1
|
Kopčil M, Kanďár R. Simultaneous determination of phenylalanine and tyrosine levels in human blood obtained by the dried spot technique for monitoring of patients with phenylketonuria. J Pharm Biomed Anal 2025; 260:116831. [PMID: 40120298 DOI: 10.1016/j.jpba.2025.116831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/14/2025] [Accepted: 03/16/2025] [Indexed: 03/25/2025]
Abstract
Monitoring patients with phenylketonuria (PKU) requires accurately measuring phenylalanine and tyrosine levels in a small volume of blood samples obtained by the dried blood spot (DBS) technique. The aim was to study selected parameters influencing the quantitative results. Phenylalanine and tyrosine were extracted from DBS samples with methanol, and 5 internal standard introduction techniques were tested. Phenylalanine and tyrosine levels were measured in 6-mm discs punched from DBS, pre-punched 9-mm discs containing the entire DBS sample, and liquid blood by HPLC-MS-MS. Levels in 6-mm discs punched from DBS measured by HPLC-MS/MS were compared with those measured by the HPLC-FLD. The analytical parameters of the method are satisfactory, linearity in the range of 25-1200 μmol/L (LOD, LOQ and LLOQ values 0.2 μmol/L, 0.5 μmol/L and 3.8 μmol/L for phenylalanine, 0.5 μmol/L, 1.5 μmol/L and 5.1 μmol/L for tyrosine), within-run precision 1.8 %-3.7 % for phenylalanine, 1.9 %-2.7 % for tyrosine, between-run precision 4.7 %-5.9 % for phenylalanine, 4.1 %-5.4 % for tyrosine, recovery 93.8 %-100.4 % for phenylalanine and 93.7 %-99.1 % for tyrosine. Good agreement was found between phenylalanine and tyrosine concentrations in 6-mm discs punched from DBS (R = 0.896, p < 0.001, and R = 0.907, p < 0.001, respectively), pre-punched 9-mm discs containing the entire DBS sample (R = 0.960, p < 0.001, and R = 0.950, p < 0.001, respectively) and liquid blood, as well as between phenylalanine and tyrosine concentrations obtained by HPLC-MS/MS and HPLC-FLD (R = 0.968, p < 0.001, and R = 0.984, p < 0.001, respectively). The presented method is suitable for monitoring patients with PKU.
Collapse
Affiliation(s)
- Michal Kopčil
- Department of Biological and Biochemical Science, Faculty of Chemical Technology, The University of Pardubice, Pardubice, Czech Republic
| | - Roman Kanďár
- Department of Biological and Biochemical Science, Faculty of Chemical Technology, The University of Pardubice, Pardubice, Czech Republic.
| |
Collapse
|
2
|
Adachi K, Azakami H, Yamauchi M, Koshoji M, Yamamoto A, Tanaka S. Cyclodextrin-Assisted Surface-Enhanced Photochromic Phenomena of Tungsten(VI) Oxide Nanoparticles for Label-Free Colorimetric Detection of Phenylalanine. ACS OMEGA 2024; 9:18957-18972. [PMID: 38708261 PMCID: PMC11064177 DOI: 10.1021/acsomega.3c09239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/13/2024] [Accepted: 02/20/2024] [Indexed: 05/07/2024]
Abstract
Herein are presented the results of experiments designed to evaluate the effectiveness of host-guest interactions in improving the sensitivity of colorimetric detection based on surface-enhanced photochromic phenomena of tungsten(VI) oxide (WO3) nanocolloid particles. The UV-induced photochromic coloration of WO3 nanocolloid particles in the presence of aromatic α-amino acid (AA), l-phenylalanine (Phe) or l-2-phenylglycine (Phg), and heptakis(2,3,6-tri-O-methyl)-β-cyclodextrin (TMβCDx) in an aqueous system was investigated using UV-vis absorption spectrometry. The characteristics of the adsorption modes and configurations of AAs on the WO3 surface have also been identified by using a combination of adsorption isotherm analysis and attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR). A distinct linear relationship was observed between the concentration of AAs adsorbed on the WO3 nanocolloid particles and the initial photochromic coloration rate in the corresponding UV-irradiated colloidal WO3 in aqueous media, indicating that a simple and sensitive quantification of AAs can be achieved from UV-induced WO3 photochromic coloration without any complicated preprocessing. The proposed colorimetric assay in the Phe/TMβCDx/WO3 ternary aqueous system had a linear range of 1 × 10-8 to 1 × 10-4 mol dm-3 for Phe detection, with a limit of detection of 8.3 × 10-9 mol dm-3. The combined results from UV-vis absorption, ATR-FTIR, and adsorption isotherm experiments conclusively indicated that the TMβCDx-complexed Phe molecules in the Phe/TMβCDx/WO3 ternary aqueous system are preferentially and strongly inner-sphere adsorbed on the WO3 surface, resulting in a more significant surface-enhanced photochromic phenomenon. The findings in this study provided intriguing insights into the design and development of the "label-free" colorimetric assay system based on the surface-enhanced photochromic phenomenon of the WO3 nanocolloid probe.
Collapse
Affiliation(s)
- Kenta Adachi
- Department
of Chemistry, Graduate School of Sciences & Technology for Innovation, Yamaguchi University, Yamaguchi 753-8512, Japan
| | - Hiro Azakami
- Department
of Chemistry, Graduate School of Sciences & Technology for Innovation, Yamaguchi University, Yamaguchi 753-8512, Japan
| | - Miyuki Yamauchi
- Department
of Chemistry, Graduate School of Sciences & Technology for Innovation, Yamaguchi University, Yamaguchi 753-8512, Japan
| | - Moeka Koshoji
- Department
of Chemistry, Faculty of Science, Yamaguchi
University, Yamaguchi 753-8512, Japan
| | - Asami Yamamoto
- Department
of Environmental Science & Engineering, Graduate School of Science
& Engineering, Yamaguchi University, Yamaguchi 753-8512, Japan
| | - Shohei Tanaka
- Department
of Chemistry, Graduate School of Sciences & Technology for Innovation, Yamaguchi University, Yamaguchi 753-8512, Japan
| |
Collapse
|
3
|
Li P, Luo C, Chen X, Huang C. A novel "off-on" ratiometric fluorescent aptasensor for adenosine detection based on FRET between quantum dots and graphene oxide. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 305:123557. [PMID: 37866265 DOI: 10.1016/j.saa.2023.123557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 09/30/2023] [Accepted: 10/16/2023] [Indexed: 10/24/2023]
Abstract
A novel "off-on" ratiometric fluorescent aptasensor was established for adenosine detection based on fluorescence resonance energy transfer (FRET) between CdS QDs, DNA QDs as donor and graphene oxide (GO) as acceptor. Amino-riched DNA QDs covalently bonded to the carboxyl group on the edge of the GO, and with the absorption of the TGA-modified CdS QDs with aptamer (CdS QDs-apt) onto the GO surface via the π-π stacking interaction. The fluorescence of both CdS QDs and DNA QDs were efficiently quenched due to FRET (turn off). When adenosine was present, the specific binding of the aptamer to the target preferentially that released the CdS QDs-apt from GO. The process would inhibit the FRET which contribute to the fluorescence of CdS QDs-apt recovery again (turn on), while the fluorescence intensity of DNA QDs only slightly altered and acted as the reference signal. Thus, a novel "off-on" ratiometric fluorescent aptasensor for adenosine detection was constructed accordingly. There was a good linearity relationship between the ratio of the FL intensity (F595 nm/F464 nm) and the concentration of adenosine in the range of 20.00-180.0 nmol/L with a detection limit of 1.3 nmol/L (S/N = 3, n = 9). Importantly, the feasibility of the developed aptasensor for selective detection of adenosine in serum and urine samples with satisfactory results. The recoveries were observed to be 97.04-100.2 %.
Collapse
Affiliation(s)
- Pu Li
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China
| | - Chen Luo
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China
| | - Xiaoxiao Chen
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China
| | - Chaobiao Huang
- Xingzhi College, Zhejiang Normal University, Lanxi 321100, China; College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
4
|
Leandro P, Lino PR, Lopes R, Leandro J, Amaro MP, Sousa P, Vicente JB, Almeida AJ. Isothermal denaturation fluorimetry vs Differential scanning fluorimetry as tools for screening of stabilizers for protein freeze-drying: human phenylalanine hydroxylase as the case study. Eur J Pharm Biopharm 2023; 187:1-11. [PMID: 37011788 DOI: 10.1016/j.ejpb.2023.03.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/24/2023] [Accepted: 03/25/2023] [Indexed: 04/03/2023]
Abstract
The structural maintenance of therapeutic proteins during formulation and/or storage is a critical aspect, particularly for multi-domain and/or multimeric proteins which usually exhibit intrinsic structural dynamics leading to aggregation with concomitant loss-of-function. Protein freeze-drying is a widely used technique to preserve protein structure and function during storage. To minimize chemical/physical stresses occurring during this process, protein stabilizers are usually included, their effect being strongly dependent on the target protein. Therefore, they should be screened for on a time-consuming case-by-case basis. Herein, differential scanning fluorimetry (DSF) and isothermal denaturation fluorimetry (ITDF) were employed to screen, among different classes of freeze-drying additives, for the most effective stabilizer of the model protein human phenylalanine hydroxylase (hPAH). Correlation studies among retrieved DSF and ITDF parameters with recovered enzyme amount and activity indicated ITDF as the most appropriate screening method. Biochemical and biophysical characterization of hPAH freeze-dried with ITDF-selected stabilizers and a long-term storage study (12 months, 5 ± 3 °C) showed that the selected compounds prevented protein aggregation and preserved hPAH structural and functional properties throughout time storage. Our results provide a solid basis towards the choice of ITDF as a high-throughput screening step for the identification of protein freeze-drying protectors.
