1
|
An L, Wang S, Liao B, Liu J, Jin X, Cai Y, Li Z, Li Y, Ma J, Li J. Living organisms growth and release immobilized in an assembled dipeptide hydrogel. J Colloid Interface Sci 2025; 686:462-470. [PMID: 39908838 DOI: 10.1016/j.jcis.2025.01.217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/14/2025] [Accepted: 01/24/2025] [Indexed: 02/07/2025]
Abstract
Self-assembled dipeptide hydrogel provides three-dimensional networks through noncovalent interactions for the embedment and the release of multiple biocomponents as well as for the growth of live cells. Here we demonstrate that Caenorhabditis elegans (C. elegans) as model organisms can be immobilized with significant vital signs in N-fluorenylmethoxycarbonyl diphenylalanine (Fmoc-FF) dipeptide hydrogel. With the controllability of dipeptide, assembly conditions for immobilization, growth and imaging of C. elegans were optimized. Compared with conventional anesthesia method, dipeptide hydrogel minimized unintended interferences for long-termed imaging. Particularly, nanofiber-based hydrogel can be diluted in solution as nanofiber dispersions alongside the release of C. elegans. By further analyzing the physiological phenotypes including basic growth, movement and reproduction once released from hydrogel, we confirmed the practicality and biocompatibility of Fmoc-FF hydrogel especially towards repeated immobilization and release of small-scaled living organisms, further broadening the scope of dipeptide hydrogel usage.
Collapse
Affiliation(s)
- Lin An
- School of Life Sciences, Jilin University 130012 Changchun, China
| | - Shuhao Wang
- School of Life Sciences, Jilin University 130012 Changchun, China
| | - Bingyu Liao
- School of Life Sciences, Jilin University 130012 Changchun, China
| | - Jin Liu
- School of Life Sciences, Jilin University 130012 Changchun, China
| | - Xiaoyan Jin
- School of Life Sciences, Jilin University 130012 Changchun, China
| | - Yuyang Cai
- School of Life Sciences, Jilin University 130012 Changchun, China
| | - Zibo Li
- School of Life Sciences, Jilin University 130012 Changchun, China
| | - Yue Li
- School of Life Sciences, Jilin University 130012 Changchun, China.
| | - Junfeng Ma
- School of Life Sciences, Jilin University 130012 Changchun, China.
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences 100190 Beijing, China; University of Chinese Academy of Sciences 100049 Beijing, China.
| |
Collapse
|
2
|
Kichatov B, Korshunov A, Sudakov V. Chemical magnetism - surface force to move motors. Phys Chem Chem Phys 2024; 26:24542-24552. [PMID: 39268693 DOI: 10.1039/d4cp02537g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
If redox reactions occur on the surface of a motor and a current loop arises, then in a non-uniform magnetic field, in addition to the usual magnetic force, such a motor will also be affected by a chemical magnetic force. The chemical magnetic force belongs to the class of surface forces. Here we analyze for the first time the properties of chemical magnets, which consist of three dissimilar metals, as well as the magnetic field generated by a chemical magnet using paramagnetic nanoparticles. The results of the study show that the chemical magnetic force depends on the concentration and type of electrolyte, the pH of the solution, the temperature, and the structure of the chemical magnet. The results obtained can contribute to the creation of devices where chemical energy is directly converted into kinetic energy of motion.
Collapse
Affiliation(s)
- Boris Kichatov
- Semenov Federal Research Central for Chemical Physics, Moscow, Russia.
| | - Alexey Korshunov
- Semenov Federal Research Central for Chemical Physics, Moscow, Russia.
| | - Vladimir Sudakov
- Semenov Federal Research Central for Chemical Physics, Moscow, Russia.
| |
Collapse
|
3
|
Kichatov B, Korshunov A, Sudakov V, Golubkov A, Smovzh D, Sakhapov S, Skirda M. The role of self-diffusiophoresis and reactive force during the propulsion of manganese-based catalytic micromotors. Phys Chem Chem Phys 2024; 26:1612-1615. [PMID: 38165667 DOI: 10.1039/d3cp04689c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
The movement of catalytic micromotors is often accompanied by gas generation. Currently, the prevailing view is that bubbles play a significant role in their movement. Analyzing the movements of catalytic manganese-based micromotors in a solution of hydrogen peroxide, we found that the reactive force cannot play a significant role in their movement, and the main mechanism occurs due to self-diffusiophoresis.
Collapse
Affiliation(s)
- Boris Kichatov
- Lebedev Physical Institute, Russian Academy of Sciences, Moscow 119991, Russia.
| | - Alexey Korshunov
- Lebedev Physical Institute, Russian Academy of Sciences, Moscow 119991, Russia.
| | - Vladimir Sudakov
- Lebedev Physical Institute, Russian Academy of Sciences, Moscow 119991, Russia.
| | - Alexandr Golubkov
- Lebedev Physical Institute, Russian Academy of Sciences, Moscow 119991, Russia.
| | - Dmitriy Smovzh
- Kutateladze Institute of Thermophysics, Russian Academy of Sciences, Novosibirsk 630090, Russia.
- Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Salavat Sakhapov
- Kutateladze Institute of Thermophysics, Russian Academy of Sciences, Novosibirsk 630090, Russia.
| | - Mikhail Skirda
- Kutateladze Institute of Thermophysics, Russian Academy of Sciences, Novosibirsk 630090, Russia.
| |
Collapse
|
4
|
Kichatov B, Korshunov A, Sudakov V, Gubernov V, Golubkov A, Kolobov A, Kiverin A, Chikishev L. Motion of magnetic motors across liquid-liquid interface. J Colloid Interface Sci 2023; 652:1456-1466. [PMID: 37659314 DOI: 10.1016/j.jcis.2023.08.138] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/01/2023] [Accepted: 08/21/2023] [Indexed: 09/04/2023]
Abstract
HYPOTHESIS In a number of applications related to chemical engineering and drug delivery, magnetic nanoparticles should move through a liquid-liquid interface in the presence of surfactant molecules. However, due to the action of capillary forces, this is not always possible. The mechanism of particle motion through the interface essentially depends on the intensity of the Marangoni flow, which is induced on the interface during its deformation. EXPERIMENTS In this paper we study the motion of nanoparticles Fe3O4 through the water-tridecane interface under the action of a nonuniform magnetic field when using different surfactants. FINDINGS If the linear size of the magnetic motor turns out to be less than a certain critical value, then it is not able to move between phases due to the action of capillary forces on the interface. Depending on the type and concentration of the surfactant used, various mechanisms for the motor motion through the liquid-liquid interface can be carried out. In one of them, a liquid phase is transferred through the interface along with a movable motor, while in the other, it is not.
