be implicated into the diagnostic procedure of patients with UGC. We envision that metabolomics will significantly enhance our understanding of the carcinogenesis and progression process of UGC and may eventually facilitate precise oncological and patient-tailored management of UGC.
Collapse
Affiliation(s)
- Ilja Balonov
- Department of General, Visceral and Transplantation Surgery, University Hospital, LMU Munich, Ludwig-Maximilians-University (LMU) Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Minca Mattis
- Department of General, Visceral and Transplantation Surgery, University Hospital, LMU Munich, Ludwig-Maximilians-University (LMU) Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Stefanie Jarmusch
- Department of General, Visceral and Transplantation Surgery, University Hospital, LMU Munich, Ludwig-Maximilians-University (LMU) Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Berthold Koletzko
- Division of Metabolic and Nutritional Medicine, Dr. Von Hauner Children's Hospital, Ludwig-Maximilians-University Munich Medical Center, Lindwurmstraße 4, 80337, Munich, Germany
| | - Kathrin Heinrich
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Jens Neumann
- Institute of Pathology, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Jens Werner
- Department of General, Visceral and Transplantation Surgery, University Hospital, LMU Munich, Ludwig-Maximilians-University (LMU) Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Martin K Angele
- Department of General, Visceral and Transplantation Surgery, University Hospital, LMU Munich, Ludwig-Maximilians-University (LMU) Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Christian Heiliger
- Department of General, Visceral and Transplantation Surgery, University Hospital, LMU Munich, Ludwig-Maximilians-University (LMU) Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Sven Jacob
- Department of General, Visceral and Transplantation Surgery, University Hospital, LMU Munich, Ludwig-Maximilians-University (LMU) Munich, Marchioninistr. 15, 81377, Munich, Germany.
| |
Collapse
|
3
|
Vangravs R, Mežmale L, Ślefarska-Wolak D, Dauss E, Ager C, Corvalan AH, Fernández EA, Mayhew CA, Leja M, Mochalski P. Volatilomic signatures of different strains of Helicobacter pylori. Helicobacter 2024; 29:e13064. [PMID: 38459689 DOI: 10.1111/hel.13064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/14/2024] [Accepted: 02/20/2024] [Indexed: 03/10/2024]
Abstract
BACKGROUND Helicobacter pylori (H. pylori) infection is the most extensively studied risk factor for gastric cancer. As with any bacteria, H. pylori will release distinctive odors that result from an emission of volatile metabolic byproducts in unique combinations and proportions. Effectively capturing and identifying these volatiles can pave the way for the development of innovative and non-invasive diagnostic methods for determining infection. Here we characterize the H. pylori volatilomic signature, pinpoint potential biomarkers of its presence, and evaluate the variability of volatilomic signatures between different H. pylori isolates. MATERIALS AND METHODS Using needle trap extraction, volatiles in the headspace above H. pylori cultures were collected and, following thermal desorption at 290°C in a splitless mode, were analyzed using gas chromatography-mass spectrometry. The resulting volatilomic signatures of H. pylori cultures were compared to those obtained from an analysis of the volatiles in the headspace above the cultivating medium only. RESULTS Amongst the volatiles detected, 21 showed consistent differences between the bacteria cultures and the cultivation medium, with 11 compounds being elevated and 10 showing decreased levels in the culture's headspace. The 11 elevated volatiles are four ketones (2-pentanone, 5-methyl-3-heptanone, 2-heptanone, and 2-nonanone), three alcohols (2-methyl-1-propanol, 3-methyl-1-butanol, and 1 butanol), one aromatic (styrene), one aldehyde (2-ethyl-hexanal), one hydrocarbon (n-octane), and one sulfur compound (dimethyl disulfide). The 10 volatiles with lower levels in the headspace of the cultures are four aldehydes (2-methylpropanal, benzaldehyde, 3-methylbutanal, and butanal), two heterocyclic compounds (2-ethylfuran and 2-pentylfuran), one ketone (2-butanone), one aromatic (benzene), one alcohol (2-butanol) and bromodichloromethane. Of the volatile species showing increased levels, the highest emissions are found to be for 3-methyl-1-butanol, 1-butanol and dimethyl disulfide. Qualitative variations in their emissions from the different isolates was observed. CONCLUSIONS The volatiles emitted by H. pylori provide a characteristic volatilome signature that has the potential of being developed as a tool for monitoring infections caused by this pathogen. Furthermore, using the volatilome signature, we are able to differentiate different isolates of H. pylori. However, the volatiles also represent potential confounders for the recognition of gastric cancer volatile markers.
Collapse
Affiliation(s)
- Reinis Vangravs
- Institute of Clinical and Preventive Medicine, University of Latvia, Riga, Latvia
| | - Linda Mežmale
- Institute of Clinical and Preventive Medicine, University of Latvia, Riga, Latvia
- Riga East University Hospital, Riga, Latvia
- Health Centre 4, Riga, Latvia
| | - Daria Ślefarska-Wolak
- Institute for Breath Research, University of Innsbruck, Innsbruck, Austria
- Institute of Chemistry, Jan Kochanowski University, Kielce, Poland
| | - Edgars Dauss
- Institute of Clinical and Preventive Medicine, University of Latvia, Riga, Latvia
| | - Clemens Ager
- Institute for Breath Research, University of Innsbruck, Innsbruck, Austria
| | - Alejandro H Corvalan
- Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Catolica de Chile, Santiago, Chile
| | | | - Chris A Mayhew
- Institute for Breath Research, University of Innsbruck, Innsbruck, Austria
| | - Marcis Leja
- Institute of Clinical and Preventive Medicine, University of Latvia, Riga, Latvia
- Riga East University Hospital, Riga, Latvia
- Health Centre 4, Riga, Latvia
- Faculty of Medicine, University of Latvia, Riga, Latvia
- Digestive Diseases Centre GASTRO, Riga, Latvia
| | - Paweł Mochalski
- Institute for Breath Research, University of Innsbruck, Innsbruck, Austria
- Institute of Chemistry, Jan Kochanowski University, Kielce, Poland
- Faculty of Medicine, University of Latvia, Riga, Latvia
| |
Collapse
|
4
|
Mezmale L, Leja M, Lescinska AM, Pčolkins A, Kononova E, Bogdanova I, Polaka I, Stonans I, Kirsners A, Ager C, Mochalski P. Identification of Volatile Markers of Colorectal Cancer from Tumor Tissues Using Volatilomic Approach. Molecules 2023; 28:5990. [PMID: 37630241 PMCID: PMC10459111 DOI: 10.3390/molecules28165990] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/06/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
The human body releases numerous volatile organic compounds (VOCs) through tissues and various body fluids, including breath. These compounds form a specific chemical profile that may be used to detect the colorectal cancer CRC-related changes in human metabolism and thereby diagnose this type of cancer. The main goal of this study was to investigate the volatile signatures formed by VOCs released from the CRC tissue. For this purpose, headspace solid-phase microextraction gas chromatography-mass spectrometry was applied. In total, 163 compounds were detected. Both cancerous and non-cancerous tissues emitted 138 common VOCs. Ten volatiles (2-butanone; dodecane; benzaldehyde; pyridine; octane; 2-pentanone; toluene; p-xylene; n-pentane; 2-methyl-2-propanol) occurred in at least 90% of both types of samples; 1-propanol in cancer tissue (86% in normal one), acetone in normal tissue (82% in cancer one). Four compounds (1-propanol, pyridine, isoprene, methyl thiolacetate) were found to have increased emissions from cancer tissue, whereas eleven showed reduced release from this type of tissue (2-butanone; 2-pentanone; 2-methyl-2-propanol; ethyl acetate; 3-methyl-1-butanol; d-limonene; tetradecane; dodecanal; tridecane; 2-ethyl-1-hexanol; cyclohexanone). The outcomes of this study provide evidence that the VOCs signature of the CRC tissue is altered by the CRC. The volatile constituents of this distinct signature can be emitted through exhalation and serve as potential biomarkers for identifying the presence of CRC. Reliable identification of the VOCs associated with CRC is essential to guide and tune the development of advanced sensor technologies that can effectively and sensitively detect and quantify these markers.
Collapse
Affiliation(s)
- Linda Mezmale
- Institute of Clinical and Preventive Medicine, Faculty of Medicine, University of Latvia, LV-1586 Riga, Latvia; (M.L.); (A.M.L.); (A.P.); (E.K.); (I.B.); (I.P.); (I.S.); (P.M.)
- Riga East University Hospital, LV-1038 Riga, Latvia
- Faculty of Residency, Riga Stradins University, LV-1007 Riga, Latvia
| | - Marcis Leja
- Institute of Clinical and Preventive Medicine, Faculty of Medicine, University of Latvia, LV-1586 Riga, Latvia; (M.L.); (A.M.L.); (A.P.); (E.K.); (I.B.); (I.P.); (I.S.); (P.M.)
- Riga East University Hospital, LV-1038 Riga, Latvia
- Digestive Diseases Centre GASTRO, LV-1079 Riga, Latvia
| | - Anna Marija Lescinska
- Institute of Clinical and Preventive Medicine, Faculty of Medicine, University of Latvia, LV-1586 Riga, Latvia; (M.L.); (A.M.L.); (A.P.); (E.K.); (I.B.); (I.P.); (I.S.); (P.M.)
- Riga East University Hospital, LV-1038 Riga, Latvia
| | - Andrejs Pčolkins
- Institute of Clinical and Preventive Medicine, Faculty of Medicine, University of Latvia, LV-1586 Riga, Latvia; (M.L.); (A.M.L.); (A.P.); (E.K.); (I.B.); (I.P.); (I.S.); (P.M.)
- Riga East University Hospital, LV-1038 Riga, Latvia
| | - Elina Kononova
- Institute of Clinical and Preventive Medicine, Faculty of Medicine, University of Latvia, LV-1586 Riga, Latvia; (M.L.); (A.M.L.); (A.P.); (E.K.); (I.B.); (I.P.); (I.S.); (P.M.)
- Faculty of Residency, Riga Stradins University, LV-1007 Riga, Latvia
| | - Inga Bogdanova
- Institute of Clinical and Preventive Medicine, Faculty of Medicine, University of Latvia, LV-1586 Riga, Latvia; (M.L.); (A.M.L.); (A.P.); (E.K.); (I.B.); (I.P.); (I.S.); (P.M.)
- Riga East University Hospital, LV-1038 Riga, Latvia
| | - Inese Polaka
- Institute of Clinical and Preventive Medicine, Faculty of Medicine, University of Latvia, LV-1586 Riga, Latvia; (M.L.); (A.M.L.); (A.P.); (E.K.); (I.B.); (I.P.); (I.S.); (P.M.)
| | - Ilmars Stonans
- Institute of Clinical and Preventive Medicine, Faculty of Medicine, University of Latvia, LV-1586 Riga, Latvia; (M.L.); (A.M.L.); (A.P.); (E.K.); (I.B.); (I.P.); (I.S.); (P.M.)
| | - Arnis Kirsners
- Institute of Clinical and Preventive Medicine, Faculty of Medicine, University of Latvia, LV-1586 Riga, Latvia; (M.L.); (A.M.L.); (A.P.); (E.K.); (I.B.); (I.P.); (I.S.); (P.M.)
| | - Clemens Ager
- Institute for Breath Research, University of Innsbruck, 6020 Dornbirn, Austria;
| | - Pawel Mochalski
- Institute of Clinical and Preventive Medicine, Faculty of Medicine, University of Latvia, LV-1586 Riga, Latvia; (M.L.); (A.M.L.); (A.P.); (E.K.); (I.B.); (I.P.); (I.S.); (P.M.)
- Institute for Breath Research, University of Innsbruck, 6020 Dornbirn, Austria;
- Institute of Chemistry, Jan Kochanowski University of Kielce, 25-369 Kielce, Poland
| |
Collapse
|
5
|
Riccio G, Berenguer CV, Perestrelo R, Pereira F, Berenguer P, Ornelas CP, Sousa AC, Vital JA, Pinto MDC, Pereira JAM, Greco V, Câmara JS. Differences in the Volatilomic Urinary Biosignature of Prostate Cancer Patients as a Feasibility Study for the Detection of Potential Biomarkers. Curr Oncol 2023; 30:4904-4921. [PMID: 37232828 DOI: 10.3390/curroncol30050370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/18/2023] [Accepted: 04/25/2023] [Indexed: 05/27/2023] Open
Abstract
Prostate cancer (PCa) continues to be the second most common malignant tumour and the main cause of oncological death in men. Investigating endogenous volatile organic metabolites (VOMs) produced by various metabolic pathways is emerging as a novel, effective, and non-invasive source of information to establish the volatilomic biosignature of PCa. In this study, headspace solid-phase microextraction combined with gas chromatography-mass spectrometry (HS-SPME/GC-MS) was used to establish the urine volatilomic profile of PCa and identify VOMs that can discriminate between the two investigated groups. This non-invasive approach was applied to oncological patients (PCa group, n = 26) and cancer-free individuals (control group, n = 30), retrieving a total of 147 VOMs from various chemical families. This included terpenes, norisoprenoid, sesquiterpenes, phenolic, sulphur and furanic compounds, ketones, alcohols, esters, aldehydes, carboxylic acid, benzene and naphthalene derivatives, hydrocarbons, and heterocyclic hydrocarbons. The data matrix was subjected to multivariate analysis, namely partial least-squares discriminant analysis (PLS-DA). Accordingly, this analysis showed that the group under study presented different volatomic profiles and suggested potential PCa biomarkers. Nevertheless, a larger cohort of samples is required to boost the predictability and accuracy of the statistical models developed.
