1
|
Sharma G, Panwar R, Saini S, Tuli HS, Wadhwa K, Pahwa R. Emerging phytochemical-based nanocarriers: redefining the perspectives of breast cancer therapy. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04003-3. [PMID: 40137964 DOI: 10.1007/s00210-025-04003-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 02/28/2025] [Indexed: 03/29/2025]
Abstract
Breast cancer is recognized as the most prevalent condition impacting women globally, despite several advancements in diagnosis and treatment. Existing therapeutic interventions including surgical procedures, radiation therapy, and chemotherapy often produce harmful effects on healthy tissues, trigger chemo-resistance, and augment the risk of relapse. In response to several unmet challenges, substantial research has been conducted to explore the therapeutic potential of natural compounds for breast cancer therapy. Progress in phytochemistry and pharmacology has facilitated the identification of diverse herbal bioactives with favorable safety profiles and multi-target mechanisms of action against breast cancer cells. Several phytochemicals like flavonoids and tannins have shown significant anticancer potential against breast cancer in diverse preclinical models. However, challenges like limited cellular absorption, low water solubility, and high molecular weight hinder their effective translation into clinical applications. Therefore, the development of novel therapies is imperative for overcoming these hurdles in breast cancer treatment effectively. Nanotechnology has reflected considerable perspective in tackling diverse challenges by encapsulating phytoconstituents within various nanocarriers including polymeric nanoparticles, lipidic nanoparticles, nanoemulsions, nanogels, gold nanoparticles, and silver nanoparticles. This manuscript emphasizes the recent advancements in phytochemical-loaded nanocarriers efficiently tailored for breast cancer therapy along with patents, current challenges, and future perspectives in this avenue.
Collapse
Affiliation(s)
- Gulshan Sharma
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, Haryana, 136119, India
| | - Rohil Panwar
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, Haryana, 136119, India
| | - Sanskriti Saini
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, Haryana, 136119, India
| | - Hardeep Singh Tuli
- Department of Bio-Science and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India
| | - Karan Wadhwa
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, 124001, India.
| | - Rakesh Pahwa
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, Haryana, 136119, India.
| |
Collapse
|
2
|
Vu GTQ, Nguyen LM, Nguyen Do KN, Tran DL, Vo TV, Nguyen DH, Vong LB. Preparation of Metal-Polyphenol Modified Zeolitic Imidazolate Framework-8 Nanoparticles for Cancer Drug Delivery. ACS APPLIED BIO MATERIALS 2025; 8:2052-2064. [PMID: 39950754 DOI: 10.1021/acsabm.4c01608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
With the rising incidence of cancer, chemotherapy has become a widely used treatment approach. However, the use of anticancer drugs such as doxorubicin (DOX) poses significant long-term risks due to its nonspecific distribution and severe side effects. Therefore, developing a nanoparticle-based drug delivery system (DDS) that enhances the bioavailability of DOX specifically to cancer cells is crucial while minimizing its side effects on normal cells. This study employed zeolitic imidazolate framework-8 (ZIF-8) as a DDS to encapsulate DOX using a one-pot method. The surface of this system was subsequently modified with a copper-gallic acid (Cu-GA) complex to form the Cu-GA/DOX@ZIF-8 (CGDZ) system. The CGDZ system effectively encapsulates DOX and demonstrates pH-responsive drug release, facilitating controlled drug release in the acidic environment of cancer cells. Furthermore, the Cu-GA coating enhances the biocompatibility of the material, reduces drug toxicity in normal endothelial cells (BAECs) due to the antioxidant feature of modified GA, and maintains the efficacy and intracellular trafficking of DOX in colon cancer cells (C-26). Interestingly, CGDZ nanoparticles showed significantly higher toxicity against cancer cells as compared to unmodified systems and free DOX. Overall, CGDZ exhibited significant in vitro efficacy in targeting cancer cell lines while reducing the toxicity of DOX, offering a novel and effective nanoparticle system for targeted cancer treatment.
Collapse
Affiliation(s)
- Giao Thuy-Quynh Vu
- School of Biomedical Engineering, International University, Ho Chi Minh 700000, Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh 700000, Vietnam
- Institute of Chemical Technology, Vietnam Academy of Science and Technology, 1A TL29 Street, Thanh Loc Ward, District 12, Ho Chi Minh City 700000, Vietnam
| | - Luan Minh Nguyen
- Institute of Chemical Technology, Vietnam Academy of Science and Technology, 1A TL29 Street, Thanh Loc Ward, District 12, Ho Chi Minh City 700000, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Street, Cau Giay District, Hanoi 100000, Vietnam
| | - Kim Ngan Nguyen Do
- School of Biomedical Engineering, International University, Ho Chi Minh 700000, Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh 700000, Vietnam
| | - Dieu Linh Tran
- Institute of Chemical Technology, Vietnam Academy of Science and Technology, 1A TL29 Street, Thanh Loc Ward, District 12, Ho Chi Minh City 700000, Vietnam
| | - Toi Van Vo
- School of Biomedical Engineering, International University, Ho Chi Minh 700000, Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh 700000, Vietnam
| | - Dai Hai Nguyen
- Institute of Chemical Technology, Vietnam Academy of Science and Technology, 1A TL29 Street, Thanh Loc Ward, District 12, Ho Chi Minh City 700000, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Street, Cau Giay District, Hanoi 100000, Vietnam
| | - Long Binh Vong
- School of Biomedical Engineering, International University, Ho Chi Minh 700000, Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh 700000, Vietnam
| |
Collapse
|
3
|
Roy S, Debasmita D, Dey U, Ghosh SS, Chattopadhyay A. Unveiling the Cytotoxic Potential of Quercetin-Loaded Magnetic Bacterial Bots against Cervical Cancer. ACS APPLIED MATERIALS & INTERFACES 2025; 17:5799-5812. [PMID: 39818692 DOI: 10.1021/acsami.4c17079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Bacterial bots are potent vehicles in cancer theranostics where bacteria are used typically as cargos for drug delivery. However, living bacteria themselves may aid in their efficiency in killing the tissues. For example, living bacteria may be functionalized with magnetic and luminescent nanoparticles along with drugs in order to achieve the targeted delivery and release of payloads that would include the bacteria. In this study, we elucidate the synergistic impact of human-friendly living Lactobacillus rhamnosus bacteria decorated with gold nanoclusters and quercetin-loaded magnetic nanoparticles against the HeLa-cervical cancer cells. The cytotoxicity of the fabricated magnetic bacterial bots within the low dose (5 × 105 CFU/mL) against the HeLa monolayer and 3D spheroid model was found around 84%, which had remarkably enhanced up to more than 91% in the presence of an external magnet. The antiproliferative action of magnetic bacterial bots was demonstrated by the escalation of generated reactive oxygen species from 1.8- to 2.3-fold. Cells treated with magnetic bacterial bots showed a decrease in lipid droplet content, along with altered cell cycle patterns, which led to 74% (average population) of cells being exposed to necroptosis. The study highlights the cytotoxic potential of magnetic bacterial bots against cervical cancer cells outweighing that of the quercetin or the bacteria only, ensuring an external-magnetic-field-responsive targeted drug delivery system.
Collapse
Affiliation(s)
- Sawna Roy
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Debashree Debasmita
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Ujjala Dey
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Siddhartha Sankar Ghosh
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Arun Chattopadhyay
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
4
|
Al Kaabi M, ElNaker NA, Jan N, Ochsenkühn MA, Amin SA, Yousef LF, Yousef AF. Extraction efficiency and bioactive evaluation of Tamarix nilotica and Arthrocnemum macrostachyum extracts for anti-cancer potential. PLoS One 2025; 20:e0311567. [PMID: 39836644 PMCID: PMC11750082 DOI: 10.1371/journal.pone.0311567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/20/2024] [Indexed: 01/23/2025] Open
Abstract
This study aimed to evaluate the potential of phytochemicals from two native UAE plant species, Arthrocnemum macrostachyum and Tamarix nilotica, as anti-cancer agents. The plant extracts were obtained using two methods, maceration, and microwave-assisted extraction (MAE), and were subsequently evaluated for their in vitro cytotoxicity against three cancer cell lines: breast (MDA-MB-231), colon (HCT-116), and lung (A-549). Results suggest that: 1) MAE is more efficient than maceration in recovering metabolites from plant biomass based on measurements of total phenolic content, radical scavenging activity, and bioactivity of extracts based on in vitro cytotoxicity. 2) Only T. nilotica extracts were found to be bioactive based on cytotoxicity measurements. 3) Cancer cell lines displayed differential sensitivity to T. nilotica crude extracts, with breast cancer cells being the most sensitive and lung cancer cells being the least sensitive. 4) Solid-phase fractionation of T. nilotica crude extract using different percentages of methanol resulted in several fractions that were 100-fold more cytotoxic compared to the crude unfractionated extract. The 30% and 70% methanol fractions exhibited the highest cytotoxicity towards breast and colon cancer cell lines, respectively. 5) Untargeted metabolomics using UHPLC-Q-ToF-MS of T. nilotica crude extracts revealed 909 molecular features, of which only 327 were annotated using MS/MS fragmentation. The results suggest that T. nilotica extracts have potential as anti-cancer agents and that MAE is an efficient method for extracting phytochemicals from plant biomass. The study also revealed that cancer cell lines exhibited differential sensitivity to the extracts and that solid-phase fractionation of crude extract using different percentages of methanol can yield fractions that are more cytotoxic than the crude extract.
Collapse
Affiliation(s)
- Maryam Al Kaabi
- Department of Chemistry, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Nancy A. ElNaker
- Department of Chemistry, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Nila Jan
- Department of Chemistry, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Michael A. Ochsenkühn
- Marine Microbiomics Lab, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Shady A. Amin
- Marine Microbiomics Lab, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Lina F. Yousef
- Department of Chemistry, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Ahmed F. Yousef
- Department of Biological Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University, Abu Dhabi, United Arab Emirates
- Center for Biotechnology (BTC), Khalifa University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
5
|
Asl AM, Kalaee M, Abdouss M, Homami SS. Novel targeted delivery of quercetin for human hepatocellular carcinoma using starch/polyvinyl alcohol nanocarriers based hydrogel containing Fe 2O 3 nanoparticles. Int J Biol Macromol 2024; 257:128626. [PMID: 38056757 DOI: 10.1016/j.ijbiomac.2023.128626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/30/2023] [Accepted: 12/02/2023] [Indexed: 12/08/2023]
Abstract
The common adverse effects of chemotherapy are the reason for the use of effective, natural drugs and targeted administration to specific areas. On the one hand, Quercetin (QC) has positive effects as a natural anticancer agent. On the other hand, Fe2O3, as nanoparticles (NP) with clinical properties and high porosity, can be a suitable carrier for drug loading and controlled release. In this study, QC was encapsulated in a synthesized Fe2O3/Starch/Polyvinyl alcohol nanocarrier (Fe2O3/S/PVA NC). Characterization of the NC was done by Fourier transforms infrared spectroscopy (FTIR), X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), vibrating sample magnetometer (VSM), zeta potential and Dynamic light scattering (DLS). The percentage of drug loading (DLE) and encapsulation efficiency (EE) of QC in the NC containing Fe2O3 nanoparticles was 47 % and 86.50 %, respectively, while it was 36 % and 73 % in the NC without Fe2O3. QC profile release in acidic and natural mediums showed controlled release and pH dependency of the NC. Viability of L929 and HepG2 treated cells with the Fe2O3/S/PVA/QC was demonstrated by MTT staining which was in agreement with flow cytometry. The results show that Fe2O3/S/PVA is a suitable NC for the targeted delivery of QC as a drug against HepG2 cancer cells.
