1
|
Yue J, Liu Z, Wang L, Wang M, Pan G. Recent advances in bioactive hydrogel microspheres: Material engineering strategies and biomedical prospects. Mater Today Bio 2025; 31:101614. [PMID: 40104647 PMCID: PMC11919335 DOI: 10.1016/j.mtbio.2025.101614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/21/2025] [Accepted: 02/24/2025] [Indexed: 03/20/2025] Open
Abstract
Hydrogel microspheres are a class of hydrophilic polymeric particles in microscale, which has been developed as a new type of functional biomaterials for wide-range biomedical applications in recent years. This review provides a comprehensive overview of the preparation methods for hydrogel microspheres, including droplet microfluidics, electrospray and emulsion was first summarized. At the same time, we analyze the impacts of these methods on the properties of hydrogel microspheres and explore various functionalization strategies for enhancing their bioactivity and expanding their biomedical applications. In addition, we discuss the recent advances and the further prospect of hydrogel microspheres in life science applications, particularly in cell biology research, bioanalysis and detection, as well as tissue repair and regeneration. By synthesizing the latest developments, this review aims to offer valuable insights and strategies for optimizing hydrogel microspheres in diverse application scenarios and inspire future research and practical innovations.
Collapse
Affiliation(s)
- Junjiang Yue
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Zhengbiao Liu
- Department of Orthopedics, Suzhou Industrial Park Xinghu Hospital, No. 1 Tingsheng Street, Suzhou, Jiangsu 215000, China
| | - Lu Wang
- Department of Orthopedics, Suzhou Industrial Park Xinghu Hospital, No. 1 Tingsheng Street, Suzhou, Jiangsu 215000, China
| | - Miao Wang
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Guoqing Pan
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
2
|
Xiao Y, Xu K, Zhao P, Ji L, Hua C, Jia X, Wu X, Diao L, Zhong W, Lyu G, Xing M. Microgels sense wounds' temperature, pH and glucose. Biomaterials 2025; 314:122813. [PMID: 39270627 DOI: 10.1016/j.biomaterials.2024.122813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/23/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024]
Abstract
Wound healing concerns almost all bed-side related diseases. With our increasing comprehension of healing nature, the physical and chemical natures behind the wound microenvironment have been decoupled. Wound care demands timely screening and prompt diagnosis of wound complications such as infection and inflammation. Biosensor by the way of exhaustive collection, delivery, and analysis of data, becomes indispensable to arrive at an ideal healing upshot and controlling complications by capturing in-situ wound status. Electrochemical based sensors carry some potential unstable performance subjected to the electrical circuitry and power access and contamination. The colorimetric sensors are free from those concerns. We report that microsensors designed from O/W/O of capillary fluids can continuously monitor wound temperature, pH and glucose concentration. We combined three different types of microgels to encapsulate liquid crystals of cholesterol, nontoxic fuel litmus and two glucose-sensitizing enzymes. A smartphone applet was then developed to convert wound healing images to RGB of digitalizing data. The microgel dressing effectively demonstrates the local temperature change, pH and glucose levels of the wound in high resolution where a microgel is a 'pixel'. They are highly responsive, reversible and accurate. Monitoring multiple physicochemical and physiological indicators provides tremendous potential with insight into healing processing.
Collapse
Affiliation(s)
- Yuqin Xiao
- Burn & Trauma Treatment Center, The Affiliated Hospital of Jiangnan University, Wuxi 214000, China; Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China
| | - Kaige Xu
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, R3T 2N2, Canada
| | - Peng Zhao
- Burn & Trauma Treatment Center, The Affiliated Hospital of Jiangnan University, Wuxi 214000, China
| | - Leilei Ji
- Burn & Trauma Treatment Center, The Affiliated Hospital of Jiangnan University, Wuxi 214000, China; Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China
| | - Chao Hua
- Medical School of Nantong University, Nantong, 226019, China
| | - Xiaoli Jia
- Burn & Trauma Treatment Center, The Affiliated Hospital of Jiangnan University, Wuxi 214000, China; Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China
| | - Xiaozhuo Wu
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, R3T 2N2, Canada
| | - Ling Diao
- Burn & Trauma Treatment Center, The Affiliated Hospital of Jiangnan University, Wuxi 214000, China
| | - Wen Zhong
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, R3T 2N2, Canada
| | - Guozhong Lyu
- Burn & Trauma Treatment Center, The Affiliated Hospital of Jiangnan University, Wuxi 214000, China; Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China; Medical School of Nantong University, Nantong, 226019, China; National Research Center for Emergency Medicine, Beijing, China.
| | - Malcolm Xing
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, R3T 2N2, Canada.
| |
Collapse
|
3
|
Jia J, Liu RK, Sun Q, Wang JX. Multifunctional ZnO-Loaded Colloidosomes with Multiple Synergies as a UV Filter. ACS APPLIED MATERIALS & INTERFACES 2025; 17:2271-2280. [PMID: 39703000 DOI: 10.1021/acsami.4c18007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
ZnO nanoparticles with high safety and stability are often used as active ingredients in sunscreens to protect the skin from ultraviolet rays. However, ZnO nanoparticles are easy to agglomerate, which will significantly affect the ultraviolet absorption and bacteriostatic properties, and the reactive oxygen species induced by the photocatalytic activity may result in irreversible secondary damage to the skin. Herein, the ZnO nanoparticles are dispersed uniformly on the surface of latex particles, and these composite particles are used as shell materials to construct self-assembled colloidosomes by high-gravity technology, which can improve the application properties with synergistic enrichment of the hollow structure. The ultraviolet resistance of colloidosomes is significantly higher than that of the pure ZnO nanoparticles. The higher the loading capacity, the more obvious the inhibition effect of colloidosomes on the growth of Gram bacteria. Furthermore, the antioxidant anthocyanin is in situ encapsulated in colloidosomes, and at a concentration of 2 g/L, the high free radical scavenging rate of 78% can be achieved. The construction of multifunctional colloidosomes provides a route for sunscreen and cosmetics applications.
