1
|
Mangotra A. The performance of hybrid materials for the biodegradation of dichloromethane using Pseudomonas aeruginosa, coconut shell, rice husk, and metal organic framework. Biodegradation 2025; 36:42. [PMID: 40338331 DOI: 10.1007/s10532-025-10137-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 04/23/2025] [Indexed: 05/09/2025]
Abstract
The industrial effluents containing volatile organic compounds manipulate the purity of the environment. Dichloromethane emerges as the toxic malodor that causes carcinogenicity, mutagenicity and teratogenicity. The aim of the present study was to find out the potency of hybrid materials for the removal of dichloromethane using raw rice husk, coconut shell, metal organic framework and Pseudomonas aeruginosa. The identification of bacteria was done by biochemical methods and 16SrRNA test. The characterization of adsorbents was done using sophisticated fourier transform infrared, field emission scanning electron microscopy and x-ray diffraction technique. The particle size of adsorbents was calculated using the Scherrer equation. The analysis of the final concentration of dichloromethane in hybrid materials was done by gas chromatography-flame ionization detector. The removal percentage obtained using Pse + RRH, Pse + CSAC, Pse + MOF (UiO-66(Zr), Pse + RRH + CSAC, Pse + RRH + CSAC + MOF (UiO-66)(Zr) was 96.87%, 99.80%, 97.63%, 97.35%, 98.08%, respectively with 50 mg/L of dichloromethane concentration. On the other hand, the removal percentage obtained using Pse + RRH, Pse + CSAC, Pse + MOF (UiO-66(Zr), Pse + RRH + CSAC, Pse + RRH + CSAC + MOF (UiO-66)(Zr) was 96.5%, 99.5,% 96.5%, 97.0%, 98.09, with 200 mg/L of dichloromethane concentration. The removal percentage obtained using alone Pseudomonas aeruginosa with 50 mg/L and 200 mg/L of dichloromethane was 93.78% and 92.33% respectively. The maximum removal percentage was achieved by a hybrid material using Pseudomonas aeruginosa and coconut shell.
Collapse
Affiliation(s)
- Anju Mangotra
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, NH-1, Phagwara, Punjab, 144411, India.
| |
Collapse
|
2
|
Du J, Tong H, Chen J, Zhang Q, Liao S. Encapsulating Cu NCs with aggregation-induced emission into metal-organic framework ZIF-8 as a novel fluorescent nanoprobe for the highly sensitive detection of felodipine. Analyst 2025; 150:1807-1815. [PMID: 40183212 DOI: 10.1039/d4an01506a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Fluorescent metal-organic framework nanocomposites (f-MOFs) have been gaining increasing attention in the fields of chemosensors and biosensors due to their unique signal amplification mechanisms and improved selectivity. However, most f-MOFs are constructed by encapsulating fluorescent labelling agents into frameworks via host-guest interactions. The notorious aggregation-caused quenching effect of these fluorescent labelling agents often leads to a decreased fluorescent quantum yield in f-MOFs. Herein, a novel fluorescent nanocomposite, Cu NCs@ZIF-8, was designed and prepared by encapsulating copper nanoclusters (Cu NCs) with aggregation-induced emission (AIE) effects into zeolitic imidazolate framework ZIF-8 through electrostatic attraction. Owing to the AIE effect of Cu NCs and the spatial confinement of ZIF-8, the intramolecular motion of surface ligand hydrolipidic acid (DHLA) in Cu NCs was restricted, resulting in the formation of a highly emissive nanocomposite, Cu NCs@ZIF-8. Intriguingly, the UV-Vis absorption spectrum of felodipine overlaps with the excitation spectrum of Cu NCs@ZIF-8. Therefore, a novel fluorescent nanoprobe based on Cu NCs@ZIF-8 was developed for the highly sensitive detection of felodipine via the inner-filtration effect mechanism. Under optimal detection conditions, the linear response range of Cu NCs@ZIF-8 for felodipine was found to be 1-25 μM, with a detection of limit of 0.09 μM. While determining the labelling-amount percentage in commercially available felodipine tablets, the experimental results validated that the proposed Cu NCs@ZIF-8 nanoprobe exhibits good selectivity and excellent accuracy. This expands the potential applications of fluorescent metal-organic frameworks encapsulated with metal nanoclusters exhibiting AIE properties, positioning them as fluorescent nanoprobes for pharmaceutical quality control.
Collapse
Affiliation(s)
- Juan Du
- Department of Analytical Chemistry, School of Science, China Pharmaceutical University, Nanjing 211198, Jiangsu, P.R. China.
| | - Huixiao Tong
- Department of Analytical Chemistry, School of Science, China Pharmaceutical University, Nanjing 211198, Jiangsu, P.R. China.
| | - Jinwen Chen
- Department of Analytical Chemistry, School of Science, China Pharmaceutical University, Nanjing 211198, Jiangsu, P.R. China.
| | - Qikun Zhang
- Department of Analytical Chemistry, School of Science, China Pharmaceutical University, Nanjing 211198, Jiangsu, P.R. China.
| | - Shenghua Liao
- Department of Analytical Chemistry, School of Science, China Pharmaceutical University, Nanjing 211198, Jiangsu, P.R. China.
| |
Collapse
|
3
|
Jimenez-Lopez L, Morales Ospino R, de Araujo LG, Celzard A, Fierro V. Latest developments in the synthesis of metal-organic frameworks and their hybrids for hydrogen storage. NANOSCALE 2025; 17:6390-6413. [PMID: 39969244 DOI: 10.1039/d4nr03969f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Metal-organic frameworks (MOFs) are promising materials for hydrogen (H2) storage due to their versatile structures, high surface areas and substantial pore volumes. This paper provides a comprehensive review of MOF synthesis and characterization, as well as their practical applications for H2 storage. We explore various MOF synthesis techniques, highlighting their impact on the nanopore structure and functionality. Special emphasis is placed on strategies for enhancing H2 storage capacities by increasing specific surface areas, optimizing pore size distributions, and facilitating H2 release by improving thermal conductivity. Key advances in MOF-based hybrids, such as MOFs combined with carbonaceous materials, metals or other inorganic materials, are discussed. This review also addresses the effectiveness of linker functionalization and the introduction of unsaturated metal centers to optimize H2 storage under ambient conditions. We conclude that the development of competitive MOF-based hybrids, particularly those that incorporate carbons, offers significant potential for improving H2 storage and recovery, enhancing thermal stability and increasing thermal conductivity. These advancements are in line with the US Department of Energy (DOE) specifications and pave the way for future research into the optimization of MOFs for practical H2 storage applications.
Collapse
Affiliation(s)
| | | | | | - Alain Celzard
- Université de Lorraine, CNRS, IJL, F-88000 Epinal, France.
- Institut Universitaire de France (IUF), F-75231 Paris, France
| | - Vanessa Fierro
- Université de Lorraine, CNRS, IJL, F-88000 Epinal, France.
| |
Collapse
|
4
|
Nadeem TB, Imran M, Tandis E. Applications of MOF-Based Nanocomposites in Heat Exchangers: Innovations, Challenges, and Future Directions. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:205. [PMID: 39940181 PMCID: PMC11820813 DOI: 10.3390/nano15030205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/14/2025]
Abstract
Metal-organic frameworks (MOFs) have garnered significant attention in recent years for their potential to revolutionize heat exchanger performance, thanks to their high surface area, tunable porosity, and exceptional adsorption capabilities. This review focuses on the integration of MOFs into heat exchangers to enhance heat transfer efficiency, improve moisture management, and reduce energy consumption in Heating, Ventilation and Air Conditioning (HVAC) and related systems. Recent studies demonstrate that MOF-based coatings can outperform traditional materials like silica gel, achieving superior water adsorption and desorption rates, which is crucial for applications in air conditioning and dehumidification. Innovations in synthesis techniques, such as microwave-assisted and surface functionalization methods, have enabled more cost-effective and scalable production of MOFs, while also enhancing their thermal stability and mechanical strength. However, challenges related to the high costs of MOF synthesis, stability under industrial conditions, and large-scale integration remain significant barriers. Future developments in hybrid nanocomposites and collaborative efforts between academia and industry will be key to advancing the practical adoption of MOFs in heat exchanger technologies. This review aims to provide a comprehensive understanding of current advancements, challenges, and opportunities, with the goal of guiding future research toward more sustainable and efficient thermal management solutions.
Collapse
Affiliation(s)
- Talha Bin Nadeem
- Department of Mechatronics and Biomedical Engineering, College of Engineering and Physical Sciences, Aston University, Birmingham B4 7ET, UK or (T.B.N.); (E.T.)
- Department of Mechanical Engineering, NED University of Engineering and Technology, Karachi 75270, Pakistan
| | - Muhammad Imran
- Department of Mechatronics and Biomedical Engineering, College of Engineering and Physical Sciences, Aston University, Birmingham B4 7ET, UK or (T.B.N.); (E.T.)
- Energy Systems Group, Energy and Bioproduct Research Institute, College of Engineering and Physical Sciences, Aston University, Birmingham B4 7ET, UK
| | - Emad Tandis
- Department of Mechatronics and Biomedical Engineering, College of Engineering and Physical Sciences, Aston University, Birmingham B4 7ET, UK or (T.B.N.); (E.T.)
| |
Collapse
|
5
|
Khodakarami H, Habibi D, Beiranvand M. Room-temperature synthesis of Fe 3O 4@MOF-5 magnetic hybrid as an efficient catalyst for the one-pot green synthesis of tetrahydropyridines. Sci Rep 2024; 14:31510. [PMID: 39732913 DOI: 10.1038/s41598-024-83092-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 12/11/2024] [Indexed: 12/30/2024] Open
Abstract
In recent two decades, considerable efforts have been devoted to the room-temperature green syntheses of metal-organic frameworks (MOFs) to reduce energy consumption and increase safety. It could improve some properties (e.g., catalysis, gas adsorption) and facilitate the utilities of sensitive compounds. Herein, the magnetic hybrid catalyst (Fe3O4@MOF-5) was synthesized through a mixing procedure at room temperature and confirmed by various techniques. The SEM images exhibit cubic crystals that were uniformly coated by the Fe3O4 cores. Then, the catalytic ability of Fe3O4@MOF-5 was studied in the green synthesis of tetrahydropyridines via a domino multi-component reaction, which led to the desired products with high yield. Magnetic solid properties make it easily separated from the reaction medium, so the proposed catalyst can be reused five times while maintaining the catalytic activity over 80%.
