1
|
Chen B, Wang Y, Shen S, Zhong W, Lu H, Pan Y. Lattice Defects and Electronic Modulation of Flower-Like Zn 3In 2S 6 Promote Photocatalytic Degradation of Multiple Antibiotics. SMALL METHODS 2024; 8:e2301598. [PMID: 38168900 DOI: 10.1002/smtd.202301598] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/12/2023] [Indexed: 01/05/2024]
Abstract
Photocatalysis is an effective technique to remove antibiotic residues from aquatic environments. Typical metal sulfides like Zn3In2S6 have been applied to a wide range of photocatalytic applications. However, there are currently no readily accessible methods to increase its antibiotic-degrading activity. Here, a facile hydrothermal approach is developed for the preparation of flower-like Zn3In2S6 with tunable sulfur lattice defects. Photogenerated carriers can be separated and transferred more easily when there is an adequate amount of lattice defects. Moreover, lattice defect-induced electronic modulation enhances light utilization and adsorption properties. The modified Zn3In2S6 demonstrates outstanding photocatalytic degradation activity for levofloxacin, ofloxacin, and tetracycline. This work sheds light on exploring metal sulfides with sulfur lattice defects for enhancing photocatalytic activity.
Collapse
Affiliation(s)
- Baofu Chen
- Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Zhejiang, 318000, China
| | - Yichao Wang
- Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Zhejiang, 318000, China
| | - Shijie Shen
- Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Zhejiang, 318000, China
| | - Wenwu Zhong
- Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Zhejiang, 318000, China
| | - Hongsheng Lu
- Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Zhejiang, 318000, China
| | - Yin Pan
- Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Zhejiang, 318000, China
| |
Collapse
|
2
|
Zhu Y, Gao Y, Yang F. Controlling the amount of MoSe 2 loaded SrTiO 3 to activate peroxymonosulfate for efficient elimination of organic pollutants. ENVIRONMENTAL TECHNOLOGY 2024:1-14. [PMID: 38989540 DOI: 10.1080/09593330.2024.2375007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/18/2024] [Indexed: 07/12/2024]
Abstract
It is critical to effectively eliminate recalcitrant organic pollutants from wastewater. In this paper, the MoSe2/SrTiO3 (MST) catalysts were synthesized through simply controlling the amount of MoSe2 in the hydrothermal method to activate peroxymonosulfate (PMS) for the degradation of pollutants. The results demonstrated that sulfamethoxazole and tetracycline were almost eliminated by PMS/MST-3 (MoSe2/SrTiO3 mass ratio 0.3: 1) activation system. The effect of inorganic anions (Cl -, H2PO4 -, HCO3 -) and metal ions (Cu2+, Ni2+, Zn2+) commonly found in actual water bodies on catalytic reaction was explored. Moreover, SO4• -, •OH and 1O2 were identified by EPR tests and scavenger experiments, where the SO4• - and •OH were the dominant reactive species. The XPS analysis indicated that the oxygen vacancies and charge transfer on the catalyst surface were the keys of PMS activation. The effect of active sites in SMX and TC on the catalytic degradation activity was explored by density functional theory, and it was obtained that the central nitrogen site of SMX was more vulnerable in the catalytic system, while the edge oxygen site of TC was more susceptible to attack.
Collapse
Affiliation(s)
- Yueming Zhu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, People's Republic of China
| | - Yuexiang Gao
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, People's Republic of China
| | - Fei Yang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, People's Republic of China
| |
Collapse
|
3
|
Chen Y, Hong C, Xu Q, Zheng H, Wang C, Lu H, Zhang S, Du M, Zeng G. Visible Light Enhancement of Biocarbon Quantum-Dot-Decorated TiO 2 for Naphthalene Removal. Molecules 2024; 29:2708. [PMID: 38893581 PMCID: PMC11173786 DOI: 10.3390/molecules29112708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/25/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
In this study, carbon-quantum-dot (CQD)-decorated TiO2 was prepared using an ultrasonic doping method and applied in the photocatalytic degradation of naphthalene under sunlight irradiation. The CQDs were synthesized from a typical macroalgae via diluted sulfuric acid pretreatment and hydrothermal synthesis using an optimal design, i.e., 3 wt% and 200 °C, respectively. The CQD/TiO2 composite remarkably enhanced the photocatalytic activity. The degradation of naphthalene under a visible light environment indicated that there is a synergistic mechanism between the CQDs and TiO2, in which the generation of reactive oxygen species is significantly triggered; in addition, the N that originated from the macroalgae accelerated the photocatalytic efficiency. Kinetic analysis showed that the photocatalytic behavior of the CQD/TiO2 composite followed a pseudo-first-order equation. Consequently, our combined experimental approach not only provides a facile pretreatment process for bio-CQDs synthesis, but also delivers a suitable TiO2 photocatalyst for the visible environment along with critical insights into the development of harmful macroalgae resources.
Collapse
Affiliation(s)
- Yunteng Chen
- Shaoxing Communications Investment Group Co., Ltd., Shaoxing 312099, China
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Chunxian Hong
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qiang Xu
- China Construction Third Engineering Shanghai Co., Ltd., Shanghai 200082, China
| | - Haihong Zheng
- Hangzhou Construction Quality and Safety Supervision Station, Hangzhou 310012, China
| | - Chao Wang
- China Construction Third Engineering Shanghai Co., Ltd., Shanghai 200082, China
| | - Hongshun Lu
- China Construction Third Engineering Shanghai Co., Ltd., Shanghai 200082, China
| | - Shuai Zhang
- China Construction Third Engineering Shanghai Co., Ltd., Shanghai 200082, China
| | - Mingming Du
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ganning Zeng
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
4
|
Du C, Fang K, Zhang H, Xu J, Sun MA, Yang S. Improved solar-driven water purification using an eco-friendly and cost-effective aerogel-based interfacial evaporator with exceptional photocatalytic capabilities. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119916. [PMID: 38150926 DOI: 10.1016/j.jenvman.2023.119916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/30/2023] [Accepted: 12/11/2023] [Indexed: 12/29/2023]
Abstract
As a promising solution to address the global challenge of freshwater scarcity, solar-powered interfacial steam generation has undergone notable advancements. This study introduces a novel solar-driven interfacial evaporation membrane (ZnIn2S4@SiO2/ACSA, ZSAS) comprising a ZnIn2S4@SiO2 composite and a black sodium alginate aerogel infused with activated carbon. The ZSAS membrane demonstrates exceptional light absorption and thermal insulation, leading to elevated surface temperatures and reduced heat dissipation into the bulk water. Furthermore, the incorporation of AC reinforces the mechanical properties of the ZSAS membrane and enhances the water purification performance. These collective features result in an impressive evaporation rate of 1.485 kg m-2 h-1 and a high photothermal conversion efficiency of 91.2% under 1 sun irradiation for the optimal ZSAS membrane. Moreover, the optimal ZSAS membrane can effectively remove salts, heavy metal ions, and organic pollutants, benefitting from its superior evaporation separation effect and the photocatalytic properties of the ZnIn2S4@SiO2 composite.