Collapse
Affiliation(s)
- Jia Jia
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Rong-Kun Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Qian Sun
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures and School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Jie-Xin Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| |
Collapse
|
4
|
Wu Y, Chen Y, Lv B, Wang B, Choi S, Bai N, Liu Z, Chen XD, Cheng Y. Thermoresponsive Phase Change Oleogel Microcapsules for Coencapsulation of Hydrophilic and Hydrophobic Actives. ACS APPLIED MATERIALS & INTERFACES 2024; 16:68348-68357. [PMID: 39600240 DOI: 10.1021/acsami.4c15064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
To address the concurrent needs of the personal care industry for simultaneous protection of active ingredients and enhancement of product functionality, this study employs a microfluidic technique to fabricate EstoGel M-based oleogel microcapsules capable of coencapsulating both hydrophilic and hydrophobic actives. The oleogels exhibit gel-like characteristics with a melting point of approximately 70 °C, ensuring high encapsulation efficiency for hydrophilic and hydrophobic actives within aqueous environments. The oleogel microspheres encapsulating hydrophobic actives are prepared using microfluidic technology with robust elasticity, which can be ruptured by a force of less than 15 mN, contributing to a favorable tactile sensation upon application. The structural integrity of these microspheres is preserved within a temperature range up to 70 °C, indicating their thermodynamic stability. In addition, oleogel microcapsules are prepared using microfluidic technology, and their effectiveness in coencapsulating hydrophilic and hydrophobic active ingredients is successfully demonstrated, along with excellent skin feel and temperature stability. The exceptional tactile properties of EstoGel M-based oleogel microcapsules offer a promising strategy for creating innovative personal care products that integrate high encapsulation efficiency with multifunctional attributes.
Collapse
Affiliation(s)
- Yuting Wu
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Yuxin Chen
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Boya Lv
- Life Quality Engineering Interest Group, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering, and Materials Science, Soochow University, Suzhou, Jiangsu Province 215152, China
- Xiao Dong Pro-health (Suzhou) Instrumentation Co., Ltd., Suzhou, Jiangsu Province 215152, China
| | - Bo Wang
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Seojin Choi
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Ningyuan Bai
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Zhe Liu
- Bloomage Biotechnology Co., Ltd., Jinan, Shandong Province 250000, China
| | - Xiao Dong Chen
- Life Quality Engineering Interest Group, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering, and Materials Science, Soochow University, Suzhou, Jiangsu Province 215152, China
| | - Yi Cheng
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
5
|
Wu Y, Jiang Z, Wang Y, Jiang X, Hou J, Wei B. TEMPO oxidized cellulose nanofiber-reinforced sodium alginate encapsulated poly(acrylamide) microcapsules and its releasing behaviours for enhancing oil recovery. Int J Biol Macromol 2024; 281:135707. [PMID: 39389854 DOI: 10.1016/j.ijbiomac.2024.135707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 09/01/2024] [Accepted: 09/14/2024] [Indexed: 10/12/2024]
Abstract
Poly(acrylamide) (PAM) has excellent thickening ability as a conventional flooding agent. However, PAM confronts the problems of high injection pressure and high shear loss in the process of oil extraction, which have limited its application in this field. In this work, 2, 2, 6, 6-Tetramethylpiperidinooxy oxidized cellulose nanofibers (TOCNFs) enhanced sodium alginate (SA) shell was used to encapsulate PAM to form microcapsule. The composition, morphology, structure and the releasing behaviours of TOCNFs enhanced microcapsules was tested. Mechanical stirring was used to simulate the state of polymer subjected to shear during stratigraphic transport. The release performance of the microcapsules was characterized by measuring the change of viscosity with time. The ratio of the shell material with the best performance was explored, and the enhancement mechanism of the SA shell by TOCNFs was discussed. The experiments showed that the release time of PAM from the microcapsules was significantly prolonged with the addition of TOCNFs. The longest release time was observed when the ratio of SA and TOCNFs was 5: 1, with the release time of the microcapsules from the original 8 h to 16 h. The enhanced shear resistance of the microcapsules was attributed to the semi-interpenetrating network structure of SA and TOCNFs via Ca2+ cross-linking as well as hydrogen bonding. The prepared microcapsules have promising applications in enhancing oil recovery.
Collapse
Affiliation(s)
- Yaowei Wu
- School of Chemical Engineering, Fuzhou University, Fuzhou 350108, China
| | - Zuming Jiang
- Exploration and Development Research Institute of Shengli Oilfield, SINOPEC, Dongying, China.
| | - Yuhao Wang
- School of Chemical Engineering, Fuzhou University, Fuzhou 350108, China
| | - Xiancai Jiang
- School of Chemical Engineering, Fuzhou University, Fuzhou 350108, China.
| | - Jian Hou
- National Key Laboratory of Deep Oil and Gas, China University of Petroleum (East China), Qingdao, China; School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, China
| | - Bei Wei
- National Key Laboratory of Deep Oil and Gas, China University of Petroleum (East China), Qingdao, China; School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, China
| |
Collapse
|
6
|
Chen J, Shen H, Heng Y, Wang S, Ardekani A, Yang Y, Hu Y. Droplet Microfluidics-Assisted Fabrication of Shape Controllable Iron-Alginate Microgels with Fluorescent Property. Macromol Rapid Commun 2024; 45:e2400084. [PMID: 38653451 DOI: 10.1002/marc.202400084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/19/2024] [Indexed: 04/25/2024]
Abstract
Droplet-based microfluidics-assisted fabrication of alginate microgels has extensive applications in biomaterials, biomedicines, and related fields. This approach is typically achieved by crosslinking droplets of an aqueous solution of sodium alginate with various divalent and trivalent ions, such as Ca2+, Ba2+, Sr2+, etc. Despite the exceptional features exhibited by bulk alginate hydrogels when using iron ions as the crosslinking reagent, including stimulus responsiveness and complex chemistry, no attention has been given to studying the fabrication of Fe-alginate microgels through droplet microfluidics. In this work, a facile method is presented for fabricating Fe-alginate microgels using single emulsion droplets as templates and an off-chip crosslinking technique to solidify the droplets. The morphologies of the resulting microgels can be systematically adjusted by manipulating different parameters such as viscosities and ionic strength of the collecting solutions. It should be noted that these resulting microgels undergo a color change from light brown to dark brown due to presumed self-oxidation of iron ions within their skeleton structure. Furthermore, these Fe-alginate microgels are functionalized by decorating them with a positively charged linear polymer via electrostatic interactions to impart them with stable fluorescent property. These functionalized Fe-alginate microgels may find potential applications in drug delivery carriers and biomimetic structures.