Collapse
Affiliation(s)
- Giulia Riccio
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Univesità Cattolica del Sacro Cuore, 00168 Rome, Italy
- Unity of Chemistry, Biochemistry and Clinical Molecular Biology, Department of Diagnostic and Laboratory Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Cristina V Berenguer
- CQM-Centro de Química da Madeira, NPRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Rosa Perestrelo
- CQM-Centro de Química da Madeira, NPRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Ferdinando Pereira
- Serviço de Urologia, Hospital Dr. Nélio Mendonça, SESARAM, EPERAM-Serviço de Saúde da Região Autónoma da Madeira, Avenida Luís de Camões, nº57, 9004-514 Funchal, Portugal
| | - Pedro Berenguer
- Centro de Investigação Dra Maria Isabel Mendonça, Hospital Dr. Nélio Mendonça, SESARAM, EPERAM, Avenida Luís de Camões, nº57, 9004-514 Funchal, Portugal
- RO-RAM-Registo Oncológico da Região Autónoma da Madeira, Hospital Dr. Nélio Mendonça, SESARAM, EPERAM, Avenida Luís de Camões, nº57, 9004-514 Funchal, Portugal
| | - Cristina P Ornelas
- Centro de Saúde do Bom Jesus, SESARAM, EPERAM, Rua das Hortas, nº67, 9050-024 Funchal, Portugal
| | - Ana Célia Sousa
- Centro de Investigação Dra Maria Isabel Mendonça, Hospital Dr. Nélio Mendonça, SESARAM, EPERAM, Avenida Luís de Camões, nº57, 9004-514 Funchal, Portugal
| | - João Aragão Vital
- Serviço de Urologia, Hospital Dr. Nélio Mendonça, SESARAM, EPERAM-Serviço de Saúde da Região Autónoma da Madeira, Avenida Luís de Camões, nº57, 9004-514 Funchal, Portugal
| | - Maria do Carmo Pinto
- Serviço de Urologia, Hospital Dr. Nélio Mendonça, SESARAM, EPERAM-Serviço de Saúde da Região Autónoma da Madeira, Avenida Luís de Camões, nº57, 9004-514 Funchal, Portugal
| | - Jorge A M Pereira
- CQM-Centro de Química da Madeira, NPRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Viviana Greco
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Univesità Cattolica del Sacro Cuore, 00168 Rome, Italy
- Unity of Chemistry, Biochemistry and Clinical Molecular Biology, Department of Diagnostic and Laboratory Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - José S Câmara
- CQM-Centro de Química da Madeira, NPRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
- Departamento de Química, Faculdade de Ciências Exatas e Engenharia, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| |
Collapse
|
6
|
Bhandari MP, Polaka I, Vangravs R, Mezmale L, Veliks V, Kirshners A, Mochalski P, Dias-Neto E, Leja M. Volatile Markers for Cancer in Exhaled Breath-Could They Be the Signature of the Gut Microbiota? Molecules 2023; 28:molecules28083488. [PMID: 37110724 PMCID: PMC10141340 DOI: 10.3390/molecules28083488] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
It has been shown that the gut microbiota plays a central role in human health and disease. A wide range of volatile metabolites present in exhaled breath have been linked with gut microbiota and proposed as a non-invasive marker for monitoring pathological conditions. The aim of this study was to examine the possible correlation between volatile organic compounds (VOCs) in exhaled breath and the fecal microbiome by multivariate statistical analysis in gastric cancer patients (n = 16) and healthy controls (n = 33). Shotgun metagenomic sequencing was used to characterize the fecal microbiota. Breath-VOC profiles in the same participants were identified by an untargeted gas chromatography-mass spectrometry (GC-MS) technique. A multivariate statistical approach involving a canonical correlation analysis (CCA) and sparse principal component analysis identified the significant relationship between the breath VOCs and fecal microbiota. This relation was found to differ between gastric cancer patients and healthy controls. In 16 cancer cases, 14 distinct metabolites identified from the breath belonging to hydrocarbons, alcohols, aromatics, ketones, ethers, and organosulfur compounds were highly correlated with 33 fecal bacterial taxa (correlation of 0.891, p-value 0.045), whereas in 33 healthy controls, 7 volatile metabolites belonging to alcohols, aldehydes, esters, phenols, and benzamide derivatives correlated with 17 bacterial taxa (correlation of 0.871, p-value 0.0007). This study suggested that the correlation between fecal microbiota and breath VOCs was effective in identifying exhaled volatile metabolites and the functional effects of microbiome, thus helping to understand cancer-related changes and improving the survival and life expectancy in gastric cancer patients.
Collapse
Affiliation(s)
| | - Inese Polaka
- Institute of Clinical and Preventive Medicine, University of Latvia, LV-1586 Riga, Latvia
| | - Reinis Vangravs
- Institute of Clinical and Preventive Medicine, University of Latvia, LV-1586 Riga, Latvia
| | - Linda Mezmale
- Institute of Clinical and Preventive Medicine, University of Latvia, LV-1586 Riga, Latvia
- Riga East University Hospital, LV-1038 Riga, Latvia
- Faculty of Residency, Riga Stradins University, LV-1007 Riga, Latvia
| | - Viktors Veliks
- Institute of Clinical and Preventive Medicine, University of Latvia, LV-1586 Riga, Latvia
| | - Arnis Kirshners
- Institute of Clinical and Preventive Medicine, University of Latvia, LV-1586 Riga, Latvia
| | - Pawel Mochalski
- Institute of Chemistry, Jan Kochanowski University of Kielce, PL-25406 Kielce, Poland
- Institute for Breath Research, University of Innsbruck, A-6850 Dornbirn, Austria
| | - Emmanuel Dias-Neto
- Laboratory of Medical Genomics, A.C.Camargo Cancer Center, Sao Paulo 01508-010, Brazil
| | - Marcis Leja
- Institute of Clinical and Preventive Medicine, University of Latvia, LV-1586 Riga, Latvia
- Digestive Diseases Center GASTRO, LV-1079 Riga, Latvia
- Faculty of Medicine, University of Latvia, LV-1586 Riga, Latvia
| |
Collapse
|
7
|
Mochalski P, Leja M, Ślefarska-Wolak D, Mezmale L, Patsko V, Ager C, Królicka A, Mayhew CA, Shani G, Haick H. Identification of Key Volatile Organic Compounds Released by Gastric Tissues as Potential Non-Invasive Biomarkers for Gastric Cancer. Diagnostics (Basel) 2023; 13:diagnostics13030335. [PMID: 36766440 PMCID: PMC9914709 DOI: 10.3390/diagnostics13030335] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/08/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Volatilomics is a powerful tool capable of providing novel biomarkers for medical diagnosis and therapy monitoring. The objective of this study is to identify potential volatile biomarkers of gastric cancer. METHODS The volatilomic signatures of gastric tissues obtained from two distinct populations were investigated using gas chromatography with mass spectrometric detection. RESULTS Amongst the volatiles emitted, nineteen showed differences in their headspace concentrations above the normal and cancer tissues in at least one population of patients. Headspace levels of seven compounds (hexanal, nonanal, cyclohexanone, 2-nonanone, pyrrole, pyridine, and phenol) were significantly higher above the cancer tissue, whereas eleven volatiles (ethyl acetate, acetoin, 2,3-butanedione, 3-methyl-1-butanol, 2-pentanone, γ-butyrolactone, DL-limonene, benzaldehyde, 2-methyl-1-propanol, benzonitrile, and 3-methyl-butanal) were higher above the non-cancerous tissue. One compound, isoprene, exhibited contradictory alterations in both cohorts. Five compounds, pyridine, ethyl acetate, acetoin, 2,3-butanedione, and 3-methyl-1-butanol, showed consistent cancer-related changes in both populations. CONCLUSIONS Pyridine is found to be the most promising biomarker candidate for detecting gastric cancer. The difference in the volatilomic signatures can be explained by cancer-related changes in the activity of certain enzymes, or pathways. The results of this study confirm that the chemical fingerprint formed by volatiles in gastric tissue is altered by gastric cancer.
Collapse
Affiliation(s)
- Paweł Mochalski
- Institute of Chemistry, Jan Kochanowski University of Kielce, PL-25406 Kielce, Poland
- Institute for Breath Research, University of Innsbruck, A-6850 Dornbirn, Austria
- Correspondence:
| | - Marcis Leja
- Institute of Clinical and Preventive Medicine, Faculty of Medicine, University of Latvia, LV-1586 Riga, Latvia
- Digestive Diseases Centre GASTRO, LV-1586 Riga, Latvia
- Riga East University Hospital, LV-1586 Riga, Latvia
| | - Daria Ślefarska-Wolak
- Institute of Chemistry, Jan Kochanowski University of Kielce, PL-25406 Kielce, Poland
- Institute for Breath Research, University of Innsbruck, A-6850 Dornbirn, Austria
| | - Linda Mezmale
- Institute of Clinical and Preventive Medicine, Faculty of Medicine, University of Latvia, LV-1586 Riga, Latvia
- Riga East University Hospital, LV-1586 Riga, Latvia
| | | | - Clemens Ager
- Institute for Breath Research, University of Innsbruck, A-6850 Dornbirn, Austria
| | - Agnieszka Królicka
- Department of Building Materials Technology, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza 30, PL-30059 Krakow, Poland
| | - Chris A. Mayhew
- Institute for Breath Research, University of Innsbruck, A-6850 Dornbirn, Austria
| | - Gidi Shani
- Department of Chemical Engineering, Russel Berrie Nanotechnology Institute, Technicon—Israel Institute of Technology, Haifa 3200003, Israel
| | - Hossam Haick
- Department of Chemical Engineering, Russel Berrie Nanotechnology Institute, Technicon—Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
8
|
Maity A, Milyutin Y, Maidantchik VD, Pollak YH, Broza Y, Omar R, Zheng Y, Saliba W, Huynh T, Haick H. Ultra-Fast Portable and Wearable Sensing Design for Continuous and Wide-Spectrum Molecular Analysis and Diagnostics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203693. [PMID: 36266981 PMCID: PMC9731699 DOI: 10.1002/advs.202203693] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 09/13/2022] [Indexed: 06/16/2023]
Abstract
The design and characterization of spatiotemporal nano-/micro-structural arrangement that enable real-time and wide-spectrum molecular analysis is reported and demonestrated in new horizons of biomedical applications, such as wearable-spectrometry, ultra-fast and onsite biopsy-decision-making for intraoperative surgical oncology, chiral-drug identification, etc. The spatiotemporal sesning arrangement is achieved by scalable, binder-free, functionalized hybrid spin-sensitive (<↑| or <↓|) graphene-ink printed sensing layers on free-standing films made of porous, fibrous, and naturally helical cellulose networks in hierarchically stacked geometrical configuration (HSGC). The HSGC operates according to a time-space-resolved architecture that modulate the mass-transfer rate for separation, eluation and detection of each individual compound within a mixture of the like, hereby providing a mass spectrogram. The HSGC could be used for a wide range of applictions, including fast and real-time spectrogram generator of volatile organic compounds during liquid-biopsy, without the need of any immunochemistry-staining and complex power-hungry cryogenic machines; and wearable spectrometry that provide spectral signature of molecular profiles emiited from skin in the course of various dietry conditions.
Collapse
Affiliation(s)
- Arnab Maity
- Department of Chemical Engineering and Russell Berrie Nanotechnology InstituteTechnion – Israel Institute of TechnologyHaifa3200003Israel
| | - Yana Milyutin
- Department of Chemical Engineering and Russell Berrie Nanotechnology InstituteTechnion – Israel Institute of TechnologyHaifa3200003Israel
| | - Vivian Darsa Maidantchik
- Department of Chemical Engineering and Russell Berrie Nanotechnology InstituteTechnion – Israel Institute of TechnologyHaifa3200003Israel
| | - Yael Hershkovitz Pollak
- Department of Chemical Engineering and Russell Berrie Nanotechnology InstituteTechnion – Israel Institute of TechnologyHaifa3200003Israel
| | - Yoav Broza
- Department of Chemical Engineering and Russell Berrie Nanotechnology InstituteTechnion – Israel Institute of TechnologyHaifa3200003Israel
| | - Rawan Omar
- Department of Chemical Engineering and Russell Berrie Nanotechnology InstituteTechnion – Israel Institute of TechnologyHaifa3200003Israel
| | - Youbin Zheng
- Department of Chemical Engineering and Russell Berrie Nanotechnology InstituteTechnion – Israel Institute of TechnologyHaifa3200003Israel
| | - Walaa Saliba
- Department of Chemical Engineering and Russell Berrie Nanotechnology InstituteTechnion – Israel Institute of TechnologyHaifa3200003Israel
| | - Tan‐Phat Huynh
- Laboratory of Molecular Science and EngineeringFaculty of Science and EngineeringAbo Akademi UniversityHenrikinkatu 2TurkuFI‐20500Finland
| | - Hossam Haick
- Department of Chemical Engineering and Russell Berrie Nanotechnology InstituteTechnion – Israel Institute of TechnologyHaifa3200003Israel
| |
Collapse
|
9
|
Yang H, Mou Y, Hu B. Diagnostic Ability of Volatile Organic Compounds in Digestive Cancer: A Systematic Review With Meta-Analysis. Clin Med Insights Oncol 2022; 16:11795549221105027. [PMID: 35754925 PMCID: PMC9218909 DOI: 10.1177/11795549221105027] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/16/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Volatile organic compounds (VOCs) have been involved in cancer diagnosis via breath, urine, and feces. We aimed to assess the diagnostic ability of VOCs on digestive cancers. METHODS We systematically reviewed prospective clinical trials evaluating VOCs' diagnostic ability on esophageal, gastric, colorectal, hepatic, and pancreatic cancer (PC). Databases including PubMed and Ovid-Medline were searched. RESULTS A total of 35 trials with 5314 patient-times qualified for inclusion. The pooled sensitivity of VOCs diagnosing gastroesophageal cancer from healthy controls is 0.89 (95% confidence interval [CI]: 0.82-0.94), the pooled specificity is 0.890 (95% CI: 0.84-0.93), and area under the curve (AUC) of the summary receiver operating characteristic curve is 0.95 (95% CI: 0.93-0.95). The pooled sensitivity of VOCs diagnosing colorectal cancer from heathy controls is 0.92 (95% CI: 0.85-0.96), the pooled specificity is 0.88 (95% CI: 0.77-0.94), and the AUC is 0.96 (95% CI: 0.94-0.97). The pooled sensitivity of VOCs distinguishing gastrointestinal (GI) cancer from precancerous lesions is 0.84 (95% CI: 0.67-0.92), the pooled specificity is 0.74 (95% CI: 0.43-0.91), and the AUC is 0.87 (95% CI: 0.84-0.89). The pooled sensitivity of VOCs diagnosing hepatocellular carcinoma is 0.68 (95% CI: 0.52-0.81), the pooled specificity is 0.81 (95% CI: 0.47-0.96), and the AUC is 0.78 (95% CI: 0.74-0.81). The pooled sensitivity of VOCs diagnosing PC is 0.88 (95% CI: 0.80-0.93), the pooled specificity is 0.82 (95% CI: 0.62-0.93), and the AUC is 0.92 (95% CI: 0.89-0.94). CONCLUSIONS Volatile organic compounds have potential role in diagnosing GI cancer with comparatively high sensitivity, specificity, and AUC (PROSPERO registration number: CRD42021260039).