Collapse
Affiliation(s)
- Cui Du
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, PR China
| | - Kun Fang
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou, Jiangsu, 225002, PR China
| | - Huanying Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou, Jiangsu, 225002, PR China
| | - Jing Xu
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou, Jiangsu, 225002, PR China
| | - Ming-An Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, PR China.
| | - Shengyang Yang
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou, Jiangsu, 225002, PR China.
| |
Collapse
|
5
|
Chen J, Li X, Wang F. Photocatalytic degradation performance of antibiotics by WO 3/α-Fe 2O 3/zeolite type II heterojunction with core-shell structure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:119372-119384. [PMID: 37924409 DOI: 10.1007/s11356-023-30744-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/25/2023] [Indexed: 11/06/2023]
Abstract
The accumulation of antibiotics in the environment can be harmful to human health, and research on their disposal technologies is of increasing interest. In this study, WO3/α-Fe2O3/zeolite (WFZ) type II heterojunction composites with core-shell structures were prepared by coupling WO3 semiconductors with visible-light photocatalytic activity with α-Fe2O3 via hydrothermal synthesis using zeolite as a carrier for the adsorption of synergistic photocatalytic degradation of antibiotics in wastewater. X-ray diffraction, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), specific surface, and porosity measurements were used to characterize the structure of WFZ type II heterojunction. The performance of WFZ heterojunction for the visible photocatalytic degradation of antibiotics (tetracycline hydrochloride (TCH), ciprofloxacin (CIP), and levofloxacin hydrochloride (LVF)) was investigated. Through four photocatalytic cycles, the catalyst exhibited excellent durability and stability. This was attributed to the core-shell structure and type II heterojunction promoting the effective separation of photogenerated carriers and the extended visible light response range, which resulted in the best photocatalytic activity of the catalyst under visible light irradiation. Radical trapping experiments showed that superoxide radicals (•O2-) and hydroxyl radical (•OH) were the main active species that played a major role in the photocatalytic degradation. These findings show that the synthesized WFZ type-II heterojunction can be used as a reliable visible-light-responsive photocatalyst for the treatment of antibiotics in wastewater.
Collapse
Affiliation(s)
- Jiaqi Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Xinjie Li
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Fan Wang
- School of Engineering, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou, 311121, China.
| |
Collapse
|
6
|
Deng Q, Li R, Chen A, Zhong Y, Yin X, Zhang Y, Yang R. Green synthesis of rectangular hollow tubular carbon nitride via in-situ self-assembly strategy to enhance the degradation of tetracycline hydrochloride under visible light irradiation. ENVIRONMENTAL RESEARCH 2023; 238:117252. [PMID: 37783322 DOI: 10.1016/j.envres.2023.117252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/07/2023] [Accepted: 09/19/2023] [Indexed: 10/04/2023]
Abstract
It has been an urgent requirement for materials with remarkable performance in the photocatalytic degradation of organic contaminants by photocatalytic technology. Limited surface area and speedy recombination rate of photogenerated charge carriers seriously restrain the application of g-C3N4. Morphology control is a powerful approach to enhance the photocatalytic efficiency of g-C3N4. Herein, we reported a method to attain graphitic carbon nitride with rectangular hollow tubular morphology and asperous surface (TUM-CN-2) which is prepared from urea-melamine hydrothermal products and trithiocyanuric acid by self-assembling without using organic solvents or template agents. The specific surface area, photocatalytic activity, and photo-generated carriers migration and separation rate of the obtained photocatalyst TUM-CN-2 are vastly improved. Contrasted with pure g-C3N4, the degradation rate of tetracycline hydrochloride (TCH) and Rhodamine B (RhB) was enhanced about 3.04 and 13.96 times in visible light irradiation, respectively. Moreover, the interference parameters, active free radicals, potential degradation mechanism, and degradation paths of TCH were researched systematically. This work provides a green way to acquire the modified g-C3N4 with splendid catalytic activity through the self-assembly method.
Collapse
Affiliation(s)
- Qunfen Deng
- School of Chemistry and Chemical Engineering, Southwest University, No.2 Tiansheng Road, Chongqing 400715, People's Republic of China
| | - Renjie Li
- School of Chemistry and Chemical Engineering, Southwest University, No.2 Tiansheng Road, Chongqing 400715, People's Republic of China
| | - Anli Chen
- School of Chemistry and Chemical Engineering, Southwest University, No.2 Tiansheng Road, Chongqing 400715, People's Republic of China
| | - Yujia Zhong
- School of Chemistry and Chemical Engineering, Southwest University, No.2 Tiansheng Road, Chongqing 400715, People's Republic of China
| | - Xinghang Yin
- School of Chemistry and Chemical Engineering, Southwest University, No.2 Tiansheng Road, Chongqing 400715, People's Republic of China
| | - Yu Zhang
- School of Chemistry and Chemical Engineering, Southwest University, No.2 Tiansheng Road, Chongqing 400715, People's Republic of China
| | - Rui Yang
- School of Chemistry and Chemical Engineering, Southwest University, No.2 Tiansheng Road, Chongqing 400715, People's Republic of China.
| |
Collapse
|
7
|
Geng L, Li W, Dong M, Ma X, Khan A, Li Y, Li M. Synergistic effect of excellent carriers separation and efficient high level energy electron utilization on Bi 3+-Ce 2Ti 2O 7/ZnIn 2S 4 heterostructure for photocatalytic hydrogen production. J Colloid Interface Sci 2023; 650:2035-2048. [PMID: 37541023 DOI: 10.1016/j.jcis.2023.07.164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/06/2023]
Abstract
The separation of photogenerated carriers and the efficient utilization of high-level energy electrons (HLEEs) are the key processes for improving the performance of photocatalysts. Herein, Ce2Ti2O7/ZnIn2S4 (CTOZIS) and Bi3+-doped Ce2Ti2O7/ZnIn2S4 (BCTOZIS) photocatalyst were successfully synthesized through hydrothermal method. The photocatalytic hydrogen production of CTOZIS and BCTOZIS was 1233.7 μmol g-1 and 4168.5 μmol g-1 under visible light irradiation (λ ≥ 420 nm) within 5 h, which was 2.3 and 7.6 times than that of pure ZnIn2S4, respectively. X-ray photoelectron spectroscopy, photoluminescence spectroscopy and electrochemical characterization demonstrated that after Bi3+ doping, the electron-hole pairs recombination of BCTOZIS was inhibited, which may be ascribed to the establishment of a Z-scheme heterojunction and the presence of oxygen vacancy and Ce4+/Ce3+ redox center. The doping of Bi3+ resulted in the adjustment of the valence band position of Ce2Ti2O7 from 1.98 V to 1.92 V. This adjustment enabled direct transfer of HLEEs generated in Ce2Ti2O7 to the conduction band of ZnIn2S4 for hydrogen production with a wavelength below 423 nm. The synergistic effect of conventional Z-scheme electron transfer and the unique utilization of HLEEs boosted the photocatalytic performance of BCTOZIS. This study affords an innovative insight for designing visible-light-driven photocatalysts with high photocatalytic activity.