Collapse
Affiliation(s)
- Paula Leandro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Paulo R Lino
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Raquel Lopes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - João Leandro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Mariana P Amaro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Paulo Sousa
- Sofarimex, Indústria Química e Farmacêutica SA, Av. das Indústrias, Alto de Colaride, 2735-521 Agualva, Portugal
| | - João B Vicente
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República 2780-157 Oeiras, Portugal
| | - António J Almeida
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| |
Collapse
|
5
|
Kishikawa N, El-Maghrabey M, Tsubokami A, Hori H, Kuroda N. Development of a Selective Assay of Tyrosine and Its Producing and Metabolizing Enzymes Utilizing Pulse-UV Irradiation-Induced Chemiluminescence. Anal Chem 2022; 94:11529-11537. [PMID: 35938883 DOI: 10.1021/acs.analchem.2c01593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A new pulse UV irradiation-induced chemiluminescence (CL) determination method was developed for l-tyrosine using the luminol derivative L-012. The proposed method depends on the formation of reactive oxygen species (ROS) upon pulse UV irradiation of l-tyrosine; then, these ROS react with L-012 producing strong CL. The proposed method showed excellent sensitivity and ultraselectivity toward l-tyrosine. The mechanism of the developed CL method was studied using ROS scavengers, HPLC, and mass spectrometry. The method was linear for l-tyrosine in the range of 0.03-50 μM. Minor changes in the l-tyrosine structure, including hydroxylation, dehydroxylation, phosphorylation, or decarboxylation, were found to lead to a strong decrease in CL. Using the excellent selectivity of the proposed method for l-tyrosine, we have developed a CL assay for measuring alkaline phosphatase activity in the range of 0.02-15 U/L with the limit of detection (LOD) of 4 mU/L using the nonchemiluminescent O-phospho-l-tyrosine as a substrate. Furthermore, the CL reaction was applied for tyrosinase activity assay as this enzyme can convert l-tyrosine to the nonchemiluminescent l-dopa. The decrease in CL is correlated with the tyrosinase activity in the range of 0.025-0.75 U/mL with an LOD of 1.5 mU/mL. Moreover, the tyrosinase activity assay was successfully applied for the determination of IC50 of the tyrosinase inhibitors kojic acid and benzoic acid. Therefore, our novel pulse UV irradiation CL method for the determination of l-tyrosine was not only suitable for the determination of this vital amino acid but also extended to the successful determination of its producing and metabolizing enzymes and their inhibitors.
Collapse
Affiliation(s)
- Naoya Kishikawa
- Department of Analytical Chemistry for Pharmaceutics, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Mahmoud El-Maghrabey
- Department of Analytical Chemistry for Pharmaceutics, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan.,Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35116, Egypt
| | - Ayaka Tsubokami
- Department of Analytical Chemistry for Pharmaceutics, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Hiroki Hori
- School of Pharmaceutical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Naotaka Kuroda
- Department of Analytical Chemistry for Pharmaceutics, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| |
Collapse
|
6
|
Sarı T, Dede S, Yusufoğlu B, Karakuş E. Determination of L-Phenylalanine in Human Plasma Samples with New Fluorometric Method. Appl Biochem Biotechnol 2022; 194:1259-1270. [PMID: 34661869 DOI: 10.1007/s12010-021-03694-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 10/04/2021] [Indexed: 10/20/2022]
Abstract
The measurement of phenylalanine in biological fluids for the diagnosis of phenylketonuria (PKU) in newborns and the monitoring/therapeutic drug monitoring of individuals with PKU are especially important. Owing to the importance of PKU monitoring in clinical medicine, a new fluorometric method was developed for the determination of L-phenylalanine in serum samples. This method is based on the relationship between phenylalanine ammonia-lyase (PAL) and o-phthalaldehyde (OPA). PAL catalyzes the conversion of phenylalanine to ammonia and trans-cinnamic acid. The formed ammonia reacts with OPA in the presence of sodium sulfite, giving a fluorescent product. The presence of sulfide in an alkaline environment prevents OPA from reacting with other amino acids while allowing it to react only with ammonia. Method characterization and optimization studies, such as the effects of pH, temperature, and interferents, were carried out. The amount of L-phenylalanine in a human serum sample was successfully determined by using the fluorescence emission intensity of the fluorescent product formed as a result of the reaction between OPA and ammonia. The linear range of the method is between 10 μM and 10 mM. The obtained result showed good agreement with the results of the biochemistry analysis laboratory. Recoveries of 95.41% and 73.39% were obtained for phenylalanine and ammonia, respectively. This PAL-OPA-based fluorometric method for phenylalanine is practical, easy to operate, low cost, highly sensitive, and selective and can also be used for the simultaneous determination of ammonia in human serum samples.
Collapse
Affiliation(s)
- Tolga Sarı
- Department of Chemistry, Faculty of Arts and Sciences, Yildiz Technical University, Davutpaşa Street, Esenler, 34290, Istanbul, Turkey
| | - Süreyya Dede
- Department of Chemistry, Faculty of Arts and Sciences, Yildiz Technical University, Davutpaşa Street, Esenler, 34290, Istanbul, Turkey
| | - Büşra Yusufoğlu
- Department of Chemistry, Faculty of Arts and Sciences, Yildiz Technical University, Davutpaşa Street, Esenler, 34290, Istanbul, Turkey
| | - Emine Karakuş
- Department of Chemistry, Faculty of Arts and Sciences, Yildiz Technical University, Davutpaşa Street, Esenler, 34290, Istanbul, Turkey.
| |
Collapse
|
7
|
Zhang L, Shang Q, Zhao Y, Ran Z, Chen C, Tang W, Liu W. Real-time and simultaneous assay of monophenolase and diphenolase activity in tyrosinase catalyzed cascade reactions by combination of three-way calibration and excitation-emission matrix fluorescence. Anal Bioanal Chem 2022; 414:2439-2452. [PMID: 35099585 DOI: 10.1007/s00216-022-03884-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/22/2021] [Accepted: 01/06/2022] [Indexed: 11/25/2022]
Abstract
A real-time assay for multiple enzyme activities in cascade reactions is required for research on metabolism and bioengineering. Tyrosinase has the bifunctional activity of monophenolase and diphenolase. A combined strategy of three-way calibration with excitation-emission matrix (EEM) fluorescence was developed for real-time and simultaneous determination of monophenolase and diphenolase activity with tyrosine as a substrate. Mathematical separation and second-order advantage were utilized to solve spectral overlapping and uncalibrated interferents during complex dynamic enzymatic processes. Kinetic evolution profiles of EEM were monitored to stack a fusion three-way data array together with static samples. Using a parallel factor analysis (PARAFAC) algorithm, pseudo-univariate calibration curves with limits of detection (LODs) of 3.00 μM and 0.85 μM were established to simultaneously and real-time measure tyrosine and DOPA. Progress curves for tyrosine consumption by monophenolase and DOPA consumption by diphenolase were obtained using the law of mass conservation to calculate the initial velocity. The LODs for monophenolase and diphenolase were 0.0232 U⋅mL-1 and 0.0316 U⋅mL-1. The method achieved real-time and simultaneous assays of multiple enzyme activities in cascade reactions. It showed potential application in the metabolic pathway and biochemical industry.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Qi Shang
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Yuanze Zhao
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Zhaoqi Ran
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Chan Chen
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Weikang Tang
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Wenbin Liu
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
8
|
Torul H, Çalık Kayiş E, Boyaci IH, Tamer U. An ECL sensor combined with a paper electrode for the determination of phenylalanine. Analyst 2022; 147:4866-4875. [DOI: 10.1039/d2an01340a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
An electrochemiluminescence (ECL) sensor combined with a paper electrode was developed for the detection of phenylalanine (l-Phe) in blood samples.