Collapse
Affiliation(s)
- Hang Yang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Mou
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Bing Hu
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Biwer P, Neumann-Schaal M, Henke P, Jahn D, Schulz S. Thiol Metabolism and Volatile Metabolome of Clostridioides difficile. Front Microbiol 2022; 13:864587. [PMID: 35783419 PMCID: PMC9243749 DOI: 10.3389/fmicb.2022.864587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/22/2022] [Indexed: 11/21/2022] Open
Abstract
Clostridioides difficile (previously Clostridium difficile) causes life-threatening gut infections. The central metabolism of the bacterium is strongly influencing toxin production and consequently the infection progress. In this context, the composition and potential origin of the volatile metabolome was investigated, showing a large number of sulfur-containing volatile metabolites. Gas chromatography/mass spectrometry (GC/MS)-based headspace analyses of growing C. difficile 630Δerm cultures identified 105 mainly sulfur-containing compounds responsible of the typical C. difficile odor. Major components were identified to be 2-methyl-1-propanol, 2-methyl-1-propanethiol, 2-methyl-1-butanethiol, 4-methyl-1-pentanethiol, and as well as their disulfides. Structurally identified were 64 sulfur containing volatiles. In order to determine their biosynthetic origin, the concentrations of the sulfur-containing amino acids methionine and cysteine were varied in the growth medium. The changes observed in the volatile metabolome profile indicated that cysteine plays an essential role in the formation of the sulfur-containing volatiles. We propose that disulfides are derived from cysteine via formation of cystathionine analogs, which lead to corresponding thiols. These thiols may then be oxidized to disulfides. Moreover, methionine may contribute to the formation of short-chain disulfides through integration of methanethiol into the disulfide biosynthesis. In summary, the causative agents of the typical C. difficile odor were identified and first hypotheses for their biosynthesis were proposed.
Collapse
Affiliation(s)
- Peter Biwer
- Institute of Organic Chemistry, Technische Universität Braunschweig, Braunschweig, Germany
| | - Meina Neumann-Schaal
- Department of Metabolomics, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology, BRICS, Braunschweig, Germany
| | - Petra Henke
- Department of Metabolomics, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Dieter Jahn
- Braunschweig Integrated Centre of Systems Biology, BRICS, Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Stefan Schulz
- Institute of Organic Chemistry, Technische Universität Braunschweig, Braunschweig, Germany
- *Correspondence: Stefan Schulz,
| |
Collapse
|
11
|
Doting EL, Davie-Martin CL, Johansen A, Benning LG, Tranter M, Rinnan R, Anesio AM. Greenland Ice Sheet Surfaces Colonized by Microbial Communities Emit Volatile Organic Compounds. Front Microbiol 2022; 13:886293. [PMID: 35747370 PMCID: PMC9211068 DOI: 10.3389/fmicb.2022.886293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Volatile organic compounds (VOCs) are emitted by organisms for a range of physiological and ecological reasons. They play an important role in biosphere–atmosphere interactions and contribute to the formation of atmospheric secondary aerosols. The Greenland ice sheet is home to a variety of microbial communities, including highly abundant glacier ice algae, yet nothing is known about the VOCs emitted by glacial communities. For the first time, we present VOC emissions from supraglacial habitats colonized by active microbial communities on the southern Greenland ice sheet during July 2020. Emissions of C5–C30 compounds from bare ice, cryoconite holes, and red snow were collected using a push–pull chamber active sampling system. A total of 92 compounds were detected, yielding mean total VOC emission rates of 3.97 ± 0.70 μg m–2 h–1 from bare ice surfaces (n = 31), 1.63 ± 0.13 μg m–2 h–1 from cryoconite holes (n = 4), and 0.92 ± 0.08 μg m–2 h–1 from red snow (n = 2). No correlations were found between VOC emissions and ice surface algal counts, but a weak positive correlation (r = 0.43, p = 0.015, n = 31) between VOC emission rates from bare ice surfaces and incoming shortwave radiation was found. We propose that this may be due to the stress that high solar irradiance causes in bare ice microbial communities. Acetophenone, benzaldehyde, and phenylmaleic anhydride, all of which have reported antifungal activity, accounted for 51.1 ± 11.7% of emissions from bare ice surfaces, indicating a potential defense strategy against fungal infections. Greenland ice sheet microbial habitats are, hence, potential sources of VOCs that may play a role in supraglacial microbial interactions, as well as local atmospheric chemistry, and merit future research efforts.
Collapse
Affiliation(s)
- Eva L. Doting
- Department of Environmental Science, iClimate, Aarhus University, Roskilde, Denmark
- *Correspondence: Eva L. Doting,
| | - Cleo L. Davie-Martin
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Anders Johansen
- Department of Environmental Science, iClimate, Aarhus University, Roskilde, Denmark
| | - Liane G. Benning
- Interface Geochemistry, German Research Centre for Geosciences, GFZ Potsdam, Potsdam, Germany
- Department of Earth Sciences, Freie Universität Berlin, Berlin, Germany
| | - Martyn Tranter
- Department of Environmental Science, iClimate, Aarhus University, Roskilde, Denmark
| | - Riikka Rinnan
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Alexandre M. Anesio
- Department of Environmental Science, iClimate, Aarhus University, Roskilde, Denmark
- Alexandre M. Anesio,
| |
Collapse
|
12
|
Marder D, Tzanani N, Baratz A, Drug E, Prihed H, Weiss S, Ben-Chetrit E, Eichel R, Dagan S, Yishai Aviram L. A multiple-method comparative study using GC-MS, AMDIS and in-house-built software for the detection and identification of "unknown" volatile organic compounds in breath. JOURNAL OF MASS SPECTROMETRY : JMS 2021; 56:e4782. [PMID: 34523187 DOI: 10.1002/jms.4782] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/04/2021] [Accepted: 08/08/2021] [Indexed: 06/13/2023]
Abstract
The human respiratory system is a highly complex matrix that exhales many volatile organic compounds (VOCs). Breath-exhaled VOCs are often "unknowns" and possess low concentrations, which make their analysis, peak digging and data processing challenging. We report a new methodology, applied in a proof-of-concept experiment, for the detection of VOCs in breath. For this purpose, we developed and compared four complementary analysis methods based on solid-phase microextraction and thermal desorption (TD) tubes with two GC-mass spectrometer (MS) methods. Using eight model compounds, we obtained an LOD range of 0.02-20 ng/ml. We found that in breath analysis, sampling the exhausted air from Tedlar bags is better when TD tubes are used, not only because of the preconcentration but also due to the stability of analytes in the TD tubes. Data processing (peak picking) was based on two data retrieval approaches with an in-house script written for comparison and differentiation between two populations: sick and healthy. We found it best to use "raw" AMDIS deconvolution data (.ELU) rather than its NIST (.FIN) identification data for comparison between samples. A successful demonstration of this method was conducted in a pilot study (n = 21) that took place in a closed hospital ward (Covid-19 ward) with the discovery of four potential markers. These preliminary findings, at the molecular level, demonstrate the capabilities of our method and can be applied in larger and more comprehensive experiments in the omics world.
Collapse
Affiliation(s)
- Dana Marder
- Department of Analytical Chemistry, Israel Institute for Biological Research (IIBR), Ness Ziona, Israel
| | - Nitzan Tzanani
- Department of Analytical Chemistry, Israel Institute for Biological Research (IIBR), Ness Ziona, Israel
| | - Adva Baratz
- Department of Analytical Chemistry, Israel Institute for Biological Research (IIBR), Ness Ziona, Israel
| | - Eyal Drug
- Department of Analytical Chemistry, Israel Institute for Biological Research (IIBR), Ness Ziona, Israel
| | - Hagit Prihed
- Department of Analytical Chemistry, Israel Institute for Biological Research (IIBR), Ness Ziona, Israel
| | - Shay Weiss
- Department of Infectious Diseases, Israel Institute for Biological Research (IIBR), Ness Ziona, Israel
| | - Eli Ben-Chetrit
- Department of Infectious Diseases, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Roni Eichel
- Stroke Unit/Neurological ICU, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Shai Dagan
- Department of Analytical Chemistry, Israel Institute for Biological Research (IIBR), Ness Ziona, Israel
| | - Lilach Yishai Aviram
- Department of Analytical Chemistry, Israel Institute for Biological Research (IIBR), Ness Ziona, Israel
| |
Collapse
|
13
|
Ma MY, Yu LQ, Wang SW, Meng Y, Lv YK. Hybrid ZIF-8-90 for Selective Solid-Phase Microextraction of Exhaled Breath from Gastric Cancer Patients. ACS APPLIED BIO MATERIALS 2021; 4:3608-3613. [PMID: 35014446 DOI: 10.1021/acsabm.1c00107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Metal-organic frameworks (MOFs) are a new kind of microporous materials whose unique properties make them promising as coatings for solid phase microextraction (SPME). However, previous MOF coatings for SPME exclusively focus on single-linker MOFs, and the selective enrichment of polar or nonpolar targets depends on the polarity of linker on the surface of MOFs, which greatly limits the application of MOF coating for SPME in real samples. Here, we report a hybrid MOF-coated stainless steel fiber for SPME of biomarkers in exhaled breath from gastric cancer patients. Zeolitic imidazolate framework-8-90 (ZIF-8-90) possesses the aldehyde groups and methyl groups in the framework as a model MOF, and eight biomarkers (ethanol, acetone, hexanal, hexanol, nonane, isoprene, heptane, and decane) were used as the target analytes. The ZIF-8-90-coated fiber shows high enrichment efficiency for hydrophilic targets and hydrophobic targets, wide linearity (three orders of magnitude), and low detection limits (0.82-2.64 μg L-1). The ZIF-8-90-coated fiber exhibited higher enrichment performance for all the investigated analytes as a result of the synergy of methyl and aldehyde groups, the porous structure, and the suitable pore size of ZIF-8-90 (4-5 Å). The relative standard deviation (RSD) of six repetitions for extractions using the same ZIF-8-90-coated fiber ranged from 2.5 to 7.3%. The reproducibility between the three fibers prepared in parallel varied in the range of 4.8-12% (RSD). The fabricated ZIF-8-90-coated fiber lasted for at least 120 cycles of extraction/desorption/conditioning without an obvious reduction in extraction efficiency and precision. Finally, the developed ZIF-8-90-coated SPME fiber has been successfully used for the analysis of exhaled breath samples from gastric patients with satisfied recoveries (88-106%).