Collapse
Affiliation(s)
- Hosein Khodakarami
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, Iran
| | - Davood Habibi
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, Iran.
| | - Masoumeh Beiranvand
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, Iran
| |
Collapse
|
6
|
Wang DN, Shen W, Li M, Zhang M, Mu J, Cai W. Advancements in endohedral metallofullerenes: novel metal-cage interactions driving new phenomena and emerging applications. Chem Commun (Camb) 2024; 60:14733-14749. [PMID: 39584469 DOI: 10.1039/d4cc04341c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Since the discovery of La@C82, a wide array of endohedral metallofullerenes (EMFs) have been synthesized and documented. Various metals, including lanthanides, transition metals, alkali metals, alkaline earth metals and actinides, have been successfully incorporated into the inert fullerene cavities. The interaction between these encapsulated metal species and the fullerene cage isomers plays a crucial role in determining distinct molecular structures and imparting versatile chemical behaviors to these compounds. In particular, recent advancements in EMFs with medium-sized carbon cages, which are among the most versatile categories of EMFs, have marked a significant breakthrough in fundamental coordination chemistry and opened up a wide range of potential applications. The formation of various abnormal metal clusters, possessing unique chemical bonding character and geometric conformations, has been shown to be influenced by novel electron transfer mechanisms between the metal atoms and the carbon cage. Moreover, these specialized metal-cage interactions have also facilitated the stabilization of giant fullerene families and promoted the exploration of these structures in greater detail, particularly with respect to the unanticipated metallofullertubes. Therefore, this review aims to highlight the new phenomena arising from these novel metal-cage interactions in the fundamental study of pristine EMFs. On this basis, we also discussed innovative applications of EMF-based supramolecular complexes that stem from their unique host-guest association.
Collapse
Affiliation(s)
- Dan-Ning Wang
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Wangqiang Shen
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
- School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Mengyang Li
- School of Physics, Xidian University, Xi'an 710071, China
| | - Mengmeng Zhang
- Alan G. MacDiarmid NanoTech Institute, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Jiuke Mu
- School of Mechanical Engineering, Tianjin University, Tianjin 300350, China
| | - Wenting Cai
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
7
|
Chai Z, Liu L, Liang C, Liu Y, Wang Q. Insight into the Reversible Hydrogen Storage of Titanium-Decorated Boron-Doped C 20 Fullerene: A Theoretical Prediction. Molecules 2024; 29:4728. [PMID: 39407656 PMCID: PMC11478190 DOI: 10.3390/molecules29194728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/30/2024] [Accepted: 10/03/2024] [Indexed: 10/20/2024] Open
Abstract
Hydrogen storage has been a bottleneck factor for the application of hydrogen energy. Hydrogen storage capacity for titanium-decorated boron-doped C20 fullerenes has been investigated using the density functional theory. Different boron-doped C20 fullerene absorbents are examined to avoid titanium atom clustering. According to our research, with three carbon atoms in the pentagonal ring replaced by boron atoms, the binding interaction between the Ti atom and C20 fullerene is stronger than the cohesive energy of titanium. The calculated results revealed that one Ti atom can reversibly adsorb four H2 molecules with an average adsorption energy of -1.52 eV and an average desorption temperature of 522.5 K. The stability of the best absorbent structure with a gravimetric density of 4.68 wt% has been confirmed by ab initio molecular dynamics simulations. These findings suggest that titanium-decorated boron-doped C20 fullerenes could be considered as a potential candidate for hydrogen storage devices.
Collapse
Affiliation(s)
- Zhiliang Chai
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China;
| | - Lili Liu
- School of Semiconductor and Physics, North University of China, Taiyuan 030051, China
| | - Congcong Liang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China; (C.L.); (Y.L.)
| | - Yan Liu
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China; (C.L.); (Y.L.)
| | - Qiang Wang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China; (C.L.); (Y.L.)
| |
Collapse
|
8
|
Liu X, Chen Q, Xu S, Wu J, Zhao J, He Z, Pan A, Wu J. A Prototype of Graphene E-Nose for Exhaled Breath Detection and Label-Free Diagnosis of Helicobacter Pylori Infection. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401695. [PMID: 38965802 PMCID: PMC11425842 DOI: 10.1002/advs.202401695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 06/10/2024] [Indexed: 07/06/2024]
Abstract
Helicobacter pylori (HP), a common microanaerobic bacteria that lives in the human mouth and stomach, is reported to infect ≈50% of the global population. The current diagnostic methods for HP are either invasive, time-consuming, or harmful. Therefore, a noninvasive and label-free HP diagnostic method needs to be developed urgently. Herein, reduced graphene oxide (rGO) is composited with different metal-based materials to construct a graphene-based electronic nose (e-nose), which exhibits excellent sensitivity and cross-reactive response to several gases in exhaled breath (EB). Principal component analysis (PCA) shows that four typical types of gases in EB can be well discriminated. Additionally, the potential of the e-nose in label-free detection of HP infection is demonstrated through the measurement and analysis of EB samples. Furthermore, a prototype of an e-nose device is designed and constructed for automatic EB detection and HP diagnosis. The accuracy of the prototype machine integrated with the graphene-based e-nose can reach 92% and 91% in the training and validation sets, respectively. These results demonstrate that the highly sensitive graphene-based e-nose has great potential for the label-free diagnosis of HP and may become a novel tool for non-invasive disease screening and diagnosis.
Collapse
Affiliation(s)
- Xuemei Liu
- Lab of Nanomedicine and Omic‐based DiagnosticsInstitute of Analytical ChemistryDepartment of ChemistryZhejiang UniversityHangzhou310058China
| | - Qiaofen Chen
- Lab of Nanomedicine and Omic‐based DiagnosticsInstitute of Analytical ChemistryDepartment of ChemistryZhejiang UniversityHangzhou310058China
- Will‐think Sensing Technology Co., LTDHangzhou310030China
| | - Shiyuan Xu
- Lab of Nanomedicine and Omic‐based DiagnosticsInstitute of Analytical ChemistryDepartment of ChemistryZhejiang UniversityHangzhou310058China
| | - Jiaying Wu
- Lab of Nanomedicine and Omic‐based DiagnosticsInstitute of Analytical ChemistryDepartment of ChemistryZhejiang UniversityHangzhou310058China
| | - Jingwen Zhao
- Lab of Nanomedicine and Omic‐based DiagnosticsInstitute of Analytical ChemistryDepartment of ChemistryZhejiang UniversityHangzhou310058China
| | - Zhengfu He
- Department of Thoracic SurgerySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhou310016China
| | - Aiwu Pan
- Department of Internal MedicineThe Second Affiliated Hospital of Zhejiang UniversityHangzhou310003China
| | - Jianmin Wu
- Lab of Nanomedicine and Omic‐based DiagnosticsInstitute of Analytical ChemistryDepartment of ChemistryZhejiang UniversityHangzhou310058China
| |
Collapse
|
9
|
Esfahani HJ, Ghaemi A, Shahhosseini S. Improving CO 2 adsorption efficiency of an amine-modified MOF-808 through the synthesis of its graphene oxide composites. Sci Rep 2024; 14:18871. [PMID: 39143144 PMCID: PMC11325030 DOI: 10.1038/s41598-024-69767-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/08/2024] [Indexed: 08/16/2024] Open
Abstract
This research developed a novel composite of MOF-NH2 and graphene oxide (GO) for enhanced CO2 capture. Employing the response surface methodology-central composite design (RSM-CCD) for experiments design, various MOF-NH2/GO samples with GO loadings from 0 to 30 wt% were synthesized. The results of SEM, XRD, EDS, and BET analysis revealed that the materials maintained their MOF crystal structure, confirmed by X-ray diffraction, and exhibited unique texture, high porosity, and oxygen-enriched surface chemistry. The influence of temperature (25-65 °C) and pressure (1-9 bar) on CO2 adsorption capacity was assessed using a volumetric adsorption system. Optimum conditions were obtained at weight percent of 22.6 wt% GO, temperature of 25 °C, and pressure of 9 bar with maximum adsorption capacity of 303.61 mg/g. The incorporation of amino groups enhanced the CO2 adsorption capacity. Isotherm and kinetic analyses indicated that Freundlich and Fractional-order models best described CO2 adsorption behavior. Thermodynamic analysis showed the process was exothermic, spontaneous, and physical, with enthalpy changes of - 16.905 kJ/mol, entropy changes of - 0.030 kJ/mol K, and Gibs changes energy of - 7.904 kJ/mol. Mass transfer diffusion coefficients increased with higher GO loadings. Regenerability tests demonstrated high performance and resilience, with only a 5.79% decrease in efficiency after fifteen cycles. These findings suggest significant potential for these composites in CO2 capture technologies.
Collapse
Affiliation(s)
- Heidar Javdani Esfahani
- School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Ahad Ghaemi
- School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Tehran, Iran.
| | - Shahrokh Shahhosseini
- School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Tehran, Iran
| |
Collapse
|
10
|
Wu J, Xu S, Liu X, Zhao J, He Z, Pan A, Wu J. High-precision Helicobacter pylori infection diagnosis using a dual-element multimodal gas sensor array. Analyst 2024; 149:4168-4178. [PMID: 38860637 DOI: 10.1039/d4an00520a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Helicobacter pylori (H. pylori) is a globally widespread bacterial infection. Early diagnosis of this infection is vital for public and individual health. Prevalent diagnosis methods like the isotope 13C or 14C labelled urea breath test (UBT) are not convenient and may do harm to the human body. The use of cross-response gas sensor arrays (GSAs) is an alternative way for label-free detection of metabolite changes in exhaled breath (EB). However, conventional GSAs are complex to prepare, lack reliability, and fail to discriminate subtle changes in EB due to the use of numerous sensing elements and single dimensional signal. This work presents a dual-element multimodal GSA empowered with multimodal sensing signals including conductance (G), capacitance (C), and dissipation factor (DF) to improve the ability for gas recognition and H. pylori-infection diagnosis. Sensitized by poly(diallyldimethylammonium chloride) (PDDA) and the metal-organic framework material NH2-UiO66, the dual-element graphene oxide (GO)-composite GSAs exhibited a high specific surface area and abundant adsorption sites, resulting in high sensitivity, repeatability, and fast response/recovery speed in all three signals. The multimodal sensing signals with rich sensing features allowed the GSA to detect various physicochemical properties of gas analytes, such as charge transfer and polarization ability, enhancing the sensing capabilities for gas discrimination. The dual-element GSA could differentiate different typical standard gases and non-dehumidified EB samples, demonstrating the advantages in EB analysis. In a case-control clinical study on 52 clinical EB samples, the diagnosis model based on the multimodal GSA achieved an accuracy of 94.1%, a sensitivity of 100%, and a specificity of 90.9% for diagnosing H. pylori infection, offering a promising strategy for developing an accurate, non-invasive and label-free method for disease diagnosis.