Collapse
Affiliation(s)
- Liang Geng
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, University of Science and Technology Beijing, Beijing 100083, China
| | - Wenjun Li
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, University of Science and Technology Beijing, Beijing 100083, China.
| | - Mei Dong
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiaohui Ma
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, University of Science and Technology Beijing, Beijing 100083, China
| | - Ajmal Khan
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, University of Science and Technology Beijing, Beijing 100083, China
| | - Yanyan Li
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, University of Science and Technology Beijing, Beijing 100083, China
| | - Mengchao Li
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
8
|
Dharman RK, Oh TH. Fabrication of g-C 3N 4@N-doped Bi 2MoO 6 heterostructure for enhanced visible-light-driven photocatalytic degradation of tetracycline pollutant. CHEMOSPHERE 2023; 338:139513. [PMID: 37454984 DOI: 10.1016/j.chemosphere.2023.139513] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
An effective catalyst for the removal of antibiotic pollutants which severely impact water bodies and the environment is most favorable. In this study, g-C3N4 (gCN) and nitrogen-doped Bi2MoO6 (gCN-NBM) heterostructures are developed using a solvothermal process with enhanced photocatalytic degradation of tetracycline (TC) pollutants under visible-light irradiation. The experimental results confirm that nitrogen-doped Bi2MoO6 (NBM) nanomaterials were dispersed on the gCN surface, and a close combination of NBM and gCN leads to the efficient photocatalytic performance of TC. The photocatalytic efficiency of the heterostructure catalysts is four-fold higher than those of the pristine Bi2MoO6 catalysts owing to the excellent photogenerated charge separation and reduced recombination rate. Photocurrent measurements and electrochemical impedance spectra results disclose that the prepared heterostructure catalysts exhibit efficient photo-induced charge transfer. The electron spin resonance spectra and quenching experiments results reveal that superoxide radicals (.O2-) play a major role in TC degradation. This study presents a promising approach for designing efficient visible-light photocatalysts for environmental remediation applications.
Collapse
Affiliation(s)
| | - Tae Hwan Oh
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, South Korea.
| |
Collapse
|
9
|
Ravichandran J, Singh S. A review on potential sulfide-based ternary chalcogenides for emerging photo-assisted water purification applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:69751-69773. [PMID: 37156955 DOI: 10.1007/s11356-023-27113-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 04/15/2023] [Indexed: 05/10/2023]
Abstract
Sulfide-based ternary chalcogenides have been recognized widely as exceptional photocatalysts, thanks to their narrow band gap enabling them to harvest solar energy to the maximum extent. They provide excellent optical, electrical, and catalytic performance and are of abundant use as a heterogeneous catalyst. Among sulfide-based ternary chalcogenides, compounds exhibiting AB2X4 structure form a new class of materials with excellent stability in photocatalytic performance. In the AB2X4 family of compounds, ZnIn2S4 is one of the top performing photocatalyst for energy and environmental applications. However, to date, only limited information is available on the mechanism behind the photo-induced migration of charge carriers in ternary sulfide chalcogenides. Ternary sulfide chalcogenides with their visible region activity and substantial chemical stability greatly depend on crystal structure, morphology, and optical characteristics for their photocatalytic activity. Hence, in this review, a comprehensive assessment of the reported strategies for enhancement of the photocatalytic efficiency of this compound is presented. In addition, a meticulous investigation of the applicability of ternary sulfide chalcogenide compound ZnIn2S4, in particular, has been delivered. Also, the photocatalytic behavior of other sulfide-based ternary chalcogenides for water remediation applications has also been briefed. Finally, we conclude with an insight into the challenges and future advancements in the exploration of ZnIn2S4-based chalcogenide as a photocatalyst for various photo-responsive applications. It is believed that this review could contribute to a better understanding of ternary chalcogenide semiconductor photocatalysts for solar-driven water treatment applications.
Collapse
Affiliation(s)
- Janani Ravichandran
- Crystal Growth Centre, A.C. Tech Campus, Anna University, Chennai, 600 025, India
- Department of Physics, KIT-Kalaignarkarunanidhi Institute of Technology, Coimbatore, 641402, India
| | - Shubra Singh
- Crystal Growth Centre, A.C. Tech Campus, Anna University, Chennai, 600 025, India.
| |
Collapse
|
10
|
Kumari H, Sonia, Suman, Ranga R, Chahal S, Devi S, Sharma S, Kumar S, Kumar P, Kumar S, Kumar A, Parmar R. A Review on Photocatalysis Used For Wastewater Treatment: Dye Degradation. WATER, AIR, AND SOIL POLLUTION 2023; 234:349. [PMID: 37275322 PMCID: PMC10212744 DOI: 10.1007/s11270-023-06359-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/09/2023] [Indexed: 06/07/2023]
Abstract
Water pollution is a global issue as a consequence of rapid industrialization and urbanization. Organic compounds which are generated from various industries produce problematic pollutants in water. Recently, metal oxide (TiO2, SnO2, CeO2, ZrO2, WO3, and ZnO)-based semiconductors have been explored as excellent photocatalysts in order to degrade organic pollutants in wastewater. However, their photocatalytic performance is limited due to their high band gap (UV range) and recombination time of photogenerated electron-hole pairs. Strategies for improving the performance of these metal oxides in the fields of photocatalysis are discussed. To improve their photocatalytic activity, researchers have investigated the concept of doping, formation of nanocomposites and core-shell nanostructures of metal oxides. Rare-earth doped metal oxides have the advantage of interacting with functional groups quickly because of the 4f empty orbitals. More precisely, in this review, in-depth procedures for synthesizing rare earth doped metal oxides and nonocomposites, their efficiency towards organic pollutants degradation and sources have been discussed. The major goal of this review article is to propose high-performing, cost-effective combined tactics with prospective benefits for future industrial applications solutions.
Collapse
Affiliation(s)
- Harita Kumari
- Present Address: Department of Physics, Maharshi Dayanand University, Rohtak, 124001 Haryana India
| | - Sonia
- Present Address: Department of Physics, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039 Haryana India
| | - Suman
- Present Address: Department of Physics, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039 Haryana India
| | - Rohit Ranga
- Present Address: Department of Physics, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039 Haryana India
| | - Surjeet Chahal
- Materials and Nano Engineering Research Laboratory, Department of Physics, School of Physical Sciences, DIT University, Dehradun, 248009 India
| | - Seema Devi
- Department of Physics, Netaji Subhas University of Technology, New Delhi, 110078 India
| | - Sourabh Sharma
- Department of Physics, Netaji Subhas University of Technology, New Delhi, 110078 India
| | - Sandeep Kumar
- J. C. Bose University of Science and Technology, YMCA, Faridabad, 121006 Haryana India
| | - Parmod Kumar
- J. C. Bose University of Science and Technology, YMCA, Faridabad, 121006 Haryana India
| | - Suresh Kumar
- Present Address: Department of Physics, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039 Haryana India
| | - Ashok Kumar
- Present Address: Department of Physics, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039 Haryana India
| | - Rajesh Parmar
- Present Address: Department of Physics, Maharshi Dayanand University, Rohtak, 124001 Haryana India
| |
Collapse
|
11
|
Gao F, Fan D, Xiao M, Liu H, Liu Y, Zhang J, Fang M, Tan X, Kong M. Insights into the highly efficient SPR enhanced photodegradation of tetracycline by Bi/Bi 2MoO 6 composites. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:66696-66704. [PMID: 37099094 DOI: 10.1007/s11356-023-27091-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/13/2023] [Indexed: 05/25/2023]
Abstract
A Bi/Bi2MoO6 nanocomposite is fabricated utilizing a simple one-pot solvothermal method, which shows great photodegradation ability to tetracycline (TC). The effect of Bi0 nanoparticles on the photodegradation of TC was investigated, and it is ascribed to the surface plasmonic resonance (SPR) effect. The light energy could be strongly absorbed by the Bi0 nanoparticles, and then transferred to the adjacent Bi2MoO6, to enhance the photocatalytic performance. The results of the sacrifice experiment and quantitative analysis of active radicals showed that the photoelectrons could react with soluble O2 and ·OH to form ·O2-, which finally dominates in the process of photocatalytic degradation of TC. This work proposed a way to construct a highly efficient photocatalyst based on SPR effect, which has great application potential in environmental treatment.