Collapse
Affiliation(s)
- Afsaneh Mojtahedzadeh Asl
- Department of Applied Chemistry, Faculty of Science, South Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mohammadreza Kalaee
- Department of Polymer and chemical Engineering, South Tehran Branch, Islamic Azad University, P.O. Box 19585-466, Tehran, Iran; Nanotechnology Research Center, South Tehran Branch, Islamic Azad University, P.O. Box 19585-466, Tehran, Iran.
| | - Majid Abdouss
- Department of Chemistry, Amirkabir University of Technology, Tehran, P.O. Box 15875-4413, Tehran, Iran.
| | - Seyed Saied Homami
- Department of Applied Chemistry, Faculty of Science, South Tehran Branch, Islamic Azad University, Tehran, Iran; Research Center of Modeling and Optimization in Science and Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
6
|
Sharma V, Arora A, Bansal S, Semwal A, Sharma M, Aggarwal A. Role of bio-flavonols and their derivatives in improving mitochondrial dysfunctions associated with pancreatic tumorigenesis. Cell Biochem Funct 2024; 42:e3920. [PMID: 38269510 DOI: 10.1002/cbf.3920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/30/2023] [Accepted: 12/27/2023] [Indexed: 01/26/2024]
Abstract
Mitochondria, a cellular metabolic center, efficiently fulfill cellular energy needs and regulate crucial metabolic processes, including cellular proliferation, differentiation, apoptosis, and generation of reactive oxygen species. Alteration in the mitochondrial functions leads to metabolic imbalances and altered extracellular matrix dynamics in the host, utilized by solid tumors like pancreatic cancer (PC) to get energy benefits for fast-growing cancer cells. PC is highly heterogeneous and remains unidentified for a longer time because of its complex pathophysiology, retroperitoneal position, and lack of efficient diagnostic approaches, which is the foremost reason for accounting for the seventh leading cause of cancer-related deaths worldwide. PC cells often respond poorly to current therapeutics because of dense stromal barriers in the pancreatic tumor microenvironment, which limit the drug delivery and distribution of antitumor immune cell populations. As an alternative approach, various natural compounds like flavonoids are reported to possess potent antioxidant and anticancerous properties and are less toxic than current chemotherapeutic drugs. Therefore, we aim to summarize the current state of knowledge regarding the pharmacological properties of flavonols in PC in this review from the perspective of mitigating mitochondrial dysfunctions associated with cancer cells. Our literature survey indicates that flavonols efficiently regulate cellular metabolism by scavenging reactive oxygen species, mitigating inflammation, and arresting the cell cycle to promote apoptosis in tumor cells via intrinsic mitochondrial pathways. In particular, flavonols proficiently inhibit the cancer-associated proliferation and inflammatory pathways such as EGFR/MAPK, PI3K/Akt, and nuclear factor κB in PC. Overall, this review provides in-depth evidence about the therapeutic potential of flavonols for future anticancer strategies against PC; still, more multidisciplinary human interventional studies are required to dissect their pharmacological effect accurately.
Collapse
Affiliation(s)
- Vinit Sharma
- Department of Anatomy, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Ankita Arora
- Department of Anatomy, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Sakshi Bansal
- Department of Anatomy, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Ankita Semwal
- Department of Anatomy, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Mayank Sharma
- Department of Anatomy, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Anjali Aggarwal
- Department of Anatomy, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| |
Collapse
|
7
|
Chamgordani MK, Bardestani A, Ebrahimpour S, Esmaeili A. In diabetic male Wistar rats, quercetin-conjugated superparamagnetic iron oxide nanoparticles have an effect on the SIRT1/p66Shc-mediated pathway related to cognitive impairment. BMC Pharmacol Toxicol 2023; 24:81. [PMID: 38129872 PMCID: PMC10734159 DOI: 10.1186/s40360-023-00725-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Quercetin (QC) possesses a variety of health-promoting effects in pure and in conjugation with nanoparticles. Since the mRNA-SIRT1/p66Shc pathway and microRNAs (miRNAs) are implicated in the oxidative process, we aimed to compare the effects of QC and QC-conjugated superparamagnetic iron oxide nanoparticles (QCSPIONs) on this pathway. METHODS Through the use of the chemical coprecipitation technique (CPT), SPIONs were synthesized, coated with dextran, and conjugated with quercetin. Adult male Wistar rats were given intraperitoneal injections of streptozotocin to look for signs of type 1 diabetes (T1D). The animals were randomized into five groups: the control group got deionized water (DI), free QC solution (25 mg/kg), SPIONs (25 mg/kg), and QCSPIONs (25 mg/kg), and all groups received repeat doses administered orally over 35 days. Real-time quantitative PCR was used to assess the levels of miR-34a, let-7a-p5, SIRT1, p66Shc, CASP3, and PARP1 expression in the hippocampus of diabetic rats. RESULTS In silico investigations identified p66Shc, CASP3, and PARP1 as targets of let-7a-5p and miR-34a as possible regulators of SIRT1 genes. The outcomes demonstrated that diabetes elevated miR-34a, p66Shc, CASP3, and PARP1 and downregulated let-7a-5p and SIRT1 expression. In contrast to the diabetic group, QCSPIONs boosted let-7a-5p expression levels and consequently lowered p66Shc, CASP3, and PARP1 expression levels. QCSPIONs also reduced miR-34a expression, which led to an upsurge in SIRT1 expression. CONCLUSION Our results suggest that QCSPIONs can regulate the SIRT1/p66Shc-mediated signaling pathway and can be considered a promising candidate for ameliorating the complications of diabetes.
Collapse
Affiliation(s)
- Mahnaz Karami Chamgordani
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, P.O. Box: 8174673441, Iran
| | - Akram Bardestani
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, P.O. Box: 8174673441, Iran
| | - Shiva Ebrahimpour
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, P.O. Box: 8174673441, Iran
| | - Abolghasem Esmaeili
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, P.O. Box: 8174673441, Iran.
| |
Collapse
|
8
|
Ashrafizadeh M, Zarrabi A, Bigham A, Taheriazam A, Saghari Y, Mirzaei S, Hashemi M, Hushmandi K, Karimi-Maleh H, Nazarzadeh Zare E, Sharifi E, Ertas YN, Rabiee N, Sethi G, Shen M. (Nano)platforms in breast cancer therapy: Drug/gene delivery, advanced nanocarriers and immunotherapy. Med Res Rev 2023; 43:2115-2176. [PMID: 37165896 DOI: 10.1002/med.21971] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/09/2023] [Accepted: 04/24/2023] [Indexed: 05/12/2023]
Abstract
Breast cancer is the most malignant tumor in women, and there is no absolute cure for it. Although treatment modalities including surgery, chemotherapy, and radiotherapy are utilized for breast cancer, it is still a life-threatening disease for humans. Nanomedicine has provided a new opportunity in breast cancer treatment, which is the focus of the current study. The nanocarriers deliver chemotherapeutic agents and natural products, both of which increase cytotoxicity against breast tumor cells and prevent the development of drug resistance. The efficacy of gene therapy is boosted by nanoparticles and the delivery of CRISPR/Cas9, Noncoding RNAs, and RNAi, promoting their potential for gene expression regulation. The drug and gene codelivery by nanoparticles can exert a synergistic impact on breast tumors and enhance cellular uptake via endocytosis. Nanostructures are able to induce photothermal and photodynamic therapy for breast tumor ablation via cell death induction. The nanoparticles can provide tumor microenvironment remodeling and repolarization of macrophages for antitumor immunity. The stimuli-responsive nanocarriers, including pH-, redox-, and light-sensitive, can mediate targeted suppression of breast tumors. Besides, nanoparticles can provide a diagnosis of breast cancer and detect biomarkers. Various kinds of nanoparticles have been employed for breast cancer therapy, including carbon-, lipid-, polymeric- and metal-based nanostructures, which are different in terms of biocompatibility and delivery efficiency.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, China
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, Turkey
| | - Ashkan Bigham
- Institute of Polymers, Composites and Biomaterials - National Research Council (IPCB-CNR), Naples, Italy
| | - Afshin Taheriazam
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Yalda Saghari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu, PR China
| | | | - Esmaeel Sharifi
- Cancer Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey
- ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, Türkiye
| | - Navid Rabiee
- School of Engineering, Macquarie University, Sydney, New South Wales, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, Western Australia, Australia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Mingzhi Shen
- Department of Cardiology, Hainan Hospital of PLA General Hospital, Sanya, China
| |
Collapse
|
9
|
Attar ES, Chaudhari VH, Deokar CG, Dyawanapelly S, Devarajan PV. Nano Drug Delivery Strategies for an Oral Bioenhanced Quercetin Formulation. Eur J Drug Metab Pharmacokinet 2023; 48:495-514. [PMID: 37523008 DOI: 10.1007/s13318-023-00843-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2023] [Indexed: 08/01/2023]
Abstract
Quercetin, a naturally occurring flavonoid, has been credited with a wide spectrum of therapeutic properties. However, the oral use of quercetin is limited due to its poor water solubility, low bioavailability, rapid metabolism, and rapid plasma clearance. Quercetin has been studied extensively when used with various nanodelivery systems for enhancing quercetin bioavailability. To enhance its oral bioavailability and efficacy, various quercetin-loaded nanosystems such as nanosuspensions, polymer nanoparticles, metal nanoparticles, emulsions, liposomes or phytosomes, micelles, solid lipid nanoparticles, and other lipid-based nanoparticles have been investigated in in-vitro cells, in-vivo animal models, and humans. Among the aforementioned nanosystems, quercetin phytosomes are attracting more interest and are available on the market. The present review covers insights into the possibilities of harnessing quercetin for several therapeutic applications and a special focus on anticancer applications and the clinical benefits of nanoquercetin formulations.
Collapse
Affiliation(s)
- Esha S Attar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N.P. Marg, Matunga, Mumbai, Maharashtra, 400019, India
| | - Vanashree H Chaudhari
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N.P. Marg, Matunga, Mumbai, Maharashtra, 400019, India
| | - Chaitanya G Deokar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N.P. Marg, Matunga, Mumbai, Maharashtra, 400019, India
| | - Sathish Dyawanapelly
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N.P. Marg, Matunga, Mumbai, Maharashtra, 400019, India
| | - Padma V Devarajan
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N.P. Marg, Matunga, Mumbai, Maharashtra, 400019, India.
| |
Collapse
|
10
|
Najafabadi AP, Pourmadadi M, Yazdian F, Rashedi H, Rahdar A, Díez-Pascual AM. pH-sensitive ameliorated quercetin delivery using graphene oxide nanocarriers coated with potential anticancer gelatin-polyvinylpyrrolidone nanoemulsion with bitter almond oil. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
11
|
Sabzini M, Pourmadadi M, Yazdian F, Khadiv-Parsi P, Rashedi H. Development of chitosan/halloysite/graphitic‑carbon nitride nanovehicle for targeted delivery of quercetin to enhance its limitation in cancer therapy: An in vitro cytotoxicity against MCF-7 cells. Int J Biol Macromol 2023; 226:159-171. [PMID: 36435458 DOI: 10.1016/j.ijbiomac.2022.11.189] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/12/2022] [Accepted: 11/19/2022] [Indexed: 11/24/2022]
Abstract
Although quercetin (QC) has valuable advantages, its low water solubility and poor permeability have limited its utilization as an anticancer drug. In this study, hydrogel nanocomposite of chitosan (CS), halloysite (HNT), and graphitic‑carbon nitride (g-C3N4) was prepared and loaded by QC using a water in oil in water emulsification process to attain QC sustained-release. Using g-C3N4 in the HNT/CS hydrogel solution enhanced the entrapment effectiveness (EE %) by up to 86 %. The interactions between QC and nanoparticles caused the nanocomposite pH-responsive behavior that assists in minimizing the side effect of the anticancer agent by controlling the burst release of QC at neutral conditions. According to DLS analysis, the size of the QC-loaded nanovehicle was 454.65 nm, showing that nanoparticles are highly monodispersed, which also was approved by FE-SEM. Additionally, Zeta potential value for the fabricated drug-loaded nanocarrier is +55.23 mV displaying that nanoparticles have good stability. The hydrogel nanocomposite structure's completeness was shown by FTIR pattern, and quercetin was included into the designed delivery system based on XRD data. Besides, the drug release profile indicated that a targeted sustained-release and pH-sensitive release of anticancer drug with the 96-hour extended-release were noticed. In order to comprehend the process of QC release at pH 5.4 and 7.4, four kinetic models were employed to find the best-suited model according to the acquired release data. Finally, the MTT experiment revealed considerable cytotoxicity against breast cancer cells, MCF-7 cell line was experimented in vitro, for the CS/HNT/g-C3N4 targeted delivery system in comparison to QC as a free drug. According to the above description, the CS/HNT/g-C3N4 delivery platform is a unique pH-sensitive drug delivery system for anticancer purposes that improves loading as well as sustained-release of quercetin.