Collapse
Affiliation(s)
- Meng-Yuan Ma
- College of Chemistry and Environmental Science, Hebei University, Key Laboratory of Analytical Science and Technology of Hebei Province, Baoding 071002, China
| | - Li-Qing Yu
- College of Chemistry and Environmental Science, Hebei University, Key Laboratory of Analytical Science and Technology of Hebei Province, Baoding 071002, China
| | - Shuo-Wen Wang
- College of Chemistry and Environmental Science, Hebei University, Key Laboratory of Analytical Science and Technology of Hebei Province, Baoding 071002, China
| | - Ying Meng
- College of Chemistry and Environmental Science, Hebei University, Key Laboratory of Analytical Science and Technology of Hebei Province, Baoding 071002, China
| | - Yun-Kai Lv
- College of Chemistry and Environmental Science, Hebei University, Key Laboratory of Analytical Science and Technology of Hebei Province, Baoding 071002, China
| |
Collapse
|
14
|
Leiherer A, Ślefarska D, Leja M, Heinzle C, Mündlein A, Kikuste I, Mezmale L, Drexel H, Mayhew CA, Mochalski P. The Volatilomic Footprints of Human HGC-27 and CLS-145 Gastric Cancer Cell Lines. Front Mol Biosci 2021; 7:607904. [PMID: 33585559 PMCID: PMC7874186 DOI: 10.3389/fmolb.2020.607904] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/09/2020] [Indexed: 12/12/2022] Open
Abstract
The presence of certain volatile biomarkers in the breath of patients with gastric cancer has been reported by several studies; however, the origin of these compounds remains controversial. In vitro studies, involving gastric cancer cells may address this problem and aid in revealing the biochemical pathways underlying the production and metabolism of gastric cancer volatile indicators. Gas chromatography with mass spectrometric detection, coupled with headspace needle trap extraction as the pre-concentration technique, has been applied to map the volatilomic footprints of human HGC-27 and CLS-145 gastric cancer cell lines and normal Human Stomach Epithelial Cells (HSEC). In total, 27 volatile compounds are found to be associated with metabolism occurring in HGC-27, CLS-145, and HSEC. Amongst these, the headspace concentrations of 12 volatiles were found to be reduced compared to those above just the cultivating medium, namely there was an observed uptake of eight aldehydes (2-methylpropanal, 2-methyl-2-propenal, 2-methylbutanal, 3-methylbutanal, hexanal, heptanal, nonanal, and benzaldehyde), three heterocyclic compounds (2-methyl-furan, 2-ethyl-furan, and 2-pentyl-furan), and one sulfur-containing compound (dimethyl disulphide). For the other 15 volatiles, the headspace concentrations above the healthy and cancerous cells were found to be higher than those found above the cultivating medium, namely the cells were found to release three esters (ethyl acetate, ethyl propanoate, and ethyl 2-methylbutyrate), seven ketones (2-pentanone, 2-heptanone, 2-nonanone, 2-undecanone, 2-tridecanone, 2-pentadecanone, and 2-heptadecanone), three alcohols (2-methyl-1-butanol, 3-methyl-1-butanol, and 2-ethyl-1-hexanol), one aromatic compound (toluene), and one sulfur containing compound [2-methyl-5-(methylthio) furan]. In comparison to HSEC, HGC-27 cancer cell lines were found to have significantly altered metabolism, manifested by an increased production of methyl ketones containing an odd number of carbons. Amongst these species, three volatiles were found exclusively to be produced by this cell line, namely 2-undecanone, 2-tridecanone, and 2-heptadecanone. Another interesting feature of the HGC-27 footprint is the lowered level of alcohols and esters. The CLS-145 cells exhibited less pronounced changes in their volatilomic pattern compared to HSEC. Their footprint was characterized by the upregulated production of esters and 2-ethyl-hexanol and downregulated production of other alcohols. We have therefore demonstrated that it is possible to differentiate between cancerous and healthy gastric cells using biochemical volatile signatures.
Collapse
Affiliation(s)
- Andreas Leiherer
- Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Feldkirch, Austria
- Private University of the Principality of Liechtenstein, Triesen, Liechtenstein
- Medical Central Laboratories, Feldkirch, Austria
| | - Daria Ślefarska
- Institute for Breath Research, University of Innsbruck, Dornbirn, Austria
- Institute of Chemistry, Jan Kochanowski University, Kielce, Poland
| | - Marcis Leja
- Institute of Clinical and Preventive Medicine, University of Latvia, Riga, Latvia
- Faculty of Medicine, University of Latvia, Riga, Latvia
- Riga East University Hospital, Riga, Latvia
| | - Christine Heinzle
- Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Feldkirch, Austria
| | - Axel Mündlein
- Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Feldkirch, Austria
| | - Ilze Kikuste
- Institute of Clinical and Preventive Medicine, University of Latvia, Riga, Latvia
- Faculty of Medicine, University of Latvia, Riga, Latvia
- Riga East University Hospital, Riga, Latvia
| | - Linda Mezmale
- Institute of Clinical and Preventive Medicine, University of Latvia, Riga, Latvia
- Faculty of Medicine, University of Latvia, Riga, Latvia
- Riga East University Hospital, Riga, Latvia
| | - Heinz Drexel
- Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Feldkirch, Austria
- Private University of the Principality of Liechtenstein, Triesen, Liechtenstein
- Drexel University College of Medicine, Philadelphia, PA, United States
| | - Chris A. Mayhew
- Institute for Breath Research, University of Innsbruck, Dornbirn, Austria
- Molecular Physics Group, School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
| | - Paweł Mochalski
- Institute for Breath Research, University of Innsbruck, Dornbirn, Austria
- Institute of Chemistry, Jan Kochanowski University, Kielce, Poland
| |
Collapse
|
15
|
Identification of salivary volatile organic compounds as potential markers of stomach and colorectal cancer: A pilot study. J Oral Biosci 2020; 62:212-221. [PMID: 32474113 DOI: 10.1016/j.job.2020.05.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVES The purpose of the pilot study was to determine the potential diagnostic capabilities for the analysis of oxygen-containing salivary volatile organic compounds (VOCs) in stomach and colorectal cancer. METHODS Saliva samples of 11 patients with stomach cancer, 18 patients with colorectal cancer, and 16 healthy volunteers were analyzed through capillary gas chromatography. The levels of lipid peroxidation products and catalase activity were determined in all samples. To assess saliva diagnostic potential, we constructed a Classification and Regression Tree (CART). RESULTS It was shown that the use of a combination of saliva VOCs (acetaldehyde, acetone, propanol-2, and ethanol) allowed classification into Cancer/Control groups with a sensitivity and specificity of 95.7 and 90.9%, respectively. To clarify the location of the tumor, it was necessary to add a methanol level; in this case, the sensitivity for detecting stomach and colorectal cancer was 80.0% and 92.3%, respectively, while the specificity in both cases was 100%. When the lipid peroxidation product content was added to the VOC indicators, they were selected as the main factors for constructing the decision tree. For classification into Cancer/Control groups, only the triene conjugate and Schiff base content in saliva was sufficient. The combination of VOCs in saliva and lipid peroxidation indices improved the sensitivity and specificity for classification to 100%. CONCLUSION Preliminary data were obtained on the sensitivity and specificity of the diagnosis of stomach and colorectal cancer, which confirmed the promise of further studies on saliva VOCs for the purpose of clinical laboratory diagnostics.
Collapse
|
16
|
Monedeiro F, Pomastowski P, Milanowski M, Ligor T, Buszewski B. Monitoring of Bactericidal Effects of Silver Nanoparticles Based on Protein Signatures and VOC Emissions from Escherichia coli and Selected Salivary Bacteria. J Clin Med 2019; 8:E2024. [PMID: 31752439 PMCID: PMC6912796 DOI: 10.3390/jcm8112024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 11/19/2019] [Indexed: 01/13/2023] Open
Abstract
Escherichia coli and salivary Klebsiella oxytoca and Staphylococcus saccharolyticus were subjected to different concentrations of silver nanoparticles (AgNPs), namely: 12.5, 50, and 100 µg mL-1. Matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS) spectra were acquired after specified periods: 0, 1, 4, and 12 h. For study of volatile metabolites, headspace solid-phase microextraction coupled to gas chromatography/mass spectrometry (HS-SPME-GC-MS) was employed-AgNPs were added to bacteria cultures and the headspace was analyzed immediately and after 12 h of incubation. Principal components analysis provided discrimination between clusters of protein profiles belonging to different strains. Canonical correlation, network analysis, and multiple linear regression approach revealed that dimethyl disulfide, dimethyl trisulfide, 2-heptanone, and dodecanal (related to the metabolism of sulfur-containing amino acids and fatty acids synthesis) are exemplary molecular indicators, whose response variation deeply correlated to the interaction with bacteria. Therefore, such species can serve as biomarkers of the agent's effectiveness. The present investigation pointed out that the used approaches can be useful in the monitoring of response to therapeutic treatment based on AgNPs. Furthermore, biochemical mechanisms enrolled in the bactericidal action of nanoparticles can be applied in the development of new agents with enhanced properties.
Collapse
Affiliation(s)
- Fernanda Monedeiro
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, 87-100 Toruń, Poland; (F.M.); (P.P.); (M.M.); (T.L.)
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, 87-100 Toruń, Poland
- Department of Chemistry, Faculty of Philosophy, Science and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto CEP 14040-901, Brazil
| | - Paweł Pomastowski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, 87-100 Toruń, Poland; (F.M.); (P.P.); (M.M.); (T.L.)
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, 87-100 Toruń, Poland
| | - Maciej Milanowski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, 87-100 Toruń, Poland; (F.M.); (P.P.); (M.M.); (T.L.)
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, 87-100 Toruń, Poland
| | - Tomasz Ligor
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, 87-100 Toruń, Poland; (F.M.); (P.P.); (M.M.); (T.L.)
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, 87-100 Toruń, Poland
| | - Bogusław Buszewski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, 87-100 Toruń, Poland; (F.M.); (P.P.); (M.M.); (T.L.)
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, 87-100 Toruń, Poland
| |
Collapse
|
17
|
Yan W, Gu L, Ren W, Ma X, Qin M, Lyu M, Wang S. Recognition of Helicobacter pylori by protein-targeting aptamers. Helicobacter 2019; 24:e12577. [PMID: 30950149 DOI: 10.1111/hel.12577] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 01/12/2019] [Accepted: 02/07/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Helicobacter pylori (H pylori) is a disease-causing pathogen capable of surviving under acidic conditions of the human stomach. Almost half of the world's population is infected with H pylori, with gastric cancer being the most unsatisfactory prognosis. Although H pylori has been discovered 30 years ago, the effective treatment and elimination of H pylori continue to be problematic. MATERIALS AND METHODS In our study, we screened nucleic acid aptamers using H pylori surface recombinant antigens as targets. Trypsin was used for separating aptamers that were bound to proteins. Following nine rounds of screening, we performed sequence similarity analyses to assess whether the aptamers can recognize the target protein. Two sequences with desirable recognition ability were selected for affinity detection. Aptamer Hp4 with the strongest binding ability to the H pylori surface recombinant antigen was chosen. After optimization of the binding conditions, we conducted specificity tests for Hp4 using Escherichia coli, Staphylococcus aureus, Vibrioanguillarum, and H pylori. RESULTS The data indicated that the aptamer Hp4 had an equilibrium dissociation constant (Kd ) of 26.48 ± 5.72 nmol/L to the target protein. This aptamer was capable of exclusively detecting H pylori cells, without displaying any specificity for other bacteria. CONCLUSIONS We obtained a high-affinity aptamer for H pylori, which is expected to serve as a new molecular probe for detection of H pylori.
Collapse
Affiliation(s)
- Wanli Yan
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Huaihai Institute of Technology, Lianyungang, China.,Jiangsu Marine Resources Development Research Institute, Lianyungang, China.,College of Marine Life and Fisheries, Huaihai Institute of Technology, Lianyungang, China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Huaihai Institute of Technology, Lianyungang, China
| | - Lide Gu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Huaihai Institute of Technology, Lianyungang, China.,Jiangsu Marine Resources Development Research Institute, Lianyungang, China.,College of Marine Life and Fisheries, Huaihai Institute of Technology, Lianyungang, China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Huaihai Institute of Technology, Lianyungang, China
| | - Wei Ren
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Huaihai Institute of Technology, Lianyungang, China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Huaihai Institute of Technology, Lianyungang, China.,Key Laboratory of Marine Biology, Nanjing Agricultural University, Nanjing, China
| | - Xiaoyi Ma
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Huaihai Institute of Technology, Lianyungang, China.,Jiangsu Marine Resources Development Research Institute, Lianyungang, China.,College of Marine Life and Fisheries, Huaihai Institute of Technology, Lianyungang, China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Huaihai Institute of Technology, Lianyungang, China
| | - Mingcan Qin
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Huaihai Institute of Technology, Lianyungang, China.,Jiangsu Marine Resources Development Research Institute, Lianyungang, China.,College of Marine Life and Fisheries, Huaihai Institute of Technology, Lianyungang, China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Huaihai Institute of Technology, Lianyungang, China
| | - Mingsheng Lyu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Huaihai Institute of Technology, Lianyungang, China.,Jiangsu Marine Resources Development Research Institute, Lianyungang, China.,College of Marine Life and Fisheries, Huaihai Institute of Technology, Lianyungang, China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Huaihai Institute of Technology, Lianyungang, China
| | - Shujun Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Huaihai Institute of Technology, Lianyungang, China.,Jiangsu Marine Resources Development Research Institute, Lianyungang, China.,College of Marine Life and Fisheries, Huaihai Institute of Technology, Lianyungang, China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Huaihai Institute of Technology, Lianyungang, China
| |
Collapse
|
18
|
Ratiu IA, Ligor T, Bocos-Bintintan V, Szeliga J, Machała K, Jackowski M, Buszewski B. GC-MS application in determination of volatile profiles emitted by infected and uninfected human tissue. J Breath Res 2019; 13:026003. [PMID: 30530935 DOI: 10.1088/1752-7163/aaf708] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Volatile organic compounds (VOCs) released into the headspace air over human tissues infected with different bacteria were investigated in this work. The above-mentioned VOCs result both from bacterial metabolic processes (pathogen-specific signals) and from the matrix (tissue samples themselves). The objective of this study was to investigate whether one could reliably identify various microorganism strains that exist inside infected tissue samples by direct monitoring of the headspace atmosphere above their cultures. Headspace samples were directly interrogated using a GC-MS system, which produced distinct profiles for samples contaminated with single bacterial strains or with multiple strains (mixed infections). Principal component analysis (PCA) and predictive analysis based on receiver operating characteristics curves (ROC) were the statistical procedures utilized for differentiating between infected and uninfected samples, while network analysis and heat-mapping were used to highlight the connections between emitted volatiles and infectious pathogens. By using ROC curves, obtained results demonstrated that the area under the ROC (95% probability interval) was 0.86 in case of infected samples and 0.48 for uninfected samples. On the other hand, PCA highlighted separation between components coming from infected and uninfected patients, where 67% of variance was described from the first 2 principal components. The biomarker chemicals documented from this work, as well as the developed methodology may ultimately be applied to identify bacterial infections by analyzing exhaled breath.