Collapse
Affiliation(s)
- Feixue Gao
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, People's Republic of China
| | - Dezhe Fan
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, People's Republic of China
| | - Muliang Xiao
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, People's Republic of China
| | - Hangxi Liu
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, People's Republic of China
| | - Yuxin Liu
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, People's Republic of China
| | - Jing Zhang
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, People's Republic of China
| | - Ming Fang
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, People's Republic of China.
| | - Xiaoli Tan
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, People's Republic of China
| | - Mingguang Kong
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, Anhui, 230031, People's Republic of China
| |
Collapse
|
12
|
Chen X, Chen J, Li N, Li J, He J, Xu S, Zhu Y, Yao L, Lai Y, Zhu R. Ag 3PO 4-anchored La 2Ti 2O 7 nanorod as a Z-Scheme heterostructure composite with boosted photogenerated carrier separation and enhanced photocatalytic performance under natural sunlight. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 323:121322. [PMID: 36813103 DOI: 10.1016/j.envpol.2023.121322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/13/2023] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
Developing wide spectra-responsive photocatalysts has attracted considerable attention in the photocatalytic technology to achieve excellent catalytic activity. Ag3PO4, with strong response to light spectra shorter than 530 nm, shows extremely outstanding photocatalytic oxidation ability. Unfortunately, the photocorrosion of Ag3PO4 is still the biggest obstacle to its application. Herein, the La2Ti2O7 nanorod was used to anchor Ag3PO4 nanoparticles in this study, and a novel Z-Scheme La2Ti2O7/Ag3PO4 heterostructure composite was constructed. Remarkably, the composite showed strong responsive to most of the spectra in natural sunlight. The Ag0 formed in-situ acted as the recombination center of photogenerated carriers, which promoted their efficient separation and contributed to the improved photocatalytic performance of the heterostructure. When the mass ratio of Ag3PO4 in the La2Ti2O7/Ag3PO4 catalyst was 50%, the degradation rate constant of Rhodamine B (RhB), methyl orange (MO), chloroquine phosphate (CQ), tetracycline (TC), and phenol under natural sunlight irradiation were 0.5923, 0.4463, 0.1399, 0.0493, and 0.0096 min-1, respectively. Furthermore, the photocorrosion of the composite was greatly inhibited, 76.49% of CQ and 83.96% of RhB were still degraded after four cycles. Besides, the holes and O2•- played a significant role in RhB degradation, and it included multiple mechanisms of deethylation, deamination, decarboxylation, and cleavage of ring-structures. Moreover, the treated solution can also show safety to the water receiving environment. Overall, the synthesized Z-Scheme La2Ti2O7/Ag3PO4 composite exhibited immense potential for removing various organic pollutants through photocatalytic technology under natural sunlight irradiation.
Collapse
Affiliation(s)
| | | | - Ning Li
- Foshan University, Foshan 528225, China; Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510610, China
| | - Jiesen Li
- Foshan University, Foshan 528225, China; Department of Research and Development, Guangzhou Ginpie Technology Co., Ltd., Guangzhou 510670, China
| | - Juhua He
- Foshan University, Foshan 528225, China; Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Song Xu
- Foshan University, Foshan 528225, China
| | - Yanping Zhu
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Liang Yao
- Foshan University, Foshan 528225, China
| | - Yiqi Lai
- Foshan University, Foshan 528225, China
| | - Runliang Zhu
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| |
Collapse
|
13
|
Huo B, Wang J, Wang Z, Liu C, Hao W, Wang Y, Cui P, Qi J, Gao J, Yang J, Meng F. Ni-doped MoS 2 embedded in natural wood containing porous cellulose for piezo-catalytic degradation of tetracycline. Int J Biol Macromol 2023; 233:123589. [PMID: 36764348 DOI: 10.1016/j.ijbiomac.2023.123589] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/01/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023]
Abstract
Wood is a natural material with low cost and easy recovery, which porous, layered, excellent structure and mechanical properties make it possible to apply in wastewater treatment. We have successfully grown MoS2 on natural wood containing porous cellulose and introduced the high conductivity circuit path provided by Ni nanoparticles to construct a new piezoelectric three-dimensional wood block for the efficient degradation of tetracycline. Ni/MoS2/Wood exhibited excellent piezo-catalytic degradation performance, and the degradation rate of tetracycline reached 95.96 % (k = 0.0411 min-1) under ultrasonic vibration. After 5 cycles, the degradation rate still reached 90.20 %. In addition, Ni/MoS2/Wood was used as the reactor filler to degrade tetracycline through piezoelectric response triggered by hydrodynamic force, and the degradation rate reached 90.27 % after 60 min. Further, the mechanism and the possible degradation pathways of tetracycline degradation were proposed. This low-cost, recyclable and stable three-dimensional wood block piezoelectric material provides a new idea for the practical application of wastewater treatment.
Collapse
Affiliation(s)
- Bingjie Huo
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jingxue Wang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zichen Wang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Chao Liu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Wenjing Hao
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yinglong Wang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Peizhe Cui
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jianguang Qi
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jun Gao
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Jingwei Yang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Fanqing Meng
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| |
Collapse
|
14
|
Xu H, Li M, Ou Y, Li S, Zheng X, Li X, Tang C, Chen D. The reconstitution of reed cellulose by the hydrothermal carbonization and acid etching to improve the performance of photocatalytic degradation of antibiotics. Int J Biol Macromol 2023; 236:123976. [PMID: 36906212 DOI: 10.1016/j.ijbiomac.2023.123976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 03/01/2023] [Accepted: 03/04/2023] [Indexed: 03/11/2023]
Abstract
As an economical and environment-friendly material, hydrothermal carbonation carbon (HTCC) has been widely used in the field of adsorption and catalysis. Previous studies mainly used glucose as raw material to prepare HTCC. Cellulose in biomass can be further hydrolyzed into carbohydrate; however, there are few reports on the direct preparation of HTCC from biomass and the relevant synthesis mechanism is unclear. In this study, HTCC with efficient photocatalytic performance was prepared from reed straw using dilute acid etching under hydrothermal conditions and was used for the degradation of tetracycline (TC). The mechanism of photodegradation of TC by HTCC was systematically elucidated through various characterization techniques and density functional theory (DFT) calculations. This study provides a new perspective on the preparation of green photocatalysts and demonstrates their promising application in environmental remediation.