Collapse
Affiliation(s)
- Jie Chen
- Department of Materials Science and Engineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, 100044, China
| | - Hanyu Shen
- Department of Materials Science and Engineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, 100044, China
| | - Yicheng Heng
- Department of Materials Science and Engineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, 100044, China
| | - Songhe Wang
- Department of Materials Science and Engineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, 100044, China
| | - Arezoo Ardekani
- Department of Mathematics, School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47906, USA
| | - Yajiang Yang
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage (HUST) of Ministry of Education School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Yuandu Hu
- Department of Materials Science and Engineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, 100044, China
- State Key Laboratory of Molecular Engineering of Polymers (Fudan University), Shanghai, 200438, China
| |
Collapse
|
7
|
Dai C, Li W, Zhang C, Shen X, Wan Z, Deng X, Liu F. Microencapsule delivery systems of functional substances for precision nutrition. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 112:199-255. [PMID: 39218503 DOI: 10.1016/bs.afnr.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Microencapsulation, a typical core-shell structure technology, encapsulates functional active ingredients for protection, controlled release, and targeted delivery. In precise nutrition, the focus is on utilizing microcapsule delivery systems for personalized dietary supplements and disease intervention. This chapter outlines the morphological structure of microcapsules, common wall materials, and preparation techniques. It discusses the characteristics of different hydrophilic and lipophilic functional factors and their function as dietary supplements. The role of microencapsulation on the controlled release, odor masking, and enhanced bioavailability of functional factors is explored. Additionally, the application of microcapsule delivery systems in nutritional interventions for diseases like inflammatory bowel disease, alcoholic/fatty liver disease, diabetes, and cancer is introduced in detail. Lastly, the chapter proposes the future developments of anticipation in responsive wall materials for precise nutrition interventions, including both challenges and opportunities.
Collapse
Affiliation(s)
- Chenlin Dai
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Wenhan Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Chairui Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Xuelian Shen
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Ziyan Wan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Xiaofan Deng
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Fuguo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, P.R. China.
| |
Collapse
|
8
|
Yuan Z, Shi X, Chen K. Preparation and characterization of chitosan/ZnO-Ag composite microcapsules and their applications in solar energy harvesting and electromagnetic interference shielding. Int J Biol Macromol 2024; 263:130285. [PMID: 38373571 DOI: 10.1016/j.ijbiomac.2024.130285] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/18/2024] [Accepted: 02/16/2024] [Indexed: 02/21/2024]
Abstract
Phase change microcapsules are known for their latent heat storage capability. However, the efficient absorption and utilization of solar energy by these microcapsules remains a significant challenge. In this study, we successfully prepared composite phase change microcapsules containing ZnO-Ag nanospheres, chitosan, and paraffin. These microcapsules demonstrated remarkable photothermal conversion efficiency. ZnO was found to effectively absorb ultraviolet light, while the plasmonic resonance of Ag was utilized to absorb and make use of light energy in the visible region. Moreover, due to the synergistic absorption and reflection of electromagnetic waves by ZnO-Ag nanoparticles and graphene, the well-dispersed chitosan/ZnO-Ag composite microcapsules and graphene in the fabric coating demonstrated exceptional electromagnetic shielding performance. In addition, the coated fabric based on composite microcapsules exhibited excellent antibacterial properties, effectively inhibiting the growth of bacteria such as S. aureus and E. coli. This antibacterial performance adds to their potential applications in various fields. These multifunctional phase change microcapsules offer vast potential for the effective utilization of solar energy, serving as efficient photothermal conversion and energy storage materials.
Collapse
Affiliation(s)
- Zhonghua Yuan
- Key Laboratory of Eco-Textile, Ministry of Education, College of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China
| | - Xuan Shi
- Key Laboratory of Eco-Textile, Ministry of Education, College of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China
| | - Kunlin Chen
- Key Laboratory of Eco-Textile, Ministry of Education, College of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
9
|
Ren L, Liu S, Zhong J, Zhang L. Revolutionizing targeting precision: microfluidics-enabled smart microcapsules for tailored delivery and controlled release. LAB ON A CHIP 2024; 24:1367-1393. [PMID: 38314845 DOI: 10.1039/d3lc00835e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
As promising delivery systems, smart microcapsules have garnered significant attention owing to their targeted delivery loaded with diverse active materials. By precisely manipulating fluids on the micrometer scale, microfluidic has emerged as a powerful tool for tailoring delivery systems based on potential applications. The desirable characteristics of smart microcapsules are associated with encapsulation capacity, targeted delivery capability, and controlled release of encapsulants. In this review, we briefly describe the principles of droplet-based microfluidics for smart microcapsules. Subsequently, we summarize smart microcapsules as delivery systems for efficient encapsulation and focus on target delivery patterns, including passive targets, active targets, and microfluidics-assisted targets. Additionally, based on release mechanisms, we review controlled release modes adjusted by smart membranes and on/off gates. Finally, we discuss existing challenges and potential implications associated with smart microcapsules.
Collapse
Affiliation(s)
- Lingling Ren
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong, China.
| | - Shuang Liu
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong, China.
| | - Junjie Zhong
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong, China.
| | - Liyuan Zhang
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong, China.
| |
Collapse
|
10
|
Wu Y, Lv B, Wang S, Liu Z, Chen XD, Cheng Y. Study of molecular interaction and texture characteristics of hydrocolloid-mixed alginate microspheres: As a shell to encapsulate multiphase oil cores. Carbohydr Polym 2024; 326:121603. [PMID: 38142092 DOI: 10.1016/j.carbpol.2023.121603] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/31/2023] [Accepted: 11/14/2023] [Indexed: 12/25/2023]
Abstract
This work investigates the molecular interaction of hydrocolloids (xanthan gum (XG), hydroxyethyl cellulose (HEC), carbomer (CBM) and hymagic™-4D (HA)) with sodium alginate (SA) in microspheres in detail. The molecular interaction of hydrocolloids with SA are demonstrated by the rheological property analysis of the mixed solutions as well as the morphology structure and texture characteristics studies of the microspheres. It is found that the hydrocolloids (XG, HEC and CBM) with branches or capable to coil are able to form complex networks with SA through molecular interactions which hinders the free diffusion of calcium ions and changes the texture characteristics of microspheres. In addition, the mixed solutions (SA-XG and SA-HEC) with complex networks and do not have a chelating effect on calcium ions are used to form the shell of the microcapsules through droplet microfluidic technology, and stable with soft microcapsules encapsulating multiphase oil cores have been successfully prepared. At the same time, the textural properties of microcapsules are quantized, which are related to human sensory properties. The developed stable and soft microcapsules which have the properties of sensory comfort are expected to be applied in the personal care industry and a variety of fields.