Collapse
Affiliation(s)
- Jiaying Wu
- Lab of Nanomedicine and Omic-based Diagnostics, Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, P.R. China.
| | - Shiyuan Xu
- Lab of Nanomedicine and Omic-based Diagnostics, Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, P.R. China.
| | - Xuemei Liu
- Lab of Nanomedicine and Omic-based Diagnostics, Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, P.R. China.
| | - Jingwen Zhao
- Lab of Nanomedicine and Omic-based Diagnostics, Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, P.R. China.
| | - Zhengfu He
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital Zhejiang University School of Medicine, Hangzhou 310016, P.R. China
| | - Aiwu Pan
- Department of Internal Medicine, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou 310009, P.R. China.
| | - Jianmin Wu
- Lab of Nanomedicine and Omic-based Diagnostics, Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, P.R. China.
| |
Collapse
|
11
|
Zhang ZC, Gu ZG, Zhang J. Host-Guest Metal-Organic Frameworks-Based Long-Afterglow Luminescence Materials. Molecules 2024; 29:2989. [PMID: 38998941 PMCID: PMC11243098 DOI: 10.3390/molecules29132989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Long-afterglow materials have a broad of applications in optoelectronic devices, sensors, medicine and other fields due to their excellent luminescent properties. The host-guest long-afterglow MOFs material combines the advantages of multi-component characteristics and the stability of MOFs, which improves its luminous performance and expands its other properties. This review introduces the classification, synthesis and application of host-guest MOFs materials with long afterglow. Due to their rigid frames and multi-channel characteristics, MOFs can load common guest materials including rare earth metals, organic dyes, carbon dots, etc. The synthesis methods of loading guest materials into MOFs include solvothermal synthesis, post-encapsulation, post-modification, etc. Those long-afterglow host-guest MOFs have a wide range of applications in the fields of sensors, information security and biological imaging.
Collapse
Affiliation(s)
- Zhi-Chen Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Zhi-Gang Gu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
| |
Collapse
|
12
|
Zhang Z, Han W, Qing J, Meng T, Zhou W, Xu Z, Chen M, Wen L, Cheng Y, Ding L. Functionalized magnetic metal organic framework nanocomposites for high throughput automation extraction and sensitive detection of antipsychotic drugs in serum samples. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133189. [PMID: 38071772 DOI: 10.1016/j.jhazmat.2023.133189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/27/2023] [Accepted: 12/04/2023] [Indexed: 02/08/2024]
Abstract
Due to the complexity of biological sample matrix, the automated and high-throughput pretreatment technology is urgently needed for monitoring the antipsychotic drugs for mental patients. In this study, functionalized magnetic zirconium-based organic framework nanocomposites (Fe3O4@SiO2@Zr-MOFs) were successfully designed and synthesized by the layer-by-layer growth. Among them, Fe3O4@SiO2@UiO-67-COOH showed the best adsorption performance, and at the same time it exhibited excellent water dispersibility, high thermal stability, chemical stability and high hydrophobicity. Results of adsorption kinetics, isotherm and FT-IR showed that the adsorption process was dominated by chemical adsorption (hydrogen bond, electrostatic interaction, π-π interaction) and monolayer adsorption. Moreover, the smaller pore size improved the protein exclusion rate which reached 98.9-99.8%. Based on the above result, the synthesized magnetic nanoparticles were introduced to 96-well automatic extractor, antipsychotic drugs in 96 serum samples were automatically extracted within 9 min, which most greatly saved the time and labor costs and avoided artificial errors. By further integrating with ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), antipsychotic drugs can be detected in the range of 0.2-3.0 ng mL-1 with a quantitative limit of 0.06-0.9 ng mL-1. The recoveries of antipsychotic drugs and their metabolites in serum ranged from 95.7% to 112.3% within 1.4-6.5% of RSD. These features indicate that the proposed method is promising for high throughput and sensitively monitoring of drugs and other hazardous substances.
Collapse
Affiliation(s)
- Zelin Zhang
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, PR China
| | - Wei Han
- Technical Center, Tianjin Customs, Tianjin 300041, PR China
| | - Jiang Qing
- Ningbo HEIGER Electrics Co., Ltd, Ningbo 315300, PR China
| | - Taoyu Meng
- Changsha Harmony Health Medical Laboratory Co., Ltd, Changsha 410000, PR China
| | - Wenli Zhou
- Changsha Harmony Health Medical Laboratory Co., Ltd, Changsha 410000, PR China
| | - Zhou Xu
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, PR China
| | - Maolong Chen
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, PR China
| | - Li Wen
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, PR China
| | - Yunhui Cheng
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, PR China
| | - Li Ding
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, PR China.
| |
Collapse
|
13
|
Fathalian F, Moghadamzadeh H, Hemmati A, Ghaemi A. Efficient CO 2 adsorption using chitosan, graphene oxide, and zinc oxide composite. Sci Rep 2024; 14:3186. [PMID: 38326382 PMCID: PMC10850217 DOI: 10.1038/s41598-024-53577-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 02/02/2024] [Indexed: 02/09/2024] Open
Abstract
This study was deeply focused on developing a novel CTS/GO/ZnO composite as an efficient adsorbent for CO2 adsorption process. To do so, design of experiment (DOE) was done based on RSM-BBD technique and according to the DOE runs, various CTS/GO/ZnO samples were synthesized with different GO loading (in the range of 0 wt% to 20 wt%) and different ZnO nanoparticle's loading (in the range of 0 wt% to 20 wt%). A volumetric adsorption setup was used to investigate the effect of temperature (in the range of 25-65 °C) and pressure (in the range of 1-9 bar) on the obtained samples CO2 uptake capability. A quadratic model was developed based on the RSM-BBD method to predict the CO2 adsorption capacity of the composite sample within design space. In addition, CO2 adsorption process optimization was conducted and the optimum values of the GO, ZnO, temperature, and pressure were obtained around 23.8 wt%, 18.2 wt%, 30.1 °C, and 8.6 bar, respectively, with the highest CO2 uptake capacity of 470.43 mg/g. Moreover, isotherm and kinetic modeling of the CO2 uptake process were conducted and the Freundlich model (R2 = 0.99) and fractional order model (R2 = 0.99) were obtained as the most appropriate isotherm and kinetic models, respectively. Also, thermodynamic analysis of the adsorption was done and the ∆H°, ∆S°, and ∆G° values were obtained around - 19.121 kJ/mol, - 0.032 kJ/mol K, and - 9.608 kJ/mol, respectively, indicating exothermic, spontaneously, and physically adsorption of the CO2 molecules on the CTS/GO/ZnO composite's surface. Finally, a renewability study was conducted and a minor loss in the CO2 adsorption efficiency of about 4.35% was obtained after ten cycles, demonstrating the resulting adsorbent has good performance and robustness for industrial CO2 capture purposes.
Collapse
Affiliation(s)
- Farnoush Fathalian
- Department of Chemical Engineering, Faculty of Engineering, Islamic Azad University, South Tehran Branch, Tehran, Iran
| | - Hamidreza Moghadamzadeh
- Department of Chemical Engineering, Faculty of Engineering, Islamic Azad University, South Tehran Branch, Tehran, Iran.
| | - Alireza Hemmati
- School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, (IUST), Tehran, Iran.
| | - Ahad Ghaemi
- School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, (IUST), Tehran, Iran
| |
Collapse
|
14
|
Chen Z, Xing F, Yu P, Zhou Y, Luo R, Liu M, Ritz U. Metal-organic framework-based advanced therapeutic tools for antimicrobial applications. Acta Biomater 2024; 175:27-54. [PMID: 38110135 DOI: 10.1016/j.actbio.2023.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/20/2023] [Accepted: 12/13/2023] [Indexed: 12/20/2023]
Abstract
The escalating concern over conventional antibiotic resistance has emphasized the urgency in developing innovative antimicrobial agents. In recent times, metal-organic frameworks (MOFs) have garnered significant attention within the realm of antimicrobial research due to their multifaceted antimicrobial attributes, including the sustained release of intrinsic or exogenous antimicrobial components, chemodynamically catalyzed generation of reactive oxygen species (ROS), and formation of photogenerated ROS. This comprehensive review provides a thorough overview of the synthetic approaches employed in the production of MOF-based materials, elucidating their underlying antimicrobial mechanisms in depth. The focal point lies in elucidating the research advancements across various antimicrobial modalities, encompassing intrinsic component release system, extraneous component release system, auto-catalytical system, and energy conversion system. Additionally, the progress of MOF-based antimicrobial materials in addressing wound infections, osteomyelitis, and periodontitis is meticulously elucidated, culminating in a summary of the challenges and potential opportunities inherent within the realm of antimicrobial applications for MOF-based materials. STATEMENT OF SIGNIFICANCE: Growing concerns about conventional antibiotic resistance emphasized the need for alternative antimicrobial solutions. Metal-organic frameworks (MOFs) have gained significant attention in antimicrobial research due to their diverse attributes like sustained antimicrobial components release, catalytic generation of reactive oxygen species (ROS), and photogenerated ROS. This review covers MOF synthesis and their antimicrobial mechanisms. It explores advancements in intrinsic and extraneous component release, auto-catalysis, and energy conversion systems. The paper also discusses MOF-based materials' progress in addressing wound infections, osteomyelitis, and periodontitis, along with existing challenges and opportunities. Given the lack of related reviews, our findings hold promise for future MOF applications in antibacterial research, making it relevant to your journal's readership.