Collapse
Affiliation(s)
- Hilal Torul
- Faculty of Pharmacy, Department of Analytical Chemistry, Gazi University, 06330 Ankara, Turkey
| | - Elif Çalık Kayiş
- Faculty of Pharmacy, Department of Analytical Chemistry, Gazi University, 06330 Ankara, Turkey
| | - I. Hakki Boyaci
- Department of Food Engineering, Hacettepe University, Beytepe, 06512 Ankara, Turkey
| | - Ugur Tamer
- Faculty of Pharmacy, Department of Analytical Chemistry, Gazi University, 06330 Ankara, Turkey
| |
Collapse
|
9
|
Highly sensitive electrochemical sensor for tyrosine detection using a sub-millimeter electrode. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106106] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
10
|
Dong B, Fan Q, Li M, Huan Y, Feng G, Shan H, Fei Q. Determination of tyrosine by sodium fluorescein-enhanced ABEI–H2O2–horseradish peroxidase chemiluminescence. J Anal Sci Technol 2021. [DOI: 10.1186/s40543-021-00272-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractIn this study, N-(4-aminobutyl)-N-ethylisoluminol (ABEI) was used as an energy donor, while sodium fluorescein was used as an enhancer and energy acceptor, which resulted in it producing resonance energy transfer and greatly increasing the strength of chemiluminiscence (CL). When horseradish peroxidase (HRP) is added, hydrogen peroxide (H2O2) will quickly separate into hydroxyl radicals (·OH) and superoxide ions (O2·−). If tyrosine (Tyr) is present in the system, the hydroxyl group on the benzene ring of Tyr robs ·OH and O2·− in the CL system, thereby reducing the intensity of CL. Based on this phenomenon, a luminescence system of ABEI and sodium fluorescein system was established to detect Tyr for the first time. This method has an ultra-low detection limit and a wide linear range, and is cheap and easy to operate. Under various optimal conditions, the linear range is from 3.0×10−8 to 3.0×10−5 mol/L, and the limit of detection is 2.4×10−8 mol/L. It has been successfully used in the detection of dairy products with satisfactory results.
Collapse
|
11
|
Lino PR, Leandro J, Amaro M, Gonçalves LMD, Leandro P, Almeida AJ. In Silico and In Vitro Tailoring of a Chitosan Nanoformulation of a Human Metabolic Enzyme. Pharmaceutics 2021; 13:pharmaceutics13030329. [PMID: 33806405 PMCID: PMC8000282 DOI: 10.3390/pharmaceutics13030329] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/23/2021] [Accepted: 02/27/2021] [Indexed: 01/10/2023] Open
Abstract
Enzyme nanoencapsulation holds an enormous potential to develop new therapeutic approaches to a large set of human pathologies including cancer, infectious diseases and inherited metabolic disorders. However, enzyme formulation has been limited by the need to maintain the catalytic function, which is governed by protein conformation. Herein we report the rational design of a delivery system based on chitosan for effective encapsulation of a functionally and structurally complex human metabolic enzyme through ionic gelation with tripolyphosphate. The rationale was to use a mild methodology to entrap the multimeric multidomain 200 kDa human phenylalanine hydroxylase (hPAH) in a polyol-like matrix that would allow an efficient maintenance of protein structure and function, avoiding formulation stress conditions. Through an in silico and in vitro based development, the particulate system was optimized with modulation of nanomaterials protonation status, polymer, counterion and protein ratios, taking into account particle size, polydispersity index, surface charge, particle yield production, protein free energy of folding, electrostatic surface potential, charge, encapsulation efficiency, loading capacity and transmission electron microscopy morphology. Evaluation of the thermal stability, substrate binding profile, relative enzymatic activity, and substrate activation ratio of the encapsulated hPAH suggests that the formulation procedure does not affect protein stability, allowing an effective maintenance of hPAH biological function. Hence, this study provides an important framework for an enzyme formulation process.
Collapse
|
12
|
Feng J, Deng P, Xiao J, Li J, Tian Y, Wu Y, Liu J, Li G, He Q. New voltammetric method for determination of tyrosine in foodstuffs using an oxygen-functionalized multi-walled carbon nanotubes modified acetylene black paste electrode. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2020.103708] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
13
|
Çimen D, Bereli N, Denizli A. Surface Plasmon Resonance Based on Molecularly Imprinted Polymeric Film for l-Phenylalanine Detection. BIOSENSORS 2021; 11:21. [PMID: 33467753 PMCID: PMC7830203 DOI: 10.3390/bios11010021] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 05/05/2023]
Abstract
In this study, we designed a simple, rapid, sensitive and selective surface plasmon resonance (SPR) sensor for detection of L-phenylalaine by utilizing molecular imprinting technology. l-phenylalanine imprinted and non-imprinted poly(2-hydroxyethyl methacrylate-methacryloyl-l-phenylalanine) polymeric films were synthesized onto SPR chip surfaces using ultraviolet polymerization. l-phenyalanine imprinted and non-imprinted SPR sensors were characterized by using contact angle, atomic force microscopy and ellipsometry. After characterization studies, kinetic studies were carried out in the concentration range of 5.0-400.0 μM. The limit of detection and quantification were obtained as 0.0085 and 0.0285 μM, respectively. The response time for the test including equilibration, adsorption and desorption was approximately 9 min. The selectivity studies of the l-phenylalanine imprinted SPR sensor was performed in the presence of d-phenylalanine and l-tryptophan. Validation studies were carried out via enzyme-linked immunosorbent analysis technique in order to demonstrate the applicability and superiority of the l-phenylalanine imprinted SPR sensor.
Collapse
Affiliation(s)
| | | | - Adil Denizli
- Department of Chemistry, Hacettepe University, Beytepe, 06800 Ankara, Turkey; (D.Ç.); (N.B.)
| |
Collapse
|
14
|
Gouda AS, Nazim WS. Development of a simple method for the analysis of phenylalanine in dried blood spot using tandem mass spectrometry. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2020. [DOI: 10.1186/s43042-020-00100-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Phenylketonuria (PKU), inborn error of metabolism, results from phenylalanine hydroxylase deficiency. PKU leads to neurological manifestations, intellectual disability, and mental disorders. Treatment depends on phenylalanine-restricted diet.
Diagnosis and follow-up of PKU depends on blood phenylalanine level. The development of bacterial inhibition assay was the first routine screening test for PKU. ELISA and amino acids analyzers methods were then developed.
Tandem mass spectrometry was introduced for newborn screening from dried blood spot in the late 1990s. Since then, several methods were developed, starting from using HPLC column followed by direct injection in mass spectrometer by analyte derivatization and use of external and internal standards. Kits are available for neonatal screening without derivatization using internal standards for quantitation.
Due to high PKU incidence in Egypt, it is important to continuously ameliorate the methods for neonatal diagnosis and follow-up.
Results
External standards as dried blood spots were prepared according to the previously described procedures. These standards were evaluated for phenylalanine concentration using ELISA kit. Analysis of samples was done with a single-step elution from dried blood spot followed by 1-min mass spectrometry analysis. Validation was done according to US FDA and other related guidelines. Fifty samples were analyzed by ELISA and another 126 samples were analyzed by mass spectrometer kit. All these samples were analyzed by the developed method and no statistically significant difference was observed.
Conclusion
New simple method is developed for phenylalanine quantitation in dried blood spot using tandem mass spectrometry. This method is cost and time effective.
Collapse
|
15
|
Nolasco DM, Fortes ICP, Valadares ER. Quantitative analysis of amino acids by HPLC in dried blood and urine in the neonatal period: Establishment of reference values. Biomed Chromatogr 2020; 34:e4931. [DOI: 10.1002/bmc.4931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 06/12/2020] [Accepted: 06/22/2020] [Indexed: 11/10/2022]
Affiliation(s)
- Daniela M. Nolasco
- Programa de Pós‐Graduação Saúde da Criança e do adolescente Faculdade de Medicina da Universidade Federal de Minas Gerais Brazil
| | | | - Eugênia R. Valadares
- Programa de Pós‐Graduação Saúde da Criança e do adolescente Faculdade de Medicina da Universidade Federal de Minas Gerais Brazil
- Laboratório de Erros Inatos do Metabolismo do Hospital das Clínicas da da Universidade Federal de Minas Gerais Brazil
| |
Collapse
|
16
|
Au nanoparticles @metal organic framework/polythionine loaded with molecularly imprinted polymer sensor: Preparation, characterization, and electrochemical detection of tyrosine. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114052] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
17
|
Cheung KM, Yang KA, Nakatsuka N, Zhao C, Ye M, Jung ME, Yang H, Weiss PS, Stojanović MN, Andrews AM. Phenylalanine Monitoring via Aptamer-Field-Effect Transistor Sensors. ACS Sens 2019; 4:3308-3317. [PMID: 31631652 PMCID: PMC6957227 DOI: 10.1021/acssensors.9b01963] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Determination of the amino acid phenylalanine is important for lifelong disease management in patients with phenylketonuria, a genetic disorder in which phenylalanine accumulates and persists at levels that alter brain development and cause permanent neurological damage and cognitive dysfunction. Recent approaches for treating phenylketonuria focus on injectable medications that efficiently break down phenylalanine but sometimes result in detrimentally low phenylalanine levels. We have identified new DNA aptamers for phenylalanine in two formats, initially as fluorescent sensors and then, incorporated with field-effect transistors (FETs). Aptamer-FET sensors detected phenylalanine over a wide range of concentrations (fM to mM). para-Chlorophenylalanine, which inhibits the enzyme that converts phenylalanine to tyrosine, was used to induce hyperphenylalaninemia during brain development in mice. Aptamer-FET sensors were specific for phenylalanine versus para-chlorophenylalanine and differentiated changes in mouse serum phenylalanine at levels expected in patients. Aptamer-FETs can be used to investigate models of hyperphenylalanemia in the presence of structurally related enzyme inhibitors, as well as naturally occurring amino acids. Nucleic acid-based receptors that discriminate phenylalanine analogs, some that differ by a single substituent, indicate a refined ability to identify aptamers with binding pockets tailored for high affinity and specificity. Aptamers of this type integrated into FETs enable rapid, electronic, label-free phenylalanine sensing.