Collapse
Affiliation(s)
- Hao Xu
- School of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Meifang Li
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yangyuan Ou
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Shang Li
- School of Foreign Languages, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xia Zheng
- School of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xingong Li
- School of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China.
| | - Chunfang Tang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Daihui Chen
- Changsha Forest Protection Station, Changsha 410004, China
| |
Collapse
|
15
|
Zhao X, Huang F, Li D, Yan A, Zhang T, Zhao W, Gao Y, Zhang J. Nb, Se-codoped ZnIn 2S 4/NbSe 2composites with enhanced catalytic activity and photodegradation performance towards tetracycline. NANOTECHNOLOGY 2023; 34:205705. [PMID: 36780666 DOI: 10.1088/1361-6528/acbb7b] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Low quantum efficiency and serious photogenerated carrier recombination have been urgent bottleneck problems for photocatalytic materials. Herein, we prepared Nb, Se-codoped ZnIn2S4/NbSe2composites through a facile solvothermal method. The synergetic effect of codoping and cocatalyst was investigated on the photodegradation performance towards tetracycline under visible-light irradiation. By adjusting the final composition, the comprehensive characterization revealed that the optimum degradation efficiency of NS/ZIS-1.6 catalyst arrived at 75% in 70 min, which was 5.8 times higher than that of pure ZnIn2S4. Deep analysis indicated that the enhanced photocatalytic performance could be attributed to higher light absorption, more efficient electron/hole separation, faster charge transport, and lower carrier recombination. This work may offer novel viewpoint for design of high-performance catalysts towards the visible-light-driven photodegradation system.
Collapse
Affiliation(s)
- Xianhui Zhao
- Jiangsu Key Laboratory of Coal-based Greenhouse Gas Control and Utilization, Carbon Neutrality Institute, China University of Mining and Technology, Xuzhou 221008, People's Republic of China
- School of Materials and Physics, China University of Mining and Technology, Xuzhou 221116, People's Republic of China
| | - Fei Huang
- Jiangsu Key Laboratory of Coal-based Greenhouse Gas Control and Utilization, Carbon Neutrality Institute, China University of Mining and Technology, Xuzhou 221008, People's Republic of China
- School of Materials and Physics, China University of Mining and Technology, Xuzhou 221116, People's Republic of China
| | - Dengke Li
- School of Materials and Physics, China University of Mining and Technology, Xuzhou 221116, People's Republic of China
| | - Aihua Yan
- Jiangsu Key Laboratory of Coal-based Greenhouse Gas Control and Utilization, Carbon Neutrality Institute, China University of Mining and Technology, Xuzhou 221008, People's Republic of China
| | - Tongyang Zhang
- School of Materials and Physics, China University of Mining and Technology, Xuzhou 221116, People's Republic of China
| | - Wenxue Zhao
- School of Materials and Physics, China University of Mining and Technology, Xuzhou 221116, People's Republic of China
| | - Ye Gao
- School of Materials and Physics, China University of Mining and Technology, Xuzhou 221116, People's Republic of China
| | - Jixu Zhang
- School of Materials and Physics, China University of Mining and Technology, Xuzhou 221116, People's Republic of China
| |
Collapse
|
16
|
Yue Y, Zou J. One-step hydrothermal synthesis of rhombohedral ZnIn 2S 4 with high visible photocatalytic activity for aqueous pollutants removal. J Colloid Interface Sci 2023; 640:270-280. [PMID: 36863183 DOI: 10.1016/j.jcis.2023.02.111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/19/2023] [Accepted: 02/21/2023] [Indexed: 02/27/2023]
Abstract
The phase composition of photocatalyst has a substantial effect on its photocatalytic activity. In this work, the rhombohedral phase ZnIn2S4 was synthesized by a one-step hydrothermal method by using inexpensive Na2S as a sulfur source with the assistance of NaCl. The Na2S as the S source can promote the generation of rhombohedral ZnIn2S4, and the addition of NaCl enhances the crystallinity of the as-prepared rhombohedral ZnIn2S4. The rhombohedral ZnIn2S4 nanosheets had a narrower energy gap, more negative conductive band potential, and higher separation efficiency of photogenerated carriers relative to the hexagonal ZnIn2S4. The as-synthesized rhombohedral ZnIn2S4 exhibited high visible photocatalytic activity with removal efficiencies of 96.7% in 80 min for the methyl orange, 86.3% in 120 min for ciprofloxacin hydrochloride and nearly 100% in 40 min for Cr(VI).
Collapse
Affiliation(s)
- Yongqin Yue
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Jian Zou
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Soft Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
17
|
Liu S, Xue X, Feng R, Zhang N, Zhang X, Zhao Y, Sun M, Yan T, Wei Q. Fabrication of Z-scheme Cd 0.85Zn 0.15S/Co 9S 8dual-functional photocatalyst for effective hydrogen evolution and organic pollutant degradation. NANOTECHNOLOGY 2023; 34:185703. [PMID: 36720154 DOI: 10.1088/1361-6528/acb777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
A Z-scheme Cd0.85Zn0.15S/Co9S8(CZS-CS) photocatalyst was reasonably fabricated by a simple solvothermal method for the effective visible-light-driven H2evolution and organic pollutants degradation. The precise construction of the CZS-CS composites provided an efficient heterogeneous contact interface and abundant reaction sites for the proposed photocatalytic reaction. The homogeneous Co9S8nanocrystals were uniformly wrapped on the surface of Cd0.85Zn0.15S nanorods, forming an intimate-contact interface, markedly contributed to the light collection and effectively inhibited the charge-carrier recombination. The optimized CZS-CS-15 composites exhibited a special H2production rate reaching 19.15 mmol·h-1·g-1, roughly 1915 and 4.5 times of pure Co9S8and Cd0.85Zn0.15S samples and 85% of tetracycline (TC) molecule within 15 min was degraded. Furthermore, trapping experiments confirmed that h+was the main active species for TC photodegradation. Moreover, the obtained photocatalysts manifested stability without apparent activity declines during the proposed reactions. Finally, the Z-scheme photocatalytic mechanism was verified to illustrate the characteristics of efficient charge transfer and high redox ability. This study provided a rational and learnable strategy for designing dual-functional Z-scheme heterojunction photocatalysts.