Collapse
Affiliation(s)
- Zhao Chen
- Department of Orthopedic Surgery, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Fei Xing
- Department of Orthopedic Surgery, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Peiyun Yu
- LIMES Institute, Department of Molecular Brain Physiology and Behavior, University of Bonn, Carl-Troll-Str. 31, 53115 Bonn, Germany
| | - Yuxi Zhou
- Department of Periodontology, Justus-Liebig-University of Giessen, Germany
| | - Rong Luo
- Department of Orthopedic Surgery, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Ming Liu
- Department of Orthopedic Surgery, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.
| | - Ulrike Ritz
- Department of Orthopaedics and Traumatology, Biomatics Group, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany.
| |
Collapse
|
15
|
Prasanthi I, Datta KKR. Three in One: Superoleophilic, Chemically and Mechanically Resistant ZIF-7 and ZIF-11 Percolation Networks for Selective Permeation of Oils and Chlorinated Solvents. Inorg Chem 2023; 62:17791-17803. [PMID: 37850868 DOI: 10.1021/acs.inorgchem.3c02570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Imbuing superwetting functions to organic-inorganic hybrid networks displaying chemical resistance, self-cleaning ability, and selective permeation of liquids has received increasing attention in recent years. Here we report superhydrophobic ZIF-7 and ZIF-11 on multilayer fluorinated graphene (FG) nanosheets with long-lasting water-repellent features. By exploring the solution processing of these chemically resistant dispersions, superoleophilic FG-ZIF-7 stainless steel mesh (FG-ZIF-7-SSM) and FG-ZIF-11 over cotton cloth (FG-ZIF-11-CC) possessing superior adhesion were fabricated. These permselective oil-liking prototypes were explored toward mesitylene and crude oil pickup from chemically harsh marine conditions such as seawater, acidic water, and alkaline water, with a separation efficiency of 96-94% up to 10 cycles. Furthermore, using an FG-ZIF-11-CC-wrapped glass pipet, upward diffusion of chloroform from sea, acidic, and alkaline water in 45 s was demonstrated with a separation efficacy of 94% up to 20 cycles. In addition to the chemical resistance and reusability, the mechanical stability of FG-ZIF-7-SSM and FG-ZIF-11-CC was investigated through folding, tape peeling, and dragging through sandpaper up to 250 cycles, showing no signs of changes in the hydrophobic responses. This research sheds light on the application of physiochemically resistant percolation coatings based on fluorinated graphene multilayers supporting ZIF-7 and ZIF-11 toward oil/water separation.
Collapse
Affiliation(s)
- Iniya Prasanthi
- Functional Nanomaterials Laboratory, Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur-603203, Tamil Nadu, India
| | - K K R Datta
- Functional Nanomaterials Laboratory, Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur-603203, Tamil Nadu, India
| |
Collapse
|
16
|
Ren Z, Guo W, Sun S, Liu X, Fan Z, Wang F, Ibrahim AA, Umar A, Alkhanjaf AAM, Baskoutas S. Dual-mode transfer response based on electrochemical and fluorescence signals for the detection of amyloid-beta oligomers (AβO). Mikrochim Acta 2023; 190:438. [PMID: 37843728 DOI: 10.1007/s00604-023-06014-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 09/22/2023] [Indexed: 10/17/2023]
Abstract
An aptamer sensor has been developed utilizing a dual-mode and stimuli-responsive strategy for quantitative detection of AβO (amyloid-beta oligomers) through simultaneous electrochemical and fluorescence detection. To achieve this, we employed UIO-66-NH2 as a carrier container to load MB (Methylene Blue), and Fe3O4 MNPs (iron oxide magnetic nanoparticles) with aptamer (ssDNA-Fe3O4 MNPs) fixed on their surface for biological gating. The ssDNA-Fe3O4 MNPs were immobilized onto the surface of UIO-66-NH2 through hydrogen bonding between the aptamer and the -NH2 group on the surface of UIO-66-NH2, thereby encapsulating MB and forming ssDNA-Fe3O4@MB@UIO-66-NH2. During the detection of AβO, the aptamer selectively reacted with AβO to form the AβO-ssDNA-Fe3O4 complex, leading to its detachment from the surface of UIO-66-NH2. This detachment facilitated the release of MB, enabling its electrochemical detection. Simultaneously, the AβO-ssDNA-Fe3O4 complex was efficiently collected and separated using a magnet after leaving the container's surface. Furthermore, the addition of NaOH facilitated the disconnection of biotin modifications at the 3' end of the aptamer from the avidin modifications on the Fe3O4 MNPs. Consequently, the aptamer detached from the surface of Fe3O4 MNPs, resulting in the restoration of fluorescence intensity of FAM (fluorescein-5'-carboxamidite) modified at its 5' end for fluorescence detection. The dual-mode sensor exhibited significantly enhanced differential pulse voltammetry signals and fluorescence intensity compared to those in the absence of AβO. The sensor demonstrated a wide detection range of 10 fM to 10 μM, with a detection limit of 3.4 fM. It displayed excellent performance in detecting actual samples and holds promising prospects for early diagnosis of Alzheimer's disease.
Collapse
Affiliation(s)
- Zhe Ren
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, 250022, China
| | - Wenjuan Guo
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, 250022, China.
| | - Shuqian Sun
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, 250022, China
| | - Xin Liu
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, 250022, China
| | - Zelong Fan
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, 250022, China
| | - Fangfang Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China.
| | - Ahmed A Ibrahim
- Department of Chemistry, College of Science and Arts, and Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran, 11001, Kingdom of Saudi Arabia
| | - Ahmad Umar
- Department of Chemistry, College of Science and Arts, and Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran, 11001, Kingdom of Saudi Arabia.
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, 43210, USA.
| | - Abdulrab Ahmed M Alkhanjaf
- Centre for Health Research, Najran University, Najran, 11001, Kingdom of Saudi Arabia
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran, 11001, Kingdom of Saudi Arabia
| | - S Baskoutas
- Department of Materials Science, University of Patras, Patras, Greece
| |
Collapse
|
17
|
Zu S, Zhang H, Zhang T, Zhang M, Song L. Ni-Rh-based bimetallic conductive MOF as a high-performance electrocatalyst for the oxygen evolution reaction. Front Chem 2023; 11:1242672. [PMID: 37841204 PMCID: PMC10570521 DOI: 10.3389/fchem.2023.1242672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/22/2023] [Indexed: 10/17/2023] Open
Abstract
Metal-organic frameworks (MOFs) have recently been considered the promising catalysts due to their merits of abundant metal sites, versatile coordination groups, and tunable porous structure. However, low electronic conductivity of most MOFs obstructs their direct application in electrocatalysis. In this work, we fabricate an Ni-Rh bimetallic conductive MOF ([Ni2.85Rh0.15(HHTP)2]n/CC) grown in situ on carbon cloth. Abundant nanopores in the conductive MOFs expose additional catalytic active sites, and the advantageous 2D π-conjugated structure helps accelerate charge transfer. Owing to the introduction of Rh, [Ni2.85Rh0.15(HHTP)2]n/CC exhibited substantially improved oxygen evolution reaction (OER) activity and exhibited only an overpotential of 320 mV to achieve the current density of 20 mA cm-2. The remarkable OER performance confirmed by the electrochemical tests could be ascribed to the synergistic effect caused by the doped Rh together with Ni in [Ni2.85Rh0.15(HHTP)2]n/CC, thereby exhibiting outstanding electrocatalytic performance.
Collapse
Affiliation(s)
| | | | | | | | - Li Song
- Jiangsu Collaborative Innovation Center of Atmospheric Environment, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, Jiangsu, China
| |
Collapse
|
18
|
Sharma I, Kaur J, Poonia G, Mehta SK, Kataria R. Nanoscale designing of metal organic framework moieties as efficient tools for environmental decontamination. NANOSCALE ADVANCES 2023; 5:3782-3802. [PMID: 37496632 PMCID: PMC10368002 DOI: 10.1039/d3na00169e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 06/12/2023] [Indexed: 07/28/2023]
Abstract
Environmental pollutants, being a major and detrimental component of the ecological imbalance, need to be controlled. Serious health issues can get intensified due to contaminants present in the air, water, and soil. Accurate and rapid monitoring of environmental pollutants is imperative for the detoxification of the environment and hence living beings. Metal-organic frameworks (MOFs) are a class of porous and highly diverse adsorbent materials with tunable surface area and diverse functionality. Similarly, the conversion of MOFs into nanoscale regime leads to the formation of nanometal-organic frameworks (NMOFs) with increased selectivity, sensitivity, detection ability, and portability. The present review majorly focuses on a variety of synthetic methods including the ex situ and in situ synthesis of MOF nanocomposites and direct synthesis of NMOFs. Furthermore, a variety of applications such as nanoabsorbent, nanocatalysts, and nanosensors for different dyes, antibiotics, toxic ions, gases, pesticides, etc., are described along with illustrations. An initiative is depicted hereby using nanostructures of MOFs to decontaminate hazardous environmental toxicants.