Collapse
Affiliation(s)
- Kevin M. Cheung
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Kyung-Ae Yang
- Department of Medicine, Columbia University, New York, New York 10032, United States
| | - Nako Nakatsuka
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Chuanzhen Zhao
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Mao Ye
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Michael E. Jung
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Hongyan Yang
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience & Human Behavior, and Hatos Center for Neuropharmacology, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Paul S. Weiss
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Departments of Bioengineering and Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Milan N. Stojanović
- Department of Medicine, Columbia University, New York, New York 10032, United States
- Departments of Biomedical Engineering and Systems Biology, Columbia University, New York, New York 10032, United States
| | - Anne M Andrews
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience & Human Behavior, and Hatos Center for Neuropharmacology, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
18
|
Phenylalanine Photoinduced Fluorescence and Characterization of the Photoproducts by LC-MS. J Fluoresc 2019; 29:1445-1455. [DOI: 10.1007/s10895-019-02449-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 10/01/2019] [Indexed: 10/25/2022]
|
19
|
Using molecular dynamics simulation to explore the binding of the three potent anticancer drugs sorafenib, streptozotocin, and sunitinib to functionalized carbon nanotubes. J Mol Model 2019; 25:159. [DOI: 10.1007/s00894-019-4024-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 04/02/2019] [Indexed: 01/07/2023]
|
20
|
Feng DQ, Liu G, Ma G, Nan Z, Wang W. Phosphodiesters quaternary ammonium nanoparticles as label-free light scattering probe for turn-off detection of tyrosine. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 208:1-6. [PMID: 30278308 DOI: 10.1016/j.saa.2018.09.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 09/21/2018] [Accepted: 09/23/2018] [Indexed: 06/08/2023]
Abstract
In this contribution, a new highly sensitive and selective sensor of the determination of tyrosine has been proposed based on the downturn effect of light scattering (LS) using phosphodiesters quaternary ammonium nanoparticles (PQANPs). Phosphodiesters quaternary ammonium (PQA), one of Gemini zwitterionic surfactants, self-aggregated into the micelle named as PQANPs, which generated strong LS signal in aqueous solution under the optimum condition. Interestingly, the powerful LS intensity of PQANPs with the maximum peak located at 391 nm significantly decreased after introducing trace amount of tyrosine. The decreased value of the LS intensity of the PQA-tyrosine system (ΔILS) was in proportion to tyrosine concentration in the ranges from 5.5 × 10-8 mol/L to 4.68 × 10-6 mol/L, with a detection limit of 1.38 × 10-8 mol/L. Based on this decreased LS situation, the novel approach of the determination of tyrosine was first developed. The reaction mechanism for the interaction between PQANPs and tyrosine was also investigated. Moreover, the proposed LS assay was applied to the detection of tyrosine concentration in human serum and urine samples with satisfactory results.
Collapse
Affiliation(s)
- Da-Qian Feng
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, PR China; Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Guoliang Liu
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, PR China; Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng 224051, PR China.
| | - Gangpo Ma
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Zhe Nan
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Wei Wang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| |
Collapse
|
21
|
Moreira CM, Pereira SV, Raba J, Bertolino FA, Messina GA. Paper-based enzymatic platform coupled to screen printed graphene-modified electrode for the fast neonatal screening of phenylketonuria. Clin Chim Acta 2018; 486:59-65. [DOI: 10.1016/j.cca.2018.07.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/03/2018] [Accepted: 07/09/2018] [Indexed: 12/27/2022]
|
22
|
Pang C, Han S, Li Y, Zhang J. Graphene quantum dot‐enhanced chemiluminescence through energy and electron transfer for the sensitive detection of tyrosine. J CHIN CHEM SOC-TAIP 2018. [DOI: 10.1002/jccs.201800141] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Chunhua Pang
- Department of ChemistryModern College of Humanities and Sciences of Shanxi Normal University Linfen Shanxi P. R. China
- School of Life ScienceShanxi Normal University Linfen Shanxi P. R. China
- Collaborative Innovation Center for Shanxi Advanced Permanent Magnetic Materials and TechnologyShanxi Normal University Linfen Shanxi P. R. China
| | - Suqin Han
- Department of ChemistryModern College of Humanities and Sciences of Shanxi Normal University Linfen Shanxi P. R. China
- School of Chemistry and Material ScienceShanxi Normal University Linfen Shanxi P. R. China
| | - Yue Li
- School of Chemistry and Material ScienceShanxi Normal University Linfen Shanxi P. R. China
| | - Junmei Zhang
- School of Chemistry and Material ScienceShanxi Normal University Linfen Shanxi P. R. China
| |
Collapse
|
23
|
Abbaskhanian A, Zamanfar D, Afshar P, Asadpoor E, Rouhanizadeh H, Jafarnia A, Shokzadeh M. Incidence of Neonatal Hyperphenylalaninemia Based on High-performance Liquid Chromatography Confirmatory Technique in Mazandaran Province, Northern Iran (2007-2015). Int J Prev Med 2017; 8:93. [PMID: 29184644 PMCID: PMC5686926 DOI: 10.4103/ijpvm.ijpvm_24_17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 07/31/2017] [Indexed: 11/22/2022] Open
Abstract
Background: Classic phenylketonuria (PKU) is a metabolic disorder. The purpose of this study was to assess epidemiological factors of PKU phenotypes in a neonatal screening program for Mazandaran, Iran. Methods: In this descriptive-retrospective study from 2007 to 2015, neonates PKU level was conducted by phenylalanine level based on a biochemical technique by ELISA and then by confirmatory methods high performance liquid chromatography. Results: Of the 407,244 screened newborns (48.7% girls and 51.3% boys), 14 girls and 13 boys were diagnosed definitely from 465 suspicious cases of PKU. The incidence of PKU was 0.66 in 10,000, which was noted in different severity (severe PKU - 1:67,874, mild PKU - 1:45,249, and HPA - 1:33,937). In addition, we did not detect any cases of nonclassic PKU. Conclusions: Although the consanguineous marriage pattern is a major cause of hyperphenylalaninemia (HPA) particularly in Iranian, there was no significant difference between groups in this study. Now, screening should be executed for all of the family that they have the familial history of PKU in Iran. According to varies actual of prevalence and incidence rate of PKU reported a real patient and taking PKU with mild PKU and HPA, it is recommended, the will provide the PKU reports based on the severity of the disease.
Collapse
Affiliation(s)
- Ali Abbaskhanian
- Department of Pediatrics, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Clinical Research Development Unit of Bou Ali-Sina Hospital, Mazandaran University of Medical Sciences, Sari, Iran
| | - Daniel Zamanfar
- Department of Pediatrics, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Diabetes Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Parvaneh Afshar
- Research and Development Unit of Referral Laboratory, Deputy of Health Management, Mazandaran University of Medical Sciences, Sari, Iran
| | - Einollah Asadpoor
- Deputy of Health, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hamed Rouhanizadeh
- Department of Pediatrics, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Deputy of Health Management, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ali Jafarnia
- Deputy of Health, Babol University of Medical Sciences, Babol, Iran
| | - Mohammad Shokzadeh
- Department of Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
24
|
van Wegberg AMJ, MacDonald A, Ahring K, Bélanger-Quintana A, Blau N, Bosch AM, Burlina A, Campistol J, Feillet F, Giżewska M, Huijbregts SC, Kearney S, Leuzzi V, Maillot F, Muntau AC, van Rijn M, Trefz F, Walter JH, van Spronsen FJ. The complete European guidelines on phenylketonuria: diagnosis and treatment. Orphanet J Rare Dis 2017; 12:162. [PMID: 29025426 PMCID: PMC5639803 DOI: 10.1186/s13023-017-0685-2] [Citation(s) in RCA: 478] [Impact Index Per Article: 59.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 07/11/2017] [Indexed: 12/22/2022] Open
Abstract
Phenylketonuria (PKU) is an autosomal recessive inborn error of phenylalanine metabolism caused by deficiency in the enzyme phenylalanine hydroxylase that converts phenylalanine into tyrosine. If left untreated, PKU results in increased phenylalanine concentrations in blood and brain, which cause severe intellectual disability, epilepsy and behavioural problems. PKU management differs widely across Europe and therefore these guidelines have been developed aiming to optimize and standardize PKU care. Professionals from 10 different European countries developed the guidelines according to the AGREE (Appraisal of Guidelines for Research and Evaluation) method. Literature search, critical appraisal and evidence grading were conducted according to the SIGN (Scottish Intercollegiate Guidelines Network) method. The Delphi-method was used when there was no or little evidence available. External consultants reviewed the guidelines. Using these methods 70 statements were formulated based on the highest quality evidence available. The level of evidence of most recommendations is C or D. Although study designs and patient numbers are sub-optimal, many statements are convincing, important and relevant. In addition, knowledge gaps are identified which require further research in order to direct better care for the future.