Collapse
Affiliation(s)
- Yuting Wu
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Boya Lv
- Life Quality Engineering Interest Group, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Material Science, Soochow University, Suzhou 215152, Jiangsu Province, China; Xiao Dong Pro-health (Suzhou) Instrumentation Co Ltd, Suzhou 215152, Jiangsu Province, China
| | - Shiteng Wang
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Zhe Liu
- Bloomage Biotechnology Co., Ltd., Jinan 250000, Shandong Province, China
| | - Xiao Dong Chen
- Life Quality Engineering Interest Group, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Material Science, Soochow University, Suzhou 215152, Jiangsu Province, China
| | - Yi Cheng
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
11
|
Jia J, Liu RK, Sun Q, Wang JX. Efficient Construction of pH-Stimuli-Responsive Colloidosomes with High Encapsulation Efficiency. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 38015806 DOI: 10.1021/acs.langmuir.3c02415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Intelligent responsive colloidosomes have attracted increasing attention for their potential to enhance the efficacy and decrease the side effects of drugs in biomedical applications. However, a low encapsulation efficiency and complicated preparation method greatly limit their development. Herein, we report an efficient approach for the construction of pH-stimuli-responsive colloidosomes with high encapsulation efficiency by a high-gravity technology. The conditions under which latex particles with different methacrylic acid contents can successfully self-assemble into colloidosomes are explored. During the preparation process, emulsions emulsified for only 10 min at 2500 rpm in a unique high-gravity shearing surroundings are clarified owing to the greatly enhanced micromixing, while the emulsions emulsified for 30 min by a traditional high-speed shear machine at 4000 rpm are still yellow-white. More importantly, regular spherical colloidosomes encapsulating an anticancer drug doxorubicin not only achieve a small mean diameter of 2.82 μm but also realize a high encapsulation efficiency of 76.5%. The release performance of doxorubicin has an obvious pH-stimuli-responsive regularity and follows the first-order model of sustained release. The construction of intelligent responsive colloidosomes as drug carriers provides a route for controlled drug release and biomedical applications.
Collapse
Affiliation(s)
- Jia Jia
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Rong-Kun Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Qian Sun
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology and School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Jie-Xin Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| |
Collapse
|
12
|
Ying Y, Hu M, Han J, Yu Y, Xia X, Guo J. Water-Adaptive Microcapsules with a Brittle-Ductile-Brittle Transition Based on an O/W/O Emulsion for the Self-Healing of Cementitious Materials. ACS APPLIED MATERIALS & INTERFACES 2023; 15:47497-47508. [PMID: 37750763 DOI: 10.1021/acsami.3c10127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Cementitious materials inevitably develop cracks, posing a serious threat to the long-term security of infrastructure, especially in the complex underground environment of cementing engineering. Microcapsules are facing the problem of encapsulated structure damage during the mixing and breaking difficultly during self-healing when applied in cementitious materials, resulting in the decline of self-healing efficiency. Herein, the calcium alginate water-adaptive microcapsules (CaAlg-NS/E-51) were prepared via an O/W/O emulsion, and the water adaptability of the shell was applied to achieve a rapid brittle-ductile transition by absorbing water. The water adaptability of the microcapsule is conducive to resisting shear stress during stirring due to the decreased elastic modulus and the increased ductility of the shell when it absorbs water. Meanwhile, the water-bearing shell loses water and becomes brittle during dry curing, making it prone to fracture when self-healing. In the self-healing measurement, the self-healing efficiency of cementitious specimens with microcapsules absorbing water for 10 min improved by 234.9 and 60.0% at 1 and 7 days, respectively, compared with those containing dry microcapsules, owing to the water adaptability of the shell.
Collapse
Affiliation(s)
- Yujie Ying
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300000, China
| | - Miaomiao Hu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300000, China
- Zhejiang Institute of Tianjin University (Shaoxing), Zhejiang 312300, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300051, China
| | - Jingmin Han
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300000, China
| | - Yongjin Yu
- CNPC Engineering Technology R&D Company Limited, Beijing 102206, China
| | - Xiujian Xia
- CNPC Engineering Technology R&D Company Limited, Beijing 102206, China
| | - Jintang Guo
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300000, China
- Zhejiang Institute of Tianjin University (Shaoxing), Zhejiang 312300, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300051, China
| |
Collapse
|
13
|
Bianchi JRDO, de la Torre LG, Costa ALR. Droplet-Based Microfluidics as a Platform to Design Food-Grade Delivery Systems Based on the Entrapped Compound Type. Foods 2023; 12:3385. [PMID: 37761094 PMCID: PMC10527709 DOI: 10.3390/foods12183385] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Microfluidic technology has emerged as a powerful tool for several applications, including chemistry, physics, biology, and engineering. Due to the laminar regime, droplet-based microfluidics enable the development of diverse delivery systems based on food-grade emulsions, such as multiple emulsions, microgels, microcapsules, solid lipid microparticles, and giant liposomes. Additionally, by precisely manipulating fluids on the low-energy-demand micrometer scale, it becomes possible to control the size, shape, and dispersity of generated droplets, which makes microfluidic emulsification an excellent approach for tailoring delivery system properties based on the nature of the entrapped compounds. Thus, this review points out the most current advances in droplet-based microfluidic processes, which successfully use food-grade emulsions to develop simple and complex delivery systems. In this context, we summarized the principles of droplet-based microfluidics, introducing the most common microdevice geometries, the materials used in the manufacture, and the forces involved in the different droplet-generation processes into the microchannels. Subsequently, the encapsulated compound type, classified as lipophilic or hydrophilic functional compounds, was used as a starting point to present current advances in delivery systems using food-grade emulsions and their assembly using microfluidic technologies. Finally, we discuss the limitations and perspectives of scale-up in droplet-based microfluidic approaches, including the challenges that have limited the transition of microfluidic processes from the lab-scale to the industrial-scale.
Collapse
Affiliation(s)
- Jhonatan Rafael de Oliveira Bianchi
- Department of Materials and Bioprocess Engineering, School of Chemical Engineering, University of Campinas, Av. Albert Einstein, 500, Campinas 13083-852, Brazil; (J.R.d.O.B.); (L.G.d.l.T.)
| | - Lucimara Gaziola de la Torre
- Department of Materials and Bioprocess Engineering, School of Chemical Engineering, University of Campinas, Av. Albert Einstein, 500, Campinas 13083-852, Brazil; (J.R.d.O.B.); (L.G.d.l.T.)
| | - Ana Leticia Rodrigues Costa
- Department of Materials and Bioprocess Engineering, School of Chemical Engineering, University of Campinas, Av. Albert Einstein, 500, Campinas 13083-852, Brazil; (J.R.d.O.B.); (L.G.d.l.T.)