Collapse
Affiliation(s)
- Boris Kichatov
- Lebedev Physical Institute, Russian Academy of Sciences, 119991 Moscow, Russia.
| | - Alexey Korshunov
- Lebedev Physical Institute, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Vladimir Sudakov
- Lebedev Physical Institute, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Vladimir Gubernov
- Lebedev Physical Institute, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexandr Golubkov
- Lebedev Physical Institute, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Andrey Kolobov
- Lebedev Physical Institute, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexey Kiverin
- Joint Institute for High Temperatures, Russian Academy of Sciences, 125412 Moscow, Russia
| | - Leonid Chikishev
- Kutateladze Institute of Thermophysics, Russian Academy of Sciences, 630090 Novosibirsk, Russia
| |
Collapse
|
5
|
van Loo B, Ten Den SA, Araújo-Gomes N, de Jong V, Snabel RR, Schot M, Rivera-Arbeláez JM, Veenstra GJC, Passier R, Kamperman T, Leijten J. Mass production of lumenogenic human embryoid bodies and functional cardiospheres using in-air-generated microcapsules. Nat Commun 2023; 14:6685. [PMID: 37865642 PMCID: PMC10590445 DOI: 10.1038/s41467-023-42297-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/05/2023] [Indexed: 10/23/2023] Open
Abstract
Organoids are engineered 3D miniature tissues that are defined by their organ-like structures, which drive a fundamental understanding of human development. However, current organoid generation methods are associated with low production throughputs and poor control over size and function including due to organoid merging, which limits their clinical and industrial translation. Here, we present a microfluidic platform for the mass production of lumenogenic embryoid bodies and functional cardiospheres. Specifically, we apply triple-jet in-air microfluidics for the ultra-high-throughput generation of hollow, thin-shelled, hydrogel microcapsules that can act as spheroid-forming bioreactors in a cytocompatible, oil-free, surfactant-free, and size-controlled manner. Uniquely, we show that microcapsules generated by in-air microfluidics provide a lumenogenic microenvironment with near 100% efficient cavitation of spheroids. We demonstrate that upon chemical stimulation, human pluripotent stem cell-derived spheroids undergo cardiomyogenic differentiation, effectively resulting in the mass production of homogeneous and functional cardiospheres that are responsive to external electrical stimulation. These findings drive clinical and industrial adaption of stem cell technology in tissue engineering and drug testing.
Collapse
Affiliation(s)
- Bas van Loo
- University of Twente, TechMed Centre, Department of Developmental BioEngineering, Enschede, The Netherlands
| | - Simone A Ten Den
- University of Twente, TechMed Centre, Department of Applied Stem Cell Technology, Enschede, The Netherlands
| | - Nuno Araújo-Gomes
- University of Twente, TechMed Centre, Department of Developmental BioEngineering, Enschede, The Netherlands
| | - Vincent de Jong
- University of Twente, TechMed Centre, Department of Developmental BioEngineering, Enschede, The Netherlands
| | - Rebecca R Snabel
- Radboud University, Radboud Institute for Molecular Life Sciences, Faculty of Science, Department of Molecular Developmental Biology, Nijmegen, The Netherlands
| | - Maik Schot
- University of Twente, TechMed Centre, Department of Developmental BioEngineering, Enschede, The Netherlands
| | - José M Rivera-Arbeláez
- University of Twente, TechMed Centre, Department of Applied Stem Cell Technology, Enschede, The Netherlands
- University of Twente, TechMed Centre, Max Planck Center for Complex Fluid Dynamics, BIOS Lab-on-a-Chip Group, Enschede, The Netherlands
| | - Gert Jan C Veenstra
- Radboud University, Radboud Institute for Molecular Life Sciences, Faculty of Science, Department of Molecular Developmental Biology, Nijmegen, The Netherlands
| | - Robert Passier
- University of Twente, TechMed Centre, Department of Applied Stem Cell Technology, Enschede, The Netherlands
- Leiden University Medical Centre, Department of Anatomy and Embryology, Leiden, Netherlands
| | - Tom Kamperman
- University of Twente, TechMed Centre, Department of Developmental BioEngineering, Enschede, The Netherlands
- IamFluidics B.V., De Veldmaat 17, 7522NM, Enschede, The Netherlands
| | - Jeroen Leijten
- University of Twente, TechMed Centre, Department of Developmental BioEngineering, Enschede, The Netherlands.
| |
Collapse
|
6
|
Sak K. Could flavonoid aglycones prevent the absorption of flavonoid glycosides by inhibiting sodium-dependent glucose transporter-1 in the small intestine? EXPLORATION OF DRUG SCIENCE 2023:287-291. [DOI: 10.37349/eds.2023.00019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/07/2023] [Indexed: 08/26/2024]
Abstract
Flavonoids present a large group of natural polyphenols with numerous important health benefits for preventing and treating a diverse variety of pathological conditions. However, the actual therapeutic use of these phytochemicals is impeded by their low oral bioavailability. In this commentary article, an interesting paradox is presented: while the ingested flavonoid glycosides can be absorbed by means of sodium-dependent glucose transporters (SGLTs; SGLT1) located in the brush border membrane facing the lumen of the small intestine, certain flavonoid aglycones are able to inhibit these shuttle proteins. It is expected that avoiding the co-intake of such SGLT1 inhibitors concomitantly with flavonoid-rich foods might provide a new option for enhancing the oral bioavailability of flavonoids, thereby preventing the transport of unabsorbed compounds to the large intestine and conversion into catabolites by the colonic microbiota. Altogether, the administration of flavonoids in appropriate combinations is highlighted for getting the maximal health benefits from consuming these bioactive compounds.