Collapse
Affiliation(s)
- A. M. J. van Wegberg
- Division of Metabolic Diseases, Beatrix Children’s Hospital, University Medical Center Groningen, PO BOX 30.001, 9700 RB Groningen, The Netherlands
| | - A. MacDonald
- Dietetic Department, Birmingham Children’s Hospital, Birmingham, UK
| | - K. Ahring
- Department of PKU, Kennedy Centre, Glostrup, Denmark
| | - A. Bélanger-Quintana
- Metabolic Diseases Unit, Department of Paediatrics, Hospital Ramon y Cajal Madrid, Madrid, Spain
| | - N. Blau
- University Children’s Hospital, Dietmar-Hoppe Metabolic Centre, Heidelberg, Germany
- University Children’s Hospital Zürich, Zürich, Switzerland
| | - A. M. Bosch
- Department of Paediatrics, Division of Metabolic Disorders, Academic Medical Centre, University Hospital of Amsterdam, Amsterdam, The Netherlands
| | - A. Burlina
- Division of Inherited Metabolic Diseases, Department of Paediatrics, University Hospital of Padova, Padova, Italy
| | - J. Campistol
- Neuropaediatrics Department, Hospital Sant Joan de Déu, Universitat de Barcelona, Barcelona, Spain
| | - F. Feillet
- Department of Paediatrics, Hôpital d’Enfants Brabois, CHU Nancy, Vandoeuvre les Nancy, France
| | - M. Giżewska
- Department of Paediatrics, Endocrinology, Diabetology, Metabolic Diseases and Cardiology of the Developmental Age, Pomeranian Medical University, Szczecin, Poland
| | - S. C. Huijbregts
- Department of Clinical Child and Adolescent Studies-Neurodevelopmental Disorders, Faculty of Social Sciences, Leiden University, Leiden, The Netherlands
| | - S. Kearney
- Clinical Psychology Department, Birmingham Children’s Hospital, Birmingham, UK
| | - V. Leuzzi
- Department of Paediatrics, Child Neurology and Psychiatry, Sapienza University of Rome, Via dei Sabelli 108, 00185 Rome, Italy
| | - F. Maillot
- CHRU de Tours, Université François Rabelais, INSERM U1069, Tours, France
| | - A. C. Muntau
- University Children’s Hospital, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - M. van Rijn
- Division of Metabolic Diseases, Beatrix Children’s Hospital, University Medical Center Groningen, PO BOX 30.001, 9700 RB Groningen, The Netherlands
| | - F. Trefz
- Department of Paediatrics, University of Heidelberg, Heidelberg, Germany
| | - J. H. Walter
- Medicine, Manchester Academic Health Sciences Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - F. J. van Spronsen
- Division of Metabolic Diseases, Beatrix Children’s Hospital, University Medical Center Groningen, PO BOX 30.001, 9700 RB Groningen, The Netherlands
| |
Collapse
|
25
|
Bergwerff CE, Luman M, Blom HJ, Oosterlaan J. Paediatric reference values for total homocysteine, tryptophan, tyrosine and phenylalanine in blood spots. Scandinavian Journal of Clinical and Laboratory Investigation 2017; 77:410-414. [PMID: 28678543 DOI: 10.1080/00365513.2017.1334167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Determining blood concentrations of the amino acids homocysteine, tryptophan, tyrosine and phenylalanine in children is of value in the clinical practice. Over the past decades, the use of blood spot samples to examine amino acid concentrations is increasing rapidly. In children, the use of blood spot samples is especially of relevance, as this method is much less invasive than venous blood sampling. Currently, no paediatric reference values for amino acids in blood spots are available. The aim of the current study was to establish reference values for blood spot concentrations of total homocysteine, tryptophan, tyrosine and phenylalanine in school-age children. Dried blood spots were obtained in a community sample of 104 healthy children, aged 6-12 years old (52% males). Blood spot concentrations of total homocysteine, tryptophan, tyrosine and phenylalanine were determined by positive electrospray liquid chromatography-tandem mass spectrometry. Parents of participants completed questions regarding demographic characteristics. Our sample consisted of healthy children from various ethnic backgrounds, with varying levels of socioeconomic status, in line with the composition of the Dutch society. Blood spot concentrations of total homocysteine, tryptophan, tyrosine and phenylalanine were similar in males and females, and independent of age. In conclusion, paediatric reference values for blood spot concentrations of total homocysteine, tryptophan, tyrosine and phenylalanine were established, which could be of use in the clinical practice.
Collapse
Affiliation(s)
- Catharina E Bergwerff
- a Clinical Neuropsychology section , Vrije Universiteit Amsterdam , Amsterdam , the Netherlands
| | - Marjolein Luman
- a Clinical Neuropsychology section , Vrije Universiteit Amsterdam , Amsterdam , the Netherlands
| | - Henk J Blom
- b Center for Pediatrics and Adolescent Medicine , Medical Center - University of Freiburg , Freiburg , Germany.,c Department of Clinical Chemistry , VU University Medical Center Amsterdam , Amsterdam , the Netherlands
| | - Jaap Oosterlaan
- a Clinical Neuropsychology section , Vrije Universiteit Amsterdam , Amsterdam , the Netherlands
| |
Collapse
|
26
|
van Dam E, Daly A, Venema-Liefaard G, van Rijn M, Derks TGJ, McKiernan PJ, Rebecca Heiner-Fokkema M, MacDonald A, van Spronsen FJ. What Is the Best Blood Sampling Time for Metabolic Control of Phenylalanine and Tyrosine Concentrations in Tyrosinemia Type 1 Patients? JIMD Rep 2017; 36:49-57. [PMID: 28120161 DOI: 10.1007/8904_2016_37] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 11/26/2016] [Accepted: 12/12/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Treatment of hereditary tyrosinemia type 1 with nitisinone and phenylalanine and tyrosine restricted diet has largely improved outcome, but the best blood sampling time for assessment of metabolic control is not known. AIM To study diurnal and day-to-day variation of phenylalanine and tyrosine concentrations in tyrosinemia type 1 patients. METHODS Eighteen tyrosinemia type 1 patients aged >1 year (median age 7.9 years; range 1.6-20.7) were studied. Capillary blood samples were collected 4 times a day (T1: pre-breakfast, T2: pre-midday meal, T3: before evening meal, and T4: bedtime) for 3 days. Linear mixed-effect models were used to investigate diurnal and day-to-day variation of both phenylalanine and tyrosine. RESULTS The coefficients of variation of phenylalanine and tyrosine concentrations were the lowest on T1 (13.8% and 14.1%, respectively). Tyrosine concentrations did not significantly differ between the different time points, but phenylalanine concentrations were significantly lower at T2 and T3 compared to T1 (50.1 μmol/L, 29.8 μmol/L, and 37.3 μmol/L, respectively). CONCLUSION Our results indicated that for prevention of too low phenylalanine and too high tyrosine concentrations, measurement of phenylalanine and tyrosine pre-midday meal would be best, since phenylalanine concentrations are the lowest on that time point. Our results also indicated that whilst blood tyrosine concentrations were stable over 24 h, phenylalanine fluctuated. Day-to-day variation was most stable after an overnight fast for both phenylalanine and tyrosine. Therefore, in tyrosinemia type 1 patients the most reliable time point for measuring phenylalanine and tyrosine concentrations to enable interpretation of metabolic control is pre-breakfast.