Collapse
Affiliation(s)
- Mahdi Sabzini
- Department of Biotechnology Engineering, School of Chemical Engineering, University of Tehran, Tehran, Iran
| | - Mehrab Pourmadadi
- Department of Biotechnology Engineering, School of Chemical Engineering, University of Tehran, Tehran, Iran
| | - Fatemeh Yazdian
- Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran, Tehran, Iran.
| | - Parissa Khadiv-Parsi
- Department of Chemical Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran.
| | - Hamid Rashedi
- Department of Biotechnology Engineering, School of Chemical Engineering, University of Tehran, Tehran, Iran
| |
Collapse
|
12
|
Quercetin Loaded Cationic Solid Lipid Nanoparticles in a Mucoadhesive In Situ Gel-A Novel Intravesical Therapy Tackling Bladder Cancer. Pharmaceutics 2022; 14:pharmaceutics14112527. [PMID: 36432718 PMCID: PMC9695231 DOI: 10.3390/pharmaceutics14112527] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/02/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
The study aim was to develop an intravesical delivery system of quercetin for bladder cancer management in order to improve drug efficacy, attain a controlled release profile and extend the residence time inside the bladder. Either uncoated or chitosan coated quercetin-loaded solid lipid nanoparticles (SLNs) were prepared and evaluated in terms of colloidal, morphological and thermal characteristics. Drug encapsulation efficiency and its release behaviour were assessed. Furthermore, cytotoxicity of SLNs on T-24 cells was evaluated. Ex vivo studies were carried out using bovine bladder mucosa. Spherical SLNs (≈250 nm) ensured good entrapment efficiencies (EE > 97%) and sustained drug release up to 142 h. Cytotoxicity profile revealed concentration-dependent toxicity recording an IC50 in the range of 1.6−8.9 μg/mL quercetin. SLNs were further dispersed in in situ hydrogels comprising poloxamer 407 (20%) with mucoadhesive polymers. In situ gels exhibited acceptable gelation temperatures (around 25 °C) and long erosion time (24−27 h). SLNs loaded gels displayed remarkably enhanced retention on bladder tissues relative to SLNs dispersions. Coated SLNs exhibited better penetration abilities compared to uncoated ones, while coated SLNs dispersed in gel (G10C-St-QCT-SLNs-2) showed the highest penetration up to 350 μm. Hence, G10C-St-QCT-SLNs-2 could be considered as a platform for intravesical quercetin delivery.
Collapse
|
13
|
Synthesis, characterization, and cytotoxicity assay of γ-Fe2O3 nanoparticles coated with quercetin-loaded polyelectrolyte multilayers. Colloid Polym Sci 2022. [DOI: 10.1007/s00396-022-05023-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
14
|
Solanki R, Jodha B, Prabina KE, Aggarwal N, Patel S. Recent advances in phytochemical based nano-drug delivery systems to combat breast cancer: A review. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Dias JL, Rebelatto EA, Hotza D, Bortoluzzi AJ, Lanza M, Ferreira SR. Production of quercetin-nicotinamide cocrystals by gas antisolvent (GAS) process. J Supercrit Fluids 2022. [DOI: 10.1016/j.supflu.2022.105670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
16
|
Haseli S, Pourmadadi M, Samadi A, Yazdian F, Abdouss M, Rashedi H, Navaei-Nigjeh M. A novel pH-responsive nanoniosomal emulsion for sustained release of curcumin from a chitosan-based nanocarrier: emphasis on the concurrent improvement of loading, sustained release, and apoptosis induction. Biotechnol Prog 2022; 38:e3280. [PMID: 35678755 DOI: 10.1002/btpr.3280] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/30/2022] [Accepted: 05/11/2022] [Indexed: 11/11/2022]
Abstract
Curcumin application as an anti-cancer drug is faced with several impediments. This study has developed a platform that facilitates the sustained release of curcumin, improves loading efficiency, and anti-cancer activity. Montmorillonite (MMT) nanoparticles were added to chitosan (CS)-agarose (Aga) hydrogel and then loaded with curcumin (Cur) to prepare a curcumin-loaded nanocomposite hydrogel. The loading capacity increased from 63% to 76% by adding MMT nanoparticles to a chitosan-agarose hydrogel. Loading the fabricated nanocomposite in the nanoniosomal emulsion resulted in sustained release of curcumin under acidic conditions. Release kinetics analysis showed diffusion and erosion are the dominant release mechanisms, indicating non-fickian (or anomalous) transport based on the Korsmeyer-Peppas model. FTIR spectra confirmed that all nanocomposite components were present in the fabricated nanocomposite. Besides, XRD results corroborated the amorphous structure of the prepared nanocomposite. Zeta potential results corroborated the stability of the fabricated nanocarrier. Cytotoxicity of the prepared CS-Aga-MMT-Cur on MCF-7 cells was comparable to that of curcumin-treated cells (p <0.001). Moreover, the percentage of apoptotic cells increased due to the enhanced release profile resulting from the addition of MMT to the hydrogel and the incorporation of the fabricated nanocomposite into the nanoniosomal emulsion. To recapitulate, the current delivery platform improved loading, sustained release, and curcumin anti-cancer effect. Hence, this platform could be a potential candidate to mitigate cancer therapy restrictions with curcumin. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Shabnam Haseli
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mehrab Pourmadadi
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Amirmasoud Samadi
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Fatemeh Yazdian
- Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran, Tehran, Iran
| | - Majid Abdouss
- Department of Chemistry, Amirkabir University of Technology, Tehran, Iran
| | - Hamid Rashedi
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mona Navaei-Nigjeh
- Pharmaceutical Sciences Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
17
|
Ramachandran B, Jeyarajpandian C, Jeyaseelan JM, Prabhu D, Rajamanikandan S, Boomi P, Venkateswari R, Jeyakanthan J. Quercetin-induced apoptosis in HepG2 cells and identification of quercetin derivatives as potent inhibitors for Caspase-3 through computational methods. Struct Chem 2022. [DOI: 10.1007/s11224-022-01933-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
18
|
Design and Synthesis of Multipotent Antioxidants for Functionalization of Iron Oxide Nanoparticles. COATINGS 2022. [DOI: 10.3390/coatings12040517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Multipotent antioxidants (MPAO) were synthesized and characterized by FTIR, NMR. The functionalized nanoparticles (IONP@AO) were characterized by FTIR, XRD, Raman, HRTEM, FESEM, VSM, and EDX. IONP@AO1 and IONP@AO2 have average particles size of 10 nm and 11 nm, respectively. The functionalized IONP@AO has a superparamagnetic nature, with saturation magnetization of 45 emu·g−1. Structure-based virtual screening of the designed MPAO was performed by PASS analysis and ADMET studies to discover and predict the molecule’s potential bioactivities and safety profile before the synthesis procedure. The half-maximal inhibitory concentration (IC50) of DPPH analysis results showed a four-fold decrease in radical scavenging by IONP@AO compared to IONP. In addition to antioxidant activity, IONP@AO showed suitable antimicrobial activities when tested on various bacterial and fungal strains. The advantage of the developed nanoantioxidants is that they have a strong affinity towards biomolecules such as enzymes, proteins, amino acids, and DNA. Thus, synthesized nanoantioxidants can be used to develop biomedicines that can act as antioxidant, antimicrobial, and anticancer agents.
Collapse
|
19
|
Saqezi AS, Kermanian M, Ramazani A, Sadighian S. Synthesis of Graphene Oxide/Iron Oxide/Au Nanocomposite for Quercetin Delivery. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02259-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
20
|
Shah ST, Chowdhury ZZ, Johan MRB, Badruddin IA, Khaleed HMT, Kamangar S, Alrobei H. Surface Functionalization of Magnetite Nanoparticles with Multipotent Antioxidant as Potential Magnetic Nanoantioxidants and Antimicrobial Agents. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030789. [PMID: 35164054 PMCID: PMC8840749 DOI: 10.3390/molecules27030789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 12/16/2021] [Accepted: 12/21/2021] [Indexed: 11/29/2022]
Abstract
Functionalized magnetite nanoparticles (Fe3O4) were prepared using the coprecipitation method followed by functionalization with a multipotent antioxidant (MPAO). The MPAO was synthesized and analyzed using FTIR and NMR techniques. In this study, the functionalized nanoparticles (IONP@AO) were produced and evaluated using the FTIR, XRD, Raman, HRTEM, FESEM, VSM, and EDX techniques. The average determined particle size of IONP@AO was 10 nanometers. In addition, it demonstrated superparamagnetic properties. The magnitude of saturation magnetization value attained was 45 emu g−1. Virtual screenings of the MPAO’s potential bioactivities and safety profile were performed using PASS analysis and ADMET studies before the synthesis step. For the DPPH test, IONP@AO was found to have a four-fold greater ability to scavenge free radicals than unfunctional IONP. The antimicrobial properties of IONP@AO were also demonstrated against a variety of bacteria and fungi. The interaction of developed nanoantioxiants with biomolecules makes it a broad-spectrum candidate in biomedicine and nanomedicine.
Collapse
Affiliation(s)
- Syed Tawab Shah
- Nanotechnology and Catalysis Research Center, University of Malaya, Kuala Lumpur 50603, Malaysia; (S.T.S.); (M.R.B.J.)
| | - Zaira Zaman Chowdhury
- Nanotechnology and Catalysis Research Center, University of Malaya, Kuala Lumpur 50603, Malaysia; (S.T.S.); (M.R.B.J.)
- Correspondence: or ; Tel.: +60-37-967-2929 or +60-10-267-5621
| | - Mohd. Rafie Bin Johan
- Nanotechnology and Catalysis Research Center, University of Malaya, Kuala Lumpur 50603, Malaysia; (S.T.S.); (M.R.B.J.)
| | - Irfan Anjum Badruddin
- Department of Mechanical Engineering, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia; (I.A.B.); (S.K.)
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61413, Saudi Arabia
| | - H. M. T. Khaleed
- Department of Mechanical Engineering, Faculty of Engineering, Islamic University of Madinah, Medina 42351, Saudi Arabia;
| | - Sarfaraz Kamangar
- Department of Mechanical Engineering, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia; (I.A.B.); (S.K.)
| | - Hussein Alrobei
- Department of Mechanical Engineering, Faculty of Engineering, Prince Sattam Bin Abdulaziz University, Al-Kharj 16278, Saudi Arabia;
| |
Collapse
|
21
|
Ahmadi M, Pourmadadi M, Ghorbanian SA, Yazdian F, Rashedi H. Ultra pH-sensitive nanocarrier based on Fe 2O 3/chitosan/montmorillonite for quercetin delivery. Int J Biol Macromol 2021; 191:738-745. [PMID: 34517028 DOI: 10.1016/j.ijbiomac.2021.09.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/20/2021] [Accepted: 09/04/2021] [Indexed: 02/06/2023]
Abstract
Harmful side effects of the chemotherapeutic agent have been investigated in many recent studies. Since Fe2O3 nanoparticles have proper porosity, they are capable for loading noticeable amount of drugs and controlled release. We developed Fe2O3/chitosan/montmorillonite nanocomposite. Quercetin (QC) nanoparticles, which have fewer side effects than chemical anti-tumor drugs, were encapsulated in the synthesized nanocarrier and were characterized by X-ray diffraction (XRD), Fourier transforms infrared spectroscopy (FTIR), field emission scanning electron microscopy (FE-SEM), vibrating sample magnetometer (VSM), dynamic light scattering (DLS), and zeta potential. For quercetin, the encapsulation efficiency and the loading efficiency of the drug in Fe2O3-CS-MMT@QC were found to be about 94% and 57%, respectively. The release profile of QC in different mediums indicated pH-dependency and controlled release of the nanocomposite, adhering to The Weibull kinetic model. Biocompatibility of the Fe2O3/CS/MMT nanoparticles against the MCF-7 cells was shown by MTT assay and confirmed by flow cytometry. These data demonstrate that the designed Fe2O3-CS-MMT@QC would have potential drug delivery to treat cancer cells.