Collapse
|
7
|
Demina PA, Sindeeva OA, Abramova AM, Saveleva MS, Sukhorukov GB, Goryacheva IY. Fluorescent polymer markers photoconvertible with a 532 nm laser for individual cell labeling. JOURNAL OF BIOPHOTONICS 2023; 16:e202200379. [PMID: 36726223 DOI: 10.1002/jbio.202200379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 06/07/2023]
Abstract
Fluorescent photoconvertible materials and molecules have been successfully exploited as bioimaging markers and cell trackers. Recently, the novel fluorescent photoconvertible polymer markers have been developed that allow the long-term tracking of individual labeled cells. However, it is still necessary to study the functionality of this type of fluorescent labels for various operating conditions, in particular for commonly used discrete wavelength lasers. In this article, the photoconversion of fluorescent polymer labels with both pulsed and continuous-wave lasers with 532 nm-irradiation wavelength, and under different laser power densities were studied. The photoconversion process was described and its possible mechanism was proposed. The peculiarities of fluorescent polymer capsules performance as an aqueous suspension and as a single capsule were described. We performed the successful nondestructivity marker photoconversion inside RAW 264.7 monocyte/macrophage cells under continuous-wave laser with 532 nm-irradiation wavelength, showing prospects of these fluorescent markers for long-term live cell labeling.
Collapse
Affiliation(s)
- P A Demina
- Science Medical Center, Saratov State University, Saratov, Russia
| | - O A Sindeeva
- A.V. Zelmann Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - A M Abramova
- Science Medical Center, Saratov State University, Saratov, Russia
| | - M S Saveleva
- Science Medical Center, Saratov State University, Saratov, Russia
| | - G B Sukhorukov
- A.V. Zelmann Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow, Russia
- School of Engineering and Materials Science, Queen Mary University of London, London, UK
| | - I Y Goryacheva
- Science Medical Center, Saratov State University, Saratov, Russia
| |
Collapse
|
8
|
Liao Z, Zoumhani O, Boutry CM. Recent Advances in Magnetic Polymer Composites for BioMEMS: A Review. MATERIALS (BASEL, SWITZERLAND) 2023; 16:3802. [PMID: 37241429 PMCID: PMC10223786 DOI: 10.3390/ma16103802] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/03/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023]
Abstract
The objective of this review is to investigate the potential of functionalized magnetic polymer composites for use in electromagnetic micro-electro-mechanical systems (MEMS) for biomedical applications. The properties that make magnetic polymer composites particularly interesting for application in the biomedical field are their biocompatibility, their adjustable mechanical, chemical, and magnetic properties, as well as their manufacturing versatility, e.g., by 3D printing or by integration in cleanroom microfabrication processes, which makes them accessible for large-scale production to reach the general public. The review first examines recent advancements in magnetic polymer composites that possess unique features such as self-healing capabilities, shape-memory, and biodegradability. This analysis includes an exploration of the materials and fabrication processes involved in the production of these composites, as well as their potential applications. Subsequently, the review focuses on electromagnetic MEMS for biomedical applications (bioMEMS), including microactuators, micropumps, miniaturized drug delivery systems, microvalves, micromixers, and sensors. The analysis encompasses an examination of the materials and manufacturing processes involved and the specific fields of application for each of these biomedical MEMS devices. Finally, the review discusses missed opportunities and possible synergies in the development of next-generation composite materials and bioMEMS sensors and actuators based on magnetic polymer composites.
Collapse
Affiliation(s)
| | | | - Clementine M. Boutry
- Department of Microelectronics, Delft University of Technology, 2628 CD Delft, The Netherlands
| |
Collapse
|
9
|
Uthumansha U, Prabahar K, Gajapathy DB, El-Sherbiny M, Elsherbiny N, Qushawy M. Optimization and In Vitro Characterization of Telmisartan Loaded Sodium Alginate Beads and Its In Vivo Efficacy Investigation in Hypertensive Induced Animal Model. Pharmaceutics 2023; 15:pharmaceutics15020709. [PMID: 36840031 PMCID: PMC9959044 DOI: 10.3390/pharmaceutics15020709] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND Antihypertensive drug telmisartan (TEL) belongs to BCS class II, which is characterized by low water solubility and, consequently, low oral bioavailability. Gastroretentive systems may overcome the problems associated with low solubility of TEL and incomplete absorption by localizing the drug release in the stomach. The purpose of this study was to prepare TEL-loaded, oil-entrapped, floating alginate beads with the intent of enhancing the oral bioavailability of TEL for the treatment of hypertension. METHODS For the formulation and optimization of seventeen formulations of TEL-loaded oil-entrapped floating alginate beads, a central composite design was utilized. The concentration of sodium alginate (X1), the concentration of cross-linker (X2), and the concentration of sesame oil (X3) served as independent variables, whereas the entrapment efficiency (Y1), in vitro buoyancy (Y2), and drug release Q6h (Y3) served as dependent variables. Using the emulsion gelation method and calcium chloride as the cross-linking agent, different formulations of TEL alginate beads were produced. All formulations were evaluated for their entrapment efficiency percentage, in vitro buoyancy, and in vitro drug release. The optimal formulation of TEL alginate beads was prepared with and without oil and evaluated for entrapment efficiency percentage, in vitro buoyancy, swelling ratio, average size, and in vitro drug release. Using scanning electron microscopes, the surface morphology was determined. Using IR spectroscopy, the compatibility between the ingredients was determined. In vivo evaluation of the optimized formulation in comparison to the free TEL was done in hypertension-induced rats, and the systolic blood pressure and all pharmacokinetic parameters were measured. RESULTS The prepared beads exhibited a high entrapment efficiency percentage, in vitro buoyancy, and prolonged drug release. TEL was compatible with other ingredients, as approved by IR spectroscopy. The prepared TEL beads were spherical, as shown by the SEM. The relative bioavailability of TEL-loaded oil-entrapped beads was 222.52%, which was higher than that of the pure TEL suspension. The prepared TEL beads formulation exhibited a higher antihypertensive effect for a prolonged time compared to pure TEL suspension. CONCLUSIONS It can be concluded that this innovative delivery method of TEL-loaded oil-entrapped beads is a promising tool for enhancing drug solubility and, thus, oral bioavailability and therapeutic efficacy, resulting in enhanced patient compliance. Furthermore, the in vivo study confirmed the formulation's extended anti-hypertensive activity in animal models.