Collapse
Affiliation(s)
- Esther van Dam
- Department of Dietetics, University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital, Groningen, The Netherlands.
| | - Anne Daly
- Birmingham Children's Hospital, Birmingham, UK
| | - Gineke Venema-Liefaard
- Department of Dietetics, University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital, Groningen, The Netherlands
| | - Margreet van Rijn
- Department of Dietetics, University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital, Groningen, The Netherlands
| | - Terry G J Derks
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital, Groningen, The Netherlands
| | | | - M Rebecca Heiner-Fokkema
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | - Francjan J van Spronsen
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital, Groningen, The Netherlands
| |
Collapse
|
27
|
Akgönüllü S, Yavuz H, Denizli A. Preparation of imprinted cryogel cartridge for chiral separation of l-phenylalanine. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2016; 45:800-807. [PMID: 27132947 DOI: 10.1080/21691401.2016.1175445] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
l-Phe-imprinted cryogel cartridge was prepared for the chiral separation of l-Phe. N-Methacryloyl l-phenylalanine (MAPA) was used as a functional monomer for complexing with l-Phe. The selectivity of the membranes was investigated by using d-Phe, l-Trp, and d-Trp as competitor molecules. The PHEMAPA-l-Trp membranes were 6.4, 4.3, and 5.5 times more selective for l-Phe than d-Phe, l-Trp, and d-Trp, respectively. The PHEMAPA-l-Phe cryogel cartridge was incorporated into the fast protein liquid chromatography (FPLC) equipment and was able to separate D,l-Phe racemic mixture efficiently. The PHEMAPA-l-Phe membranes were shown to be reusable many times without significant loss of the adsorption capacity.
Collapse
Affiliation(s)
- Semra Akgönüllü
- a Department of Chemistry , Hacettepe University , Beytepe , Ankara , Turkey
| | - Handan Yavuz
- a Department of Chemistry , Hacettepe University , Beytepe , Ankara , Turkey
| | - Adil Denizli
- a Department of Chemistry , Hacettepe University , Beytepe , Ankara , Turkey
| |
Collapse
|
28
|
Bergwerff CE, Luman M, Blom HJ, Oosterlaan J. No Tryptophan, Tyrosine and Phenylalanine Abnormalities in Children with Attention-Deficit/Hyperactivity Disorder. PLoS One 2016; 11:e0151100. [PMID: 26938936 PMCID: PMC4777504 DOI: 10.1371/journal.pone.0151100] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 02/23/2016] [Indexed: 01/18/2023] Open
Abstract
Background The aim of the current study was to explore the role of aromatic amino acids (AAAs) in blood in relation to attention-deficit/hyperactivity disorder (ADHD). Given their impact on the synthesis of serotonin and dopamine, decreased concentrations of the AAAs tryptophan, tyrosine and phenylalanine in blood may contribute to the expression of ADHD symptoms. Decreased AAA blood concentrations, in turn, may be related to lowered dietary protein intake or to abnormal AAA catabolism, as evidenced by increased urinary AAA concentrations. Methods Eighty-three children with ADHD (75% males) and 72 typically developing (TD) children (51% males), aged 6 to 13 years, participated in the study. AAA concentrations were assessed in blood spots and an 18-hour urinary sample. A nutritional diary was filled out by parents to calculate dietary protein intake. Parent and teacher questionnaires assessed symptoms of ADHD, oppositional defiant disorder, conduct disorder, and autism spectrum disorder. Results Children with ADHD showed normal AAA concentrations in blood spots and urine, as well as normal protein intake compared to controls. No associations between AAA concentrations and symptoms of ADHD or comorbid psychiatric disorders were found. Conclusions This study is the first to explore AAA metabolism in children with ADHD using a well-defined and relatively large sample. We found that AAA deficiencies are not related to ADHD. The results do not support treatment with AAA supplements in children with ADHD. Future studies regarding the cause of serotonin and dopamine alterations in ADHD should focus on other explanations, such as effects of altered transport of AAAs.
Collapse
Affiliation(s)
| | - Marjolein Luman
- Clinical Neuropsychology section, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Henk J. Blom
- Center for Pediatrics and Adolescent Medicine, Medical Center–University of Freiburg, Freiburg, Germany
- Department of Clinical Chemistry, VU University Medical Center Amsterdam, Amsterdam, the Netherlands
| | - Jaap Oosterlaan
- Clinical Neuropsychology section, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
29
|
Xiong X, Sheng X, Liu D, Zeng T, Peng Y, Wang Y. A GC/MS-based metabolomic approach for reliable diagnosis of phenylketonuria. Anal Bioanal Chem 2015; 407:8825-33. [PMID: 26410738 DOI: 10.1007/s00216-015-9041-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/02/2015] [Accepted: 09/10/2015] [Indexed: 01/10/2023]
Abstract
Although the phenylalanine/tyrosine ratio in blood has been the gold standard for diagnosis of phenylketonuria (PKU), the disadvantages of invasive sample collection and false positive error limited the application of this discriminator in the diagnosis of PKU to some extent. The aim of this study was to develop a new standard with high sensitivity and specificity in a less invasive manner for diagnosing PKU. In this study, an improved oximation-silylation method together with GC/MS was utilized to obtain the urinary metabolomic information in 47 PKU patients compared with 47 non-PKU controls. Compared with conventional oximation-silylation methods, the present approach possesses the advantages of shorter reaction time and higher reaction efficiency at a considerably lower temperature, which is beneficial to the derivatization of some thermally unstable compounds, such as phenylpyruvic acid. Ninety-seven peaks in the chromatograms were identified as endogenous metabolites by the National Institute of Standards and Technology (NIST) mass spectra library, including amino acids, organic acids, carbohydrates, amides, and fatty acids. After normalization of data using creatinine as internal standard, 19 differentially expressed compounds with p values of <0.05 were selected by independent-sample t test for the separation of the PKU group and the control group. A principal component analysis (PCA) model constructed by these differentially expressed compounds showed that the PKU group can be discriminated from the control group. Receiver-operating characteristic (ROC) analysis with area under the curve (AUC), specificity, and sensitivity of each PKU marker obtained from these differentially expressed compounds was used to evaluate the possibility of using these markers for diagnosing PKU. The largest value of AUC (0.987) with high specificity (0.936) and sensitivity (1.000) was obtained by the ROC curve of phenylacetic acid at its cutoff value (17.244 mmol/mol creatinine), which showed that phenylacetic acid may be used as a reliable discriminator for the diagnosis of PKU. The low false positive rate (1-specificity, 0.064) can be eliminated or at least greatly reduced by simultaneously referring to other markers, especially phenylpyruvic acid, a unique marker in PKU. Additionally, this standard was obtained with high sensitivity and specificity in a less invasive manner for diagnosing PKU compared with the Phe/Tyr ratio. Therefore, we conclude that urinary metabolomic information based on the improved oximation-silylation method together with GC/MS may be reliable for the diagnosis and differential diagnosis of PKU.
Collapse
Affiliation(s)
- Xiyue Xiong
- Technical Institute of Clinical Preventive and Treatment for Childrens' Inherited Metabolic Disorders of Hunan Province, Maternal and Child Health Care Hospital of Hunan Province, Changsha, 410008, China
| | - Xiaoqi Sheng
- Technical Institute of Clinical Preventive and Treatment for Childrens' Inherited Metabolic Disorders of Hunan Province, Maternal and Child Health Care Hospital of Hunan Province, Changsha, 410008, China
| | - Dan Liu
- Technical Institute of Clinical Preventive and Treatment for Childrens' Inherited Metabolic Disorders of Hunan Province, Maternal and Child Health Care Hospital of Hunan Province, Changsha, 410008, China
| | - Ting Zeng
- Technical Institute of Clinical Preventive and Treatment for Childrens' Inherited Metabolic Disorders of Hunan Province, Maternal and Child Health Care Hospital of Hunan Province, Changsha, 410008, China
| | - Ying Peng
- Technical Institute of Clinical Preventive and Treatment for Childrens' Inherited Metabolic Disorders of Hunan Province, Maternal and Child Health Care Hospital of Hunan Province, Changsha, 410008, China
| | - Yichao Wang
- Technical Institute of Clinical Preventive and Treatment for Childrens' Inherited Metabolic Disorders of Hunan Province, Maternal and Child Health Care Hospital of Hunan Province, Changsha, 410008, China.
| |
Collapse
|
30
|
Ankireddy SR, Kim J. Dopamine-functionalized InP/ZnS quantum dots as fluorescence probes for the detection of adenosine in microfluidic chip. Int J Nanomedicine 2015; 10 Spec Iss:121-8. [PMID: 26347351 PMCID: PMC4554435 DOI: 10.2147/ijn.s88465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Microbeads are frequently used as solid supports for biomolecules such as proteins and nucleic acids in heterogeneous microfluidic assays. Chip-based, quantum dot (QD)-bead-biomolecule probes have been used for the detection of various types of DNA. In this study, we developed dopamine (DA)-functionalized InP/ZnS QDs (QDs-DA) as fluorescence probes for the detection of adenosine in microfluidic chips. The photoluminescence (PL) intensity of the QDs-DA is quenched by Zn(2+) because of the strong coordination interactions. In the presence of adenosine, Zn(2+) cations preferentially bind to adenosine, and the PL intensity of the QDs-DA is recovered. A polydimethylsiloxane-based microfluidic chip was fabricated, and adenosine detection was confirmed using QDs-DA probes.