Collapse
Affiliation(s)
- Indu Sharma
- Department of Chemistry, Centre of Advanced Studies in Chemistry, Panjab University Chandigarh-160 014 India
| | - Jaspreet Kaur
- School of Basic Sciences, Indian Institute of Information Technology (IIIT) Una-177 209 India
| | - Gargi Poonia
- Department of Chemistry, Centre of Advanced Studies in Chemistry, Panjab University Chandigarh-160 014 India
| | - Surinder Kumar Mehta
- Department of Chemistry, Centre of Advanced Studies in Chemistry, Panjab University Chandigarh-160 014 India
| | - Ramesh Kataria
- Department of Chemistry, Centre of Advanced Studies in Chemistry, Panjab University Chandigarh-160 014 India
| |
Collapse
|
19
|
Su Z, Xing L, Ali HE, Alkhalifah T, Alturise F, Khadimallah MA, Assilzadeh H. Latest insights on separation and storage of carbon compounds in buildings towards sustainable environment: Recent innovations, challenges, future perspectives and application of machine learning. CHEMOSPHERE 2023; 329:138573. [PMID: 37044137 DOI: 10.1016/j.chemosphere.2023.138573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 03/25/2023] [Accepted: 03/31/2023] [Indexed: 05/03/2023]
Abstract
Throughout the past few decades, scientific agencies have paid a lot of attention to environmental issues such as acid rain, water poisoning, and global warming. In order to solve these environmental problems, metal-organic frameworks (MOFs), which are made up of metal ions and/or clusters attached to organic ligands, have shown some promise. With a focus on the usage of MOFs, this paper examines the most recent developments, difficulties, and potential future directions in the separation and storage of carbon compounds in buildings for a sustainable environment. The importance of using MOFs in decarbonizing water systems and lowering environmental concerns in buildings is highlighted in the research. It addresses the most recent developments in the use of MOFs for renewable energy, such as the elimination of dangerous gases like CO2 and CH4 from water systems. The article also looks at how MOFs might be used to decarbonize water systems in structures, with a focus on how carbon-containing compounds are stored chemically and physically using artificial neural network models. MOFs are a potential solution for renewable energy and environmental remediation in buildings because they have special physical and chemical characteristics like adjustable pores, high porosity, and tiny pore size. The report offers insights into existing treatments and invites academics to investigate MOFs' potential for resolving environmental problems in order to create a sustainable environment in buildings.
Collapse
Affiliation(s)
- Zibing Su
- Art College of Chongqing Technology and Business University, Chonging, 400067, China
| | - Lin Xing
- Chongqing Jianzhu College Academy of Construction Management, Chongqing, 400072, China.
| | - H Elhosiny Ali
- Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Tamim Alkhalifah
- Department of Computer, College of Science and Arts in Ar Rass, Qassim University, Ar Rass, Qassim, Saudi Arabia
| | - Fahad Alturise
- Department of Computer, College of Science and Arts in Ar Rass, Qassim University, Ar Rass, Qassim, Saudi Arabia
| | - Mohamed Amine Khadimallah
- Department of Civil Engineering, College of Engineering in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Hamid Assilzadeh
- Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600 077, India
| |
Collapse
|
20
|
Zeng T, Liu Y, Jiang Y, Zhang L, Zhang Y, Zhao L, Jiang X, Zhang Q. Advanced Materials Design for Adsorption of Toxic Substances in Cigarette Smoke. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023:e2301834. [PMID: 37211707 PMCID: PMC10401148 DOI: 10.1002/advs.202301834] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/27/2023] [Indexed: 05/23/2023]
Abstract
Cigarettes, despite being economically important legal consumer products, are highly addictive and harmful, particularly to the respiratory system. Tobacco smoke is a complex mixture containing over 7000 chemical compounds, 86 of which are identified to have "sufficient evidence of carcinogenicity" in either animal or human tests. Thus, tobacco smoke poses a significant health risk to humans. This article focuses on materials that help reduce the levels of major carcinogens in cigarette smoke; these include nicotine, polycyclic aromatic hydrocarbons, tobacco-specific nitrosamines, hydrogen cyanide, carbon monoxide, and formaldehyde. Specifically, the research progress on adsorption effects and mechanisms of advanced materials such as cellulose, zeolite, activated carbon, graphene, and molecularly imprinted polymers are highlighted. The future trends and prospects in this field are also discussed. Notably, with advancements in supramolecular chemistry and materials engineering, the design of functionally oriented materials has become increasingly multidisciplinary. Certainly, several advanced materials can play a critical role in reducing the harmful effects of cigarette smoke. This review aims to serve as an insightful reference for the design of hybrid and functionally oriented advanced materials.
Collapse
Affiliation(s)
- Ting Zeng
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, China
- Research Center, Chengdu Medical College, Chengdu, 610500, China
| | - Yanxia Liu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Yingfang Jiang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Lan Zhang
- Univ Lyon, CNRS, INSA-Lyon, Université Claude Bernard Lyon 1, CETHIL UMR5008, Villeurbanne, F-69621, France
| | - Yagang Zhang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Lin Zhao
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Xiaoli Jiang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Qiang Zhang
- Department of Chemistry, Washington State University, Pullman, WA, 99164, USA
| |
Collapse
|
21
|
Borzehandani MY, Jorabchi MN, Abdulmalek E, Abdul Rahman MB, Mohammad Latif MA. Exploring the Potential of a Highly Scalable Metal-Organic Framework CALF-20 for Selective Gas Adsorption at Low Pressure. Polymers (Basel) 2023; 15:760. [PMID: 36772061 PMCID: PMC9921038 DOI: 10.3390/polym15030760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/28/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
In this study, the ability of the highly scalable metal-organic framework (MOF) CALF-20 to adsorb polar and non-polar gases at low pressure was investigated using grand canonical Monte Carlo (GCMC) and molecular dynamics (MD) simulations. The results from the simulated adsorption isotherms revealed that the highest loading was achieved for SO2 and Cl2, while the lowest loading was found for F2 molecules. The analysis of interaction energies indicated that SO2 molecules were able to form the strongest adsorbent-adsorbate interactions and had a tight molecular packing due to their polarity and angular structure. Additionally, Cl2 gas was found to be highly adsorbed due to its large van der Waals surface and strong chemical affinity in CALF-20 pores. MD simulations showed that SO2 and Cl2 had the lowest mobility inside CALF-20 pores. The values of the Henry coefficient and isosteric heat of adsorption confirmed that CALF-20 could selectively adsorb SO2 and Cl2. Based on the results, it was concluded that CALF-20 is a suitable adsorbent for SO2 and Cl2 but not for F2. This research emphasizes the importance of molecular size, geometry, and polarity in determining the suitability of a porous material as an adsorbent for specific adsorbates.
Collapse
Affiliation(s)
- Mostafa Yousefzadeh Borzehandani
- Integrated Chemical BioPhysics Research, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Foundry of Reticular Materials for Sustainability, Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | | | - Emilia Abdulmalek
- Integrated Chemical BioPhysics Research, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Mohd Basyaruddin Abdul Rahman
- Integrated Chemical BioPhysics Research, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Foundry of Reticular Materials for Sustainability, Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Muhammad Alif Mohammad Latif
- Integrated Chemical BioPhysics Research, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Foundry of Reticular Materials for Sustainability, Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Centre of Foundation Studies for Agricultural Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
22
|
Alameri AA, Sanaan Jabbar H, Altimari US, Sultonov MM, Mahdi AB, Solanki R, Shaker Shafik S, Sivaraman R, Aravindhan S, Hadi JM, Mahmood Saleh M, Mustafa YF. Advances in Biosensing of Chemical Food Contaminants Based on the MOFs-Graphene Nanohybrids. Crit Rev Anal Chem 2022; 54:2166-2182. [PMID: 36580293 DOI: 10.1080/10408347.2022.2160923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Food safety issue is becoming an international challenge for human health owing to the presence of contaminants. In this context, reliable, rapid, and sensitive detecting technology is extremely demanded to establish food safety assurance systems. MOFs (Metal-organic frameworks) are a new type of porous crystalline material with particular physical and chemical characteristics presented in food safety requirements. (Bio)sensors driven MOF materials have emerged as a promising alternative and complementary analytical techniques, owing to their great specific area, high porosity, and uniform and fine-tunable pore buildings. Nevertheless, the insufficient stability and electrical conductivity of classical MOFs limit their utilization. Employing graphene-derived nanomaterials with high functional elements as patterns for the MOF materials not only improves the structural instability and poor conductivity but also impedes the restacking and aggregation between graphene layers, thus significantly extending the MOFs application. A review of MOFs-graphene-based material used in food contamination detection is urgently needed for encouraging the advance of this field. Herein, this paper systematically outlines current breakthroughs in MOF-graphene-based nanoprobes, outlines their principles, and illustrates their employments in identifying mycotoxins, heavy metal ions, pathogens, antibiotics, and pesticides, referring to their multiplexing and sensitivity ability. The challenges and limitations of applying MOF-graphene composite for precise and efficient assessment of food were also debated. This paper would maybe offer some inspired concepts for an upcoming study on MOF-based composites in the food security context.
Collapse
Affiliation(s)
- Ameer A Alameri
- Department of Chemistry, Faculty of Science, University of Babylon, Babylon, Iraq
| | - Hijran Sanaan Jabbar
- Department of Chemistry, College of Science, Salahaddin University-Erbil, Iraq
- Department of Medical Laboratory Science, College of Health Sciences, Lebanese French University, Erbil, Kurdistan Region, Iraq
| | | | - Marat Mirzaevich Sultonov
- Jizzakh State Pedagogical Institute, Department of Chemistry and Teaching Methods, Jizzakh, Uzbekistan
| | - Ahmed B Mahdi
- Anesthesia Techniques Department, Al-Mustaqbal University College, Babylon, Iraq
| | - Reena Solanki
- Department of Chemistry, Dr APJ Abdul Kalam University, Indore, India
| | - Shafik Shaker Shafik
- Experimental Nuclear Radiation Group, Scientific Research Center, Al-Ayen University, Nasiriyah, Iraq
| | - R Sivaraman
- Dwaraka Doss Goverdhan Doss Vaishnav College, University of Madras, Chennai, India
| | - Surendar Aravindhan
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Jihad M Hadi
- Nursing Department, College of Nursing, University of Human Development, Kurdistan Regional Government, Sulaimani, Iraq
| | - Marwan Mahmood Saleh
- Department of Biophysics, College of Applied Sciences, University of Anbar, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| |
Collapse
|
23
|
Jayaramulu K, Mukherjee S, Morales DM, Dubal DP, Nanjundan AK, Schneemann A, Masa J, Kment S, Schuhmann W, Otyepka M, Zbořil R, Fischer RA. Graphene-Based Metal-Organic Framework Hybrids for Applications in Catalysis, Environmental, and Energy Technologies. Chem Rev 2022; 122:17241-17338. [PMID: 36318747 PMCID: PMC9801388 DOI: 10.1021/acs.chemrev.2c00270] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Indexed: 11/06/2022]
Abstract
Current energy and environmental challenges demand the development and design of multifunctional porous materials with tunable properties for catalysis, water purification, and energy conversion and storage. Because of their amenability to de novo reticular chemistry, metal-organic frameworks (MOFs) have become key materials in this area. However, their usefulness is often limited by low chemical stability, conductivity and inappropriate pore sizes. Conductive two-dimensional (2D) materials with robust structural skeletons and/or functionalized surfaces can form stabilizing interactions with MOF components, enabling the fabrication of MOF nanocomposites with tunable pore characteristics. Graphene and its functional derivatives are the largest class of 2D materials and possess remarkable compositional versatility, structural diversity, and controllable surface chemistry. Here, we critically review current knowledge concerning the growth, structure, and properties of graphene derivatives, MOFs, and their graphene@MOF composites as well as the associated structure-property-performance relationships. Synthetic strategies for preparing graphene@MOF composites and tuning their properties are also comprehensively reviewed together with their applications in gas storage/separation, water purification, catalysis (organo-, electro-, and photocatalysis), and electrochemical energy storage and conversion. Current challenges in the development of graphene@MOF hybrids and their practical applications are addressed, revealing areas for future investigation. We hope that this review will inspire further exploration of new graphene@MOF hybrids for energy, electronic, biomedical, and photocatalysis applications as well as studies on previously unreported properties of known hybrids to reveal potential "diamonds in the rough".