Collapse
Affiliation(s)
- Ubaidulla Uthumansha
- Department of Pharmaceutics, Crescent School of Pharmacy, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai 600048, India
- Correspondence: or ; Tel.: +91-9677781834
| | - Kousalya Prabahar
- Department of Pharmacy Practice, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | | | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, Almaarefa University, Riyadh 13713, Saudi Arabia
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura 35516, Dakahlia, Egypt
| | - Nehal Elsherbiny
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Dakahlia, Egypt
| | - Mona Qushawy
- Department of Pharmaceutics, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
- Department of Pharmaceutics, Faculty of Pharmacy, Sinai University, Alarish 45511, North Sinai, Egypt
| |
Collapse
|
10
|
Li J, Parakhonskiy BV, Skirtach AG. A decade of developing applications exploiting the properties of polyelectrolyte multilayer capsules. Chem Commun (Camb) 2023; 59:807-835. [PMID: 36472384 DOI: 10.1039/d2cc04806j] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Transferring the layer-by-layer (LbL) coating approach from planar surfaces to spherical templates and subsequently dissolving these templates leads to the fabrication of polyelectrolyte multilayer capsules. The versatility of the coatings of capsules and their flexibility upon bringing in virtually any material into the coatings has quickly drawn substantial attention. Here, we provide an overview of the main developments in this field, highlighting the trends in the last decade. In the beginning, various methods of encapsulation and release are discussed followed by a broad range of applications, which were developed and explored. We also outline the current trends, where the range of applications is continuing to grow, including addition of whole new and different application areas.
Collapse
Affiliation(s)
- Jie Li
- Nano-Biotechnology Laboratory, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| | - Bogdan V Parakhonskiy
- Nano-Biotechnology Laboratory, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| | - Andre G Skirtach
- Nano-Biotechnology Laboratory, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
11
|
Tashish AY, Shahba AAW, Alanazi FK, Kazi M. Adsorbent Precoating by Lyophilization: A Novel Green Solvent Technique to Enhance Cinnarizine Release from Solid Self-Nanoemulsifying Drug Delivery Systems (S-SNEDDS). Pharmaceutics 2022; 15:pharmaceutics15010134. [PMID: 36678766 PMCID: PMC9863206 DOI: 10.3390/pharmaceutics15010134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Solidification by high surface area adsorbents has been associated with major obstacles in drug release. Accordingly, new approaches are highly demanded to solve these limitations. The current study proposes to improve the drug release of solidified self-nanoemulsifying drug delivery systems (SNEDDS) to present dual enhancement of drug solubilization and formulation stabilization, using cinnarizine (CN) as a model drug. METHODS The solidification process involved the precoating of adsorbent by lyophilization of the aqueous dispersion of polymer-adsorbent mixture using water as a green solvent. Then, the precoated adsorbent was mixed with drug-loaded liquid SNEDDS to prepare solid SNEDDS. The solid-state characterization of developed cured S-SNEDDS was done using X-ray powder diffraction (XRD) and differential scanning calorimetry (DSC). In vitro dissolution studies were conducted to investigate CN SNEDDS performance at pH 1.2 and 6.8. The solidified formulations were characterized by Brunauer-Emmett-Teller (BET), powder flow properties, scanning electron microscopy, and droplet size analysis. In addition, the optimized formulations were evaluated through in vitro lipolysis and stability studies. RESULTS The cured solid SNEDDS formula by PVP k30 showed acceptable self-emulsification and powder flow properties. XRD and DSC revealed that CN was successfully amorphized into drug-loaded S-SNEDDS. The uncured solid SNEDDS experienced negligible drug release (only 5% drug release after 2 h), while the cured S-SNEDDS showed up to 12-fold enhancement of total drug release (at 2 h) compared to the uncured counterpart. However, the cured S- SNEDDS showed considerable CN degradation and decrease in drug release upon storage in accelerated conditions. CONCLUSIONS The implemented solidification approach offers a promising technique to minimize the adverse effect of adsorbent on drug release and accomplish improved drug release from solidified SNEDDS.
Collapse
Affiliation(s)
- Ahmad Yousef Tashish
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
- Kayyali Research Chair for Pharmaceutical Industries, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmad Abdul-Wahhab Shahba
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
- Correspondence: (A.A.-W.S.); (M.K.); Tel.: +966-(11)-4677372(M.K.); Fax: +966-(11)-4676295 (M.K.)
| | - Fars Kaed Alanazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
- Kayyali Research Chair for Pharmaceutical Industries, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohsin Kazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
- Correspondence: (A.A.-W.S.); (M.K.); Tel.: +966-(11)-4677372(M.K.); Fax: +966-(11)-4676295 (M.K.)
| |
Collapse
|
12
|
Shestakova LN, Lyubova TS, Lermontova SA, Belotelov AO, Peskova NN, Klapshina LG, Balalaeva IV, Shilyagina NY. Comparative Analysis of Tetra(2-naphthyl)tetracyano-porphyrazine and Its Iron Complex as Photosensitizers for Anticancer Photodynamic Therapy. Pharmaceutics 2022; 14:pharmaceutics14122655. [PMID: 36559148 PMCID: PMC9786040 DOI: 10.3390/pharmaceutics14122655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/21/2022] [Accepted: 11/26/2022] [Indexed: 12/03/2022] Open
Abstract
Photodynamic therapy (PDT) is a rapidly developing modality of primary and adjuvant anticancer treatment. The main trends today are the search for new effective photodynamic agents and the creation of targeted delivery systems with the function of controlling the release of the agent in the tumor. Recently, the new group of cyanoarylporphyrazine dyes was reported, which combine the properties of photosensitizers and sensors of the local microenvironment. Such unique characteristics allow the release of the photosensitizer from the transport carrier to be assessed in real time in vivo. The aim of the present work was to compare the photophysical and photobiological properties of tetra(2-naphthyl)tetracyanoporphyrazine and its newly synthesized Fe(II) complex. We have shown that the chelation of the Fe(II) cation with the porphyrazine macrocycle leads to a decrease in molar extinction and an increase in the quantum yield of fluorescence and photostability. We demonstrate that the iron cation significantly affects the rate of dye accumulation in cells, the dark toxicity and photodynamic activity, and the direction of the changes depends on the particular cell line. However, in all the cases, the photodynamic index of a metal complex was higher than that of a metal-free base. In general, both of the compounds were found to be very promising for PDT, including for the use with transport delivery systems, and can be recommended for further in vivo studies.