Collapse
Affiliation(s)
- Seshadri Reddy Ankireddy
- Department of chemical and Biological Engineering, Gachon University, Seongnam, Gyeonggi-Do, South Korea
| | - Jongsung Kim
- Department of chemical and Biological Engineering, Gachon University, Seongnam, Gyeonggi-Do, South Korea
| |
Collapse
|
31
|
Forteschi M, Sotgia S, Assaretti S, Arru D, Cambedda D, Sotgiu E, Zinellu A, Carru C. Simultaneous determination of aromatic amino acids in human blood plasma by capillary electrophoresis with UV-absorption detection. J Sep Sci 2015; 38:1794-9. [PMID: 25736071 DOI: 10.1002/jssc.201500038] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Revised: 02/21/2015] [Accepted: 02/23/2015] [Indexed: 11/07/2022]
Abstract
Phenylalanine, tyrosine, and tryptophan, also known as aromatic amino acids, are involved in many physiological and pathophysiological conditions and are indicative of the liver and kidney function. In this work, we describe a simple and accurate method for their simultaneous quantification, in a single capillary electrophoresis run. This method requires minimal sample manipulation, no derivatization procedures, and methyl tryptophan as internal standard. The human blood plasma sample was precipitated using sulfosalicylic acid and the supernatant was used for the analysis. All the analytes were baseline resolved within 16 min and detected at 200 nm using Tris phosphate 80 mmol/L at pH 1.4 as the background electrolyte. The proposed method showed good linearity (r = 0.998) and repeatability (intra-assay RSD < 2.78%, interassay RSD < 5.4%) for all the analytes. The limit of quantification was 13 μmol/L for phenylalanine and 5 μmol/L for tyrosine and tryptophan. The method suitability was tested measuring aromatic amino acids level in 20 chronic kidney disease patients at basal level and after simvastatin/ezetimibe treatment.
Collapse
Affiliation(s)
- Mauro Forteschi
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Salvatore Sotgia
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Stefano Assaretti
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Dionigia Arru
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Debora Cambedda
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Elisabetta Sotgiu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Ciriaco Carru
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Quality Control Unit, Hospital University of Sassari (AOU), Sassari, Italy
| |
Collapse
|
32
|
Salerno C, Zicari A, Mari E, D'Eufemia P. Scavenging properties of neutrophil 4-hydroxyphenylpyruvate dioxygenase are based on a hypothesis that does not stand up to scrutiny. Biomed Pharmacother 2014; 68:1045-8. [PMID: 25443415 DOI: 10.1016/j.biopha.2014.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Accepted: 09/09/2014] [Indexed: 11/28/2022] Open
Abstract
It was previously reported by D'Eufemia et al. [9] that neutrophil preparations from a patient with tyrosinemia type III, i.e. with inherited deficiency of 4-hydroxyphenylpyruvate dioxygenase (HPPD), exhibited a far higher NO release than controls, when NO was estimated in terms of nitrite content in the suspending media. It was hypothesized that HPPD might participate to NO sequestration in neutrophils and that excessive NO release might reflect the lack of the scavenging action in defective cells. In recent control experiments, we found that HPPD activity in neutrophils preparations from healthy subjects is below the detection limit of the enzymatic assay (less than 3nmol product/h per mg protein). This indicates that HPPD concentration in neutrophils is very low, if any, confirming what was already suggested in literature, and rules out the possibility of a prominent role of HPPD as NO scavenger in these cells. Moreover, we found that 500μM l-tyrosine increases nitrite release and accumulation in suspending media of U-937 cells, a human monoblast-like lymphoma cell line which displays many characteristics of macrophages, including the expression of inducible and endothelial nitric oxide synthases. We hypothesize that the increase of nitrite release by patient's neutrophils might be related to the presence of high l-tyrosine concentrations in the blood samples (426μmol/L instead of 52.1±10.9μmol/L as healthy subjects), rather than to HPPD deficiency of in these cells.
Collapse
Affiliation(s)
- Costantino Salerno
- Department of Biochemical Sciences, University of Roma La Sapienza, 00161 Rome, Italy.
| | - Alessandra Zicari
- Department of Experimental Medicine, University of Roma La Sapienza, 00161 Rome, Italy
| | - Emanuela Mari
- Department of Experimental Medicine, University of Roma La Sapienza, 00161 Rome, Italy
| | - Patrizia D'Eufemia
- Department of Pediatrics, University of Roma La Sapienza, 00161 Rome, Italy
| |
Collapse
|
33
|
Feng L, He YQ, Xu GH, Hu H, Guo L, Wan YQ. Determination of Tyrosine and Its Metabolites in Human Serum with Application to Cancer Diagnosis. ANAL LETT 2014. [DOI: 10.1080/00032719.2013.871549] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
34
|
Montalbano F, Leandro J, Farias GDVF, Lino PR, Guedes RC, Vicente JB, Leandro P, Gois PMP. Phenylalanine iminoboronates as new phenylalanine hydroxylase modulators. RSC Adv 2014. [DOI: 10.1039/c4ra10306h] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Herein we report the discovery of new modulators of human phenylalanine hydroxylase (hPAH) inspired by the structure of its substrate and regulator l-phenylalanine.
Collapse
Affiliation(s)
- Francesco Montalbano
- Research Institute for Medicines (iMed.ULisboa)
- Faculty of Pharmacy
- Universidade de Lisboa
- Lisboa, Portugal
| | - João Leandro
- Research Institute for Medicines (iMed.ULisboa)
- Faculty of Pharmacy
- Universidade de Lisboa
- Lisboa, Portugal
| | - Gonçalo D. V. F. Farias
- Research Institute for Medicines (iMed.ULisboa)
- Faculty of Pharmacy
- Universidade de Lisboa
- Lisboa, Portugal
| | - Paulo R. Lino
- Research Institute for Medicines (iMed.ULisboa)
- Faculty of Pharmacy
- Universidade de Lisboa
- Lisboa, Portugal
| | - Rita C. Guedes
- Research Institute for Medicines (iMed.ULisboa)
- Faculty of Pharmacy
- Universidade de Lisboa
- Lisboa, Portugal
| | - João B. Vicente
- Research Institute for Medicines (iMed.ULisboa)
- Faculty of Pharmacy
- Universidade de Lisboa
- Lisboa, Portugal
| | - Paula Leandro
- Research Institute for Medicines (iMed.ULisboa)
- Faculty of Pharmacy
- Universidade de Lisboa
- Lisboa, Portugal
| | - Pedro M. P. Gois
- Research Institute for Medicines (iMed.ULisboa)
- Faculty of Pharmacy
- Universidade de Lisboa
- Lisboa, Portugal
| |
Collapse
|
35
|
Pecce R, Scolamiero E, Ingenito L, Parenti G, Ruoppolo M. Optimization of an HPLC method for phenylalanine and tyrosine quantization in dried blood spot. Clin Biochem 2013; 46:1892-5. [DOI: 10.1016/j.clinbiochem.2013.08.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 08/28/2013] [Accepted: 08/30/2013] [Indexed: 12/11/2022]
|
36
|
Neurauter G, Scholl-Bürgi S, Haara A, Geisler S, Mayersbach P, Schennach H, Fuchs D. Simultaneous measurement of phenylalanine and tyrosine by high performance liquid chromatography (HPLC) with fluorescence detection. Clin Biochem 2013; 46:1848-51. [PMID: 24183885 DOI: 10.1016/j.clinbiochem.2013.10.015] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 09/11/2013] [Accepted: 10/19/2013] [Indexed: 11/26/2022]
Abstract
OBJECTIVES An HPLC method was developed to quantify serum concentrations of phenylalanine and tyrosine simultaneously using fluorescence detection without derivatization. METHODS Serum protein is precipitated with trichloroacetic acid, 0.015mM dihydrogen-phosphate solution is used for separation on reversed-phase C18 material, and acetonitrile is avoided. Both amino acids are monitored utilizing their natural fluorescence at 210nm excitation and 302nm emission wavelengths. RESULTS One analytical run is completed within 7min. Lower detection limit for Phe and Tyr is 0.3μM. Comparison of the new method with a classical HPLC method for total amino acids and using UV-absorption detection reveals a highly significant relationship for Phe and Tyr. CONCLUSION The new HPLC method allows rapid and very sensitive measurement of phenylalanine and tyrosine concentrations.