- Institute of Exact and Technological Sciences, Federal University of Viçosa (UFV), Campus Florestal, Florestal 35690-000, Brazil
| |
Collapse
|
14
|
Huang L, Wu K, Cai S, Yu H, Liu D, Yuan W, Chen X, Ji H. Understanding the microfluidic generation of double emulsion droplets with alginate shell. Colloids Surf B Biointerfaces 2023; 222:113114. [PMID: 36577345 DOI: 10.1016/j.colsurfb.2022.113114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/09/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
The monodisperse double emulsions obtained by microfluidic method can serve as ideal templates for preparing core-shell alginate microcapsules, which have attracted much attention in biological applications, such as drug delivery systems and cell encapsulation, tissue engineering. However, the formation behavior and dynamic analysis of double emulsion with an alginate shell is still unclear due to the complex rheological behavior of alginate solutions. Herein, we employ a dual-coaxial microfluidic device to generate the high-quality double emulsion droplets with alginate shell, focusing on the effects of the fluid properties of alginate solution in the middle phase (viscosity, μm) and the fluid flow rate on the droplet formation mechanism. As the viscosity of the middle fluid (μm) increased, the size of compound droplets (D2) increased and the size of inner droplets (D1) decreased, and the break-up regimes occurred a dripping-to-jetting transition when μm = 160 mPa s. The number of encapsulated inner droplets can be predicted and precisely controlled by regulating the generation frequency of inner (f1) and outer droplets (f2). The breakup dynamics of the alginate thread are also analyzed by using the volume-of-fluid/continuum-surface-force (VOF/CSF) method. The results show that the pressure and velocity in the neck of pinch-off is lower in the jetting than that in the dripping regime. This study will provide useful guidance for the rational design and controllable preparation of core-shell alginate microcapsules.
Collapse
Affiliation(s)
- Liyun Huang
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China; Foshan Engineering and Technology Research Center for Novel Porous Materials, Foshan 528000, China
| | - Kui Wu
- School of Chemistry and Chemical Engineering, Jinggangshan University, Ji'an 343009, China
| | - Shuhan Cai
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China; Foshan Engineering and Technology Research Center for Novel Porous Materials, Foshan 528000, China
| | - Haosen Yu
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China
| | - Defei Liu
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China; Foshan Engineering and Technology Research Center for Novel Porous Materials, Foshan 528000, China
| | - Wenbing Yuan
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China; Foshan Engineering and Technology Research Center for Novel Porous Materials, Foshan 528000, China.
| | - Xin Chen
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China; Foshan Engineering and Technology Research Center for Novel Porous Materials, Foshan 528000, China.
| | - Hongbing Ji
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
15
|
Aguiar A, Mariquito A, Gonçalves D, Pinho I, Marques AC. Biodegradable Microcapsules of Poly(Butylene Adipate- co-Terephthalate) (PBAT) as Isocyanate Carriers and the Effect of the Process Parameters. Polymers (Basel) 2023; 15:polym15030665. [PMID: 36771965 PMCID: PMC9921966 DOI: 10.3390/polym15030665] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Poly(butylene adipate-co-terephthalate) (PBAT), a biodegradable flexible, and tough polymer is herein used, for the first time, to encapsulate and protect isocyanate derivatives. Isocyanates are essential building blocks widely employed in the chemical industry for the production of high-performing materials. Microencapsulation of isocyanates eliminates the risks associated with their direct handling and protects them from moisture. In light of this, and having in mind eco-innovative products and sustainability, we present a straightforward process to encapsulate isophorone diisocyanate (IPDI) using this biodegradable polymer. Spherical and core-shell microcapsules (MCs) were produced by an emulsion system combined with the solvent evaporation method. The MCs present a regular surface, without holes or cracks, with a thin shell and high isocyanate loadings, up to 79 wt%. Additionally, the MCs showed very good isocyanate protection if not dispersed in organic or aqueous solutions. Effects of various process parameters were systematically studied, showing that a higher stirring speed (1000 rpm) and emulsifier amount (2.5 g), as well as a smaller PBAT amount (1.60 g), lead to smaller MCs and narrower size distribution.
Collapse
Affiliation(s)
- António Aguiar
- CERENA, DEQ, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal
- CIPADE—Indústria e Investigação de Produtos Adesivos, SA., Av. Primeiro de Maio 121, 3700-227 São João da Madeira, Portugal
- Correspondence: (A.A.); (A.C.M.)
| | - António Mariquito
- CERENA, DEQ, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Diogo Gonçalves
- CERENA, DEQ, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Isabel Pinho
- CIPADE—Indústria e Investigação de Produtos Adesivos, SA., Av. Primeiro de Maio 121, 3700-227 São João da Madeira, Portugal
| | - Ana C. Marques
- CERENA, DEQ, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal
- Correspondence: (A.A.); (A.C.M.)
| |
Collapse
|
16
|
Mu R, Bu N, Pang J, Wang L, Zhang Y. Recent Trends of Microfluidics in Food Science and Technology: Fabrications and Applications. Foods 2022; 11:3727. [PMID: 36429319 PMCID: PMC9689895 DOI: 10.3390/foods11223727] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/10/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
The development of novel materials with microstructures is now a trend in food science and technology. These microscale materials may be applied across all steps in food manufacturing, from raw materials to the final food products, as well as in the packaging, transport, and storage processes. Microfluidics is an advanced technology for controlling fluids in a microscale channel (1~100 μm), which integrates engineering, physics, chemistry, nanotechnology, etc. This technology allows unit operations to occur in devices that are closer in size to the expected structural elements. Therefore, microfluidics is considered a promising technology to develop micro/nanostructures for delivery purposes to improve the quality and safety of foods. This review concentrates on the recent developments of microfluidic systems and their novel applications in food science and technology, including microfibers/films via microfluidic spinning technology for food packaging, droplet microfluidics for food micro-/nanoemulsifications and encapsulations, etc.
Collapse
Affiliation(s)
- Ruojun Mu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai 201106, China
| | - Nitong Bu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jie Pang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai 201106, China
| | - Lin Wang
- Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Yue Zhang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| |
Collapse
|
17
|
Gao Y, Sun W, Zhang Y, Liu L, Zhao W, Wang W, Song Y, Sun Y, Ma Q. All-Aqueous Microfluidics Fabrication of Multifunctional Bioactive Microcapsules Promotes Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2022; 14:48426-48437. [PMID: 36265178 DOI: 10.1021/acsami.2c13420] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Wound healing involves multiple stages of body responses, including hemostasis, inflammation, cell proliferation, and tissue remodeling. New material design satisfying all demands throughout different stages of wound healing is cherished but rarely discussed. Here we introduce all-aqueous multiphase microfluidics as a novel strategy to fabricate self-assembled, multifunctional alkylated chitosan/alginate microcapsules (SAAMs) as novel therapeutic materials for rapid blood coagulation and wound healing. SAAMs are structurally distinguished by their ultrathin shells with polycationic surface for rapid activation of clotting cascade and their internal porous dextran-rich cores for fast absorption of blood and exudate. These features endow SAAMs with excellent hemostatic properties for acute hemorrhage. Moreover, the alkylated chitosan within the microcapsules exhibits persistent antimicrobial activities against bactericidal infections due to their amphiphilic and cationic surfaces. Besides, cytokines can be safely loaded into the organic-solvent-free microcapsules and released precisely to promote the proliferation of epidermal cells, supporting the subsequent development of granulation tissue and suppression of inflammation in the last stages of wound healing. With the ability to fabricate size-tailored soft microcapsules and to realize time-sequential functions for tissue repairing, the presented "all-aqueous microfluidics generation of multifunctional bioactive SAAMs" create a versatile and robust paradigm for wound treatment.