Collapse
Affiliation(s)
- Mohammadjavad Ahmadi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mehrab Pourmadadi
- Department of Life Science Engineering, Faculty of New Science and Technology, University of Tehran, Iran
| | - Sohrab Ali Ghorbanian
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran.
| | - Fatemeh Yazdian
- Department of Life Science Engineering, Faculty of New Science and Technology, University of Tehran, Iran.
| | - Hamid Rashedi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| |
Collapse
|
22
|
Rahmati MA, Rashidzadeh H, Hosseini MJ, Sadighian S, Kermanian M. Self-assembled magnetic polymeric micelles for delivery of quercetin: Toxicity evaluation on isolated rat liver mitochondria. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 33:279-298. [PMID: 34547988 DOI: 10.1080/09205063.2021.1982644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Multifunctional nanocarriers as a promising platform could provide numerous opportunities in the field of drug delivery. Drug carriers loaded with both magnetic nanoparticles (MNPs) and therapeutic agents would allow the combination of chemotherapy with the possibility of monitoring or controlling the distribution of the nano vehicles in the body which may improve the effectiveness of the therapy. Furthermore, by applying these strategies, triggering drug release and/or synergistic hyperthermia treatment are also reachable. This study aimed to explore the potential of the quercetin (QUR) loaded magnetic nano-micelles for improving drug bioavailability while reducing the drug adverse effects. The bio-safety of developed QUR loaded magnetic nano-micelles (QMNMs) were conducted via mitochondrial toxicity using isolated rat liver mitochondria including glutathione (GSH), malondialdehyde (MDA), and the ferric reducing ability of plasma (FRAP). QMNMs with a mean particle size of 85 nm (PDI value of 0.269) and great physical stability were produced. Also, TEM images indicated that the prepared QMNMs were semi-spherical in shape. These findings also showed that the constructed QMNMs, as a pH-sensitive drug delivery system, exhibited a stable and high rate of QUR release under mildly acidic conditions pH (5.3) compared to neutral pH (7.4). The most striking result to emerge from the data is that an investigation of various mitochondrial functional parameters revealed that both QMNMs and QUR have no specific mitochondrial toxicity. Altogether, these results offer overwhelming evidence for the bio-safety of QMNMs and might be used as an effective drug delivery system for targeting and stimuli-responsive QUR delivery.
Collapse
Affiliation(s)
- Mohammad-Amin Rahmati
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hamid Rashidzadeh
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mir-Jamal Hosseini
- Zanjan applied pharmacology research center, Zanjan university of medical sciences, Zanjan, Iran
| | - Somayeh Sadighian
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mehraneh Kermanian
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
23
|
Pinheiro RGR, Pinheiro M, Neves AR. Nanotechnology Innovations to Enhance the Therapeutic Efficacy of Quercetin. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2658. [PMID: 34685098 PMCID: PMC8539325 DOI: 10.3390/nano11102658] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 12/12/2022]
Abstract
Quercetin is a flavonol present in many vegetables and fruits. Generally, quercetin can be found in aglycone and glycoside forms, mainly in leaves. The absorption of this compound occurs in the large and small intestine, where it suffers glucuronidation, sulfidation, and methylation to improve hydrophilicity. After metabolization, which occurs mainly in the gut, it is distributed throughout the whole organism and is excreted by feces, urine, and exhalation of carbon dioxide. Despite its in vitro cytotoxicity effects, in vivo studies with animal models ensure its safety. This compound can protect against cancer, cardiovascular diseases, chronic inflammation, oxidative stress, and neurodegenerative diseases due to its radical scavenging and anti-inflammatory properties. However, its poor bioavailability dampens the potential beneficial effects of this flavonoid. In that sense, many types of nanocarriers have been developed to improve quercetin solubility, as well as to design tissue-specific delivery systems. All these studies manage to improve the bioavailability of quercetin, allowing it to increase its concentration in the desired places. Collectively, quercetin can become a promising compound if nanotechnology is employed as a tool to enhance its therapeutic efficacy.
Collapse
Affiliation(s)
- Rúben G. R. Pinheiro
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal; (R.G.R.P.); (M.P.)
| | - Marina Pinheiro
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal; (R.G.R.P.); (M.P.)
| | - Ana Rute Neves
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal; (R.G.R.P.); (M.P.)
- CQM—Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| |
Collapse
|
24
|
Askar MA, El Shawi OE, Abou Zaid OAR, Mansour NA, Hanafy AM. Breast cancer suppression by curcumin-naringenin-magnetic-nano-particles: In vitro and in vivo studies. Tumour Biol 2021; 43:225-247. [PMID: 34542050 DOI: 10.3233/tub-211506] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The limitations of surgery, radiotherapy, and chemotherapy in cancer treatment and the increase in the application of nanomaterials in the field of biomedicine have promoted the use of nanomaterials in combination with radiotherapy for cancer treatment. OBJECTIVE To improve the efficiency of cancer treatment, curcumin-naringenin loaded dextran-coated magnetic nanoparticles (CUR-NAR-D-MNPs) were used as chemotherapy and in combination with radiotherapy to verify their effectiveness in treating tumors. METHODS CUR-NAR-D-MNPs were prepared and studied by several characterization methods. Median inhibitory concentration (IC50) and cellular toxicity were evaluated by 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide (MTT) assay. The cell death and radiosensitization were studied by acridine orange/ethidium bromide dual staining of MCF-7 human breast cancer cells. RESULTS CUR-NAR-D-MNPs induce apoptosis and inhibited cell proliferation through reactive oxygen species (ROS) generation. CUR-NAR-D-MNPs used alone had a certain therapeutic effect on tumors. CUR-NAR-D-MNPs plus radiotherapy significantly reduced the tumor volume and led to cell cycle arrest and induction of apoptosis through modulation of P53high, P21high, TNF-αlow, CD44low, and ROShigh signalingCONCLUSIONS:CUR-NAR-D-MNPs are effective in the treatment of tumors when combined with radiotherapy, and show radiosensitization effects against cancer proliferation in vitro and in vivo.
Collapse
Affiliation(s)
- Mostafa A Askar
- Department of Radiation Biology, National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| | - Omama E El Shawi
- Department of Health and Radiation Research, National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| | - Omayma A R Abou Zaid
- Department of Biochemistry, Faculty of Veterinary Medicine, Moshtohor, Benha University, Benha, Egypt
| | - Nahla A Mansour
- Department of Petrochemicals, Petroleum Research Institute, Cairo, Egypt
| | - Amal M Hanafy
- Department of Biochemistry, Faculty of Veterinary Medicine, Moshtohor, Benha University, Benha, Egypt
| |
Collapse
|
25
|
Dini S, Zakeri M, Ebrahimpour S, Dehghanian F, Esmaeili A. Quercetin‑conjugated superparamagnetic iron oxide nanoparticles modulate glucose metabolism-related genes and miR-29 family in the hippocampus of diabetic rats. Sci Rep 2021; 11:8618. [PMID: 33883592 PMCID: PMC8060416 DOI: 10.1038/s41598-021-87687-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 03/25/2021] [Indexed: 02/02/2023] Open
Abstract
Quercetin (QC) is a dietary bioflavonoid that can be conjugated with nanoparticles to facilitate its brain bioavailability. We previously showed that quercetin-conjugated superparamagnetic iron oxide nanoparticles (QCSPIONs) reduced the level of blood glucose in diabetic rats. Glucose transporters (GLUTs), insulin-like growth factor-1 (IGF-1), and microRNA-29 (miR-29) play a critical role in brain glucose homeostasis. In the current study, we examined the effects of QCSPION on the expression of glucose metabolism-related genes, and the miR-29 family as a candidate regulator of glucose handling in the hippocampus of diabetic rats. Our in silico analyses introduce the miR-29 family as potential regulators of glucose transporters and IGF-1 genes. The expression level of the miR-29 family, IGF-1, GLUT1, GLUT2, GLUT3, and GLUT4 were measured by qPCR. Our results indicate that diabetes significantly results in upregulation of the miR-29 family and downregulation of the GLUT1, 2, 3, 4, and IGF-1 genes. Interestingly, QCSPIONs reduced miR-29 family expression and subsequently enhanced GLUT1, 2, 3, 4, and IGF-1expression. In conclusion, our findings suggest that QCSPION could regulate the expression of the miR-29 family, which in turn increases the expression of glucose transporters and IGF-1, thereby reducing diabetic complications.
Collapse
Affiliation(s)
- Solmaz Dini
- grid.411750.60000 0001 0454 365XDepartment of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Mansoureh Zakeri
- grid.411750.60000 0001 0454 365XDepartment of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Shiva Ebrahimpour
- grid.411750.60000 0001 0454 365XDepartment of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Fariba Dehghanian
- grid.411750.60000 0001 0454 365XDepartment of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Abolghasem Esmaeili
- grid.411750.60000 0001 0454 365XDepartment of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| |
Collapse
|
26
|
Samadi A, Pourmadadi M, Yazdian F, Rashedi H, Navaei-Nigjeh M, Eufrasio-da-Silva T. Ameliorating quercetin constraints in cancer therapy with pH-responsive agarose-polyvinylpyrrolidone -hydroxyapatite nanocomposite encapsulated in double nanoemulsion. Int J Biol Macromol 2021; 182:11-25. [PMID: 33775763 DOI: 10.1016/j.ijbiomac.2021.03.146] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 02/23/2021] [Accepted: 03/23/2021] [Indexed: 11/29/2022]
Abstract
Despite quercetin (QC) promising features for cancer therapy, low solubility, poor permeability, and short biological half-life time significantly confine its application in cancer therapy. In this study, a novel approach is developed to improve loading efficiency and attain quercetin sustained-release concurrently. In this direction, hydrogel nanocomposite of agarose (AG)-polyvinylpyrrolidone (PVP)-hydroxyapatite (HAp) was loaded with QC. Incorporating HAp nanoparticles in the AG-PVP hydrogel improved the loading efficiency up to 61%. Also, the interactions between nanoparticle, drug, and hydrogel polymers rendered the nanocomposite pH-responsive at acidic conditions and controlled the burst release at neutral conditions. Then, QC-loaded hydrogel was encapsulated into the water in oil in water nanoemulsions to further sustain the drug release. As a result, the pH-responsive release of QC with prolonged-release over 96 h was observed. In more detail, according to the Korsmeyer-Peppas mathematical model, the mechanism of release was anomalous (diffusion-controlled) at pH 7.4 and anomalous transport (dissolution-controlled) at pH 5.4. The presence of all nanocomposite components was confirmed with FTIR analysis, and XRD results approved the incorporation of QC in the fabricated nanocomposite. The homogeneous surface of the nanocomposite in FESEM images showed good compatibility between components. The zeta potential analysis confirmed the good stability of the nanocarriers. Besides, the fabricated AG-PVP-HAp-QC platform showed significant cytotoxicity on MCF-7 cells compared to QC as a free drug (p < 0.001) and to quercetin-loaded AG-PVP (AG-PVP-QC) (p < 0.001) with enhanced apoptosis induction after the addition of HAp. Accordingly, this delivery platform ameliorated loading and sustained-release of QC, as well as its anticancer activity by releasing the drug at an effective therapeutic level over a long period to induce apoptosis. Thus, turning this drug delivery system into a potential candidate for further biomedical applications.