Collapse
Affiliation(s)
- Gabriele Neurauter
- Division of Biological Chemistry, Biocenter, Medical University, Innsbruck, Austria
| | | | | | | | | | | | | |
Collapse
|
37
|
Mo XM, Li Y, Tang AG, Ren YP. Simultaneous determination of phenylalanine and tyrosine in peripheral capillary blood by HPLC with ultraviolet detection. Clin Biochem 2013; 46:1074-1078. [DOI: 10.1016/j.clinbiochem.2013.05.047] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Revised: 04/22/2013] [Accepted: 05/15/2013] [Indexed: 10/26/2022]
|
38
|
Wang H, Chen H, Hao G, Yang B, Feng Y, Wang Y, Feng L, Zhao J, Song Y, Zhang H, Chen YQ, Wang L, Chen W. Role of the phenylalanine-hydroxylating system in aromatic substance degradation and lipid metabolism in the oleaginous fungus Mortierella alpina. Appl Environ Microbiol 2013; 79:3225-33. [PMID: 23503309 PMCID: PMC3685260 DOI: 10.1128/aem.00238-13] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 03/05/2013] [Indexed: 11/20/2022] Open
Abstract
Mortierella alpina is a filamentous fungus commonly found in soil that is able to produce lipids in the form of triacylglycerols that account for up to 50% of its dry weight. Analysis of the M. alpina genome suggests that there is a phenylalanine-hydroxylating system for the catabolism of phenylalanine, which has never been found in fungi before. We characterized the phenylalanine-hydroxylating system in M. alpina to explore its role in phenylalanine metabolism and its relationship to lipid biosynthesis. Significant changes were found in the profile of fatty acids in M. alpina grown on medium containing an inhibitor of the phenylalanine-hydroxylating system compared to M. alpina grown on medium without inhibitor. Genes encoding enzymes involved in the phenylalanine-hydroxylating system (phenylalanine hydroxylase [PAH], pterin-4α-carbinolamine dehydratase, and dihydropteridine reductase) were expressed heterologously in Escherichia coli, and the resulting proteins were purified to homogeneity. Their enzymatic activity was investigated by high-performance liquid chromatography (HPLC) or visible (Vis)-UV spectroscopy. Two functional PAH enzymes were observed, encoded by distinct gene copies. A novel role for tetrahydrobiopterin in fungi as a cofactor for PAH, which is similar to its function in higher life forms, is suggested. This study establishes a novel scheme for the fungal degradation of an aromatic substance (phenylalanine) and suggests that the phenylalanine-hydroxylating system is functionally significant in lipid metabolism.
Collapse
Affiliation(s)
- Hongchao Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
- School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Haiqin Chen
- School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Guangfei Hao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
- School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Bo Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
- School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Yun Feng
- TEDA School of Biological Sciences and Biotechnology, Nankai University, Tianjin Economic-Technological Development Area, Tianjin, People's Republic of China
| | - Yu Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
- School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Lu Feng
- TEDA School of Biological Sciences and Biotechnology, Nankai University, Tianjin Economic-Technological Development Area, Tianjin, People's Republic of China
| | - Jianxin Zhao
- School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Yuanda Song
- School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Hao Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Yong Q. Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
- School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Lei Wang
- TEDA School of Biological Sciences and Biotechnology, Nankai University, Tianjin Economic-Technological Development Area, Tianjin, People's Republic of China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
- School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| |
Collapse
|
39
|
Kamruzzaman M, Alam AM, Kim KM, Lee SH, Kim YH, Kim GM, Dang TD. Microfluidic chip based chemiluminescence detection of L-phenylalanine in pharmaceutical and soft drinks. Food Chem 2012. [DOI: 10.1016/j.foodchem.2012.04.062] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
40
|
Qiu H, Xi Y, Lu F, Fan L, Luo C. Determination of L-phenylalanine on-line based on molecularly imprinted polymeric microspheres and flow injection chemiluminescence. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2012; 86:456-460. [PMID: 22112574 DOI: 10.1016/j.saa.2011.10.068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 10/20/2011] [Accepted: 10/29/2011] [Indexed: 05/31/2023]
Abstract
A novel molecular imprinting-chemiluminescence (MIP-CL) sensor for the determination of L-phenylalanine (Phe) using molecularly imprinted polymer (MIP) as recognition element is reported. The Phe-MIP was synthesized using acrylamide (AM) as functional monomer and ethylene glycol dimethacrylate (EGDMA) as cross-linker, 2,2-azobisisobutyronitrile (AIBN) as initiator and the polymers' properties were characterized. Then the synthesized MIP was employed as recognition element by packing into flow cell to establish a novel flow injection CL sensor. The CL intensity responded linearly to the concentration of Phe in the range 1.3 × 10(-6) to 5.44 × 10(-4) mol/L with a detection limit of 6.23 × 10(-7) mol/L (3σ), which is lower than that of conventional methods. The sensor is reusable and has a great improvement in sensitivity and selectivity for CL analysis. As a result, the new MIP-CL sensor had been successfully applied to the determination of Phe in samples.
Collapse
Affiliation(s)
- Huamin Qiu
- School of Chemistry and Chemical Engineering, University of Jinan, No. 106 Jiwei Road, Jinan 250022, China
| | | | | | | | | |
Collapse
|
41
|
Ohtomo T, Igarashi S, Takagai Y, Ohno O. Quenching-Chemiluminescence Determination of Trace Amounts of l-Tyrosine Contained in Dietary Supplement by Chemiluminescence Reaction of an Iron-Phthalocyanine Complex. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2012; 2012:520248. [PMID: 22567562 PMCID: PMC3336182 DOI: 10.1155/2012/520248] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 01/22/2012] [Accepted: 01/23/2012] [Indexed: 05/03/2023]
Abstract
The chemiluminescence (CL) signal immediately appeared when a hydrogen peroxide solution was injected into an iron-phthalocyanine tetrasulfonic acid (Fe-PTS) aqueous solution. Moreover, the CL intensity of Fe-PTS decreased by adding l-tyrosine. Based on these results, the determination of trace amounts of l-tyrosine was developed using the quenching-chemiluminescence. The calibration curve of l-tyrosine was obtained in the concentration range of 2.0 × 10(-7) M to 2.0 × 10(-5) M. Moreover, the relative standard deviation (RSD) was 1.63 % (n = 5) for 2.0 × 10(-6) M l-tyrosine, and its detection limits (3σ) were 1.81 × 10(-7) M. The spike and recovery experiments for l-tyrosine were performed using a soft drink. Furthermore, the determination of l-tyrosine was applied to supplements containing various kinds of amino acids. Each satisfactory relative recovery was obtained at 98 to 102%.
Collapse
Affiliation(s)
- Takao Ohtomo
- Department of Biomolecular Functional Engineering, Faculty of Engineering, Ibaraki University, 4-12-1 Nakanarusawa, Hitachi, Ibaraki 316-8511, Japan
| | - Shukuro Igarashi
- Department of Biomolecular Functional Engineering, Faculty of Engineering, Ibaraki University, 4-12-1 Nakanarusawa, Hitachi, Ibaraki 316-8511, Japan
- *Shukuro Igarashi:
| | - Yoshitaka Takagai
- Faculty of Symbiotic Systems Science, Cluster of Science and Technology, Fukushima University, Kanayagawa 1, Fukushima 960-1296, Japan
| | - Osamu Ohno
- Department of Biomolecular Functional Engineering, Faculty of Engineering, Ibaraki University, 4-12-1 Nakanarusawa, Hitachi, Ibaraki 316-8511, Japan
| |
Collapse
|
42
|
Lu J, Ge S, Wan F, Yu J. Detection of L-phenylalanine using molecularly imprinted solid-phase extraction and flow injection electrochemiluminescence. J Sep Sci 2011; 35:320-6. [DOI: 10.1002/jssc.201100787] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 10/20/2011] [Accepted: 10/20/2011] [Indexed: 11/10/2022]
|
43
|
Zhang K, Yan HT, Zhou T. Spectrofluorimetric determination of phenylalanine based on fluorescence enhancement of europium ion immobilized with sol-gel method. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2011; 83:155-160. [PMID: 21917509 DOI: 10.1016/j.saa.2011.08.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2011] [Accepted: 08/05/2011] [Indexed: 05/31/2023]
Abstract
The analysis of phenylalanine (Phe) in serum is widely performed for the screening of newborn phenylketonuria (PKU). In this work, a novel spectrofluorimetric method for the determination of Phe was developed based on the fluorescence enhancement of Ruhemann's purple, the reaction product between Phe and ninhydrin, upon coordination with Eu(3+). A filter paper disc containing immobilized reactants (ninhydrin and Eu(3+)) was fabricated by sol-gel method. The experimental parameters affecting the determination of Phe, such as the concentrations of immobilized reagents, the pH value, the reaction time and temperature were optimized. Under optimum conditions, the fluorescence intensity of Phe-ninhydrin-Eu(3+) system was linearly proportional to the concentration of Phe in the range from 5×10(-5) to 2×10(-3) mol L(-1), and the limit of detection was found to be 5.2×10(-6) mol L(-1). The relative standard deviation was 2.6% for ten replicate measurements of 1.5×10(-4) mol L(-1) of Phe. The method has merits of sensitivity, simplicity and low cost, and has been applied to the determination of Phe in artificial serum.
Collapse
Affiliation(s)
- Kun Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi, People's Republic of China
| | | | | |
Collapse
|
44
|
Li Y, Tang AG, Mu S. HPLC–FLD determination of serum aromatic amino acids: Application in chronic kidney disease patients. Clin Chim Acta 2011; 412:1032-5. [DOI: 10.1016/j.cca.2011.02.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Revised: 02/06/2011] [Accepted: 02/10/2011] [Indexed: 11/25/2022]
|