Collapse
Affiliation(s)
- Yang Gao
- School of Pharmacy, Qingdao University, Qingdao266071, P.R. China
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology and Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin300071, P.R. China
| | - Wentao Sun
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao266113, P.R. China
| | - Yage Zhang
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong999077, P.R. China
- School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, Guangdong518060, P.R. China
| | - Lijun Liu
- School of Pharmacy, Qingdao University, Qingdao266071, P.R. China
| | - Wenbin Zhao
- School of Pharmacy, Qingdao University, Qingdao266071, P.R. China
| | - Weijiang Wang
- School of Pharmacy, Qingdao University, Qingdao266071, P.R. China
| | - Yang Song
- State Key Laboratory of Metal Matrix Composite, School of Material Science and Engineering, Shanghai Jiao Tong University, Shanghai200240, P.R. China
| | - Yong Sun
- School of Pharmacy, Qingdao University, Qingdao266071, P.R. China
| | - Qingming Ma
- School of Pharmacy, Qingdao University, Qingdao266071, P.R. China
| |
Collapse
|
18
|
Bennacef C, Desobry-Banon S, Probst L, Desobry S. Optimization of core-shell capsules properties (Olive oil/alginate) obtained by dripping coextrusion process. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Cai Y, Zhang Y, Qu Q, Xiong R, Tang H, Huang C. Encapsulated Microstructures of Beneficial Functional Lipids and Their Applications in Foods and Biomedicines. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8165-8187. [PMID: 35767840 DOI: 10.1021/acs.jafc.2c02248] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Beneficial functional lipids are essential nutrients for the growth and development of humans and animals, which nevertheless possess poor chemical stability because of heat/light-sensitivity. Various encapsulation technologies have been developed to protect these nutrients against adverse factors. Different microstructures are exhibited through different encapsulation methods, which influence the encapsulation efficiency and release behavior at the same time. This review summarizes the effects of preparation methods and process parameters on the microstructures of capsules at first. The mechanisms of the different microstructures on encapsulation efficiency and controlled release behavior of core materials are analyzed. Next, a comprehensive overview on the beneficial functional lipids capsules in the latest food and biomedicine applications are provided as well as the matching relationship between the microstructures of the capsules and applications are discussed. Finally, the remaining challenges and future possible directions that have potential interest are outlined. The purpose of this review is to convey the construction of beneficial functional lipids capsules and the function mechanism, a critical analysis on its current status and challenges, and opinions on its future development. This review is believed to promote communication among the food, pharmacy, agronomy, engineering, and nutrition industries.
Collapse
Affiliation(s)
- Yixin Cai
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, P. R. China
| | - Yingying Zhang
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, P. R. China
| | - Qingli Qu
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, P. R. China
| | - Ranhua Xiong
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, P. R. China
| | - Hu Tang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, P. R. China
| | - Chaobo Huang
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, P. R. China
| |
Collapse
|
20
|
Jia J, Liu RK, Gu YH, Sun Q, Wang JX, Chen JF. High-gravity-assisted Fabrication of Self-assembled Colloidosomes. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Jia Jia
- State Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Rong-Kun Liu
- State Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Yu-Hang Gu
- State Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Qian Sun
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology and School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Jie-Xin Wang
- State Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Jian-Feng Chen
- State Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| |
Collapse
|
21
|
Boon-In S, Theerasilp M, Crespy D. Marrying the incompatible for better: Incorporation of hydrophobic payloads in superhydrophilic hydrogels. J Colloid Interface Sci 2022; 622:75-86. [PMID: 35489103 DOI: 10.1016/j.jcis.2022.04.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 01/31/2023]
Abstract
HYPOTHESIS The entrapment of lyophobic in superhydrophilic hydrogels is challenging because of the intrinsic incompatibility between hydrophobic and hydrophilic molecules. To achieve such entrapment without affecting the hydrogel's formation, the electrospinning of nanodroplets or nanoparticles with a water-soluble polymer could reduce the incompatibility through the reduction of interfacial tension and the formation of a barrier film preventing coalescence or aggregation. EXPERIMENTS Nanodroplets or nanoparticles dispersion are electrospun in the presence of a hydrophilic polymer in hydrogel precursors. The dissolution of the hydrophilic nanofibers during electrospinning allows a redispersion of emulsion droplets and nanoparticles in the hydrogel's matrix. FINDINGS Superhydrophilic hydrogels with well-distributed hydrophobic nanodroplets or nanoparticles are obtained without detrimentally imparting the viscosity of hydrogel's precursors and the mechanical properties of the hydrogels. Compared with the incorporation of droplets without electrospinning, higher loadings of hydrophobic payload are achieved without premature leakage. This concept can be used to entrap hydrophobic agrochemicals, drugs, or antibacterial agents in simple hydrogels formulation.
Collapse
Affiliation(s)
- Supissra Boon-In
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand.
| | - Man Theerasilp
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand.
| | - Daniel Crespy
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand.
| |
Collapse
|
22
|
Zheng X, Liu W, Feng S, Yu Y, Lv Y, Tao S. Microcapsules-supported Pd catalysts with ultralow ionic residues. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
23
|
Lv M, Li H, Cao H, Wang T, He C, Liang Y, Mao X, Wang Z. Assembling Alkaline-Responsive Chitosan@Giant Liposomes through an Ultrasound-Integrated Microfluidic Approach. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:3223-3233. [PMID: 35245076 DOI: 10.1021/acs.langmuir.1c03304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This paper presents the fabrication of an alkaline-responsive drug carrier, chitosan@giant liposome (CS-GL), by using an ultrasound-integrated microfluidic approach. On the microfluidic chip, water/oil/water droplets are first prepared and then move through an area of ultrasonic radiation to improve the regional saturation of organic solvent and accelerate its removal. At the same time, phospholipid molecules in the oil phase of the droplets are efficiently self-assembled into giant liposomes (GLs). Subsequently, microfluidic channels combined with an up-down separated structure can help in the fabrication and purification of the GLs. Due to the electrostatic interaction between the amino group of chitosan and the phosphate group of phospholipids, the GLs and chitosan are assembled into CS-GLs. The change of ζ potential after this operation indicates that chitosan is coated on the surface of GLs. The formed CS-GLs are monodispersed with a 54.1 ± 0.7 μm diameter and high drug encapsulation efficiency (∼96%), and the structural integrity can be kept without leakage of contents for more than a week in an acid medium (pH = 1.2). When this structure is placed in an aqueous solution of pH = 7.8, chitosan precipitates gradually and detaches from the GL, causing its rupture. The drug encapsulated in a single CS-GL can be rapidly released within 4 s, and 99.6% of the CS-GL carriers can complete the release within 10 min.