Collapse
Affiliation(s)
- Ileana-Andreea Ratiu
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, 7 Gagarina Str., 87-100 Torun, Poland. Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, 11 Arany Janos, RO-400028, Cluj-Napoca, Romania
| | | | | | | | | | | | | |
Collapse
|
19
|
Mochalski P, Diem E, Unterkofler K, Mündlein A, Drexel H, Mayhew CA, Leiherer A. In vitro profiling of volatile organic compounds released by Simpson-Golabi-Behmel syndrome adipocytes. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1104:256-261. [PMID: 30537625 DOI: 10.1016/j.jchromb.2018.11.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/31/2018] [Accepted: 11/27/2018] [Indexed: 12/23/2022]
Abstract
Breath analysis offers a non-invasive and rapid diagnostic method for detecting various volatile organic compounds that could be indicators for different diseases, particularly metabolic disorders including type 2 diabetes mellitus. The development of type 2 diabetes mellitus is closely linked to metabolic dysfunction of adipose tissue and adipocytes. However, the VOC profile of human adipocytes has not yet been investigated. Gas chromatography with mass spectrometric detection and head-space needle trap extraction (two-bed Carbopack X/Carboxen 1000 needle traps) were applied to profile VOCs produced and metabolised by human Simpson Golabi Behmel Syndrome adipocytes. In total, sixteen compounds were identified to be related to the metabolism of the cells. Four sulphur compounds (carbon disulphide, dimethyl sulphide, ethyl methyl sulphide and dimethyl disulphide), three heterocyclic compounds (2-ethylfuran, 2-methyl-5-(methyl-thio)-furan, and 2-pentylfuran), two ketones (acetone and 2-pentanone), two hydrocarbons (isoprene and n-heptane) and one ester (ethyl acetate) were produced, and four aldehydes (2-methyl-propanal, butanal, pentanal and hexanal) were found to be consumed by the cells of interest. This study presents the first profile of VOCs formed by human adipocytes, which may reflect the activity of the adipose tissue enzymes and provide evidence of their active role in metabolic regulation. Our data also suggest that a previously reported increase of isoprene and sulphur compounds in diabetic patients may be explained by their production by adipocytes. Moreover, the unique features of this profile, including a high emission of dimethyl sulphide and the production of furan-containing VOCs, increase our knowledge about metabolism in adipose tissue and provide diagnostic potential for future applications.
Collapse
Affiliation(s)
- Paweł Mochalski
- Institute for Breath Research, University of Innsbruck, Rathausplatz 4, A-6850 Dornbirn, Austria; Institute of Chemistry, Jan Kochanowski University, Świętokrzyska 15G, PL-25406 Kielce, Poland.
| | - Eva Diem
- MCI Management Center Innsbruck, Universitaetsstrasse 15, A-6020 Innsbruck, Austria
| | - Karl Unterkofler
- Institute for Breath Research, University of Innsbruck, Rathausplatz 4, A-6850 Dornbirn, Austria; Vorarlberg University of Applied Sciences, Hochschulstrasse 1, A-6850 Dornbirn, Austria
| | - Axel Mündlein
- Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Carinagasse 47, A-6800 Feldkirch, Austria
| | - Heinz Drexel
- Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Carinagasse 47, A-6800 Feldkirch, Austria; Division of Angiology, Swiss Cardiovascular Center, University Hospital Berne, Berne, Switzerland; Drexel University College of Medicine, Philadelphia, PA, USA
| | - Chris A Mayhew
- Institute for Breath Research, University of Innsbruck, Rathausplatz 4, A-6850 Dornbirn, Austria; Molecular Physics Group, School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Andreas Leiherer
- Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Carinagasse 47, A-6800 Feldkirch, Austria; Private University of the Principality of Liechtenstein, Triesen, Liechtenstein; Medical Central Laboratories, A-6800 Feldkirch, Austria
| |
Collapse
|
20
|
Porto-Figueira P, Pereira J, Miekisch W, Câmara JS. Exploring the potential of NTME/GC-MS, in the establishment of urinary volatomic profiles. Lung cancer patients as case study. Sci Rep 2018; 8:13113. [PMID: 30166567 PMCID: PMC6117359 DOI: 10.1038/s41598-018-31380-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 08/16/2018] [Indexed: 12/20/2022] Open
Abstract
The growing cancer incidence and mortality worldwide claims for the development of novel diagnostic strategies. In this study we aimed to explore the potential of an innovative methodology, based on a needle trap microextraction (NTME), combined with gas chromatography-mass spectrometry (GC-MS), as new approach to isolate and profile urinary volatile organic metabolites (VOMs) from lung cancer (LC) patients and healthy individuals (CTRL). In this context, different experimental parameters with influence of NTME extraction efficiency including, temperature, equilibration time, headspace volume, ionic strength, pH, effects of sample volume and stirring, were investigated and optimized. For the DVB/CarX/Car1000 needle trap device (NTD), the best results were obtained using 40 mL headspace of a 4-mL acidified (pH = 2) urine sample with 20% NaCl and an extraction temperature of 50 °C for 40 min of equilibration time. The stability of the isolated VOMs was investigated up to 72 h after extraction. From the VOMs identified, belonging namely to ketones, sulphur and benzene derivatives, 98 presented a frequency of occurrence above 90%. Data were processed by discriminant analysis, retrieving differentiated clusters for LC and CTRL groups. As far we are aware, this is the first study using NTME/GC-MS to establish urinary volatomic profiles. Preliminary results are very promising, as broad and comprehensive volatile profiles were obtained. Moreover, the extended storage stability of the NTD devices opens new opportunities for sampling other matrices in a wide range of applications.
Collapse
Affiliation(s)
- Priscilla Porto-Figueira
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus Universitário da Penteada, 9020-105, Funchal, Portugal
| | - Jorge Pereira
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus Universitário da Penteada, 9020-105, Funchal, Portugal
| | - Wolfram Miekisch
- Department of Anaesthesiology and Intensive Care Medicine, Rostock Medical Breath Research Analytics and Technologies (ROMBAT), University Medicine Rostock, Rostock, Germany
| | - José S Câmara
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus Universitário da Penteada, 9020-105, Funchal, Portugal.
- Faculdade de Ciências Exatas e da Engenharia da Universidade da Madeira, Campus Universitário da Penteada, 9020-105, Funchal, Portugal.
| |
Collapse
|
21
|
Wilson AD. Application of Electronic-Nose Technologies and VOC-Biomarkers for the Noninvasive Early Diagnosis of Gastrointestinal Diseases †. SENSORS (BASEL, SWITZERLAND) 2018; 18:E2613. [PMID: 30096939 PMCID: PMC6111575 DOI: 10.3390/s18082613] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/03/2018] [Accepted: 08/04/2018] [Indexed: 12/13/2022]
Abstract
Conventional methods utilized for clinical diagnosis of gastrointestinal (GI) diseases have employed invasive medical procedures that cause stress, anxiety and pain to patients. These methods are often expensive, time-consuming, and require sophisticated chemical-analysis instruments and advanced modeling procedures to achieve diagnostic interpretations. This paper reviews recent applications of simpler, electronic-nose (e-nose) devices for the noninvasive early diagnosis of a wide range of GI diseases by collective analysis of headspace volatile organic compound (VOC)-metabolites from clinical samples to produce disease-specific aroma signatures (VOC profiles). A different "metabolomics" approach to GI disease diagnostics, involving identifications and quantifications of disease VOC-metabolites, are compared to the electronic-nose approach based on diagnostic costs, accuracy, advantages and disadvantages. The importance of changes in gut microbiome composition that result from disease are discussed relative to effects on disease detection. A new diagnostic approach, which combines the use of e-nose instruments for early rapid prophylactic disease-screenings with targeted identification of known disease biomarkers, is proposed to yield cheaper, quicker and more dependable diagnostic results. Some priority future research needs and coordination for bringing e-nose instruments into routine clinical practice are summarized.
Collapse
Affiliation(s)
- Alphus Dan Wilson
- Pathology Department, Southern Hardwoods Laboratory, Center for Bottomland Hardwoods Research, Southern Research Station, USDA Forest Service, 432 Stoneville Road, Stoneville, MS 38776, USA.
| |
Collapse
|
22
|
Mochalski P, Leja M, Gasenko E, Skapars R, Santare D, Sivins A, Aronsson DE, Ager C, Jaeschke C, Shani G, Mitrovics J, Mayhew CA, Haick H. Ex vivo emission of volatile organic compounds from gastric cancer and non-cancerous tissue. J Breath Res 2018; 12:046005. [PMID: 29893713 DOI: 10.1088/1752-7163/aacbfb] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The presence of certain volatile organic compounds (VOCs) in the breath of patients with gastric cancer has been reported by a number of research groups; however, the source of these compounds remains controversial. Comparison of VOCs emitted from gastric cancer tissue to those emitted from non-cancerous tissue would help in understanding which of the VOCs are associated with gastric cancer and provide a deeper knowledge on their generation. Gas chromatography with mass spectrometric detection (GC-MS) coupled with head-space needle trap extraction (HS-NTE) as the pre-concentration technique, was used to identify and quantify VOCs released by gastric cancer and non-cancerous tissue samples collected from 41 patients during surgery. Excluding contaminants, a total of 32 VOCs were liberated by the tissue samples. The emission of four of them (carbon disulfide, pyridine, 3-methyl-2-butanone and 2-pentanone) was significantly higher from cancer tissue, whereas three compounds (isoprene, γ-butyrolactone and dimethyl sulfide) were in greater concentration from the non-cancerous tissues (Wilcoxon signed-rank test, p < 0.05). Furthermore, the levels of three VOCs (2-methyl-1-propene, 2-propenenitrile and pyrrole) were correlated with the occurrence of H. pylori; and four compounds (acetonitrile, pyridine, toluene and 3-methylpyridine) were associated with tobacco smoking. Ex vivo analysis of VOCs emitted by human tissue samples provides a unique opportunity to identify chemical patterns associated with a cancerous state and can be considered as a complementary source of information on volatile biomarkers found in breath, blood or urine.
Collapse
Affiliation(s)
- Pawel Mochalski
- Institute for Breath Research, University of Innsbruck, Rathausplatz 4, A-6850 Dornbirn, Austria. Institute of Chemistry, Jan Kochanowski University, Świętokrzyska 15G, PL-25406 Kielce, Poland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Porto-Figueira P, Pereira JAM, Câmara JS. Exploring the potential of needle trap microextraction combined with chromatographic and statistical data to discriminate different types of cancer based on urinary volatomic biosignature. Anal Chim Acta 2018; 1023:53-63. [PMID: 29754607 DOI: 10.1016/j.aca.2018.04.027] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/12/2018] [Accepted: 04/16/2018] [Indexed: 12/20/2022]
Abstract
The worldwide high cancer incidence and mortality demands for more effective and specific diagnostic strategies. In this study, we evaluated the efficiency of an innovative methodology, Needle Trap Microextraction (NTME), combined with gas chromatography-mass spectrometry (GC-MS), for the establishment of the urinary volatomic biosignature from breast (BC), and colon (CC) cancer patients as well as healthy individuals (CTL). To achieve this, 40 mL of the headspace of acidified urine (4 mL, 20% NaCl, pH = 2), equilibrated at 50 °C during 40 min, were loaded through the DVB/Car1000/CarX sorbent inside the NTD, and subjected to a GC-MS analysis. This allowed the identification of 130 VOMs from different chemical families that were further processed using discriminant analysis through the partial least squares method (PLS-DA). Several pathways are over activated in cancer patients, being phenylalanine pathway in BC and limonene and pinene degradation pathway in CC the most relevant. Butanoate metabolism is also highly activated in both cancers, as well as tyrosine metabolism in a lesser extension. In BC the xenobiotics metabolism by cytochrome P450 and fatty acid biosynthesis are also differentially activated. Different clusters corresponding to the groups recruited allowed to define sets of volatile organic metabolites (VOMs fingerprints) that exhibit high classification rates, sensitivity and specificity in the discrimination of the selected cancers. As far as we are aware, this is the first time that NTME is used for isolation urinary volatile metabolites, being the obtained results very promising.
Collapse
Affiliation(s)
- Priscilla Porto-Figueira
- CQM-UMa, Centro de Química da Madeira, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| | - Jorge A M Pereira
- CQM-UMa, Centro de Química da Madeira, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| | - José S Câmara
- CQM-UMa, Centro de Química da Madeira, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal; Faculdade das Ciências Exatas e da Engenharia da Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal.
| |
Collapse
|
24
|
Purcaro G, Stefanuto PH, Franchina FA, Beccaria M, Wieland-Alter WF, Wright PF, Hill JE. SPME-GC×GC-TOF MS fingerprint of virally-infected cell culture: Sample preparation optimization and data processing evaluation. Anal Chim Acta 2018; 1027:158-167. [PMID: 29866265 DOI: 10.1016/j.aca.2018.03.037] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/16/2018] [Accepted: 03/18/2018] [Indexed: 02/01/2023]
Abstract
Untargeted metabolomics study of volatile organic compounds produced by different cell cultures is a field that has gained increasing attention over the years. Solid-phase microextraction has been the sampling technique of choice for most of the applications mainly due to its simplicity to implement. However, a careful optimization of the analytical conditions is necessary to obtain the best performances, which are highly matrix-dependent. In this work, five different solid-phase microextraction fibers were compared for the analysis of the volatiles produced by cell culture infected with the human respiratory syncytial virus. A central composite design was applied to determine the best time-temperature combination to maximize the extraction efficiency and the salting-out effect was evaluated as well. The linearity of the optimized method, along with limits of detection and quantification and repeatability was assessed. Finally, the effect of i) different normalization techniques (i.e. z-score and probabilistic quotient normalization), ii) data transformation (i.e. in logarithmic scale), and iii) different feature selection algorithms (i.e. Fisher ratio and random forest) on the capability of discriminating between infected and not-infected cell culture was evaluated.