Collapse
Affiliation(s)
- Shurong Liu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, People's Republic of China
| | - Xiaodong Xue
- Shandong Academy of Environmental Science Co., Ltd, Jinan 250013, People's Republic of China
| | - Rui Feng
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, People's Republic of China
| | - Ning Zhang
- Shandong Academy of Environmental Science Co., Ltd, Jinan 250013, People's Republic of China
| | - Xue Zhang
- Shandong Academy of Environmental Science Co., Ltd, Jinan 250013, People's Republic of China
| | - Yanxia Zhao
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, People's Republic of China
| | - Meng Sun
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, People's Republic of China
| | - Tao Yan
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, People's Republic of China
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, People's Republic of China
| |
Collapse
|
18
|
Huang H, Tao X, Niu Z, Shan B, Liu Y, Ren J. Construction of a p-n heterojunction based on magnetic Mn 0.6Zn 0.4Fe 2O 4 and ZnIn 2S 4 to improve photocatalytic performance. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:20790-20803. [PMID: 36260225 DOI: 10.1007/s11356-022-23721-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
To improve the photocatalytic performance of Mn0.6Zn0.4Fe2O4 (MZFO) and ZnIn2S4 (ZIS) for organic pollutants, the p-n MZFO@ZIS heterojunctions with different weight percentage (10 ~ 40%) of MZFO are constructed from spent batteries and added indium ion via a green bioleaching and hydrothermal method. Structural, optical, and photocatalytic properties for the heterojunctions are investigated systematically by XRD, FT-IR, SEM-EDX, TEM, BET, VB-XPS, UV-vis DRS, PL, etc. The results confirm that p-n junction significantly improves the visible light adsorption and the separation efficiency of photogenerated carriers. Specifically, MZFO-25%@ZIS shows the highest photodegradation performance toward Congo red (CR), and its reactive kinetic constant is about 9.6, 7.8, and 7.0 times higher than that of P25 TiO2, MZFO, and ZIS, respectively, and MZFO-25%@ZIS still possesses a high reusability and simple magnetic separation after 5 cycles of reuse. The radical trapping experiments and electronic paramagnetic resonance (EPR) tests show that ·O2-, ·OH, and h+ are the most important active substance for degrading CR. The pathways for the CR degradation are further proposed based on the intermediate analysis. DFT + U calculations confirm that the high charge density of Zn-O, Fe-O, and Zn-S bonds in the MZFO and ZIS molecules provides the electrons for the sufficient production of free radicals. This work also provides a novel high value-added strategy for the green utilization of spent batteries.
Collapse
Affiliation(s)
- Hua Huang
- School of Petroleum Engineering and Environmental Engineering, Yan'an Key Laboratory of Agricultural Solid Waste Resource Utilization, Yan'an University, Yan'an, 716000, Shaanxi, China
- Shaanxi Engineering and Technological Research Center for Conversation and Utilization of Regional Biological Resources, Yan'an, 716000, Shaanxi, China
| | - Xin Tao
- School of Petroleum Engineering and Environmental Engineering, Yan'an Key Laboratory of Agricultural Solid Waste Resource Utilization, Yan'an University, Yan'an, 716000, Shaanxi, China
- Shaanxi Engineering and Technological Research Center for Conversation and Utilization of Regional Biological Resources, Yan'an, 716000, Shaanxi, China
| | - Zhirui Niu
- School of Petroleum Engineering and Environmental Engineering, Yan'an Key Laboratory of Agricultural Solid Waste Resource Utilization, Yan'an University, Yan'an, 716000, Shaanxi, China.
- Shaanxi Engineering and Technological Research Center for Conversation and Utilization of Regional Biological Resources, Yan'an, 716000, Shaanxi, China.
| | - Baoqin Shan
- School of Petroleum Engineering and Environmental Engineering, Yan'an Key Laboratory of Agricultural Solid Waste Resource Utilization, Yan'an University, Yan'an, 716000, Shaanxi, China
| | - Yu Liu
- School of Petroleum Engineering and Environmental Engineering, Yan'an Key Laboratory of Agricultural Solid Waste Resource Utilization, Yan'an University, Yan'an, 716000, Shaanxi, China
| | - Jingyu Ren
- School of Petroleum Engineering and Environmental Engineering, Yan'an Key Laboratory of Agricultural Solid Waste Resource Utilization, Yan'an University, Yan'an, 716000, Shaanxi, China
- Shaanxi Engineering and Technological Research Center for Conversation and Utilization of Regional Biological Resources, Yan'an, 716000, Shaanxi, China
| |
Collapse
|
19
|
Liu X, Xu J, Zhang T, Zhang J, Xia D, Du Y, Jiang Y, Lin K. Construction of Ag nanocluster-modified Ag 3PO 4 containing silver vacancies via in-situ reduction: With enhancing the photocatalytic degradation activity of sulfamethoxazole. J Colloid Interface Sci 2023; 629:989-1002. [PMID: 36208611 DOI: 10.1016/j.jcis.2022.09.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/31/2022] [Accepted: 09/04/2022] [Indexed: 10/14/2022]
Abstract
Photocatalytic removal of sulfonamide antibiotics is an effective strategy to solve environmental pollution. Ag3PO4 is a promising anode material for photocatalytic material with photocatalytic degradation ability under ultraviolet light or natural light. Unfortunately, due to its instability, Ag+ could be reduced to Ag0 which loaded onto the surface of Ag3PO4 during the photocatalytic process, causing self-photocorrosion and resulting in the reduction of photocatalytic activity and stability. Herein, Ag3PO4 nanoparticles loaded with Ag nanoclusters containing Ag vacancies (Ag/Ag3PO4-VAg) were constructed by an in-situ reduction strategy to achieve effectively photocatalytic degradation behavior. The Ag nanoclusters loaded on the surface of Ag3PO4 can not only effectively inhibit the self-photocorrosion but also affords a localized surface plasmon resonance (LSPR) effect in the photocatalytic process, thus leading to the efficient generation and rapid transfer of photogenerated carriers behavior. In addition, the Ag vacancies in Ag3PO4 are crucial to increasing the adsorption energy of H2O for further enhancing the capture and accumulation of electrons. In detail, according to Zeta potential analysis, the strong adsorption sites of sulfamethoxazole (SMX) molecules are generated at the interface of Ag and Ag3PO4, which promote the activation of SMX molecules. A 100 ml of 20 mg/L SMX could be completely degraded within 15 min with an apparent rate constant (Kapp) of 0.306 min-1, which far exceeds the activity of most of the photocatalysts. This work may provide an attractive strategy to address the activity, stability of Ag3PO4 and and realizing the green remediation of SMX wastewater.