Collapse
Affiliation(s)
- Amirmasoud Samadi
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mehrab Pourmadadi
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Fatemeh Yazdian
- Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran, Tehran, Iran.
| | - Hamid Rashedi
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran.
| | - Mona Navaei-Nigjeh
- Pharmaceutical Sciences Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Tatiane Eufrasio-da-Silva
- Department of Health Technology, Technical University of Denmark (DTU), 2800 Kgs. Lyngby, Denmark; Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Department of Dentistry - Regenerative Biomaterials, Philips van Leydenlaan 25, 6525EX Nijmegen, the Netherlands
| |
Collapse
|
27
|
Flavonoid-Decorated Nano-gold for Antimicrobial Therapy Against Gram-negative Bacteria Escherichia coli. Appl Biochem Biotechnol 2021; 193:1727-1743. [PMID: 33713270 DOI: 10.1007/s12010-021-03543-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 02/26/2021] [Indexed: 10/21/2022]
Abstract
Nano-gold (Aunps) have emerged as promising options that exhibit unique features discrete from traditional materials suited for biomedical applications. Aunps were synthesized using flavonoid quercetin (Q) as reducing agent, and resultant nanoparticles were further conjugated with the flavonoid. The resultant nano-system was expected to perform a dual role as antibacterial and as antioxidant agent. Nano-gold surface plasmon peaks were recorded at 560 nm with size around 62 nm and having slim distribution pattern. Spherical particle with smooth surface was observed under TEM and AFM studies. TEM micrographs confirmed a homogeneous particle population of size around 30 nm. Quercetin association to nano-gold was corroborated through FTIR and EDAX analysis. Antioxidant nature of nano-gold prevented rapid oxidation of brilliant cresyl blue dye, in presence of sodium hypochlorite. Antimicrobial action of QuAunp was tested against Gram-negative bacteria Escherichia coli. Nano-gold designed produced a minimum inhibitory concentration of 7.6 μg/ml and minimum bactericidal concentration 10.5 μg/ml against E. coli. Further TEM analysis and membrane permeability studies revealed the impact of QuAunps on bacterial membrane leading to cell damage.
Collapse
|
28
|
Effects of serum matrix on molecular interactions between drugs and target proteins revealed by giant magneto-resistive bio-sensing techniques. J Pharm Biomed Anal 2021; 198:114015. [PMID: 33725588 DOI: 10.1016/j.jpba.2021.114015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 11/20/2022]
Abstract
We demonstrated that effects of serum matrix on molecular interactions between drugs and target proteins can be investigated in real time using magnetic bio-sensing techniques. A giant magneto-resistive (GMR) sensor was used on which target proteins were fixed and superparamagnetic nanoparticles (diameter: 50 nm) conjugated with drug were used in phosphate buffer, with and without serum. In this study, the following drug-protein pairs were investigated: quercetin and cAMP-dependent protein kinase A (PKA), Infliximab and tumor necrosis factor alpha (TNFα), and Bevacizumab and vascular endothelial growth factor (VEGF). For the quercetin and PKA pair, the time profile of the signal from the GMR sensor due to binding between quercetin and PKA clearly changed before and after the addition of serum. Moreover, it was revealed that not only the association process, but also the dissociation process was influenced by the addition of serum, suggesting that the quercetin and PKA complex may partially contain serum proteins, which affect the formation and stability of the complex. For antibody drugs, little effects of serum matrix were observed on both the association and dissociation processes. These clear differences may be attributed to the hydrophobic and electrostatic character of the drug molecule, target protein, and serum proteins. The real-time monitoring of molecular interactions in a biological matrix enabled by the GMR bio-sensing technique is a powerful tool to investigate such complicated molecular interactions. Understanding the molecular interactions that occur in a biological matrix is indispensable for determining the mechanism of action of the drugs and pharmacokinetics/pharmacodynamics inside the body. Additionally, this method can be applied for the analysis of the influence of any kind of third molecule that may have some interaction between two molecules, for example, an inhibitor drug against the interaction between two kinds of proteins.
Collapse
|
29
|
Vazhappilly CG, Amararathna M, Cyril AC, Linger R, Matar R, Merheb M, Ramadan WS, Radhakrishnan R, Rupasinghe HPV. Current methodologies to refine bioavailability, delivery, and therapeutic efficacy of plant flavonoids in cancer treatment. J Nutr Biochem 2021; 94:108623. [PMID: 33705948 DOI: 10.1016/j.jnutbio.2021.108623] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/21/2021] [Accepted: 02/28/2021] [Indexed: 02/06/2023]
Abstract
Over the last two decades, several advancements have been made to improve the therapeutic efficacy of plant flavonoids, especially in cancer treatment. Factors such as low bioavailability, poor flavonoid stability and solubility, ineffective targeted delivery, and chemo-resistance hinder the application of flavonoids in anti-cancer therapy. Many anti-cancer compounds failed in the clinical trials because of unexpected altered clearance of flavonoids, poor absorption after administration, low efficacy, and/or adverse effects. Hence, the current research strategies are focused on improving the therapeutic efficacy of plant flavonoids, especially by enhancing their bioavailability through combination therapy, engineering gut microbiota, regulating flavonoids interaction with adenosine triphosphate binding cassette efflux transporters, and efficient delivery using nanocrystal and encapsulation technologies. This review aims to discuss different methodologies with examples from reported dietary flavonoids that showed an enhanced anti-cancer efficacy in both in vitro and in vivo models. Further, the review discusses the recent progress in biochemical modifications of flavonoids to improve bioavailability, solubility, and therapeutic efficacy.
Collapse
Affiliation(s)
| | - Madumani Amararathna
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia, Canada
| | - Asha Caroline Cyril
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE
| | - Rebecca Linger
- Department of Pharmaceutical and Administrative Sciences, University of Charleston, Charleston, West Virginia, USA
| | - Rachel Matar
- Department of Biotechnology, American University of Ras Al Khaimah, Ras Al Khaimah, UAE
| | - Maxime Merheb
- Department of Biotechnology, American University of Ras Al Khaimah, Ras Al Khaimah, UAE
| | - Wafaa S Ramadan
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, UAE; College of Medicine, University of Sharjah, Sharjah, UAE
| | - Rajan Radhakrishnan
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE
| | - H P Vasantha Rupasinghe
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia, Canada; Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
30
|
Molani Gol R, Kheirouri S. The Effects of Quercetin on the Apoptosis of Human Breast Cancer Cell Lines MCF-7 and MDA-MB-231: A Systematic Review. Nutr Cancer 2021; 74:405-422. [PMID: 33682528 DOI: 10.1080/01635581.2021.1897631] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This systematic review was performed with a focus on the effects of quercetin (QT) on the human breast cancer cell lines MCF-7 and MDA-MB-231. PubMed, Scopus, Science Direct, and Google Scholar databases were searched up to May 2020 using relevant keywords. All articles written in English evaluating the effects of QT on the human breast cancer cell lines MCF-7 and/or MDA-MB-231 were eligible for the review. Totally, 31 articles were included in this review. Out of them, 23 studies investigated the effects of QT on MCF-7 cells and indicated that QT induces apoptosis in the cells. Of 15 studies that examined the effects of QT on MDA-MB-231 cells, 14 reports showed successful apoptosis. It is concluded that QT might be beneficial in the eliminating of breast cancer cells. However, further clinical trials are warranted to further verify these outcomes.
Collapse
Affiliation(s)
- Roghayeh Molani Gol
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Nutrition, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sorayya Kheirouri
- Department of Nutrition, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
31
|
Khan H, Ullah H, Martorell M, Valdes SE, Belwal T, Tejada S, Sureda A, Kamal MA. Flavonoids nanoparticles in cancer: Treatment, prevention and clinical prospects. Semin Cancer Biol 2021; 69:200-211. [PMID: 31374244 DOI: 10.1016/j.semcancer.2019.07.023] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 07/20/2019] [Accepted: 07/27/2019] [Indexed: 02/05/2023]
Abstract
The conventional therapies for cancer have a major concern of poor accessibility to tumor tissues. Furthermore, the requirement of higher doses and non-selective nature of therapeutic are associated with a range of adverse drug reactions (ADRs). However, flavonoids are documented to be effective against various types of cancer, but they are not evaluated for their safety profile and tumor site-specific action. Low solubility, rapid metabolism and poor absorption of dietary flavonoids in gastrointestinal tract hinder their pharmacological potential. Some studies have also suggested that flavonoids may act as pro-oxidant in some cases and may interact with other therapeutic agents, especially through biotransformation. Nanocarriers can alter pharmacokinetics and pharmacodynamic profile of incorporating drug. Moreover, nanocarriers are designed for targeted drug delivery, improving the bioavailability of poorly water-soluble drugs, delivery of macromolecules to site of action within the cell, combining therapeutic agents with imaging techniques which may visualize the site of drug delivery and co-delivery of two or more drugs. Combining two or more anti-cancer agents can reduce ADRs and nanotechnology played a pivotal role in this regard. In vitro and in vivo studies have shown the potential of flavonoids nano-formulations, especially quercetin, naringenin, apigenin, catechins and fisetin in the prevention and treatment of several types of cancer. Similarly, clinical trials have been conducted using flavonoids alone or in combination, however, the nano-formulations effect still needs to be elucidated. This review focuses on the impact of flavonoids nano-formulations on the improvement of their bioavailability, therapeutic and safety profile and will open new insights in the field of drug discovery for cancer therapeutics.
Collapse
Affiliation(s)
- Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, 23200, Pakistan; Novel Global Community Educational Foundation, Australia.
| | - Hammad Ullah
- Department of Pharmacy, Abdul Wali Khan University, Mardan, 23200, Pakistan; Novel Global Community Educational Foundation, Australia
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, 4070386, Chile; Novel Global Community Educational Foundation, Australia
| | - Susana Esteban Valdes
- Laboratory of Neurophysiology, Biology Department, University of Balearic Islands, Ctra. Valldemossa, Km 7.5, Balears, Palma, 07122, Spain; Novel Global Community Educational Foundation, Australia
| | - Tarun Belwal
- Centre for Biodiversity Conservation and Management, G.B. Pant National Institute of Himalayan Environment and Sustainable Development, Kosi-Katarmal, Almora, Uttarakhand, India; Novel Global Community Educational Foundation, Australia
| | - Silvia Tejada
- Laboratory of Neurophysiology, Biology Department, and CIBEROBN (Physiopathology of Obesity and Nutrition), University of the Balearic Islands, Palma de Mallorca, E-07122, Spain; Novel Global Community Educational Foundation, Australia
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress (NUCOX) and CIBEROBN (Physiopathology of Obesity and Nutrition), University of Balearic Islands, Palma de Mallorca, Balearic Islands, E-07122, Spain; Novel Global Community Educational Foundation, Australia
| | - Mohammad Amjad Kamal
- King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah, 21589, Saudi Arabia; Enzymoics, 7 Peterlee Place, Hebersham, NSW, 2770, Australia; Novel Global Community Educational Foundation, Australia
| |
Collapse
|
32
|
AbouAitah K, Lojkowski W. Delivery of Natural Agents by Means of Mesoporous Silica Nanospheres as a Promising Anticancer Strategy. Pharmaceutics 2021; 13:143. [PMID: 33499150 PMCID: PMC7912645 DOI: 10.3390/pharmaceutics13020143] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 12/11/2022] Open
Abstract
Natural prodrugs derived from different natural origins (e.g., medicinal plants, microbes, animals) have a long history in traditional medicine. They exhibit a broad range of pharmacological activities, including anticancer effects in vitro and in vivo. They have potential as safe, cost-effective treatments with few side effects, but are lacking in solubility, bioavailability, specific targeting and have short half-lives. These are barriers to clinical application. Nanomedicine has the potential to offer solutions to circumvent these limitations and allow the use of natural pro-drugs in cancer therapy. Mesoporous silica nanoparticles (MSNs) of various morphology have attracted considerable attention in the search for targeted drug delivery systems. MSNs are characterized by chemical stability, easy synthesis and functionalization, large surface area, tunable pore sizes and volumes, good biocompatibility, controlled drug release under different conditions, and high drug-loading capacity, enabling multifunctional purposes. In vivo pre-clinical evaluations, a significant majority of results indicate the safety profile of MSNs if they are synthesized in an optimized way. Here, we present an overview of synthesis methods, possible surface functionalization, cellular uptake, biodistribution, toxicity, loading strategies, delivery designs with controlled release, and cancer targeting and discuss the future of anticancer nanotechnology-based natural prodrug delivery systems.