Collapse
Affiliation(s)
- Giorgia Purcaro
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, United States.
| | | | - Flavio A Franchina
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, United States
| | - Marco Beccaria
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, United States
| | | | - Peter F Wright
- Geisel School of Medicine, Dartmouth College, Hanover, NH, 03755, United States; Dartmouth-Hitchcock Medical Center, Lebanon, NH, 03756, United States
| | - Jane E Hill
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, United States; Geisel School of Medicine, Dartmouth College, Hanover, NH, 03755, United States
| |
Collapse
|
25
|
Lawal O, Muhamadali H, Ahmed WM, White IR, Nijsen TME, Goodacre R, Fowler SJ. Headspace volatile organic compounds from bacteria implicated in ventilator-associated pneumonia analysed by TD-GC/MS. J Breath Res 2018; 12:026002. [PMID: 28947683 DOI: 10.1088/1752-7163/aa8efc] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Ventilator-associated pneumonia (VAP) is a healthcare-acquired infection arising from the invasion of the lower respiratory tract by opportunistic pathogens in ventilated patients. The current method of diagnosis requires the culture of an airway sample such as bronchoalveolar lavage, which is invasive to obtain and may take up to seven days to identify a causal pathogen, or indeed rule out infection. While awaiting results, patients are administered empirical antibiotics; risks of this approach include lack of effect on the causal pathogen, contribution to the development of antibiotic resistance and downstream effects such as increased length of intensive care stay, cost, morbidity and mortality. Specific biomarkers which could identify causal pathogens in a timely manner are needed as they would allow judicious use of the most appropriate antimicrobial therapy. Volatile organic compound (VOC) analysis in exhaled breath is proposed as an alternative due to its non-invasive nature and its potential to provide rapid diagnosis at the patient's bedside. VOCs in exhaled breath originate from exogenous, endogenous, as well as microbial sources. To identify potential markers, VAP-associated pathogens Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Staphylococcus aureus were cultured in both artificial sputum medium and nutrient broth, and their headspaces were sampled and analysed for VOCs. Previously reported volatile markers were identified in this study, including indole and 1-undecene, alongside compounds that are novel to this investigation, cyclopentanone and 1-hexanol. We further investigated media components (substrates) to identify those that are essential for indole and cyclopentanone production, with potential implications for understanding microbial metabolism in the lung.
Collapse
Affiliation(s)
- Oluwasola Lawal
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Philips Research, Royal Philips B.V., Eindhoven, The Netherlands
- School of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
| | - Howbeer Muhamadali
- School of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
| | - Waqar M Ahmed
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Iain R White
- School of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
| | | | - Royston Goodacre
- School of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
| | - Stephen J Fowler
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Manchester Academic Health Science Centre, The University of Manchester and University Hospital of South Manchester NHS Foundation Trust, Manchester, United Kingdom
| |
Collapse
|
26
|
Martinez CA, Nohalez A, Parrilla I, Motas M, Roca J, Romero I, García-González DL, Cuello C, Rodriguez-Martinez H, Martinez EA, Gil MA. The overlaying oil type influences in vitro embryo production: differences in composition and compound transfer into incubation medium between oils. Sci Rep 2017; 7:10505. [PMID: 28874873 PMCID: PMC5585310 DOI: 10.1038/s41598-017-10989-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 08/17/2017] [Indexed: 11/20/2022] Open
Abstract
The oil overlay micro-drop system is widely used for cultures of mammalian gametes and embryos. We evaluated hereby the effects of two unaltered commercial oils- Sigma mineral oil (S-MO) and Nidoil paraffin oil (N-PO)-on in vitro embryo production (IVP) outcomes using a pig model. The results showed that while either oil apparently did not affect oocyte maturation and fertilization rates, S-MO negatively affected embryo cleavage rates, blastocyst formation rates, and, consequently, total blastocyst efficiency of the system. No differences in the oxidation state were found between the oils or culture media incubated under S-MO or N-PO. Although both oils slightly differed in elemental composition, there were no differences in the concentrations of elements between fresh media and media incubated under oils. By contrast, we demonstrated clear oil-type differences in both the composition of volatile organic compounds (VOC) and the transfer of some of these VOC´s (straight-chain alkanes and pentanal and 1,3-diethyl benzene) to the culture medium, which could have influenced embryonic development.
Collapse
Affiliation(s)
- Cristina A Martinez
- Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, Murcia, Spain
- Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Murcia, Spain
| | - Alicia Nohalez
- Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, Murcia, Spain
- Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Murcia, Spain
| | - Inmaculada Parrilla
- Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, Murcia, Spain
- Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Murcia, Spain
| | - Miguel Motas
- Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, Murcia, Spain
- Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Murcia, Spain
| | - Jordi Roca
- Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, Murcia, Spain
- Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Murcia, Spain
| | - Inmaculada Romero
- Instituto de la Grasa, (CSIC), Campus University Pablo de Olavide, Sevilla, Spain
| | | | - Cristina Cuello
- Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, Murcia, Spain
- Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Murcia, Spain
| | | | - Emilio A Martinez
- Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, Murcia, Spain.
- Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Murcia, Spain.
| | - Maria A Gil
- Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, Murcia, Spain
- Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Murcia, Spain
| |
Collapse
|
27
|
Mass spectrometric techniques for the analysis of volatile organic compounds emitted from bacteria. Bioanalysis 2017; 9:1069-1092. [PMID: 28737423 DOI: 10.4155/bio-2017-0051] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Bacteria are the main cause of many human diseases. Typical bacterial identification methods, for example culture-based, serological and genetic methods, are time-consuming, delaying the potential for an early and accurate diagnosis and the appropriate subsequent treatment. Nevertheless, there is a stringent need for in situ tests that are rapid, noninvasive and sensitive, which will greatly facilitate timely treatment of the patients. This review article presents volatile organic metabolites emitted from various micro-organism strains responsible for common bacterial infections in humans. Additionally, the manuscript shows the application of different analytical techniques for fast bacterial identification. Details of these techniques are given, which focuses on their advantages and drawbacks in using for volatile organic components analysis.
Collapse
|
28
|
Lubes G, Goodarzi M. GC-MS based metabolomics used for the identification of cancer volatile organic compounds as biomarkers. J Pharm Biomed Anal 2017; 147:313-322. [PMID: 28750734 DOI: 10.1016/j.jpba.2017.07.013] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 07/13/2017] [Accepted: 07/14/2017] [Indexed: 01/27/2023]
Abstract
A biomarker can be a metabolite, coming from a metabolic pathway or cell process, which might be employed in the diagnostic of diseases, predict patient response towards chemical therapies and/or monitor disease recurrences. Biomarkers, e.g. aldehydes or hydrocarbons, are often identified from different body fluids such as blood, urine, serum, saliva or from various tissues samples, and their concentration can vary from one sample to the other. However, the detection and the action of these biomarkers for diseases is a complicated process. Cancer is one of the main cause of death worldwide. The main characteristic of cancerous tumor is the uncontrolled growing of cells inside the organism. Likely, these uncontrolled growths are as consequence changes in the metabolism that could be analytically monitored. Depending on where the cancer cells are located, they provide different characteristics profiles. These profiles as fingerprints are used for differentiation in a comparison to normal cells. This critical study aimed at highlighting the latest progress in this area, especially in the employment of gas chromatography for the monitoring of volatile organic compounds (VOCs) and the identification of possible molecules used as biomarkers for cancer therapy.
Collapse
Affiliation(s)
- Giuseppe Lubes
- Laboratorio de Equilibrios en Solución, Universidad Simón Bolívar, Venezuela
| | - Mohammad Goodarzi
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States.
| |
Collapse
|
29
|
Milanowski M, Pomastowski P, Railean-Plugaru V, Rafińska K, Ligor T, Buszewski B. Biosorption of silver cations onto Lactococcus lactis and Lactobacillus casei isolated from dairy products. PLoS One 2017; 12:e0174521. [PMID: 28362838 PMCID: PMC5375156 DOI: 10.1371/journal.pone.0174521] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 03/10/2017] [Indexed: 01/20/2023] Open
Abstract
The current work deals with the phenomenon of silver cations uptake by two kinds of bacteria isolated from dairy products. The mechanism of sorption of silver cations by Lactococcus lactis and Lactobacillus casei bacteria was investigated. Inductively coupled plasma–mass spectrometry (ICP-MS) was used for determination of silver concentration sorbed by bacteria. Analysis of charge distribution was conducted by diffraction light scattering method. Changes in the ultrastructure of Lactococcus lactis and Lactobacillus casei cells after treatment with silver cations were investigated using transmission electron microscopy observation. Molecular spectroscopy methods, namely Fourier transform-infrared spectroscopy (FT-IR) and matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) were employed for description of the sorption mechanism. Moreover, an analysis of volatile organic compounds (VOCs) extracted from bacterial cells was performed.
Collapse
Affiliation(s)
- Maciej Milanowski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Toruń, Poland
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, Toruń, Poland
| | - Paweł Pomastowski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Toruń, Poland
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, Toruń, Poland
| | - Viorica Railean-Plugaru
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Toruń, Poland
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, Toruń, Poland
| | - Katarzyna Rafińska
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Toruń, Poland
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, Toruń, Poland
| | - Tomasz Ligor
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Toruń, Poland
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, Toruń, Poland
| | - Bogusław Buszewski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Toruń, Poland
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, Toruń, Poland
- * E-mail:
| |
Collapse
|
30
|
DeMartino AW, Zigler DF, Fukuto JM, Ford PC. Carbon disulfide. Just toxic or also bioregulatory and/or therapeutic? Chem Soc Rev 2017; 46:21-39. [DOI: 10.1039/c6cs00585c] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The overview presented here has the goal of examining whether carbon disulfide (CS2) may play a role as an endogenously generated bioregulator and/or has therapeutic value.
Collapse
Affiliation(s)
- Anthony W. DeMartino
- Department of Chemistry and Biochemistry
- University of California
- Santa Barbara
- USA
| | - David F. Zigler
- Department of Chemistry & Biochemistry
- California Polytechnic State University
- San Luis Obispo
- USA
| | - Jon M. Fukuto
- Department of Chemistry
- Sonoma State University
- Rohnert Park
- USA
| | - Peter C. Ford
- Department of Chemistry and Biochemistry
- University of California
- Santa Barbara
- USA
| |
Collapse
|
31
|
Goryński K, Goryńska P, Górska A, Harężlak T, Jaroch A, Jaroch K, Lendor S, Skobowiat C, Bojko B. SPME as a promising tool in translational medicine and drug discovery: From bench to bedside. J Pharm Biomed Anal 2016; 130:55-67. [DOI: 10.1016/j.jpba.2016.05.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 05/03/2016] [Accepted: 05/04/2016] [Indexed: 01/11/2023]
|
32
|
Li L, Hu Y, Deng D, Song H, Lv Y. Highly sensitive cataluminescence gas sensors for 2-butanone based on g-C3N4 sheets decorated with CuO nanoparticles. Anal Bioanal Chem 2016; 408:8831-8841. [DOI: 10.1007/s00216-016-9906-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 08/02/2016] [Accepted: 08/24/2016] [Indexed: 10/21/2022]
|
33
|
Leja M, Amal H, Lasina I, Skapars R, Sivins A, Ancans G, Tolmanis I, Vanags A, Kupcinskas J, Ramonaite R, Khatib S, Bdarneh S, Natour R, Ashkar A, Haick H. Analysis of the effects of microbiome-related confounding factors on the reproducibility of the volatolomic test. J Breath Res 2016; 10:037101. [DOI: 10.1088/1752-7155/10/3/037101] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
34
|
Rees CA, Smolinska A, Hill JE. The volatile metabolome of
Klebsiella pneumoniae
in human blood. J Breath Res 2016; 10:027101. [DOI: 10.1088/1752-7155/10/2/027101] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
35
|
Amal H, Leja M, Funka K, Skapars R, Sivins A, Ancans G, Liepniece-Karele I, Kikuste I, Lasina I, Haick H. Detection of precancerous gastric lesions and gastric cancer through exhaled breath. Gut 2016; 65:400-7. [PMID: 25869737 DOI: 10.1136/gutjnl-2014-308536] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 02/07/2015] [Indexed: 12/15/2022]
Abstract
OBJECTIVES Timely detection of gastric cancer (GC) and the related precancerous lesions could provide a tool for decreasing both cancer mortality and incidence. DESIGN 968 breath samples were collected from 484 patients (including 99 with GC) for two different analyses. The first sample was analysed by gas chromatography linked to mass spectrometry (GCMS) while applying t test with multiple corrections (p value<0.017); the second by cross-reactive nanoarrays combined with pattern recognition. For the latter, 70% of the samples were randomly selected and used in the training set while the remaining 30% constituted the validation set. The operative link on gastric intestinal metaplasia (OLGIM) assessment staging system was used to stratify the presence/absence and risk level of precancerous lesions. Patients with OLGIM stages III-IV were considered to be at high risk. RESULTS According to the GCMS results, patients with cancer as well as those at high risk had distinctive breath-print compositions. Eight significant volatile organic compounds (p value<0.017) were detected in exhaled breath in the different comparisons. The nanoarray analysis made it possible to discriminate between the patients with GC and the control group (OLGIM 0-IV) with 73% sensitivity, 98% specificity and 92% accuracy. The classification sensitivity, specificity, and accuracy between the subgroups was as follows: GC versus OLGIM 0-II-97%, 84% and 87%; GC versus OLGIM III-IV-93%, 80% and 90%; but OLGIM I-II versus OLGIM III-IV and dysplasia combined-83%, 60% and 61%, respectively. CONCLUSIONS Nanoarray analysis could provide the missing non-invasive screening tool for GC and related precancerous lesions as well as for surveillance of the latter. TRIAL REGISTRATION NUMBER Clinical Trials.gov number, NCT01420588 (3/11/2013).