Collapse
Affiliation(s)
- Lydia N. Shestakova
- Institute of Biology and Biomedicine, Lobachevsky State University, Gagarin Ave., 23, 603950 Nizhny Novgorod, Russia
| | - Tatyana S. Lyubova
- Razuvaev Institute of Organomettalic Chemistry, Russian Academy of Sciences, St. Tropinina, 49, 603137 Nizhny Novgorod, Russia
| | - Svetlana A. Lermontova
- Razuvaev Institute of Organomettalic Chemistry, Russian Academy of Sciences, St. Tropinina, 49, 603137 Nizhny Novgorod, Russia
| | - Artem O. Belotelov
- Institute of Biology and Biomedicine, Lobachevsky State University, Gagarin Ave., 23, 603950 Nizhny Novgorod, Russia
| | - Nina N. Peskova
- Institute of Biology and Biomedicine, Lobachevsky State University, Gagarin Ave., 23, 603950 Nizhny Novgorod, Russia
| | - Larisa G. Klapshina
- Razuvaev Institute of Organomettalic Chemistry, Russian Academy of Sciences, St. Tropinina, 49, 603137 Nizhny Novgorod, Russia
| | - Irina V. Balalaeva
- Institute of Biology and Biomedicine, Lobachevsky State University, Gagarin Ave., 23, 603950 Nizhny Novgorod, Russia
| | - Natalia Y. Shilyagina
- Institute of Biology and Biomedicine, Lobachevsky State University, Gagarin Ave., 23, 603950 Nizhny Novgorod, Russia
- Correspondence:
| |
Collapse
|
13
|
Ahmed TA, Alotaibi HA, Almehmady AM, Safo MK, El-Say KM. Influences of Glimepiride Self-Nanoemulsifying Drug Delivery System Loaded Liquisolid Tablets on the Hypoglycemic Activity and Pancreatic Histopathological Changes in Streptozotocin-Induced Hyperglycemic Rats. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12223966. [PMID: 36432252 PMCID: PMC9695338 DOI: 10.3390/nano12223966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 05/14/2023]
Abstract
The development of an oral anti-diabetic medication characterized by enhanced hypoglycemic activity is in high demand. The goal was to study the hypoglycemic activity and pancreatic histopathology after the black-seed-based self-nanoemulsifying drug delivery system (SNEDDS) loaded with glimepiride liquisolid tablets to diabetic rats. The solubility of glimepiride in various vehicles was investigated. An optimization SNEDDS formulation was developed using a mixture of the experimental design approach. Box-Behnken design (BBD) was used to develop glimepiride liquisolid tablets utilizing Avicel PH 101 and Neusilin as a carrier mixture and FujiSil as a coating material. The quality attributes of the prepared tablets were assessed. Following the administration of the optimized tablets to diabetic rats, the pharmacodynamics and histopathological changes were investigated and compared to a commercial drug product. Results revealed that the optimized SNEDDS formulation that contains 15.43% w/w black seed oil, 40% w/w Tween 80, and 44.57% w/w Polyethylene glycol 400 showed an average droplet size of 34.64 ± 2.01 nm and a drug load of 36.67 ± 3.13 mg/mL. The optimized tablet formulation contained 0.31% Avicel in the carrier mixture, a 14.99 excipient ratio, and 8% superdisintegrant. Pre- and post-compression properties were satisfactory, and the optimized glimepiride liquisolid tablet showed a two-fold increase in dissolution. The optimized tablet demonstrated superior pharmacodynamics. The pancreatic tissues of the group treated with the optimized tablet displayed normal histological structure. The obtained data offered a commercially viable alternative for manufacturing solid dosage forms containing water-insoluble drugs, but additional clinical research is required.
Collapse
Affiliation(s)
- Tarek A. Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: ; Tel.: +966-2-640-0000 (ext. 22250)
| | - Hanadi A. Alotaibi
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Alshaimaa M. Almehmady
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Martin K. Safo
- Department of Medicinal Chemistry, The Institute for Structural Biology, Drug Discovery and Development, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Khalid M. El-Say
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
14
|
Yang J, Chen Y, Zhao L, Zhang J, Luo H. Constructions and Properties of Physically Cross-Linked Hydrogels Based on Natural Polymers. POLYM REV 2022. [DOI: 10.1080/15583724.2022.2137525] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Affiliation(s)
- Jueying Yang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
| | - Yu Chen
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, China
- Sports & Medicine Integration Research Center (SMIRC), Capital University of Physical Education and Sports, Beijing, China
| | - Lin Zhao
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
| | - Jinghua Zhang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
| | - Hang Luo
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
15
|
Current advanced drug delivery systems: Challenges and potentialities. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Nifontova G, Tsoi T, Karaulov A, Nabiev I, Sukhanova A. Structure-function relationships in polymeric multilayer capsules designed for cancer drug delivery. Biomater Sci 2022; 10:5092-5115. [PMID: 35894444 DOI: 10.1039/d2bm00829g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The targeted delivery of cancer drugs to tumor-specific molecular targets represents a major challenge in modern personalized cancer medicine. Engineering of micron and submicron polymeric multilayer capsules allows the obtaining of multifunctional theranostic systems serving as controllable stimulus-responsive tools with a high clinical potential to be used in cancer therapy and detection. The functionalities of such theranostic systems are determined by the design and structural properties of the capsules. This review (1) describes the current issues in designing cancer cell-targeting polymeric multilayer capsules, (2) analyzes the effects of the interactions of the capsules with the cellular and molecular constituents of biological fluids, and (3) presents the key structural parameters determining the effectiveness of capsule targeting. The influence of the morphological and physicochemical parameters and the origin of the structural components and surface ligands on the functional activity of polymeric multilayer capsules at the molecular, cellular, and whole-body levels are summarized. The basic structural and functional principles determining the future trends of theranostic capsule development are established and discussed.