Collapse
Affiliation(s)
- Khaled AbouAitah
- Laboratory of Nanostructures and Nanomedicine, Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland
- Medicinal and Aromatic Plants Research Department, Pharmaceutical and Drug Industries Research Division, National Research Centre (NRC), 33 El-Behouth St., Dokki 12622, Giza, Egypt
| | - Witold Lojkowski
- Laboratory of Nanostructures and Nanomedicine, Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland
| |
Collapse
|
33
|
Alzandi AA, Naguib DM, Abas ASM. Onion Extract Encapsulated on Nano Chitosan: a Promising Anticancer Agent. J Gastrointest Cancer 2021; 53:211-216. [PMID: 33417197 DOI: 10.1007/s12029-020-00561-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND Onion (Allium cepa) is very rich in nutritional and pharmaceutical components, such as saponins, tannins, alkaloids, steroids, and phenols. Many recent researches approved its anticancer activity against various cancer cell lines. In this paper, we attempt to improve its anticancer activity with encapsulation on nano chitosan. On the best of our knowledge, this is considered the first study that tries to increase the anticancer activity of the onion extract on nano chitosan. METHODS An aqueous extract of the onion was prepared and the extract efficiency as anticancer agent was enhanced by encapsulating the extract on nano chitosan. The antioxidant capacity and the functional ingredients such as alkaloid, tannin, saponin, steroid, phenolic, and flavonoid in either the free or encapsulated one were estimated. Also, the anticancer activity of the two extracts was tested against different cell lines. RESULTS Encapsulation of the extract on chitosan nano particles decreased IC50 in different cell lines and induced apoptosis through decreasing BCL-2 level and increasing caspase-3 and caspase-9 activity. CONCLUSION Onion extract encapsulated on nano chitosan can be used as protective agents from cancer, antitumor, or act synergistically with the cancer chemotherapy. This greatly participates in improving the use of natural products in cancer therapy instead of chemotherapy.
Collapse
Affiliation(s)
- Abdulrahman Ali Alzandi
- Biology Department, Faculty of Science and Arts in Qilwah, Albaha University, Qilwah, Saudi Arabia
| | - Deyala M Naguib
- Biology Department, Faculty of Science and Arts in Qilwah, Albaha University, Qilwah, Saudi Arabia. .,Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, Egypt.
| | - Al-Shimaa M Abas
- Biochemistry Division, Chemistry Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| |
Collapse
|
34
|
Kumar SR, Thangam R, Vivek R, Srinivasan S, Ponpandian N. Synergetic effects of thymoquinone-loaded porous PVPylated Fe 3O 4 nanostructures for efficient pH-dependent drug release and anticancer potential against triple-negative cancer cells. NANOSCALE ADVANCES 2020; 2:3209-3221. [PMID: 36134298 PMCID: PMC9416817 DOI: 10.1039/d0na00242a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 06/03/2020] [Indexed: 06/16/2023]
Abstract
Porous iron oxide nanostructures have attracted increasing attention due to their potential biomedical applications as nanocarriers for cancer and many other therapies as well as minimal toxicity. Herbal anti-cancer agent thymoquinone loaded on Fe3O4 nanoparticles is envisaged to offer solution towards cancer treatment. The purpose of the present study was to investigate the efficacy of thymoquinone-loaded PVPylated Fe3O4 magnetic nanoparticles (TQ-PVP-Fe3O4 NPs) against triple-negative breast cancer (TNBC) cells. The porous PVPylated Fe3O4 NPs were prepared by a simple solvothermal process, whereas the thymoquinone drug was loaded via the nanoprecipitation method. Fourier transform infrared (FTIR) spectroscopic analysis confirmed the molecular drug loading, and surface morphological observation further confirmed this. The quantity of thymoquinone adsorbed onto the porous PVPylated Fe3O4 NPs was studied by thermogravimetric analysis (TGA). The positive surface charge of TQ-PVP-Fe3O4 NPs facilitates the interaction of the NPs with cancer (MDA-MB-231) cells to enhance the biological functions. In addition, the anticancer potential of NPs involving cytotoxicity, apoptosis induction, reactive oxygen species (ROS) generation, and changes in the mitochondrial membrane potential (ΔΨ m) of TNBC cells was evaluated. TQ-PVP-Fe3O4 NP-treated cells effectively increased the ROS levels leading to cellular apoptosis. The study shows that the synthesized TQ-PVP-Fe3O4 NPs display pH-dependent drug release in the cellular environment to induce apoptosis-related cell death in TNBC cells. Hence, the prepared TQ-PVP-Fe3O4 NPs may be a suitable drug formulation for anticancer therapy.
Collapse
Affiliation(s)
- Selvaraj Rajesh Kumar
- Department of Nanoscience and Technology, Bharathiar University Coimbatore 641046 India +91-422-2422-397 +91-422-2428-421
| | - Ramar Thangam
- Department of Virology, King Institute of Preventive Medicine & Research Chennai 600032 India
| | - Raju Vivek
- Department of Zoology, Bharathiar University Coimbatore 641046 India
| | | | - Nagamony Ponpandian
- Department of Nanoscience and Technology, Bharathiar University Coimbatore 641046 India +91-422-2422-397 +91-422-2428-421
| |
Collapse
|
35
|
Yew YP, Shameli K, Miyake M, Ahmad Khairudin NBB, Mohamad SEB, Naiki T, Lee KX. Green biosynthesis of superparamagnetic magnetite Fe3O4 nanoparticles and biomedical applications in targeted anticancer drug delivery system: A review. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2018.04.013] [Citation(s) in RCA: 203] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
36
|
Mishra S, Manna K, Kayal U, Saha M, Chatterjee S, Chandra D, Hara M, Datta S, Bhaumik A, Das Saha K. Folic acid-conjugated magnetic mesoporous silica nanoparticles loaded with quercetin: a theranostic approach for cancer management. RSC Adv 2020; 10:23148-23164. [PMID: 35520307 PMCID: PMC9054720 DOI: 10.1039/d0ra00664e] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 06/01/2020] [Indexed: 12/24/2022] Open
Abstract
The development of drug carriers based on nanomaterials that can selectively carry chemotherapeutic agents to cancer cells has become a major focus in biomedical research. A novel pH-sensitive multifunctional envelope-type mesoporous silica nanoparticle (SBA-15) was fabricated for targeted drug delivery to human colorectal carcinoma cells (HCT-116). SBA-15 was functionalized with folic acid (FA), and the material was loaded with the water-insoluble flavonoid, quercetin (QN). Additionally, acid-labile magnetite Fe3O4 nanoparticles were embedded over the FA-functionalized QN-loaded monodisperse SBA-15 to prepare the highly orchestrated material FA-FE-SBA15QN. The in vitro and in vivo anti-carcinogenic efficacy of FA-FE-SBA15QN was carried out to explore the pH-sensitive QN release with putative mechanistic aspects. FA-FE-SBA15QN caused a marked tumor suppression, and triggered mitochondrial-dependent apoptosis through a redox-regulated cellular signaling system. Furthermore, FA-IO-SBA-15-QN initiated the c-Jun N-terminal Kinase (JNK)-guided H2AX phosphorylation, which relayed the downstream apoptotic signal to the phosphorylate tumor suppressor protein, p53. On the other hand, the selective inhibition of heat shock protein-27 (HSP-27) by FA-FE-SBA15QN augmented the apoptotic fate through JNK/H2AX/p53 axis. The in vitro and in vivo magnetic resonance imaging (MRI) studies have indicated the theranostic perspective of the composite. Thus, the result suggested that the newly synthesized FA-FE-SBA15QN could be used as a promising chemo theranostic material for the management of carcinoma. pH-Sensitive quercetin/Fe3O4 NPs loaded functionalized mesoporous SBA-15 fabricated for targeted drug delivery to colorectal carcinoma cells with high anti-carcinogenic efficacy.![]()
Collapse
Affiliation(s)
- Snehasis Mishra
- Cancer Biology and Inflammatory Disorder Division
- CSIR-Indian Institute of Chemical Biology
- Kolkata-700032
- India
- Department of Chemical Technology
| | - Krishnendu Manna
- Cancer Biology and Inflammatory Disorder Division
- CSIR-Indian Institute of Chemical Biology
- Kolkata-700032
- India
| | - Utpal Kayal
- School of Materials Sciences
- Indian Association of Cultivation of Science
- Kolkata-700032
- India
| | - Moumita Saha
- Cancer Biology and Inflammatory Disorder Division
- CSIR-Indian Institute of Chemical Biology
- Kolkata-700032
- India
| | - Sauvik Chatterjee
- School of Materials Sciences
- Indian Association of Cultivation of Science
- Kolkata-700032
- India
| | - Debraj Chandra
- World Research Hub Initiative (WRHI)
- Institute of Innovative Research
- Tokyo Institute of Technology
- Yokohama 226-8503
- Japan
| | - Michikazu Hara
- Laboratory for Materials and Structures
- Institute of Innovative Research
- Tokyo Institute of Technology
- Yokohama 226-8503
- Japan
| | - Sriparna Datta
- Department of Chemical Technology
- University of Calcutta
- Kolkata-700009
- India
| | - Asim Bhaumik
- School of Materials Sciences
- Indian Association of Cultivation of Science
- Kolkata-700032
- India
| | - Krishna Das Saha
- Cancer Biology and Inflammatory Disorder Division
- CSIR-Indian Institute of Chemical Biology
- Kolkata-700032
- India
| |
Collapse
|
37
|
Shah ST, Yehye WA, Chowdhury ZZ, Simarani K. Magnetically directed antioxidant and antimicrobial agent: synthesis and surface functionalization of magnetite with quercetin. PeerJ 2019; 7:e7651. [PMID: 31768301 PMCID: PMC6874855 DOI: 10.7717/peerj.7651] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 08/09/2019] [Indexed: 11/20/2022] Open
Abstract
Oxidative stress can be reduced substantially using nanoantioxidant materials by tuning its surface morphological features up to a greater extent. The physiochemical, biological and optical properties of the nanoantioxidants can be altered by controlling their size and shape. In view of that, an appropriate synthesis technique should be adopted with optimization of the process variables. Properties of magnetite nanoparticles (IONP) can be tailored to upgrade the performance of biomedicine. Present research deals with the functionalization IONP using a hydrophobic agent of quercetin (Q). The application of quercetin will control its size using both the functionalization method including in-situ and post-synthesis technique. In in-situ techniques, the functionalized magnetite nanoparticles (IONP@Q) have average particles size 6 nm which are smaller than the magnetite (IONP) without functionalization. After post functionalization technique, the average particle size of magnetite IONP@Q2 determined was 11 nm. The nanoparticles also showed high saturation magnetization of about 51-59 emu/g. Before starting the experimental lab work, Prediction Activity Spectra of Substances (PASS) software was used to have a preliminary idea about the biological activities of Q. The antioxidant activity was carried out using 2, 2-diphenyl-1-picrylhydrazyl (DPPH) assay. The antibacterial studies were carried out using well diffusion method. The results obtained were well supported by the simulated results. Furthermore, the values of the half maximal inhibitory concentration (IC50) of the DPPH antioxidant assay were decreased using the functionalized one and it exhibited a 2-3 fold decreasing tendency than the unfunctionalized IONP. This exhibited that the functionalization process can easily enhance the free radical scavenging properties of IONPs up to three times. MIC values confirms that functionalized IONP have excellent antibacterial properties against the strains used (Staphylococcus aureus, Bacillus subtilis and Escherichia coli) and fungal strains (Aspergillus niger, Candida albicans, Trichoderma sp. and Saccharomyces cerevisiae). The findings of this research showed that the synthesized nanocomposite has combinatorial properties (magnetic, antioxidant and antimicrobial) which can be considered as a promising candidate for biomedical applications. It can be successfully used for the development of biomedicines which can be subsequently applied as antioxidant, anti-inflammatory, antimicrobial and anticancer agents.