Collapse
Affiliation(s)
- Mengting Lv
- The State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, P. R. China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Huanan Li
- The State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, P. R. China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Hua Cao
- The State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, P. R. China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Teng Wang
- The State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, P. R. China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Chengdian He
- The State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, P. R. China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Yi Liang
- The State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, P. R. China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Xiang Mao
- The State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, P. R. China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Zhenyu Wang
- The State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, P. R. China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, P. R. China
| |
Collapse
|
24
|
A Mild Method for Encapsulation of Citral in Monodispersed Alginate Microcapsules. Polymers (Basel) 2022; 14:polym14061165. [PMID: 35335496 PMCID: PMC8954088 DOI: 10.3390/polym14061165] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/06/2022] [Accepted: 03/07/2022] [Indexed: 02/04/2023] Open
Abstract
Citral is a typical UV-irritation and acid-sensitive active and here we develop a mild method for the encapsulation of citral in calcium alginate microcapsules, in which UV irritation or acetic acid is avoided. Monodispersed oil-in-water-in-oil (O/W/O) emulsions are generated in a capillary microfluidic device as precursors. The middle aqueous phase of O/W/O emulsions contains sodium alginate, calcium-ethylenediaminetetraacetic acid (EDTA-Ca) complex as the calcium source, and D-(+)-Gluconic acid δ-lactone (GDL) as the acidifier. Hydrolysis of GDL will decrease the pH value of the middle aqueous solution, which will trigger the calcium ions released from the EDTA-Ca complex to cross-link with alginate molecules. After the gelling process, the O/W/O emulsions will convert to alginate microcapsules with a uniform structure and monodispersed size. The preparation conditions for alginate microcapsules are optimized, including the constituent concentration in the middle aqueous phase of O/W/O emulsions and the mixing manner of GDL with the alginate-contained aqueous solution. Citral-containing alginate microcapsules are successfully prepared by this mild method and the sustained-release characteristic of citral from alginate microcapsules is analyzed. Furthermore, a typical application of citral-containing alginate microcapsules to delay the oxidation of oil is also demonstrated. The mild gelling method provides us a chance to encapsulate sensitive hydrophobic actives with alginate, which takes many potential applications in pharmaceutical, food, and cosmetic areas.
Collapse
|
25
|
Food-grade microgel capsules tailored for anti-obesity strategies through microfluidic preparation. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
26
|
Oh Y, Kim S. Hydrogel‐shelled biodegradable microspheres for sustained release of encapsulants. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210858] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yoonjin Oh
- Department of Chemical and Biomolecular Engineering and KAIST Institute for the NanoCentury Korea Advanced Institute of Science and Technology (KAIST) Daejeon Republic of Korea
| | - Shin‐Hyun Kim
- Department of Chemical and Biomolecular Engineering and KAIST Institute for the NanoCentury Korea Advanced Institute of Science and Technology (KAIST) Daejeon Republic of Korea
| |
Collapse
|
27
|
Chen Z, Lv Z, Zhang Z, Weitz DA, Zhang H, Zhang Y, Cui W. Advanced microfluidic devices for fabricating multi-structural hydrogel microsphere. EXPLORATION (BEIJING, CHINA) 2021; 1:20210036. [PMID: 37323691 PMCID: PMC10191056 DOI: 10.1002/exp.20210036] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/02/2021] [Indexed: 06/15/2023]
Abstract
Hydrogel microspheres are a novel functional material, arousing much attention in various fields. Microfluidics, a technology that controls and manipulates fluids at the micron scale, has emerged as a promising method for fabricating hydrogel microspheres due to its ability to generate uniform microspheres with controlled geometry. With the development of microfluidic devices, more complicated hydrogel microspheres with multiple structures can be constructed. This review presents an overview of advances in microfluidics for designing and engineering hydrogel microspheres. It starts with an introduction to the features of hydrogel microspheres and microfluidic techniques, followed by a discussion of material selection for fabricating microfluidic devices. Then the progress of microfluidic devices for single-component and composite hydrogel microspheres is described, and the method for optimizing microfluidic devices is also given. Finally, this review discusses the key research directions and applications of microfluidics for hydrogel microsphere in the future.
Collapse
Affiliation(s)
- Zehao Chen
- School of Mechatronic Engineering and AutomationShanghai UniversityShanghaiP. R. China
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiP. R. China
| | - Zhendong Lv
- Department of Spine SurgeryRenji HospitalShanghai Jiao Tong University School of MedicineShanghaiP. R. China
| | - Zhen Zhang
- School of Mechatronic Engineering and AutomationShanghai UniversityShanghaiP. R. China
| | - David A. Weitz
- Department of Physics and Harvard John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeMassachusettsUSA
| | - Hongbo Zhang
- Pharmaceutical Sciences LaboratoryÅbo Akademi University and Turku Bioscience CentreUniversity of Turku and Åbo Akademi UniversityTurkuFinland
| | - Yuhui Zhang
- School of Mechatronic Engineering and AutomationShanghai UniversityShanghaiP. R. China
- Department of Spine SurgeryRenji HospitalShanghai Jiao Tong University School of MedicineShanghaiP. R. China
| | - Wenguo Cui
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiP. R. China
| |
Collapse
|
28
|
Crosslinking Strategies for the Microfluidic Production of Microgels. Molecules 2021; 26:molecules26123752. [PMID: 34202959 PMCID: PMC8234156 DOI: 10.3390/molecules26123752] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 02/03/2023] Open
Abstract
This article provides a systematic review of the crosslinking strategies used to produce microgel particles in microfluidic chips. Various ionic crosslinking methods for the gelation of charged polymers are discussed, including external gelation via crosslinkers dissolved or dispersed in the oil phase; internal gelation methods using crosslinkers added to the dispersed phase in their non-active forms, such as chelating agents, photo-acid generators, sparingly soluble or slowly hydrolyzing compounds, and methods involving competitive ligand exchange; rapid mixing of polymer and crosslinking streams; and merging polymer and crosslinker droplets. Covalent crosslinking methods using enzymatic oxidation of modified biopolymers, photo-polymerization of crosslinkable monomers or polymers, and thiol-ene “click” reactions are also discussed, as well as methods based on the sol−gel transitions of stimuli responsive polymers triggered by pH or temperature change. In addition to homogeneous microgel particles, the production of structurally heterogeneous particles such as composite hydrogel particles entrapping droplet interface bilayers, core−shell particles, organoids, and Janus particles are also discussed. Microfluidics offers the ability to precisely tune the chemical composition, size, shape, surface morphology, and internal structure of microgels by bringing multiple fluid streams in contact in a highly controlled fashion using versatile channel geometries and flow configurations, and allowing for controlled crosslinking.