Collapse
Affiliation(s)
- Galina Nifontova
- Laboratoire de Recherche en Nanosciences, LRN-EA4682, Université de Reims Champagne-Ardenne, 51100 Reims, France.
| | - Tatiana Tsoi
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow, Russia
| | - Alexander Karaulov
- Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia
| | - Igor Nabiev
- Laboratoire de Recherche en Nanosciences, LRN-EA4682, Université de Reims Champagne-Ardenne, 51100 Reims, France. .,National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow, Russia.,Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia
| | - Alyona Sukhanova
- Laboratoire de Recherche en Nanosciences, LRN-EA4682, Université de Reims Champagne-Ardenne, 51100 Reims, France.
| |
Collapse
|
17
|
Triple-layered encapsulation through direct droplet impact. J Colloid Interface Sci 2022; 615:887-896. [DOI: 10.1016/j.jcis.2022.02.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 11/21/2022]
|
18
|
Guesmi A, Ben Hamadi N. Ultrasonic Preparation and Reactivity of 4,5-dihydro-1H-pyrazole
Derivatives. LETT ORG CHEM 2022. [DOI: 10.2174/1570178617666210108113916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
:
The regiospecific synthesis of 1H-pyrazole derivatives has been accomplished through the 1,3-dipolar cycloaddition of aryldiazoalkane to but-3-en-2-one. A convenient and inexpensive ultrasound-assisted preparation of cyclopropenes
in good yields has been realized. The effect of solvent, ultrasonic power, frequency, reaction time and temperature of cyclopropenation were studied and the order of yield indicates Ultrasound, 25 KHz > Ultrasound, 40 KHz > conventional
synthesis method.
Collapse
Affiliation(s)
- Ahlem Guesmi
- Department of Chemistry, College of Science, IMSIU (Imam Mohammad Ibn Saud Islamic University), Riyadh 11623,
kingdom of Saudi Arabia
| | - Naoufel Ben Hamadi
- Department of Chemistry, College of Science, IMSIU (Imam Mohammad Ibn Saud Islamic University), Riyadh 11623,
kingdom of Saudi Arabia
| |
Collapse
|
19
|
Ultrasound in cellulose-based hydrogel for biomedical use: From extraction to preparation. Colloids Surf B Biointerfaces 2022; 212:112368. [PMID: 35114437 DOI: 10.1016/j.colsurfb.2022.112368] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/12/2022] [Accepted: 01/23/2022] [Indexed: 02/07/2023]
Abstract
As the most abundant natural polymer on the pl anet, cellulose has a wide range of applications in the biomedical field. Cellulose-based hydrogels further expand the applications of this class of biomaterials. However, a number of publications and technical reports are mainly about traditional preparation methods. Sonochemistry offers a simple and green route to material synthesis with the biomedical application of ultrasound. The tiny acoustic bubbles, produced by the propagating sound wave, enclose an incredible facility where matter interact among at energy as high as 13 eV to spark extraordinary chemical reactions. Ultrasonication not only improves the efficiency of cellulose extraction from raw materials, but also influences the hydrogel preparation process. The primary objective of this article is to review the literature concerning the biomedical cellulose-based hydrogel prepared via sonochemistry and application of ultrasound for hydrogel. An innovated category of recent generations of hydrogel materials prepared via ultrasound was also presented in some details.
Collapse
|
20
|
Rogovskii V. Polyphenols as the Potential Disease-modifying Therapy in Cancer. Anticancer Agents Med Chem 2022; 22:2385-2392. [PMID: 35105297 DOI: 10.2174/1871520622666220201105204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/02/2021] [Accepted: 12/08/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Disease-modifying therapy in cancer can be defined as long-term treatment that has a beneficial outcome on the course of cancer, affecting the underlying pathophysiology. The anticancer potential of polyphenols is widely studied. However, there is a significant gap between experimental data obtained in vitro and in vivo and the current polyphenol role in cancer therapy. OBJECTIVE In this article, the reason for this inconsistency is discussed, which might be in the design of polyphenols clinical trials. The approach of long-term polyphenol disease-modifying therapy in cancer is encouraged. CONCLUSION As the physiologic concentrations of polyphenols are not sufficient for reaching the cytotoxic levels, the immune-modulatory effects and effects on cancer intrinsic signal transduction pathways should be considered in polyphenol clinical trials design. Such effects apparently can not cause the rapid regression of the disease. However, more likely, they can modulate the course of the disease, leading to favorable changes in the patient's condition in case of long-term treatment that can be considered to be cancer disease modification.
Collapse
Affiliation(s)
- Vladimir Rogovskii
- Department of molecular pharmacology and radiobiology, Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
21
|
Güzel-Akdemir Ö, Demir-Yazıcı K, Vullo D, Supuran CT, Akdemir A. New Pyridinium Salt Derivatives of 2-(Hydrazinocarbonyl)-3-phenyl-1H-indole-5- sulfonamide as Selective Inhibitors of Tumour-Related Human Carbonic Anhydrase Isoforms IX and XII. Anticancer Agents Med Chem 2022; 22:2637-2646. [PMID: 35135455 DOI: 10.2174/1871520622666220207092123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/24/2021] [Accepted: 12/20/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The positively charged membrane impermeant sulfonamides were evaluated as a remarkable class of carbonic anhydrase inhibitors (CAIs) previously. Without affecting the human carbonic anhydrase (hCA), cytosolic isoforms hCA I and II, inhibition of two membrane-associated isoforms hCA IX and XII especially overexpressed in hypoxic tumour cells, makes the pyridinium salt derivatives potent promising therapeutic agents. OBJECTIVE A novel series of tri, tetra, and cyclo-substituted pyridinium salt derivatives of the lead compound 2- (hydrazinocarbonyl)-3-phenyl-1H-indole-5-sulfonamide has been prepared by using sixteen different pyrylium salts, for the search of selective inhibitors of transmembrane tumour-associated human carbonic anhydrase hCA IX and XII. METHODS Molecular modeling studies were carried out to understand and rationalize the in vitro enzyme inhibition data. RESULTS Six of the new compounds showed good inhibitory profiles with low nanomolar range (< 100 nM) against hCA IX/XII, and compound 5 showed excellent potency with Ki values lower than 10 nM. In addition, molecular modelling studies have presented the possible binding modes of the ligands. CONCLUSION Most of the compounds displayed potent inhibitory activity against the tumor-associated hCA IX and XII in the low nanomolar range and selectivity over the off-targeted isoforms hCA I and II. Due to their cationic structure and membrane-impermeant behavior, it is also expected to maximize the selectivity over cytosolic isoforms hCA I/II while inhibiting tumor overexpressed isoforms hCA XI/XII of new compounds in in vivo conditions.