Collapse
Affiliation(s)
- Xing Liu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China
| | - Jia Xu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China
| | - Tingting Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China
| | - Jian Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China
| | - Debin Xia
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China
| | - Yunchen Du
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China
| | - Yanqiu Jiang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China.
| | - Kaifeng Lin
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China.
| |
Collapse
|
20
|
ZnO/Cu 2O/g-C 3N 4 heterojunctions with enhanced photocatalytic activity for removal of hazardous antibiotics. Heliyon 2022; 8:e12644. [PMID: 36643305 PMCID: PMC9834774 DOI: 10.1016/j.heliyon.2022.e12644] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 10/27/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022] Open
Abstract
In view of the environmental pollution caused by antibiotics, the creation of an efficient photocatalytic material is an effectual way to carry out water remediation. Herein, we developed a smart strategy to synthesize ZnO/Cu2O/g-C3N4 heterojunction photocatalysts for the photodegradation of hazardous antibiotics by one-pot synthesis method. In this system, the Cu2O nanoparticles with electrons reducing capacity were coupled with g-C3N4 composites. The photocarriers were generated from the electric field of type Ⅰ heterojunction between ZnO and g-C3N4 and type Ⅱ heterojunction between Cu2O and g-C3N4. ZnO as a co-catalyst was doped to Cu2O/g-C3N4 catalyst system for removal of broad-spectrum antibiotics with the condition of visible light to protect Cu2O from photocorrosion, which thereby accelerated photocatalytic reactivity. Benefiting by new p-n-n heterojunction, the resulting ZnO/Cu2O/g-C3N4 composites had an excellent degradation performance of broad-spectrum antibiotics such as tetracycline (TC), chlortetracycline (CTC), oxytetracycline (OTC) and ciprofloxacin (CIP), the degradation of which were 98.79%, 99.5%, 95.35% and 73.53%. In particular, ZnO/Cu2O/g-C3N4 photocatalysts showed a very high degradation rate of 98.79% for TC in first 30 min under visible light, which was 1.35 and 10.62 times higher than that of Cu2O/g-C3N4 and g-C3N4, respectively. This work gives a fresh visual aspect for simultaneously solving the instability deficiencies of traditional photocatalysts and improving photocatalytic performance.
Collapse
|
21
|
Ashraf GA, Rasool RT, Pasha M, Rasool RU, Chen J, Khosa AA, Mahmood S, Hassan M, Guo H. Peroxymonosulfate-based photocatalytic oxidation of tetracycline by Fe 2(MoO 4) 3/Cd 0.5Ni 0.5S heterostructure; DFT simulation. CHEMOSPHERE 2022; 309:136423. [PMID: 36210575 DOI: 10.1016/j.chemosphere.2022.136423] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
The current research is meant to develop novel semiconductor photocatalysts, for the decomposition of tetracycline (TC) as a model organic contaminant in the aquatic environment. The fabrication of Fe2(MoO4)3/Cd0.5Ni0.5S (FMO/CNS) composite has proven to be an effective method for improving the sustainability and photocatalytic activity of Cd0.5Ni0.5S (CNS). Under visible light irradiation, FMO/CNS nanocomposite demonstrated significant PMS activation which led to 1.36 and 1.81 times TC removal efficiency as compared to immaculate Fe2(MoO4)3(FMO) and CNS. FMO/CNS composite potentially promotes the segregation of electron-hole pairs (e--h+) and exemplifies amazing photocatalytic performance for TC degradation. Its significant photocatalytic activity is due to its unique structure, which includes tiny pores on the surface that confine the PMS molecule to the interface. The FMO/CNS composite has significantly greater piezocatalytic activity than pure FMO and CNS, demonstrating the synergistic effect of FMO and CNS. In the degradation of TC, holes and key reactive radicals (•O2-/•OH/SO4-•) played a major role. Computational studies (DFT) estimates, including the determination of intermediates, confirmed that the hydroxyl addition and C-N cleavage pathways were responsible for TC degradation. As a result, this work delivers a new approach to developing novel photocatalysts with high photocatalytic activity for the abatement of organic contaminants in water.
Collapse
Affiliation(s)
- Ghulam Abbas Ashraf
- Department of Physics, Zhejiang Normal University, Jinhua, Zhejiang, 321004, China
| | - Raqiqa Tur Rasool
- Department of Physics, Zhejiang Normal University, Jinhua, Zhejiang, 321004, China.
| | - Mohsin Pasha
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Rafiqat Ul Rasool
- Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong, PR China
| | - Junyu Chen
- Department of Physics, Zhejiang Normal University, Jinhua, Zhejiang, 321004, China
| | - Azhar Abbas Khosa
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang, Jiangsu, China; Mechanical Engineering Department, NFC Institute of Engineering and Technology Multan, Pakistan
| | - Sajid Mahmood
- Department of Chemistry, Zhejiang Normal University, Jinhua, Zhejiang, 321004, China
| | - Muhammad Hassan
- Faculty of Geoscience and Environmental Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 611756, China.
| | - Hai Guo
- Department of Physics, Zhejiang Normal University, Jinhua, Zhejiang, 321004, China.
| |
Collapse
|
22
|
In-situ controlled growth of (102) and (311) crystal plane of polymorphous ZnIn2S4 assisted by inorganic anions for enhanced photocatalytic properties. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2022.118159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
23
|
Fabrication of Novel g-C 3N 4@Bi/Bi 2O 2CO 3 Z-Scheme Heterojunction with Meliorated Light Absorption and Efficient Charge Separation for Superior Photocatalytic Performance. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238336. [PMID: 36500429 PMCID: PMC9740476 DOI: 10.3390/molecules27238336] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022]
Abstract
Herein, a novel g-C3N4@Bi/Bi2O2CO3 Z-scheme heterojunction was synthesized via simple methods. UV/Vis diffuse reflectance spectroscopy (DRS) revealed that the visible light absorption range of heterojunction composites was broadened from 400 nm to 500 nm compared to bare Bi2O2CO3. The XRD, XPS and TEM results demonstrated that metal Bi was introduced into g-C3N4@Bi/Bi2O2CO3 composites, and Bi may act as an electronic bridge in the heterojunction. Metal Bi elevated the separation efficiency of carriers, which was demonstrated by photocurrent and photoluminescence. The performance of samples was assessed via the degradation of Rhodamine B (RhB), and the results exhibited that g-C3N4@Bi/Bi2O2CO3 possessed notably boosted photocatalytic activity compared with g-C3N4, Bi2O2CO3 and other binary composites. The heterojunction photocatalysts possessed good photostability and recyclability in triplicate cycling tests. Radical trapping studies identified that h+ and •O2- were two primary active species during the degradation reaction. Based on the energy band position and trapping radical experiments, the possible reaction mechanism of the indirect Z-scheme heterojunction was also proposed. This work could provide an effective reference to design and establish a heterojunction for improving the photocatalytic activity of Bi2O2CO3.