Collapse
Affiliation(s)
- Syed Tawab Shah
- Nanotechnology & Catalysis Research Centre (NANOCAT), Institute for Advanced Studies, University of Malaya, Kuala Lumpur, Malaysia
| | - Wageeh A. Yehye
- Nanotechnology & Catalysis Research Centre (NANOCAT), Institute for Advanced Studies, University of Malaya, Kuala Lumpur, Malaysia
| | - Zaira Zaman Chowdhury
- Nanotechnology & Catalysis Research Centre (NANOCAT), Institute for Advanced Studies, University of Malaya, Kuala Lumpur, Malaysia
| | - Khanom Simarani
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
38
|
Yarjanli Z, Ghaedi K, Esmaeili A, Zarrabi A, Rahgozar S. The antitoxic effects of quercetin and quercetin-conjugated iron oxide nanoparticles (QNPs) against H 2O 2-induced toxicity in PC12 cells. Int J Nanomedicine 2019; 14:6813-6830. [PMID: 31692568 PMCID: PMC6716587 DOI: 10.2147/ijn.s212582] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 06/27/2019] [Indexed: 12/13/2022] Open
Abstract
Background We recently showed that quercetin-conjugated iron oxide nanoparticles (QNPs) promoted the bioavailability of quercetin (Qu) in the brain of rats and improved the learning and memory of diabetic rats. In this study, we characterized the modifications in the antitoxic effects of Qu after conjugation. Materials and methods We conjugated Qu to dextran-coated iron oxide nanoparticles (DNPs) and characterized DNPs and QNPs using FTIR, XRD, DLS, Fe-SEM, and EDX analyzes. The antiradical properties of Qu, DNPs, and QNPs were compared by 2, 2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity assay. Catalase-like activities of DNPs and QNPs were estimated using catalase activity assay kit, and the antitoxic effects of Qu and QNPs were evaluated with spectrophotometry, MTT assay, flow cytometry, and real-time q-PCR. Results Qu had a stronger anti-radical activity than DNPs and its activity decreased after being conjugated to DNPs. The catalase-like activity of DNPs remained intact after conjugation. DNPs had less toxicity on PC12 cells viabilities as compared to free Qu, and the conjugation of Qu with DNPs attenuated its cytotoxicity. Furthermore, MTT assay results indicated 24 h pretreatment with Qu had more protective effects than QNPs against H2O2-induced cytotoxicity, while Qu and QNPs had the same effects for 48 and 72 h incubation. Although the total antioxidant capacity of Qu was attenuated after conjugation, the results of flow cytometry and real-time q-PCR confirmed that 24 h pretreatment with the low concentrations of Qu and QNPs had the similar antioxidant, anti-inflammatory, and anti-apoptotic effects against the cytotoxicity of H2O2. Conclusion Qu and QNPs showed the similar protective activities against H2O2-induced toxicity in PC12 cells. Given the fact that QNPs have magnetic properties, they may serve as suitable carriers to be used in neural research and treatment.
Collapse
Affiliation(s)
- Zahra Yarjanli
- Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran
| | - Kamran Ghaedi
- Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran
| | - Abolghasem Esmaeili
- Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran
| | - Ali Zarrabi
- Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan, Iran.,Sabanci University Nanotechnology Research and Application Center (SUNUM) , Istanbul, Turkey
| | - Soheila Rahgozar
- Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran
| |
Collapse
|
39
|
Aiello P, Consalvi S, Poce G, Raguzzini A, Toti E, Palmery M, Biava M, Bernardi M, Kamal MA, Perry G, Peluso I. Dietary flavonoids: Nano delivery and nanoparticles for cancer therapy. Semin Cancer Biol 2019; 69:150-165. [PMID: 31454670 DOI: 10.1016/j.semcancer.2019.08.029] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/08/2019] [Accepted: 08/22/2019] [Indexed: 12/13/2022]
Abstract
Application of nanotechnologies to cancer therapy might increase solubility and/or bioavailability of bioactive compounds of natural or synthetic origin and offers other potential benefits in cancer therapy, including selective targeting. In the present review we aim to evaluate in vivo studies on the anticancer activity of nanoparticles (NPs) obtained from food-derived flavonoids. From a systematic search a total of 60 studies were identified. Most of the studies involved the flavanol epigallocatechin-3-O-gallate and the flavonol quercetin, in both delivery and co-delivery (with anti-cancer drugs) systems. Moreover, some studies investigated the effects of other flavonoids, such as anthocyanins aglycones anthocyanidins, flavanones, flavones and isoflavonoids. NPs inhibited tumor growth in both xenograft and chemical-induced animal models of cancerogenesis. Encapsulation improved bioavailability and/or reduced toxicity of both flavonoids and/or co-delivered drugs, such as doxorubicin, docetaxel, paclitaxel, honokiol and vincristine. Moreover, flavonoids have been successfully applied in molecular targeted nanosystems. Selectivity for cancer cells involves pH- and/or reactive oxygen species-mediated mechanisms. Furthermore, flavonoids are good candidates as drug delivery for anticancer drugs in green synthesis systems. In conclusion, although human studies are needed, NPs obtained from food-derived flavonoids have promising anticancer effects in vivo.
Collapse
Affiliation(s)
- Paola Aiello
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics (CREA-AN), Rome, Italy; Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Italy; Universidad Católica San Antonio de Murcia (UCAM), Murcia, Spain
| | - Sara Consalvi
- Department of Chemistry and Drug Technologies, University "La Sapienza", Rome, Italy
| | - Giovanna Poce
- Department of Chemistry and Drug Technologies, University "La Sapienza", Rome, Italy
| | - Anna Raguzzini
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics (CREA-AN), Rome, Italy
| | - Elisabetta Toti
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics (CREA-AN), Rome, Italy
| | - Maura Palmery
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Italy
| | - Mariangela Biava
- Department of Chemistry and Drug Technologies, University "La Sapienza", Rome, Italy
| | - Marco Bernardi
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Italy
| | - Mohammad A Kamal
- King Fahd Medical Research Center, King Abdulaziz University, Saudi Arabia; Enzymoics, 7 Peterlee Place, Hebersham, NSW, 2770, Australia; Novel Global Community Educational Foundation, Australia
| | - George Perry
- Department of Biology, University of Texas at San Antonio, TX, USA.
| | - Ilaria Peluso
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics (CREA-AN), Rome, Italy.
| |
Collapse
|
40
|
Chen KTJ, Gilabert-Oriol R, Bally MB, Leung AWY. Recent Treatment Advances and the Role of Nanotechnology, Combination Products, and Immunotherapy in Changing the Therapeutic Landscape of Acute Myeloid Leukemia. Pharm Res 2019; 36:125. [PMID: 31236772 PMCID: PMC6591181 DOI: 10.1007/s11095-019-2654-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 06/01/2019] [Indexed: 12/17/2022]
Abstract
Acute myeloid leukemia (AML) is the most common acute leukemia that is becoming more prevalent particularly in the older (65 years of age or older) population. For decades, "7 + 3" remission induction therapy with cytarabine and an anthracycline, followed by consolidation therapy, has been the standard of care treatment for AML. This stagnancy in AML treatment has resulted in less than ideal treatment outcomes for AML patients, especially for elderly patients and those with unfavourable profiles. Over the past two years, six new therapeutic agents have received regulatory approval, suggesting that a number of obstacles to treating AML have been addressed and the treatment landscape for AML is finally changing. This review outlines the challenges and obstacles in treating AML and highlights the advances in AML treatment made in recent years, including Vyxeos®, midostaurin, gemtuzumab ozogamicin, and venetoclax, with particular emphasis on combination treatment strategies. We also discuss the potential utility of new combination products such as one that we call "EnFlaM", which comprises an encapsulated nanoformulation of flavopiridol and mitoxantrone. Finally, we provide a review on the immunotherapeutic landscape of AML, discussing yet another angle through which novel treatments can be designed to further improve treatment outcomes for AML patients.
Collapse
Affiliation(s)
- Kent T J Chen
- Department of Experimental Therapeutics, BC Cancer Research Centre, Vancouver, British Columbia, Canada
- Department of Interdisciplinary Oncology, BC Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Roger Gilabert-Oriol
- Department of Experimental Therapeutics, BC Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Marcel B Bally
- Department of Experimental Therapeutics, BC Cancer Research Centre, Vancouver, British Columbia, Canada.
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada.
- Cuprous Pharmaceuticals Inc., Vancouver, British Columbia, Canada.
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Ada W Y Leung
- Department of Experimental Therapeutics, BC Cancer Research Centre, Vancouver, British Columbia, Canada
- Cuprous Pharmaceuticals Inc., Vancouver, British Columbia, Canada
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
41
|
Amanzadeh E, Esmaeili A, Abadi REN, Kazemipour N, Pahlevanneshan Z, Beheshti S. Quercetin conjugated with superparamagnetic iron oxide nanoparticles improves learning and memory better than free quercetin via interacting with proteins involved in LTP. Sci Rep 2019; 9:6876. [PMID: 31053743 PMCID: PMC6499818 DOI: 10.1038/s41598-019-43345-w] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 04/23/2019] [Indexed: 01/20/2023] Open
Abstract
Biomedical application of quercetin (QT) as an effective flavonoid has limitations due to its low bioavailability. Superparamagnetic iron oxide nanoparticle (SPION) is a novel drug delivery system that enhances the bioavailability of quercetin. The effect of short time usage of quercetin on learning and memory function and its signaling pathways in the healthy rat is not well understood. The aim of this study was to investigate the effect of free quercetin and in conjugation with SPION on learning and memory in healthy rats and to find quercetin target proteins involved in learning and memory using Morris water maze (MWM) and computational methods respectively. Results of MWM show an improvement in learning and memory of rats treated with either quercetin or QT-SPION. Better learning and memory functions using QT-SPION reveal increased bioavailability of quercetin. Comparative molecular docking studies show the better binding affinity of quercetin to RSK2, MSK1, CytC, Cdc42, Apaf1, FADD, CRK proteins. Quercetin in comparison to specific inhibitors of each protein also demonstrates a better QT binding affinity. This suggests that quercetin binds to proteins leading to prevent neural cell apoptosis and improves learning and memory. Therefore, SPIONs could increase the bioavailability of quercetin and by this way improve learning and memory.