Collapse
Affiliation(s)
- Özlen Güzel-Akdemir
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | - Kübra Demir-Yazıcı
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | - Daniela Vullo
- Neurofarba Department, Section of Pharmaceutical and Nutriceutical Sciences, Università degli Studi di Firenze, Florence, Italy
| | - Claudiu T Supuran
- Neurofarba Department, Section of Pharmaceutical and Nutriceutical Sciences, Università degli Studi di Firenze, Florence, Italy
| | - Atilla Akdemir
- Computer-aided Drug Discovery Laboratory, Department of Pharmacology, Faculty of Pharmacy, Bezmialem Vakif University, Istanbul, Turkey
| |
Collapse
|
22
|
Llacer-Wintle J, Rivas-Dapena A, Chen XZ, Pellicer E, Nelson BJ, Puigmartí-Luis J, Pané S. Biodegradable Small-Scale Swimmers for Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2102049. [PMID: 34480388 DOI: 10.1002/adma.202102049] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/14/2021] [Indexed: 06/13/2023]
Abstract
Most forms of biomatter are ephemeral, which means they transform or deteriorate after a certain time. From this perspective, implantable healthcare devices designed for temporary treatments should exhibit the ability to degrade and either blend in with healthy tissues, or be cleared from the body with minimal disruption after accomplishing their designated tasks. This topic is currently being investigated in the field of biomedical micro- and nanoswimmers. These tiny devices have the ability to move through fluids by converting physical or chemical energy into motion. Several architectures of these devices have been designed to mimic the motion strategies of nature's motile microorganisms and cells. Due to their motion abilities, these devices have been proposed as minimally invasive tools for precision healthcare applications. Hence, a natural progression in this field is to produce motile structures that can adopt, or even surpass, similar transient features as biological systems. The fate of small-scale swimmers after accomplishing their therapeutic mission is critical for the successful translation of small-scale swimmers' technologies into clinical applications. In this review, recent research efforts are summarized on the topic of biodegradable micro- and nanoswimmers for biomedical applications, with a focus on targeted therapeutic delivery.
Collapse
Affiliation(s)
- Joaquin Llacer-Wintle
- Multi-Scale Robotics Lab (MSRL), Institute of Robotics and Intelligent Systems (IRIS), ETH Zurich, Zurich, CH-8092, Switzerland
| | - Antón Rivas-Dapena
- Multi-Scale Robotics Lab (MSRL), Institute of Robotics and Intelligent Systems (IRIS), ETH Zurich, Zurich, CH-8092, Switzerland
| | - Xiang-Zhong Chen
- Multi-Scale Robotics Lab (MSRL), Institute of Robotics and Intelligent Systems (IRIS), ETH Zurich, Zurich, CH-8092, Switzerland
| | - Eva Pellicer
- Departament de Física, Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Barcelona, 08193, Spain
| | - Bradley J Nelson
- Multi-Scale Robotics Lab (MSRL), Institute of Robotics and Intelligent Systems (IRIS), ETH Zurich, Zurich, CH-8092, Switzerland
| | - Josep Puigmartí-Luis
- Departament de Ciència dels Materials i Química Física, Institut de Química Teòrica I Computacional, Barcelona, 08028, Spain
- ICREA, Pg. Lluís Companys 23, Barcelona, 0 8010, Spain
| | - Salvador Pané
- Multi-Scale Robotics Lab (MSRL), Institute of Robotics and Intelligent Systems (IRIS), ETH Zurich, Zurich, CH-8092, Switzerland
| |
Collapse
|
23
|
Ghaderpour A, Hoseinkhani Z, Yarani R, Mohammadiani S, Amiri F, Mansouri K. Altering the characterization of nanofibers by changing the electrospinning parameters and their application in tissue engineering, drug delivery, and gene delivery systems. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5242] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Amir Ghaderpour
- Medical Biology Research Center Health Technology Institute, Kermanshah University of Medical Sciences Kermanshah Iran
- Biology Department, Urmia Branch Islamic Azad University Urmia Iran
| | - Zohreh Hoseinkhani
- Medical Biology Research Center Health Technology Institute, Kermanshah University of Medical Sciences Kermanshah Iran
| | - Reza Yarani
- Translational Type 1 Diabetes Research, Department of Clinical Research Steno Diabetes Center Copenhagen Gentofte Denmark
| | | | - Farshid Amiri
- Medical Biology Research Center Health Technology Institute, Kermanshah University of Medical Sciences Kermanshah Iran
| | - Kamran Mansouri
- Medical Biology Research Center Health Technology Institute, Kermanshah University of Medical Sciences Kermanshah Iran
- Molecular Medicine Department, Faculty of Medicine Kermanshah University of Medical Kermanshah Iran
| |
Collapse
|
24
|
Amendola V, Guadagnini A, Agnoli S, Badocco D, Pastore P, Fracasso G, Gerosa M, Vurro F, Busato A, Marzola P. Polymer-coated silver-iron nanoparticles as efficient and biodegradable MRI contrast agents. J Colloid Interface Sci 2021; 596:332-341. [PMID: 33839358 DOI: 10.1016/j.jcis.2021.03.096] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/24/2021] [Accepted: 03/15/2021] [Indexed: 12/22/2022]
Abstract
Bimetallic nanoparticles allow new and synergistic properties compared to the monometallic equivalents, often leading to unexpected results. Here we present on silver-iron nanoparticles coated with polyethylene glycol, which exhibit a high transverse relaxivity (316 ± 13 mM-1s-1, > 3 times that of the most common clinical benchmark based on iron oxide), excellent colloidal stability and biocompatibility in vivo. Ag-Fe nanoparticles are obtained through a one-step, low-cost laser-assisted synthesis, which makes surface functionalization with the desired biomolecules very easy. Besides, Ag-Fe nanoparticles show biodegradation over a few months, as indicated by incubation in the physiological environment. This is crucial for nanomaterials removal from the living organism and, in fact, in vivo biodistribution studies evidenced that Ag-Fe nanoparticles tend to be cleared from liver over a period in which the benchmark iron oxide contrast agent persisted. Therefore, the Ag-Fe NPs offer positive prospects for solving the problems of biopersistence, contrast efficiency, difficulties of synthesis and surface functionalization usually encountered in nanoparticulate contrast agents.