Collapse
Affiliation(s)
- Haitham Amal
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Marcis Leja
- Faculty of Medicine, University of Latvia, Riga, Latvia Department of Research, Riga East University Hospital, Riga, Latvia Digestive Diseases Centre GASTRO, Riga, Latvia
| | - Konrads Funka
- Faculty of Medicine, University of Latvia, Riga, Latvia Department of Research, Riga East University Hospital, Riga, Latvia Digestive Diseases Centre GASTRO, Riga, Latvia
| | - Roberts Skapars
- Faculty of Medicine, University of Latvia, Riga, Latvia Department of Research, Riga East University Hospital, Riga, Latvia
| | - Armands Sivins
- Faculty of Medicine, University of Latvia, Riga, Latvia Department of Research, Riga East University Hospital, Riga, Latvia
| | - Guntis Ancans
- Faculty of Medicine, University of Latvia, Riga, Latvia Department of Research, Riga East University Hospital, Riga, Latvia
| | - Inta Liepniece-Karele
- Faculty of Medicine, University of Latvia, Riga, Latvia Department of Research, Riga East University Hospital, Riga, Latvia Academic Histology laboratory, Riga, Latvia
| | - Ilze Kikuste
- Faculty of Medicine, University of Latvia, Riga, Latvia Digestive Diseases Centre GASTRO, Riga, Latvia
| | - Ieva Lasina
- Faculty of Medicine, University of Latvia, Riga, Latvia
| | - Hossam Haick
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
36
|
Rick J, Tsai MC, Hwang BJ. Biosensors Incorporating Bimetallic Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2015; 6:E5. [PMID: 28344262 PMCID: PMC5302532 DOI: 10.3390/nano6010005] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 12/11/2015] [Accepted: 12/16/2015] [Indexed: 12/12/2022]
Abstract
This article presents a review of electrochemical bio-sensing for target analytes based on the use of electrocatalytic bimetallic nanoparticles (NPs), which can improve both the sensitivity and selectivity of biosensors. The review moves quickly from an introduction to the field of bio-sensing, to the importance of biosensors in today's society, the nature of the electrochemical methods employed and the attendant problems encountered. The role of electrocatalysts is introduced with reference to the three generations of biosensors. The contributions made by previous workers using bimetallic constructs, grouped by target analyte, are then examined in detail; following which, the synthesis and characterization of the catalytic particles is examined prior to a summary of the current state of endeavor. Finally, some perspectives for the future of bimetallic NPs in biosensors are given.
Collapse
Affiliation(s)
- John Rick
- NanoElectrochemistry Laboratory, Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan.
| | - Meng-Che Tsai
- NanoElectrochemistry Laboratory, Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan.
| | - Bing Joe Hwang
- NanoElectrochemistry Laboratory, Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan.
- National Synchrotron Radiation Research Center, Hsinchu 300, Taiwan.
| |
Collapse
|
37
|
Yusuf N, Zakaria A, Omar MI, Shakaff AYM, Masnan MJ, Kamarudin LM, Abdul Rahim N, Zakaria NZI, Abdullah AA, Othman A, Yasin MS. In-vitro diagnosis of single and poly microbial species targeted for diabetic foot infection using e-nose technology. BMC Bioinformatics 2015; 16:158. [PMID: 25971258 PMCID: PMC4430918 DOI: 10.1186/s12859-015-0601-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 04/28/2015] [Indexed: 12/16/2022] Open
Abstract
Background Effective management of patients with diabetic foot infection is a crucial concern. A delay in prescribing appropriate antimicrobial agent can lead to amputation or life threatening complications. Thus, this electronic nose (e-nose) technique will provide a diagnostic tool that will allow for rapid and accurate identification of a pathogen. Results This study investigates the performance of e-nose technique performing direct measurement of static headspace with algorithm and data interpretations which was validated by Headspace SPME-GC-MS, to determine the causative bacteria responsible for diabetic foot infection. The study was proposed to complement the wound swabbing method for bacterial culture and to serve as a rapid screening tool for bacteria species identification. The investigation focused on both single and poly microbial subjected to different agar media cultures. A multi-class technique was applied including statistical approaches such as Support Vector Machine (SVM), K Nearest Neighbor (KNN), Linear Discriminant Analysis (LDA) as well as neural networks called Probability Neural Network (PNN). Most of classifiers successfully identified poly and single microbial species with up to 90% accuracy. Conclusions The results obtained from this study showed that the e-nose was able to identify and differentiate between poly and single microbial species comparable to the conventional clinical technique. It also indicates that even though poly and single bacterial species in different agar solution emit different headspace volatiles, they can still be discriminated and identified using multivariate techniques.
Collapse
Affiliation(s)
- Nurlisa Yusuf
- Centre of Excellence for Advanced Sensor Technology, Universiti Malaysia Perlis, Perlis, Malaysia.
| | - Ammar Zakaria
- Centre of Excellence for Advanced Sensor Technology, Universiti Malaysia Perlis, Perlis, Malaysia.
| | - Mohammad Iqbal Omar
- Centre of Excellence for Advanced Sensor Technology, Universiti Malaysia Perlis, Perlis, Malaysia.
| | - Ali Yeon Md Shakaff
- Centre of Excellence for Advanced Sensor Technology, Universiti Malaysia Perlis, Perlis, Malaysia.
| | - Maz Jamilah Masnan
- Institute for Engineering Mathematics, Universiti Malaysia Perlis, Perlis, Malaysia.
| | | | - Norasmadi Abdul Rahim
- Centre of Excellence for Advanced Sensor Technology, Universiti Malaysia Perlis, Perlis, Malaysia.
| | - Nur Zawatil Isqi Zakaria
- Centre of Excellence for Advanced Sensor Technology, Universiti Malaysia Perlis, Perlis, Malaysia.
| | | | - Amizah Othman
- Department of Microbiology
- , Hospital Tuanku Fauziah, Jalan Kolam, Kangar, Perlis, Malaysia.
| | - Mohd Sadek Yasin
- Department of Microbiology
- , Hospital Tuanku Fauziah, Jalan Kolam, Kangar, Perlis, Malaysia.
| |
Collapse
|
38
|
|
39
|
Filipiak W, Filipiak A, Sponring A, Schmid T, Zelger B, Ager C, Klodzinska E, Denz H, Pizzini A, Lucciarini P, Jamnig H, Troppmair J, Amann A. Comparative analyses of volatile organic compounds (VOCs) from patients, tumors and transformed cell lines for the validation of lung cancer-derived breath markers. J Breath Res 2014; 8:027111. [PMID: 24862102 DOI: 10.1088/1752-7155/8/2/027111] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Breath analysis for the purpose of non-invasive diagnosis of lung cancer has yielded numerous candidate compounds with still questionable clinical relevance. To arrive at suitable volatile organic compounds our approach combined the analysis of different sources: isolated tumor samples compared to healthy lung tissues, and exhaled breath from lung cancer patients and healthy controls. Candidate compounds were further compared to substances previously identified in the comparison of transformed and normal lung epithelial cell lines. For human studies, a breath sampling device was developed enabling automated and CO2-controlled collection of the end-tidal air. All samples were first preconcentrated on multibed sorption tubes and analyzed with gas chromatography mass spectrometry (GC-MS). Significantly (p < 0.05) higher concentrations in all three types of cancer samples studied were observed for ethanol and n-octane. Additional metabolites (inter alia 2-methylpentane, n-hexane) significantly released by lung cancer cells were observed at higher levels in cancer lung tissues and breath samples (compared to respective healthy controls) with statistical significance (p < 0.05) only in breath samples. The results obtained confirmed the cancer-related origin of volatile metabolites, e.g. ethanol and octane that were both detected at significantly (p < 0.05) elevated concentrations in all three kinds of cancer samples studied. This work is an important step towards identification of volatile breath markers of lung cancer through the demonstration of cancer-related origin of certain volatile metabolites.
Collapse
Affiliation(s)
- Wojciech Filipiak
- Breath Research Institute of the University of Innsbruck, A-6850 Dornbirn, Austria. Univ.-Clinic for Anesthesia and Intensive Care, Innsbruck Medical University, A-6020 Innsbruck, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Arasaradnam RP, Covington JA, Harmston C, Nwokolo CU. Review article: next generation diagnostic modalities in gastroenterology--gas phase volatile compound biomarker detection. Aliment Pharmacol Ther 2014; 39:780-9. [PMID: 24612215 DOI: 10.1111/apt.12657] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Revised: 10/08/2013] [Accepted: 01/23/2014] [Indexed: 12/12/2022]
Abstract
BACKGROUND The detection of airborne gas phase biomarkers that emanate from biological samples like urine, breath and faeces may herald a new age of non-invasive diagnostics. These biomarkers may reflect status in health and disease and can be detected by humans and other animals, to some extent, but far more consistently with instruments. The continued advancement in micro and nanotechnology has produced a range of compact and sophisticated gas analysis sensors and sensor systems, focussed primarily towards environmental and security applications. These instruments are now increasingly adapted for use in clinical testing and with the discovery of new gas volatile compound biomarkers, lead naturally to a new era of non-invasive diagnostics. AIM To review current sensor instruments like the electronic nose (e-nose) and ion mobility spectroscopy (IMS), existing technology like gas chromatography-mass spectroscopy (GC-MS) and their application in the detection of gas phase volatile compound biomarkers in medicine - focussing on gastroenterology. METHODS A systematic search on Medline and Pubmed databases was performed to identify articles relevant to gas and volatile organic compounds. RESULTS E-nose and IMS instruments achieve sensitivities and specificities ranging from 75 to 92% in differentiating between inflammatory bowel disease, bile acid diarrhoea and colon cancer from controls. For pulmonary disease, the sensitivities and specificities exceed 90% in differentiating between pulmonary malignancy, pneumonia and obstructive airways disease. These sensitivity levels also hold true for diabetes (92%) and bladder cancer (90%) when GC-MS is combined with an e-nose. CONCLUSIONS The accurate reproducible sensing of volatile organic compounds (VOCs) using portable near-patient devices is a goal within reach for today's clinicians.
Collapse
Affiliation(s)
- R P Arasaradnam
- Clinical Sciences Research Institute, University of Warwick, Coventry, UK; Department of Gastroenterology, University Hospital Coventry & Warwickshire, Coventry, UK
| | | | | | | |
Collapse
|
41
|
Pereira J, Silva CL, Perestrelo R, Gonçalves J, Alves V, Câmara JS. Re-exploring the high-throughput potential of microextraction techniques, SPME and MEPS, as powerful strategies for medical diagnostic purposes. Innovative approaches, recent applications and future trends. Anal Bioanal Chem 2014; 406:2101-22. [DOI: 10.1007/s00216-013-7527-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Revised: 11/16/2013] [Accepted: 11/20/2013] [Indexed: 11/30/2022]
|
42
|
Zhang Y, Gao G, Liu H, Fu H, Fan J, Wang K, Chen Y, Li B, Zhang C, Zhi X, He L, Cui D. Identification of volatile biomarkers of gastric cancer cells and ultrasensitive electrochemical detection based on sensing interface of Au-Ag alloy coated MWCNTs. Theranostics 2014; 4:154-62. [PMID: 24465273 PMCID: PMC3900800 DOI: 10.7150/thno.7560] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 11/03/2013] [Indexed: 11/05/2022] Open
Abstract
Successful development of novel electrochemical biosensing interface for ultrasensitive detection of volatile biomarkers of gastric cancer cells is a challenging task. Herein we reported to screen out novel volatile biomarkers associated with gastric cancer cells and develop a novel Au-Ag alloy composites-coated MWCNTs as sensing interface for ultrasensitive detection of volatile biomarkers. MGC-803 gastric cancer cells and GES-1 gastric mucous cells were cultured in serum-free media. The sample preparation approaches and HS-SPME conditions were optimized for screening volatile biomarkers. Volatiles emitted from the headspace of the cells/medium culture were identified using GC-MS. The Au-Ag nanoparticles-coated multiwalled carbon nanotubes were prepared as a sensing interface for detection of volatile biomarkers. Results showed that eight different volatile metabolites were screened out between MGC-803 cells and GES-1 cells. Two compounds such as 3-octanone and butanone were specifically present in the headspace of the MGC-803 cells. Three volatiles such as 4-isopropoxybutanol, nonanol and 4-butoxy 1-butanol coexisted in the headspace of both the MGC-803 cells and the GES-1 cells, their concentrations in the headspace of the GES-1cells were markedly higher than those in the MGC-803 cells, three volatiles such as formic acid propyl ester, 1.4-butanediol and 2, 6, 11-trimethyl dodecane solely existed in the headspace of the GES-1 cells. The nanocomposites of MWNTs loaded with Au-Ag nanoparticles were prepared as a electrochemical sensing interface for detection of two volatile biomarkers, cyclic voltammetry studies showed that the fabricated sensor could detect 3-octanone in the range of 0~0.0025% (v/v) and with a detection limitation of 0.3 ppb, could detect butanone in the range of 0 ~ 0.055% (v/v), and with a detection limitation of 0.5 ppb, and exhibited good selectivity. The novel electrochemical biosensor combined with volatile biomarkers of gastric cancer owns great potential in applications such as early diagnosis and the prognosis of gastric cancer in near future.