Collapse
Affiliation(s)
- Elnaz Amanzadeh
- Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran
| | - Abolghasem Esmaeili
- Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran.
| | | | - Nasrin Kazemipour
- Department of Basic Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Zari Pahlevanneshan
- Department of Chemistry, Catalysis Division, University of Isfahan, Isfahan, Iran
| | - Siamak Beheshti
- Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran
| |
Collapse
|
42
|
Cruz dos Santos S, Osti Silva N, dos Santos Espinelli JB, Germani Marinho MA, Vieira Borges Z, Bruzamarello Caon Branco N, Faita FL, Meira Soares B, Horn AP, Parize AL, Rodrigues de Lima V. Molecular interactions and physico-chemical characterization of quercetin-loaded magnetoliposomes. Chem Phys Lipids 2019; 218:22-33. [DOI: 10.1016/j.chemphyslip.2018.11.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 10/30/2018] [Accepted: 11/30/2018] [Indexed: 01/02/2023]
|
43
|
Ebrahimpour S, Esmaeili A, Beheshti S. Effect of quercetin-conjugated superparamagnetic iron oxide nanoparticles on diabetes-induced learning and memory impairment in rats. Int J Nanomedicine 2018; 13:6311-6324. [PMID: 30349252 PMCID: PMC6188001 DOI: 10.2147/ijn.s177871] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background Diabetes mellitus plays a causative role in cognitive decline. Newly, neuroprotective effects of flavonoids have been widely investigated in neurodegenerative diseases. Quercetin (QC) is a phyto-derived bioactive flavone with numerous beneficial activities. However, its limited permeability to cross the blood–brain barrier, low oral bioavailability, poor aqueous solubility, and rapid gastrointestinal digestion lead to the administration of high dose of QC in clinical application. Materials and methods In order to overcome these limitations, we conjugated QC with superparamagnetic iron oxide nanoparticles (QCSPIONs) and supplemented streptozotocin-induced diabetic rats with it to improve diabetes-related memory impairment. In this regard, 40 rats were distributed into five groups with eight animals: control, diabetes, and diabetes treated with SPIONs, QC, and QCSPIONs. All treatments (at the dose of 25 mg/kg) were dissolved in deionized water and gavaged for 35 consecutive days. Results At the end of the study, QCSPIONs possessed significantly better efficacy than free QC on the improvement of memory performance. In the Morris water maze test, QCSPIONs compared to free QC reduced much better the escape latency over training trials (P<0.01) and increased the time spent in the target quadrant in probe trial (P<0.001). In the passive avoidance test, it increased step-through latency (P<0.05) and reduced the time spent in the dark compartment (P<0.01). In addition, both free QC and QCSPIONs were able to prevent the changes in body weight and decrease blood glucose levels in diabetic rats (P<0.05). Conclusion Overall, according to these results, we conclude that QC in the conjugated state with lower dose offers significantly higher potency in ameliorating diabetes-related memory impairment. Thus, this study offers an effective combined therapy for improving learning and memory.
Collapse
Affiliation(s)
- Shiva Ebrahimpour
- Cell, Molecular Biology and Biochemistry Division, Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran,
| | - Abolghasem Esmaeili
- Cell, Molecular Biology and Biochemistry Division, Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran,
| | - Siamak Beheshti
- Division of Animal Sciences, Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran
| |
Collapse
|
44
|
In vitro and in vivo anticancer efficacy potential of Quercetin loaded polymeric nanoparticles. Biomed Pharmacother 2018; 106:1513-1526. [DOI: 10.1016/j.biopha.2018.07.106] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/16/2018] [Accepted: 07/18/2018] [Indexed: 01/01/2023] Open
|
45
|
Enteshari Najafabadi R, Kazemipour N, Esmaeili A, Beheshti S, Nazifi S. Using superparamagnetic iron oxide nanoparticles to enhance bioavailability of quercetin in the intact rat brain. BMC Pharmacol Toxicol 2018; 19:59. [PMID: 30253803 PMCID: PMC6156978 DOI: 10.1186/s40360-018-0249-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/18/2018] [Indexed: 12/16/2022] Open
Abstract
Background Quercetin (QT) as a bioactive flavonoid has a potential therapeutic activity for numerous neuronal injuries and neurodegenerative diseases. However, the low absorption rate of QT, especially through the blood-brain barrier, restricts its bioactivity in the body. The current research took the advantage of superparamagnetic iron oxide nanoparticles (SPIONs) to enhance the bioavailability of quercetin. Methods Quercetin conjugated with SPIONs was prepared by means of nanoprecipitation method and was characterized by X-ray diffractometer, scanning electron microscope, and Fourier transformed infrared spectrometer analyses. Wistar male rats were orally fed by gavage with QT and QT-SPION at 50 and 100 mg/kg daily doses for 7 days. Using high-performance liquid chromatography (HPLC) method, biodistribution of QT was evaluated in plasma and brain tissue. Results The outcomes of this research revealed a higher concentration in the plasma and brain of the rats fed with QT-SPION in comparison to free QT. Conclusion The results of this study confirm that SPION as a targeted drug delivery system enhances the bioavailability of quercetin in the brain about ten folds higher than free quercetin and could be used for the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
| | - Nasrin Kazemipour
- Department of Basic Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Abolghasem Esmaeili
- Cell, Molecular Biology and Biochemistry Division, Department of Biology, Faculty of Sciences, University of Isfahan, P.O. Box: 8174673441, Isfahan, Iran.
| | - Siamak Beheshti
- Cell, Molecular Biology and Biochemistry Division, Department of Biology, Faculty of Sciences, University of Isfahan, P.O. Box: 8174673441, Isfahan, Iran
| | - Saeed Nazifi
- Department of Clinical Science, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| |
Collapse
|
46
|
Aliakbari M, Mohammadian E, Esmaeili A, Pahlevanneshan Z. Differential effect of polyvinylpyrrolidone-coated superparamagnetic iron oxide nanoparticles on BT-474 human breast cancer cell viability. Toxicol In Vitro 2018; 54:114-122. [PMID: 30266435 DOI: 10.1016/j.tiv.2018.09.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 09/23/2018] [Accepted: 09/24/2018] [Indexed: 12/18/2022]
Abstract
Polyvinylpyrrolidone superparamagnetic iron oxide nanoparticles (PVP-SPIONs) have unique properties. Due to these characteristics, PVP-SPIONs have been used in several medical applications such as magnetic resonance imaging (MRI) contrast agent or drug delivery system. However, a more comprehensive understanding of the environmental safety of PVP-SPIONs is vital for consumption of these nanomaterials. In this study, we describe the effects of PVP-SPIONs on cell viability of the BT-474 human breast cancer cells. Cell viability of the BT-474 cells treated with PVP-SPIONs (10-800 μg/ml) was assessed by MTT assay. MRC-5 cell line was used as a control. Quantitative real-time PCR was performed to investigate the mRNA expression levels of apoptotic (caspase 3) and anti-apoptotic (BCL2) genes Confluent BT-474 monolayers exposed to PVP-SPIONs showed biphasic effects on cell proliferation. PVP-SPIONs at 10-100 μg /ml promote proliferation of BT-474 cells but not the MRC-5 cells. At higher dosage, PVP-SPIONs have toxicity on BT-474 cells. The results of real-time PCR was in line with MTT assay. The increase of cell proliferation at low PVP-SPIONs concentrations is different from what would be expected for these nanoparticles. Our results suggest that more attentions are needed to ensure the safer use of SPION in nanomedicine.
Collapse
Affiliation(s)
- Maryam Aliakbari
- Cell, Molecular Biology and Biochemistry Division, Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran
| | - Elham Mohammadian
- Cell, Molecular Biology and Biochemistry Division, Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran
| | - Abolghasem Esmaeili
- Cell, Molecular Biology and Biochemistry Division, Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran.
| | - Zari Pahlevanneshan
- Department of Chemistry, Catalysis Division, University of Isfahan, Isfahan, Iran
| |
Collapse
|
47
|
Kazemipour N, Nazifi S, Poor MHH, Esmailnezhad Z, Najafabadi RE, Esmaeili A. Hepatotoxicity and nephrotoxicity of quercetin, iron oxide nanoparticles, and quercetin conjugated with nanoparticles in rats. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/s00580-018-2783-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
48
|
Anandhi Senthilkumar H, Fata JE, Kennelly EJ. Phytoestrogens: The current state of research emphasizing breast pathophysiology. Phytother Res 2018; 32:1707-1719. [DOI: 10.1002/ptr.6115] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 04/17/2018] [Accepted: 04/20/2018] [Indexed: 01/08/2023]
Affiliation(s)
- Harini Anandhi Senthilkumar
- Department of Biological Sciences, Lehman College; City University of New York; Bronx New York NY 10468 USA
- Biochemistry and Biology Ph.D. Programs, The Graduate Center; City University of New York; New York NY 10016 USA
| | - Jimmie E. Fata
- Biochemistry and Biology Ph.D. Programs, The Graduate Center; City University of New York; New York NY 10016 USA
- Department of Biological Sciences; College of Staten Island; Staten Island New York NY 10314 USA
| | - Edward J. Kennelly
- Department of Biological Sciences, Lehman College; City University of New York; Bronx New York NY 10468 USA
- Biochemistry and Biology Ph.D. Programs, The Graduate Center; City University of New York; New York NY 10016 USA
| |
Collapse
|
49
|
Marslin G, Siram K, Maqbool Q, Selvakesavan RK, Kruszka D, Kachlicki P, Franklin G. Secondary Metabolites in the Green Synthesis of Metallic Nanoparticles. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E940. [PMID: 29865278 PMCID: PMC6024997 DOI: 10.3390/ma11060940] [Citation(s) in RCA: 195] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 05/25/2018] [Accepted: 05/30/2018] [Indexed: 12/18/2022]
Abstract
The ability of organisms and organic compounds to reduce metal ions and stabilize them into nanoparticles (NPs) forms the basis of green synthesis. To date, synthesis of NPs from various metal ions using a diverse array of plant extracts has been reported. However, a clear understanding of the mechanism of green synthesis of NPs is lacking. Although most studies have neglected to analyze the green-synthesized NPs (GNPs) for the presence of compounds derived from the extract, several studies have demonstrated the conjugation of sugars, secondary metabolites, and proteins in these biogenic NPs. Despite several reports on the bioactivities (antimicrobial, antioxidant, cytotoxic, catalytic, etc.) of GNPs, only a handful of studies have compared these activities with their chemically synthesized counterparts. These comparisons have demonstrated that GNPs possess better bioactivities than NPs synthesized by other methods, which might be attributed to the presence of plant-derived compounds in these NPs. The ability of NPs to bind with organic compounds to form a stable complex has huge potential in the harvesting of precious molecules and for drug discovery, if harnessed meticulously. A thorough understanding of the mechanisms of green synthesis and high-throughput screening of stabilizing/capping agents on the physico-chemical properties of GNPs is warranted to realize the full potential of green nanotechnology.
Collapse
Affiliation(s)
- Gregory Marslin
- Ratnam Institute of Pharmacy and Research, Nellore 524346, India.
| | - Karthik Siram
- Department of Pharmaceutics, PSG College of Pharmacy, Coimbatore 641004, India.
| | - Qaisar Maqbool
- Institute of Plant Genetics of the Polish Academy of Sciences, Poznan 60479, Poland.
| | | | - Dariusz Kruszka
- Institute of Plant Genetics of the Polish Academy of Sciences, Poznan 60479, Poland.
| | - Piotr Kachlicki
- Institute of Plant Genetics of the Polish Academy of Sciences, Poznan 60479, Poland.
| | - Gregory Franklin
- Institute of Plant Genetics of the Polish Academy of Sciences, Poznan 60479, Poland.
| |
Collapse
|
50
|
Najafabadi RE, Kazemipour N, Esmaeili A, Beheshti S, Nazifi S. Quercetin Prevents Body Weight Loss Due to the Using of Superparamagnetic Iron Oxide Nanoparticles in Rat. Adv Biomed Res 2018; 7:8. [PMID: 29456979 PMCID: PMC5812102 DOI: 10.4103/abr.abr_141_17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Background: Superparamagnetic iron oxide nanoparticles (SPION) have been largely considered for numerous applications in biomedicine such as magnetic resonance imaging, hyperthermia, cell tracking, anticancer treatment, and targeted delivery of drugs or genes. However, they may have side effects such body weight loss. Quercetin (QT), a strong antioxidant and free radical scavenger and a natural flavonoid, has a wide range of biological and therapeutic effects. In this study, the effect of QT on prevention of weight loss due to the using of SPION has been investigated. Materials and Methods: SPION and QT-SPION were administered orally at 50 and 100 mg/kg for 7 days. Then, the body weight was measured at the beginning and the end of the study. Results: Rats fed with 50 and 100 mg/kg SPION showed a significant weight loss, whereas those that fed with 50 mg/kg QT-SPION did not. A weight loss was observed in rats treated with 100 mg/kg of QT-SPION. Conclusions: The results of this study showed that quercetin could prevent weight loss due to the SPION.
Collapse
Affiliation(s)
| | - Nasrin Kazemipour
- Department of Basic Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Abolghasem Esmaeili
- Department of Biology, Cell, Molecular Biology and Biochemistry Division, Faculty of Sciences, University of Isfahan, Isfahan, Iran
| | - Siamak Beheshti
- Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran
| | - Saeed Nazifi
- Department of Clinical Science, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| |
Collapse
|