Collapse
Affiliation(s)
- Vincenzo Amendola
- Department of Chemical Sciences, University of Padova, Padova I-35131, Italy.
| | - Andrea Guadagnini
- Department of Chemical Sciences, University of Padova, Padova I-35131, Italy
| | - Stefano Agnoli
- Department of Chemical Sciences, University of Padova, Padova I-35131, Italy
| | - Denis Badocco
- Department of Chemical Sciences, University of Padova, Padova I-35131, Italy
| | - Paolo Pastore
- Department of Chemical Sciences, University of Padova, Padova I-35131, Italy
| | | | - Marco Gerosa
- Department of Computer Science, University of Verona, Verona 37134, Italy
| | - Federica Vurro
- Department of Computer Science, University of Verona, Verona 37134, Italy
| | - Alice Busato
- Department of Computer Science, University of Verona, Verona 37134, Italy
| | - Pasquina Marzola
- Department of Computer Science, University of Verona, Verona 37134, Italy.
| |
Collapse
|
25
|
Lin X, Xu B, Zhu H, Liu J, Solovev A, Mei Y. Requirement and Development of Hydrogel Micromotors towards Biomedical Applications. RESEARCH (WASHINGTON, D.C.) 2020. [PMID: 32728669 DOI: 10.1155/2020/7659749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
With controllable size, biocompatibility, porosity, injectability, responsivity, diffusion time, reaction, separation, permeation, and release of molecular species, hydrogel microparticles achieve multiple advantages over bulk hydrogels for specific biomedical procedures. Moreover, so far studies mostly concentrate on local responses of hydrogels to chemical and/or external stimuli, which significantly limit the scope of their applications. Tetherless micromotors are autonomous microdevices capable of converting local chemical energy or the energy of external fields into motive forces for self-propelled or externally powered/controlled motion. If hydrogels can be integrated with micromotors, their applicability can be significantly extended and can lead to fully controllable responsive chemomechanical biomicromachines. However, to achieve these challenging goals, biocompatibility, biodegradability, and motive mechanisms of hydrogel micromotors need to be simultaneously integrated. This review summarizes recent achievements in the field of micromotors and hydrogels and proposes next steps required for the development of hydrogel micromotors, which become increasingly important for in vivo and in vitro bioapplications.
Collapse
Affiliation(s)
- Xinyi Lin
- Department of Materials Science, State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 200433, China
| | - Borui Xu
- Department of Materials Science, State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 200433, China
| | - Hong Zhu
- Department of Materials Science, State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 200433, China
| | - Jinrun Liu
- Department of Materials Science, State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 200433, China
| | - Alexander Solovev
- Department of Materials Science, State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 200433, China
| | - Yongfeng Mei
- Department of Materials Science, State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 200433, China
| |
Collapse
|
26
|
Lin X, Xu B, Zhu H, Liu J, Solovev A, Mei Y. Requirement and Development of Hydrogel Micromotors towards Biomedical Applications. RESEARCH (WASHINGTON, D.C.) 2020; 2020:7659749. [PMID: 32728669 PMCID: PMC7368969 DOI: 10.34133/2020/7659749] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 06/11/2020] [Indexed: 12/13/2022]
Abstract
With controllable size, biocompatibility, porosity, injectability, responsivity, diffusion time, reaction, separation, permeation, and release of molecular species, hydrogel microparticles achieve multiple advantages over bulk hydrogels for specific biomedical procedures. Moreover, so far studies mostly concentrate on local responses of hydrogels to chemical and/or external stimuli, which significantly limit the scope of their applications. Tetherless micromotors are autonomous microdevices capable of converting local chemical energy or the energy of external fields into motive forces for self-propelled or externally powered/controlled motion. If hydrogels can be integrated with micromotors, their applicability can be significantly extended and can lead to fully controllable responsive chemomechanical biomicromachines. However, to achieve these challenging goals, biocompatibility, biodegradability, and motive mechanisms of hydrogel micromotors need to be simultaneously integrated. This review summarizes recent achievements in the field of micromotors and hydrogels and proposes next steps required for the development of hydrogel micromotors, which become increasingly important for in vivo and in vitro bioapplications.
Collapse
Affiliation(s)
- Xinyi Lin
- Department of Materials Science, State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 200433, China
| | - Borui Xu
- Department of Materials Science, State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 200433, China
| | - Hong Zhu
- Department of Materials Science, State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 200433, China
| | - Jinrun Liu
- Department of Materials Science, State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 200433, China
| | - Alexander Solovev
- Department of Materials Science, State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 200433, China
| | - Yongfeng Mei
- Department of Materials Science, State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 200433, China
| |
Collapse
|
27
|
Shagholani H, Ghoreishi SM, Rahmatolahzadeh R. Influence of Cross-linking Agents on Drug Delivery Behavior of Magnetic Nanohydrogels Made of Polyvinyl Alcohol and Chitosan. BIONANOSCIENCE 2019. [DOI: 10.1007/s12668-019-00666-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|