Collapse
Affiliation(s)
- Kolleboyina Jayaramulu
- Department
of Chemistry, Indian Institute of Technology
Jammu, Jammu
and Kashmir 181221, India
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute (CATRIN), Palacký
University Olomouc, Šlechtitelů 27, Olomouc 783 71, Czech Republic
| | - Soumya Mukherjee
- Inorganic
and Metal−Organic Chemistry, Department of Chemistry and Catalysis
Research Centre, Technical University of
Munich, Garching 85748, Germany
| | - Dulce M. Morales
- Analytical
Chemistry, Center for Electrochemical Sciences (CES), Faculty of Chemistry
and Biochemistry, Ruhr-Universität
Bochum, Universitätsstrasse 150, Bochum D-44780, Germany
- Nachwuchsgruppe
Gestaltung des Sauerstoffentwicklungsmechanismus, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, Berlin 14109, Germany
| | - Deepak P. Dubal
- School
of Chemistry and Physics, Queensland University
of Technology (QUT), 2 George Street, Brisbane, Queensland 4001, Australia
| | - Ashok Kumar Nanjundan
- School
of Chemistry and Physics, Queensland University
of Technology (QUT), 2 George Street, Brisbane, Queensland 4001, Australia
| | - Andreas Schneemann
- Lehrstuhl
für Anorganische Chemie I, Technische
Universität Dresden, Bergstrasse 66, Dresden 01067, Germany
| | - Justus Masa
- Max
Planck Institute for Chemical Energy Conversion, Stiftstrasse 34−36, Mülheim an der Ruhr D-45470, Germany
| | - Stepan Kment
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute (CATRIN), Palacký
University Olomouc, Šlechtitelů 27, Olomouc 783 71, Czech Republic
- Nanotechnology
Centre, CEET, VŠB-Technical University
of Ostrava, 17 Listopadu
2172/15, Ostrava-Poruba 708 00, Czech Republic
| | - Wolfgang Schuhmann
- Analytical
Chemistry, Center for Electrochemical Sciences (CES), Faculty of Chemistry
and Biochemistry, Ruhr-Universität
Bochum, Universitätsstrasse 150, Bochum D-44780, Germany
| | - Michal Otyepka
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute (CATRIN), Palacký
University Olomouc, Šlechtitelů 27, Olomouc 783 71, Czech Republic
- IT4Innovations, VŠB-Technical University of Ostrava, 17 Listopadu 2172/15, Ostrava-Poruba 708 00, Czech Republic
| | - Radek Zbořil
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute (CATRIN), Palacký
University Olomouc, Šlechtitelů 27, Olomouc 783 71, Czech Republic
- Nanotechnology
Centre, CEET, VŠB-Technical University
of Ostrava, 17 Listopadu
2172/15, Ostrava-Poruba 708 00, Czech Republic
| | - Roland A. Fischer
- Inorganic
and Metal−Organic Chemistry, Department of Chemistry and Catalysis
Research Centre, Technical University of
Munich, Garching 85748, Germany
| |
Collapse
|
24
|
Guo C, Lian Y, Huang C, Chen Z. Sustained-release system based on BTA@MOF-5 for self-healing coating application. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
25
|
Yuan H, Li J, Pan L, Li X, Yuan Y, Zhong Q, Wu X, Luo J, Yang ST. Particulate toxicity of metal-organic framework UiO-66 to white rot fungus Phanerochaete chrysosporium. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 247:114275. [PMID: 36356528 DOI: 10.1016/j.ecoenv.2022.114275] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/28/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
Metal-organic frameworks (MOF) are emerging materials with fantastic properties and wide applications. The release of metal ions from MOF materials is usually regarded as the origin of soluble MOF toxicity. However, whether the stable MOF particulates would induce environmental hazards is not clear. Herein, we aimed to reveal the particulate toxicity of MOF materials using the insoluble UiO-66 as the representative MOF and Phanerochaete chrysosporium as the model microorganism. UiO-66 nanoparticles (NPs) were synthesized by solvothermal method and their diameter was 68.4 ± 8.5 nm. UiO-66 NPs were stable in the culture system and the dissolution rate of 500 mg/L group was 0.26% after 14 d incubation. UiO-66 NPs did not affect the fungus growth according to the fresh weight increases and unchanged dry weights. Fungus mycelia kept even at concentrations up to 500 mg/L. Ultrastructural observation showed that UiO-66 NPs did not enter the fungal cells, but slightly destroyed the cell wall. UiO-66 NPs inhibited the laccase activity and promoted the activity of manganese peroxidase. The overall impact on the decomposition activity of P. chrysosporium was low in dye coloration test and sawdust degradation assay. Meaningful oxidative stress was aroused by UiO-66 NPs, as indicated by the decreases of catalase, glutathione, and total superoxide dismutase, and the increases of H2O2. Our results collectively suggested that the MOF particulates could induce mild mechanical damage to fungi and the toxicity was low comparing to other instable MOF materials.
Collapse
Affiliation(s)
- Huahui Yuan
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Juncheng Li
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Lejie Pan
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Xin Li
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Yue Yuan
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Qinmei Zhong
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Xian Wu
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Jin Luo
- Analytical and Metrical Center of Sichuan Province, Chengdu 610023, China.
| | - Sheng-Tao Yang
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China.
| |
Collapse
|
26
|
Shang S, Yang C, Sun M, Tao Z, Hanif A, Gu Q, Shang J. CO2 capture from wet flue gas using transition metal inserted porphyrin-based metal-organic frameworks as efficient adsorbents. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Roohollahi H, Zeinalzadeh H, Kazemian H. Recent Advances in Adsorption and Separation of Methane and Carbon Dioxide Greenhouse Gases Using Metal–Organic Framework-Based Composites. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hossein Roohollahi
- Department of Chemical Engineering, Faculty of Engineering, Vali-e-Asr University of Rafsanjan, Rafsanjan, 7718897111, Iran
| | - Hossein Zeinalzadeh
- Natural Resources and Environmental Studies Institute, University of Northern British Columbia, Prince George, BC V2N 4Z9, Canada
| | - Hossein Kazemian
- Natural Resources and Environmental Studies Institute, University of Northern British Columbia, Prince George, BC V2N 4Z9, Canada
- Northern Analytical Lab Services, University of Northern British Columbia, Prince George, BC V2N 4Z9, Canada
- Department of Chemistry, Faculty of Science and Engineering, University of Northern British Columbia, 3333 University Way, Prince George, BC V2N 4Z9, Canada
| |
Collapse
|
28
|
Jasim SA, Hadi JM, Jalil AT, Catalan Opulencia MJ, Hammid AT, Tohidimoghadam M, Moghaddam-manesh M. Electrospun Ta-MOF/PEBA Nanohybrids and Their CH 4 Adsorption Application. Front Chem 2022; 10:868794. [PMID: 35832463 PMCID: PMC9272026 DOI: 10.3389/fchem.2022.868794] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/09/2022] [Indexed: 12/14/2022] Open
Abstract
For the first time, biocompatible and biodegradable Ta-metal organic framework (MOF)/polyether block amide (PEBA) fibrous polymeric nanostructures were synthesized by ultrasonic and electrospinning routes in this study. The XRD peaks of products were wider, which is due to the significant effect of the ultrasonic and electrospinning methods on the final product. The adsorption/desorption behavior of the nanostructures is similar to that of the third type of isotherm series, which showed mesoporous behavior for the products. The sample has uniform morphology without any evidence of agglomeration. Since the adsorption and trapping of gaseous pollutants are very important, the application of the final Ta-MOF/PEBA fibrous polymeric nanostructures was investigated for CH4 adsorption. In order to achieve the optimal conditions of experiments and also systematic studies of the parameters, fractional factorial design was used. The results showed that by selecting temperature 40°C, time duration 35 min, and pressure 3 bar, the CH4 gas adsorption rate was near 4 mmol/g. Ultrasonic and electrospinning routes as well as immobilization of Ta-MOF in the PEBA fibrous network affect the performance of the final products for CH4 gas adsorption.