Collapse
|
29
|
Gao Y, Ma Q, Cao J, Wang Y, Yang X, Xu Q, Liang Q, Sun Y. Recent advances in microfluidic-aided chitosan-based multifunctional materials for biomedical applications. Int J Pharm 2021; 600:120465. [PMID: 33711469 DOI: 10.1016/j.ijpharm.2021.120465] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/27/2021] [Accepted: 03/04/2021] [Indexed: 12/17/2022]
Abstract
Chitosan-based biomaterials has shown great advantages in a broad range of applications, including drug delivery, clinical diagnosis, cell culture and tissue engineering. However, due to the lack of control over the fabrication processes by conventional techniques, the wide application of chitosan-based biomaterials has been hampered. Recently, microfluidics has been demonstrated as one of the most promising platforms to fabricate high-performance chitosan-based multifunctional materials with monodisperse size distribution and accurately controlled morphology and microstructures, which show great promising for biomedical applications. Here, we review recent progress of the fabrication of chitosan-based biomaterials with different structures and integrated functions by microfluidic technology. A comprehensive and in-depth depiction of critical microfluidic formation mechanism and process of various chitosan-based materials are first interpreted, with particular descriptions about the microfluidic-mediated control over the morphology and microstructures. Afterwards, recently emerging representative applications of chitosan-based multifunctional materials in various fields, are systematically summarized. Finally, the conclusions and perspectives on further advancing the microfluidic-aided chitosan-based multifunctional materials toward potential and versatile development for fundamental researches and biomedicine are proposed.
Collapse
Affiliation(s)
- Yang Gao
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, China
| | - Qingming Ma
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, China.
| | - Jie Cao
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, China
| | - Yiwen Wang
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, China
| | - Xin Yang
- Hangzhou Huadong Medicine Group Biotechnology Institute Company, Hangzhou, China
| | - Qiulong Xu
- Jiangsu Seven Continent Institute of Green Technology, Suzhou, China
| | - Qing Liang
- The Affiliated People's Hospital of Ningbo University, Ningbo, China
| | - Yong Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, China.
| |
Collapse
|
30
|
One-Step microfluidic synthesis of spherical and bullet-like alginate microcapsules with a core–shell structure. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125612] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
31
|
Ress J, Martin U, Bosch J, Bastidas DM. pH-Triggered Release of NaNO 2 Corrosion Inhibitors from Novel Colophony Microcapsules in Simulated Concrete Pore Solution. ACS APPLIED MATERIALS & INTERFACES 2020; 12:46686-46700. [PMID: 32931239 DOI: 10.1021/acsami.0c13497] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Herein, pH-sensitive microcapsules containing NaNO2 corrosion inhibitors for protection of steel reinforced concrete were synthesized via water-in-oil-in-water (W/O/W) double emulsion using colophony as the wall material. The average microcapsule size was 79.07 μm in diameter and exhibited a high encapsulation efficiency of 83.2%. Study of the release of corrosion inhibitors from microcapsules in deionized water (DI water, pH 6.8), carbonate/bicarbonate buffer solution (CBS, pH 9.1), and simulated concrete pore solution (SCPS, pH 12.6) demonstrates that the microcapsules are sensitive to pH and display higher release in alkaline media. This is the first study of colophony as an encapsulating agent for corrosion inhibitors. Furthermore, the alkaline pH-triggered release shows the suitability of its use in reinforced concrete systems. A wide thermal stability range was also found for the colophony microcapsules up to 100 °C. These high pH environments (CBS and SCPS) present pH values above the pKa of colophony (7.2), thus triggering enhanced inhibitor release by the ionization and deprotonation of colophony shell. The higher release in CBS and SCPS is demonstrated by the increases of the corrosion inhibitor diffusion coefficient by an order of magnitude from 3.30 × 10-17 m2/s in DI water up to 1.66 × 10-16 m2/s for SCPS. The release performance indicates that the proposed approach can be used to encapsulate a variety of inhibitors for the protection of steel reinforcements. After immersion in different pH solutions, the corrosion potentials of a carbon steel substrate with microcapsules containing nitrite were more noble than when immersed without microcapsules and the corrosion current densities showed comparable values to free corrosion inhibitors. The formation of a passive ferric oxide layer was confirmed by electrochemical impedance spectroscopy and X-ray photoelectron spectroscopy.
Collapse
Affiliation(s)
- Jacob Ress
- National Center for Education and Research on Corrosion and Materials Performance, NCERCAMP-UA, Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, 302 E Buchtel Avenue, Akron, Ohio 44325-3906, United States
| | - Ulises Martin
- National Center for Education and Research on Corrosion and Materials Performance, NCERCAMP-UA, Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, 302 E Buchtel Avenue, Akron, Ohio 44325-3906, United States
| | - Juan Bosch
- National Center for Education and Research on Corrosion and Materials Performance, NCERCAMP-UA, Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, 302 E Buchtel Avenue, Akron, Ohio 44325-3906, United States
| | - David M Bastidas
- National Center for Education and Research on Corrosion and Materials Performance, NCERCAMP-UA, Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, 302 E Buchtel Avenue, Akron, Ohio 44325-3906, United States
| |
Collapse
|
32
|
Preparation of Microcapsules of Urea Formaldehyde Resin Coated Waterborne Coatings and Their Effect on Properties of Wood Crackle Coating. COATINGS 2020. [DOI: 10.3390/coatings10080764] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Urea formaldehyde coated waterborne acrylic resin microcapsules with core-wall ratios of 0.30, 0.45, 0.60, 0.67, and 0.75, and mass fractions of 1.0%, 4.0%, 7.0%, 10.0%, 13.0%, and 16.0% were prepared by in situ polymerization. Their micro morphology was examined by scanning electron microscope and infrared spectrum measurements. The gloss, color difference, adhesion, hardness, and impact resistance of the coating surface were investigated in detail. The influence of the core-wall ratio on the performance of the waterborne crackle coating on the wood surface and the self-healing performance were examined. The results showed that when the core-wall ratio of microcapsules was 0.67, an evenly dispersed powder state with particle size of about 3 μm microcapsules was obtained, and the highest coverage was achieved. When the mass fraction of the microcapsule was 4.0%, it had the optimum effect on surface performance. The adhesion was grade two, gloss was 10.9%, impact resistance was 15 kg·cm, chromatic aberration was 1.0, hardness was H, and it had the best effect on the healing of microcracks in the wood coating. As the coating added with microcapsules can inhibit the microcracks of the coating and plays a protective role for the substrate to achieve a self-healing effect, this study lays a technical foundation for the self-healing of surface cracks in coatings for wood.
Collapse
|