Collapse
|
43
|
Abbassi-Ghadi N, Kumar S, Huang J, Goldin R, Takats Z, Hanna GB. Metabolomic profiling of oesophago-gastric cancer: a systematic review. Eur J Cancer 2013; 49:3625-37. [PMID: 23896378 DOI: 10.1016/j.ejca.2013.07.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 07/01/2013] [Indexed: 12/16/2022]
Abstract
AIMS This review aims to identify metabolomic biomarkers of oesophago-gastric (OG) cancer in human biological samples, and to discuss the dominant metabolic pathways associated with the observed changes. METHODS A systematic review of the literature, up to and including 9th November 2012, was conducted for experimental studies investigating the metabolomic profile of human biological samples from patients with OG cancer compared to a control group. Inclusion criteria for analytical platforms were mass spectrometry or nuclear magnetic resonance spectroscopy. The QUADAS-2 tool was used to assess the quality of the included studies. RESULTS Twenty studies met the inclusion criteria and samples utilised for metabolomic analysis included tissue (n = 11), serum (n = 8), urine (n = 1) and gastric content (n = 1). Several metabolites of glycolysis, the tricarboxylic acid cycle, anaerobic respiration and protein/lipid metabolism were found to be significantly different between cancer and control samples. Lactate and fumurate were the most commonly recognised biomarkers of OG cancer related to cellular respiration. Valine, glutamine and glutamate were the most commonly identified amino acid biomarkers. Products of lipid metabolism including saturated and un-saturated free fatty acids, ketones and aldehydes and triacylglycerides were also identified as biomarkers of OG cancer. Unclear risk of bias for patient selection was reported for the majority of studies due to the lack of clarity regarding patient recruitment. CONCLUSION The application of metabolomics for biomarker detection in OG cancer presents new opportunities for the purposes of screening and therapeutic monitoring. Future studies should provide clear details of patient selection and develop metabolite assays suitable for progress beyond phase 1 pre-clinical exploratory studies.
Collapse
Affiliation(s)
- N Abbassi-Ghadi
- Department of Surgery and Cancer, Imperial College London, 10th Floor, QEQM Wing, St Mary's Hospital, London W2 1NY, UK
| | | | | | | | | | | |
Collapse
|
44
|
Mochalski P, Sponring A, King J, Unterkofler K, Troppmair J, Amann A. Release and uptake of volatile organic compounds by human hepatocellular carcinoma cells (HepG2) in vitro. Cancer Cell Int 2013; 13:72. [PMID: 23870484 PMCID: PMC3717104 DOI: 10.1186/1475-2867-13-72] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 07/13/2013] [Indexed: 01/25/2023] Open
Abstract
Background Volatile organic compounds (VOCs) emitted by human body offer a unique insight into biochemical processes ongoing in healthy and diseased human organisms. Unfortunately, in many cases their origin and metabolic fate have not been yet elucidated in sufficient depth, thus limiting their clinical application. The primary goal of this work was to identify and quantify volatile organic compounds being released or metabolized by HepG2 hepatocellular carcinoma cells. Methods The hepatocellular carcinoma cells were incubated in specially designed head-space 1-L glass bottles sealed for 24 hours prior to measurements. Identification and quantification of volatiles released and consumed by cells under study were performed by gas chromatography with mass spectrometric detection (GC-MS) coupled with head-space needle trap device extraction (HS-NTD) as the pre-concentration technique. Most of the compounds were identified both by spectral library match as well as retention time comparison based on standards. Results A total of nine compounds were found to be metabolised and further twelve released by the cells under study (Wilcoxon signed-rank test, p<0.05). The former group comprised 6 aldehydes (2-methyl 2-propenal, 2-methyl propanal, 2-ethylacrolein, 3-methyl butanal, n-hexanal and benzaldehyde), n-propyl propionate, n-butyl acetate, and isoprene. Amongst the released species there were five ketones (2-pentanone, 3-heptanone, 2-heptanone, 3-octanone, 2-nonanone), five volatile sulphur compounds (dimethyl sulfide, ethyl methyl sulfide, 3-methyl thiophene, 2-methyl-1-(methylthio)- propane and 2-methyl-5-(methylthio) furan), n-propyl acetate, and 2-heptene. Conclusions The emission and uptake of the aforementioned VOCs may reflect the activity of abundant liver enzymes and support the potential of VOC analysis for the assessment of enzymes function.
Collapse
Affiliation(s)
- Paweł Mochalski
- Breath Research Institute, Austrian Academy of Sciences, Rathausplatz 4, A-6850 Dornbirn, Austria.
| | | | | | | | | | | |
Collapse
|
45
|
Volatile biomarkers from human melanoma cells. J Chromatogr B Analyt Technol Biomed Life Sci 2013; 931:90-6. [DOI: 10.1016/j.jchromb.2013.05.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 05/09/2013] [Accepted: 05/13/2013] [Indexed: 11/20/2022]
|
46
|
Bojko B, Cudjoe E, Gómez-Ríos GA, Gorynski K, Jiang R, Reyes-Garcés N, Risticevic S, Silva ÉA, Togunde O, Vuckovic D, Pawliszyn J. SPME – Quo vadis? Anal Chim Acta 2012; 750:132-51. [DOI: 10.1016/j.aca.2012.06.052] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 06/29/2012] [Accepted: 06/30/2012] [Indexed: 01/01/2023]
|
47
|
Kouremenos KA, Johansson M, Marriott PJ. Advances in gas chromatographic methods for the identification of biomarkers in cancer. J Cancer 2012; 3:404-20. [PMID: 23074381 PMCID: PMC3471081 DOI: 10.7150/jca.4956] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 09/15/2012] [Indexed: 02/07/2023] Open
Abstract
Screening complex biological specimens such as exhaled air, tissue, blood and urine to identify biomarkers in different forms of cancer has become increasingly popular over the last decade, mainly due to new instruments and improved bioinformatics. However, despite some progress, the identification of biomarkers has shown to be a difficult task with few new biomarkers (excluding recent genetic markers) being considered for introduction to clinical analysis. This review describes recent advances in gas chromatographic methods for the identification of biomarkers in the detection, diagnosis and treatment of cancer. It presents a general overview of cancer metabolism, the current biomarkers used for cancer diagnosis and treatment, a background to metabolic changes in tumors, an overview of current GC methods, and collectively presents the scope and outlook of GC methods in oncology.
Collapse
|
48
|
Zhang Y, Gao G, Qian Q, Cui D. Chloroplasts-mediated biosynthesis of nanoscale Au-Ag alloy for 2-butanone assay based on electrochemical sensor. NANOSCALE RESEARCH LETTERS 2012; 7:475. [PMID: 22916797 PMCID: PMC3506472 DOI: 10.1186/1556-276x-7-475] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 08/02/2012] [Indexed: 06/01/2023]
Abstract
We reported a one-pot, environmentally friendly method for biosynthesizing nanoscale Au-Ag alloy using chloroplasts as reducers and stabilizers. The prepared nanoscale Au-Ag alloy was characterized by UV-visible spectroscopy, X-ray diffraction (XRD) and high resolution transmission electron microscopy (HR-TEM). Fourier transform infrared spectroscopy (FTIR) analysis was further used to identify the possible biomolecules from chloroplasts that are responsible for the formation and stabilization of Au-Ag alloy. The FTIR results showed that chloroplast proteins bound to the nanoscale Au-Ag alloy through free amino groups. The bimetallic Au-Ag nanoparticles have only one plasmon band, indicating the formation of an alloy structure. HR-TEM images showed that the prepared Au-Ag alloy was spherical and 15 to 20 nm in diameter. The high crystallinity of the Au-Ag alloy was confirmed by SAED and XRD patterns. The prepared Au-Ag alloy was dispersed into multiwalled carbon nanotubes (MWNTs) to form a nanosensing film. The nanosensing film exhibited high electrocatalytic activity for 2-butanone oxidation at room temperature. The anodic peak current (Ip) has a linear relationship with the concentrations of 2-butanone over the range of 0.01% to 0.075% (v/v), when analyzed by cyclic voltammetry. The excellent electronic catalytic characteristics might be attributed to the synergistic electron transfer effects of Au-Ag alloy and MWNTs. It can reasonably be expected that this electrochemical biosensor provided a promising platform for developing a breath sensor to screen and pre-warn of early cancer, especially gastric cancer.
Collapse
Affiliation(s)
- Yixia Zhang
- Department of Bio-Nano-Science and Engineering, National Key Laboratory of Nano/Micro Fabrication Technology, Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Institute of Micro-Nano Science and Technology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People’s Republic of China
| | - Guo Gao
- Department of Bio-Nano-Science and Engineering, National Key Laboratory of Nano/Micro Fabrication Technology, Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Institute of Micro-Nano Science and Technology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People’s Republic of China
| | - Qirong Qian
- Department of Orthopaedics, Changzheng Hospital affiliated to Second Military Medical University, 451 Fengyang Road, Shanghai, 20003, People’s Republic of China
| | - Daxiang Cui
- Department of Bio-Nano-Science and Engineering, National Key Laboratory of Nano/Micro Fabrication Technology, Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Institute of Micro-Nano Science and Technology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People’s Republic of China
| |
Collapse
|
49
|
Molecular analysis of volatile metabolites released specifically by Staphylococcus aureus and Pseudomonas aeruginosa. BMC Microbiol 2012; 12:113. [PMID: 22716902 PMCID: PMC3444334 DOI: 10.1186/1471-2180-12-113] [Citation(s) in RCA: 172] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 06/20/2012] [Indexed: 11/24/2022] Open
Abstract
Background The routinely used microbiological diagnosis of ventilator associated pneumonia (VAP) is time consuming and often requires invasive methods for collection of human specimens (e.g. bronchoscopy). Therefore, it is of utmost interest to develop a non-invasive method for the early detection of bacterial infection in ventilated patients, preferably allowing the identification of the specific pathogens. The present work is an attempt to identify pathogen-derived volatile biomarkers in breath that can be used for early and non- invasive diagnosis of ventilator associated pneumonia (VAP). For this purpose, in vitro experiments with bacteria most frequently found in VAP patients, i.e. Staphylococcus aureus and Pseudomonas aeruginosa, were performed to investigate the release or consumption of volatile organic compounds (VOCs). Results Headspace samples were collected and preconcentrated on multibed sorption tubes at different time points and subsequently analyzed with gas chromatography mass spectrometry (GC-MS). As many as 32 and 37 volatile metabolites were released by S. aureus and P. aeruginosa, respectively. Distinct differences in the bacteria-specific VOC profiles were found, especially with regard to aldehydes (e.g. acetaldehyde, 3-methylbutanal), which were taken up only by P. aeruginosa but released by S. aureus. Differences in concentration profiles were also found for acids (e.g. isovaleric acid), ketones (e.g. acetoin, 2-nonanone), hydrocarbons (e.g. 2-butene, 1,10-undecadiene), alcohols (e.g. 2-methyl-1-propanol, 2-butanol), esters (e.g. ethyl formate, methyl 2-methylbutyrate), volatile sulfur compounds (VSCs, e.g. dimethylsulfide) and volatile nitrogen compounds (VNCs, e.g. 3-methylpyrrole). Importantly, a significant VOC release was found already 1.5 hours after culture start, corresponding to cell numbers of ~8*106 [CFUs/ml]. Conclusions The results obtained provide strong evidence that the detection and perhaps even identification of bacteria could be achieved by determination of characteristic volatile metabolites, supporting the clinical use of breath-gas analysis as non-invasive method for early detection of bacterial lung infections.
Collapse
|
50
|
Ulanowska A, Ligor T, Amann A, Buszewski B. Evaluation of septa quality for automatic SPME-GC-MS trace analysis. J Chromatogr Sci 2012; 50:10-4. [PMID: 22291050 DOI: 10.1093/chromsci/bmr006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The vials used for the preparation of breath samples for automated solid-phase microextraction-gas chromatography-mass spectrometry analysis are crimped with septa. These septa often emit specific volatile organic compounds (VOCs) confounding the measurement results of breath samples. In the current paper, 14 different brands of magnetic caps with silicone-polytetrafluoroethylene (PTFE), butyl-PTFE, or butyl rubber septa were tested. The total emission of septa over a 4 h period was also evaluated. The tested septa emitted 39 different compounds, which are mainly hydrocarbons, alcohols, and ketones. Acetone and toluene are the most abundant out-gassing products. The concentration of acetone was in the range from 55 to 694 ppb for butyl-PTFE septum (brand 14) and butyl rubber (brand 10), respectively. The measured toluene amount was 69-1323 ppb for the septum brand 14 and brand 8 (silicone-PTFE), respectively. Generally, the butyl rubber septa released higher amounts of contaminants in comparison to the silicone ones.
Collapse
Affiliation(s)
- Agnieszka Ulanowska
- Chair of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University Gagarin Street 7, 87-100 Toruń, Poland
| | | | | | | |
Collapse
|