Collapse
Affiliation(s)
| | - Jihad M. Hadi
- Department of Medical Laboratory of Science, College of Health Sciences, University of Human Development, Kurdistan Regional Government, Slemani, Iraq
| | | | | | - Ali Thaeer Hammid
- Computer Engineering Techniques Department, Faculty of Information Technology, Imam Ja’afar Al-Sadiq University, Baghdad, Iraq
| | | | - Mohammadreza Moghaddam-manesh
- Petrochemistry and Polymer Research Group, Chemistry and Petrochemistry Research Center, Standard Research Institute, Karaj, Iran
| |
Collapse
|
29
|
Abstract
In this study, new composite materials of montmorillonite, biochar, or aerosil, containing metal–organic frameworks (MOF) were synthesized in situ. Overall, three different MOFs—CuBTC, UTSA-16, and UiO-66-BTEC—were used. Obtained adsorbents were characterized using powder X-ray diffraction, thermogravimetric analysis, nitrogen adsorption porosimetry, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and Fourier transform infrared spectrophotometry. Additionally, the content of metallic and nonmetallic elements was determined to investigate the crystalline structure, surface morphology, thermal stability of the obtained MOF-composites, etc. Cyclic CO2 adsorption analysis was performed using the thermogravimetric approach, modeling adsorption from flue gasses. In our study, the addition of aerosil to CuBTC (CuBTC-A-15) enhanced the sorbed CO2 amount by 90.2% and the addition of biochar (CuBTC-BC-5) increased adsorbed the CO2 amount by 75.5% in comparison to pristine CuBTC obtained in this study. Moreover, the addition of montmorillonite (CuBTC-Mt-15) increased the adsorbed amount of CO2 by 27%. CuBTC-A-15 and CuBTC-BC-5 are considered to be the most perspective adsorbents, capturing 3.7 mmol/g CO2 and showing good stability after 20 adsorption-desorption cycles.
Collapse
|
30
|
Uflyand IE, Naumkina VN, Zhinzhilo VA. Nanocomposites of Graphene Oxide and Metal-Organic Frameworks. RUSS J APPL CHEM+ 2022. [DOI: 10.1134/s107042722111001x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
31
|
Bakhshi A, Saravani H, Rezvani A, Sargazi G, Shahbakhsh M. A new method of Bi-MOF nanostructures production using UAIM procedure for efficient electrocatalytic oxidation of aminophenol: a controllable systematic study. J APPL ELECTROCHEM 2022. [DOI: 10.1007/s10800-021-01664-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
32
|
Abdelmigeed MO, Sadek AH, Ahmed TS. Novel easily separable core–shell Fe 3O 4/PVP/ZIF-8 nanostructure adsorbent: optimization of phosphorus removal from Fosfomycin pharmaceutical wastewater. RSC Adv 2022; 12:12823-12842. [PMID: 35496345 PMCID: PMC9044422 DOI: 10.1039/d2ra00936f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 04/19/2022] [Indexed: 12/16/2022] Open
Abstract
The synthesis of an easily separable novel core–shell Fe3O4/PVP/ZIF-8 nanostructure adsorbent and its usage for Fosfomycin pharmaceutical wastewater treatment.
Collapse
Affiliation(s)
- Mai O. Abdelmigeed
- Chemical Engineering Department, Faculty of Engineering, Cairo University, Giza, 12613, Egypt
| | - Ahmed H. Sadek
- Environmental Engineering Program, Zewail City of Science, Technology and Innovation, 6th October City, Giza, 12578, Egypt
- Sanitary and Environmental Engineering Research Institute, Housing and Building National Research Center (HBRC), Dokki, 11511, Giza, Egypt
| | - Tamer S. Ahmed
- Chemical Engineering Department, Faculty of Engineering, Cairo University, Giza, 12613, Egypt
- Environmental Engineering Program, Zewail City of Science, Technology and Innovation, 6th October City, Giza, 12578, Egypt
| |
Collapse
|
33
|
Pei J, Chen Z, Wang Y, Xiao B, Zhang Z, Cao X, Liu Y. Preparation of phosphorylated iron-doped ZIF-8 and their adsorption application for U(VI). J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2021.122650] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
34
|
Trimethoprim Antibiotic Adsorption from Aqueous Solution onto Eco-Friendly Zr-Metal Organic Framework Material. MATERIALS 2021; 14:ma14247545. [PMID: 34947140 PMCID: PMC8704845 DOI: 10.3390/ma14247545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/22/2021] [Accepted: 11/29/2021] [Indexed: 11/17/2022]
Abstract
The synthesis of Bio-MOF using aspartic acid as an organic linker and water as a solvent was performed to create an environmentally friendly material. The chemical composition, structure, and morphology of the synthesized zirconium Bio-MOF (MIP-202) was evaluated using X-ray diffraction (XRD), energy dispersive X-ray (EDX) spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). The synthesized Bio-MOF was used as an adsorbent for trimethoprim antibiotic as pollutants from an aqueous solution under various operating parameters. The increase in the initial trimethoprim concentration from 2.5 mg/L to 20 mg/L decreased the decontamination efficiency from 77.6% to 35.9% at a solution pH of 7 with 0.5 g/L adsorbent dose after 60 min reaction time. The rise of adsorbent dose from 0.1 g/L to 1.5 g/L increased the removal efficiency from 47.7% to 87.6%. The maximum trimethoprim removal efficiency of 95% was attained at a solution pH of 11. Langmuir and pseudo-second order models described the adsorption process of trimethoprim antibiotic onto zirconium Bio-MOF and the chemo-physical nature of trimethoprim adsorption onto the synthesized zirconium Bio-MOF. Accordingly, it was evident that the prepared zirconium Bio-MOF (MIP-202) is an ecofriendly and efficient adsorbent for antibiotic decontamination from polluted water.
Collapse
|
35
|
Moghadam G, Abdi J, Banisharif F, Khataee A, Kosari M. Nanoarchitecturing hybridized metal-organic framework/graphene nanosheet for removal of an organic pollutant. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117323] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
36
|
Ursueguía D, Díaz E, Ordóñez S. Metal-Organic Frameworks (MOFs) as methane adsorbents: From storage to diluted coal mining streams concentration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 790:148211. [PMID: 34111784 DOI: 10.1016/j.scitotenv.2021.148211] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 05/29/2021] [Accepted: 05/29/2021] [Indexed: 05/25/2023]
Abstract
Ventilation Air Methane emissions (VAM) from coal mines lead to environmental concern because their high global warming potential and the loss of methane resources. VAM upgrading requires pre-concentration processes dealing with high flow rates of very diluted streams (<1% methane). Therefore, methane separation and concentration is technically challenging and has important environmental and safety concerns. Among the alternatives, adsorption on Metal-Organic Frameworks (MOFs) could be an interesting option to methane selective separation, due to its tuneable character and outstanding physical properties. Most of the works devoted to the methane adsorption on MOFs deal with methane storage. Therefore, these works were reviewed to determine the properties governing methane-MOF interactions. In addition, the metallic ions and organic linkers roles have been identified. With these premises, decisive effects in the methane adsorption selectivity in nitrogen/methane lean mixtures have been discussed, since nitrogen is the most concentrated gas in the VAM stream, and it is very similar to methane molecule. In order to fulfill this overview, the effect of other aspects, such as the presence of polar compounds (moisture and carbon dioxide), was also considered. In addition, engineering considerations in the operation of fixed bed adsorption units and the main challenges associated to MOFs as adsorbents were also discussed.
Collapse
Affiliation(s)
- David Ursueguía
- Catalysis, Reactors and Control Research Group (CRC), Department of Chemical and Environmental Engineering, University of Oviedo, Julián Clavería s/n, 33006 Oviedo, Spain
| | - Eva Díaz
- Catalysis, Reactors and Control Research Group (CRC), Department of Chemical and Environmental Engineering, University of Oviedo, Julián Clavería s/n, 33006 Oviedo, Spain
| | - Salvador Ordóñez
- Catalysis, Reactors and Control Research Group (CRC), Department of Chemical and Environmental Engineering, University of Oviedo, Julián Clavería s/n, 33006 Oviedo, Spain.
| |
Collapse
|
37
|
de León AS, de la Mata M, Molina SI. Hybrid hierarchically structured materials combining breath figures and thermal decomposition of KAuCl4. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126766] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
38
|
Ho NAD, Leo CP. A review on the emerging applications of cellulose, cellulose derivatives and nanocellulose in carbon capture. ENVIRONMENTAL RESEARCH 2021; 197:111100. [PMID: 33812871 DOI: 10.1016/j.envres.2021.111100] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/17/2021] [Accepted: 03/26/2021] [Indexed: 06/12/2023]
Abstract
Carbon capture can be implemented at a large scale only if the CO2 selective materials are abundantly available at low cost. Since the sustainable requirement also elevated, the low-cost and biodegradable cellulosic materials are developed into CO2 selective adsorbent and membranes recently. The applications of cellulose, cellulosic derivatives and nanocellulose as CO2 selective adsorbents and membranes are reviewed here. The fabrication and modification strategies are discussed besides comparing their CO2 separation performance. Cellulose nanofibrils (CNFs) and cellulose nanocrystals (CNCs) isolated from cellulose possess a big surface area for mechanical enhancement and a great number of hydroxyl groups for modification. Nanocellulose aerogels with the large surface area were chemically modified to improve their selectivity towards CO2. Even with the reduction of surface area, amino-functionalized nanocellulose aerogels exhibited the satisfactory chemisorption of CO2 with a capacity of more than 2 mmol/g was recorded. Inorganic fillers such as silica, zeolite and MOFs were further incorporated into nanocellulose aerogels to enhance the physisorption of CO2 by increasing the surface area. Although CO2 adsorbents developed from cellulose and cellulose derivatives were less reported, their applications as the building blocks of CO2 separation membranes had been long studied. Cellulose acetate membranes were commercialized for CO2 separation, but their separation performance could be further improved with silane or inorganic filler. CNCs and CNFs enhanced the CO2 selectivity and permeance through polyvinyl alcohol coating on membranes, but only CNF membranes incorporated with MOFs were explored so far. Although some of these membranes surpassed the upper-bound of Robeson plot, their stability should be further investigated.
Collapse
Affiliation(s)
- Ngo Anh Dao Ho
- Faculty of Environment and Labour Safety, Ton Duc Thang University, 19 Nguyen Huu Tho Street, Tan Phong Ward, District 7, Ho Chi Minh City, Vietnam.
| | - C P Leo
- Faculty of Environment and Labour Safety, Ton Duc Thang University, 19 Nguyen Huu Tho Street, Tan Phong Ward, District 7, Ho Chi Minh City, Vietnam; School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300, Nibong Tebal, Penang, Malaysia.
| |
Collapse
|
39
|
Zhang C, Zhang J, Ou K, Liu Y, Guo Z, Chen X, Cheng G, Hu F. ZIF-8-coated CdS popcorn-like photocatalyst with enhanced visible-light-driven photocatalytic activity for degradation of toluene. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126257] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
40
|
Eltaweil AS, Elshishini HM, Ghatass ZF, Elsubruiti GM. Ultra-high adsorption capacity and selective removal of Congo red over aminated graphene oxide modified Mn-doped UiO-66 MOF. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2020.10.084] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
41
|
|
42
|
Pachisia S, Gupta R. Architectural and catalytic aspects of designer materials built using metalloligands of pyridine-2,6-dicarboxamide based ligands. Dalton Trans 2020; 49:14731-14748. [PMID: 33084678 DOI: 10.1039/d0dt03058a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This perspective presents the design, synthesis and crystal structures of a large number of architectures constructed using assorted metalloligands of pyridine-2,6-dicarboxamide based ligands. The metalloligands offered various appended functional groups, whereas design strategies included varying both their position and number. A combination of these parameters resulted in the development of assorted architectures including discrete trinuclear and tetranuclear complexes as well as 1D/2D/3D coordination polymers. The metalloligand strategy not only assisted in the construction of ordered crystalline materials with varied dimensionalities but also judiciously allowed the incorporation of Lewis acidic and redox-active secondary metals in the resultant architectures. As a result, such designer architectures illustrated their noteworthy role both as homogenous and heterogeneous catalysts in different organic transformation reactions.
Collapse
Affiliation(s)
- Sanya Pachisia
- Department of Chemistry, University of Delhi, Delhi - 110007, India.
| | | |
Collapse
|
43
|
Szczęśniak B, Phuriragpitikhon J, Choma J, Jaroniec M. Mechanochemical synthesis of three-component graphene oxide/ordered mesoporous carbon/metal-organic framework composites. J Colloid Interface Sci 2020; 577:163-172. [DOI: 10.1016/j.jcis.2020.05.080] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 11/26/2022]
|
44
|
Fraga TJM, da Motta Sobrinho MA, Carvalho MN, Ghislandi MG. State of the art: synthesis and characterization of functionalized graphene nanomaterials. NANO EXPRESS 2020. [DOI: 10.1088/2632-959x/abb921] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Abstract
Nanomaterials play nowadays a preponderant role in the field of materials science due to the wide range of applications and synergy with other fields of knowledge. Recently, carbonaceous nanomaterials, most notably bi-dimensional graphene (2D graphene), have been highlighted by their application in several areas: electronics, chemistry, medicine, energy and the environment. The search for new materials has led many researchers to develop new routes of synthesis and the expansion of the current means of production, by the anchoring of other nanomaterials on graphene surface, or by modifications of its hexagon sp2 structure, through the doping of heteroatoms. By adding functional groups to the graphene surface, it is possible to increase its affinity with other materials, such as polymers, magnetic nanoparticles and clays, leading to the formation of new nanocomposites. Several covalent and non-covalent functionalization processes, their advantages and disadvantages with respect to their interactions with other chemical species, are discussed in this review. The characterization of these materials is a sensitive topic, since the insertion of functional groups over the graphene basal plane causes changes in its morphology and the so-called chemistry of surface. In this sense, beyond the classical techniques, such as x-ray Diffraction (XRD), Infrared Spectroscopy (FTIR), Raman Spectroscopy and Transmission Electron Microscopy (TEM), modern characterization techniques of graphene-based nanomaterials are discussed, focusing on those more indicated according to the proposed modifications. A significant attention was driven to environmental applications of functionalized graphenes, specifically in the removal of pollutants from wastewaters.
Collapse
|
45
|
Wang L, Wang J, Fan C, Bi C, Zhang X, Zhang D, Wang M, Fan Y. Two novel Co (II)‐coordination polymers as bifunctional materials for efficient photocatalytic degradation of dyes and electrocatalytic water oxidation. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5767] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Lulu Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical EngineeringOcean University of China Qingdao Shandong 266100 China
| | - Jinmiao Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical EngineeringOcean University of China Qingdao Shandong 266100 China
| | - Chuanbin Fan
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical EngineeringOcean University of China Qingdao Shandong 266100 China
| | - Caifeng Bi
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical EngineeringOcean University of China Qingdao Shandong 266100 China
| | - Xia Zhang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical EngineeringOcean University of China Qingdao Shandong 266100 China
| | - Dongmei Zhang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical EngineeringOcean University of China Qingdao Shandong 266100 China
| | - Mei Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical EngineeringOcean University of China Qingdao Shandong 266100 China
| | - Yuhua Fan
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical EngineeringOcean University of China Qingdao Shandong 266100 China
| |
Collapse
|
46
|
Roy S. Tale of Two Layered Semiconductor Catalysts toward Artificial Photosynthesis. ACS APPLIED MATERIALS & INTERFACES 2020; 12:37811-37833. [PMID: 32805975 DOI: 10.1021/acsami.0c11245] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The ever-increasing reliance on nonrenewable fossil fuels due to massive urbanization and industrialization created problems such as depletion of the primary feedstock and raised the atmospheric CO2 levels causing global warming. A smart and promising approach is artificial photosynthesis that photocatalytically valorizes CO2 into high-value chemicals. The inexpensive layered semiconductors like g-C3N4 and rGO or GO have the potential to make the process practically feasible for real applications. The suitable band positions with respect to the reduction potentials coupled with the typical surface properties of these layered semiconductors play a beneficial role in photoreduction of CO2. Additionally, the creation of heterojunction interfaces to achieve the Z-scheme by anchoring g-C3N4 and rGO with another semiconductor with proper band alignment and dispersing plasmonic nano metals to obtain Schottky barriers on the layered surfaces also help retarding the electron-hole recombination and boost up the catalytic efficacy. Extensive exploration happened in recent years toward artificial photosynthesis over these materials, which needs a critical compendium. Surprisingly, in spite of the recent explosion of studies on photocatalytic reduction of CO2 over metal-free semiconductors, there is not a single review on comparing the mechanistic aspects of photoreduction of CO2 over the layered semiconductors g-C3N4 and rGO. This review stands out as a unique documentation, where the mechanism of photocatalytic reduction of CO2 over this set of materials is critically examined in the context of band and surface modifications. An overall conclusion and outlook at the end indicates the need to develop prototypes for artificial photosynthesis with these well-studied semiconducting layered materials to yield solar fuels.
Collapse
Affiliation(s)
- Sounak Roy
- Department of Chemistry, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad 500078, India
| |
Collapse
|
47
|
Liu L, Cui W, Lu C, Zain A, Zhang W, Shen G, Hu S, Qian X. Analyzing the adsorptive behavior of Amoxicillin on four Zr-MOFs nanoparticles: Functional groups dependence of adsorption performance and mechanisms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 268:110630. [PMID: 32510425 DOI: 10.1016/j.jenvman.2020.110630] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/18/2020] [Accepted: 04/18/2020] [Indexed: 06/11/2023]
Abstract
In this study, four functional Zr-MOFs (UiO-66-H, -NH2, -NO2, -Cl) were prepared, characterized (FESEM, XRD, BET, XPS, FT-IR) and compared to remove low-concentration Amoxicillin (AMX) from water. Then UiO-66-NH2 was selected for further experiments due to its highest adsorption capacity (2.3 ± 0.4 mg g-1). The adsorption process followed pseudo-second order, Langmuir and Freundlich models. With pH increasing, deprotonation of functional groups in UiO-66-NH2 and AMX made adsorption interactions variable. The obvious spectra shift of FT-IR/XPS indicated that Lewis acid-base interaction was the main adsorption impetus; meanwhile hydrogen bonding interaction and π-π/n-π (electron-donator-acceptor) EDA interaction should be included. For Lewis acid-base interaction, the strength was controlled by percentage of amine group in UiO-66-NH2, mainly interacting with phenolic hydroxyl group in AMX. Due to changes in charge distribution of functional groups, there existed six kinds of π-π/n-π EDA interactions and thirteen types of hydrogen/π-hydrogen bonding interactions. Additionally, electrostatic interaction and molecular attraction also contributed to the AMX adsorption. Conclusively, analysis of functional groups interactions could help to comprehend adsorption mechanisms more profoundly and exploit functional adsorbents more efficiently.
Collapse
Affiliation(s)
- Lin Liu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Wei Cui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Cong Lu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shangtex Architectural Design Research Institute, Shanghai 200060, China, Shanghai, 200233, China.
| | - Abbas Zain
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Wei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| | - Genxiang Shen
- Shanghai Academy of Environmental Sciences, Shanghai, 200233, China
| | - Shuangqing Hu
- Shanghai Academy of Environmental Sciences, Shanghai, 200233, China
| | - Xiaoyong Qian
- Shanghai Academy of Environmental Sciences, Shanghai, 200233, China
| |
Collapse
|
48
|
Kim KM, Han KW, Kim SI, Bae YS. Simulated moving bed with a product column for improving the separation performance. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.04.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
49
|
Sun Y, Ma M, Jiang L, Sun X, Que M, Tao C, Wu Z. High n-Hexane Adsorption Capacity of Composite Adsorbents Based on MOFs and Graphene with Various Morphologies. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c02128] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yunfei Sun
- College of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, People’s Republic of China
| | - Min Ma
- College of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, People’s Republic of China
| | - Li Jiang
- College of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, People’s Republic of China
| | - Xiaohong Sun
- College of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, People’s Republic of China
| | - Miaoling Que
- College of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, People’s Republic of China
| | - Chongben Tao
- College of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, People’s Republic of China
| | - Zhengtian Wu
- College of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, People’s Republic of China
| |
Collapse
|
50
|
Liu B, Wang X, Liu H, Zhai Y, Li L, Wen H. 2D MOF with electrochemical exfoliated graphene for nonenzymatic glucose sensing: Central metal sites and oxidation potentials. Anal Chim Acta 2020; 1122:9-19. [DOI: 10.1016/j.aca.2020.04.075] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/23/2020] [Accepted: 04/29/2020] [Indexed: 11/29/2022]
|