Collapse
|
24
|
Sulaeman U, Fauziyyah Ramadhanti S, Diastuti H, Iswanto P, Isnaeni I, Yin S. The enhanced photo-stability of defective Ag3PO4 tetrahedron prepared using tripolyphosphate. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
25
|
Saadati A, Habibi-Yangjeh A, Feizpoor S, Keyikoglu R, Khataee A. Combining brown titanium dioxide with BiOBr and AgBr nanoparticles using a facile one-pot procedure to promote visible-light photocatalytic performance. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
26
|
Xu C, Jin Z, Yang J, Cui J, Hu J, Li Z, Chen C, Liu F, Hu R. High surface area B-doped LaFeO3/Ag/Ag3PO4 as a Z-scheme photocatalyst for facilitate phenol degradation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129668] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
27
|
Zhang S, Zheng K, Xu G, Liang B, Yin Q. Enhanced removal of tetracycline via advanced oxidation of sodium persulfate and biochar adsorption. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:72556-72567. [PMID: 35608769 DOI: 10.1007/s11356-022-20817-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Advanced oxidation of antibiotic tetracycline (TC) is becoming an accessible and efficient technology. The removal of TC from the complex wastewater needs to be lucubrated. In this study, a TC removal system involving degradation and adsorption was established. TC degradation was accomplished by enhanced advanced oxidation via the addition of sodium persulfate (SP) and biochar into simulated wastewater containing Mn2+ and TC wastewater. The adsorption of TC and its derivatives was removed by biochar. The results indicate that the optimized reaction parameters were 3.0 g/L of biochar prepared at 600 °C (B600) and 400 mg/L of SP under acidic condition, and the removal percentage of TC was 87.48%, including 74.23% of degradation and 13.28% of adsorption; the anions Cl-, NO3-, and H2PO4- had negligible effects on the removal of TC in this Mn2+/B600/SP system. The system also functioned well with an aqueous solution with a high chemical oxygen demand (COD) concentration. Electron paramagnetic resonance (EPR) analysis indicated that ·OH and SO4- free radicals were present in the Mn2+/B600/SP system. Based on the testing and analysis results, a removal mechanism and potential TC degradation pathway for this system were proposed. TC can be degraded by ·OH and SO4- via three degradation pathways. Mn2+ can be precipitated as MnO2, and a part of the TC and its derivatives can be adsorbed on the biochar surface. The Mn2+/B600/SP system also performed satisfactorily for a complex aqueous solution with various cations and antibiotics.
Collapse
Affiliation(s)
- Shiqiu Zhang
- Institute for Carbon Neutrality, Shandong Normal University, Jinan, 250014, Shandong, China
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, Shandong, China
- National & Local Joint Engineering Research Center of Biomass Resource Utilization, Nankai University, Jinnan District, Tianjin, 300350, China
| | - Kui Zheng
- Analytical and Testing Center, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Geng Xu
- Institute for Carbon Neutrality, Shandong Normal University, Jinan, 250014, Shandong, China
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, Shandong, China
| | - Bolong Liang
- School of Eco-Environment, Hebei University, Baoding, 071002, Hebei, China
| | - Qin Yin
- State Key Laboratory of Environmental Criteria and Risk Assessment, Pollution Control Research Center, Chinese Research Academy of Environmental Science, Beijing, 100012, China.
- College of Water Science, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
28
|
Recent status and future perspectives of ZnIn2S4 for energy conversion and environmental remediation. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
29
|
Raja A, Son N, Pandey S, Kang M. Fabrication of solar-driven hierarchical ZnIn2S4/rGO/SnS2 heterojunction photocatalyst for hydrogen generation and environmental pollutant elimination. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
30
|
Qian Y, Shi J, Yang X, Yuan Y, Liu L, Zhou G, Yi J, Wang X, Wang S. Integration of biochar into Ag 3PO 4/α-Fe 2O 3 heterojunction for enhanced reactive oxygen species generation towards organic pollutants removal. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 303:119131. [PMID: 35307498 DOI: 10.1016/j.envpol.2022.119131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 02/23/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
A biochar (BC) harbored Ag3PO4/α-Fe2O3 type-Ⅰ heterojunction (Ag-Fe-BC) was prepared by a hydrothermal-impregnation method to transfer active center of heterojunctions. The electrochemical and spectroscopic tests demonstrated that BC enhanced the catalytic performance of the heterojunction by enhancing photocurrent, reducing fluorescence intensity, and facilitating separation of electron-hole pairs. The photocatalytic activity showed the Ag-Fe-BC (5:1:3) could degrade Rhodamine B (20 mg/L) by up to 92.7%, which was 3.35 times higher than Ag3PO4/α-Fe2O3. Tetracycline and ciprofloxacin (20 mg/L) were degraded efficiently by 58.3% and 79.4% within 2 h, respectively. Electron paramagnetic resonance and scavenging experiments confirmed the major reactive oxygen species (ROS) consisted of singlet oxygen (1O2) and superoxide (·O2-). Excellent RhB adsorption and electrons capturing capacity of BC facilitated electron-hole pairs separation and ROS transferring to target organics followed by elevated degradation. Thus, a facile method was proposed to synthesize a highly efficient visible-light responsive photocatalyst for degradation of various organics in water.
Collapse
Affiliation(s)
- Yifan Qian
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, PR China
| | - Jun Shi
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, PR China
| | - Xianni Yang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, PR China
| | - Yangfan Yuan
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, PR China
| | - Li Liu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, PR China
| | - Ganghua Zhou
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, PR China
| | - Jianjian Yi
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, PR China
| | - Xiaozhi Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225127, Jiangsu, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, PR China
| | - Shengsen Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225127, Jiangsu, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, PR China.
| |
Collapse
|
31
|
Bai J, Yang Y, Hu X, Lu P, Fu M, Ren X. Fabrication of novel organic/inorganic polyimide-BiPO 4 heterojunction for enhanced photocatalytic degradation performance. J Colloid Interface Sci 2022; 625:512-520. [PMID: 35749846 DOI: 10.1016/j.jcis.2022.06.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/29/2022] [Accepted: 06/04/2022] [Indexed: 10/31/2022]
Abstract
The organic-inorganic heterojunction composites possessed excellent physical and chemistry properties has enormous potential in the field of wastewater purification. Herein, the novel PI-BiPO4 heterojunction photocatalysts were synthesized via facile hydrothermal method. The different ratio PI-BiPO4 composites exhibited remarkable photodegradation performance than that of the pure BiPO4. The enhanced photocatalytic activity of 75PI-BiPO4 composites was ascribed to the improvement of light absorption ability and larger specific surface area. What is more, the forming of heterojunction between PI and BiPO4 was conduce to the separation and migration of the photogenerated electron-hole pairs. The h+ and O2- confirmed by EPR facility were predominant reactive species in the photocatalytic process. In addition, the feasible pathway of photocatalytic degradation TC were inferred on account of the UPLC-MS/MS results. This work provides a novel organic-inorganic heterojunction composites for supporting the field of the pollutant purification.
Collapse
Affiliation(s)
- Jinwu Bai
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China.
| | - Yang Yang
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China
| | - Xianglu Hu
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China
| | - Peng Lu
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China
| | - Min Fu
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China
| | - Xiaolei Ren
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China.
| |
Collapse
|
32
|
Zhang S, Xiong W, Long J, Si Y, Xu Y, Yang L, Zou J, Dai W, Luo X, Luo S. High-throughput lateral and basal interface in CeO2@Ti3C2TX: Reverse and synergistic migration of carrier for enhanced photocatalytic CO2 reduction. J Colloid Interface Sci 2022; 615:716-724. [DOI: 10.1016/j.jcis.2022.02.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/29/2022] [Accepted: 02/03/2022] [Indexed: 10/19/2022]
|
33
|
Fabrication of novel immobilized and forced Z-scheme Ag|AgNbO3/Ag/Er3+:YAlO3@Nb2O5 nanocomposite film photocatalyst for enhanced degradation of auramine O with synchronous evolution of pure hydrogen. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120658] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
34
|
Yang L, Li L, Liu Z, Lai C, Yang X, Shi X, Liu S, Zhang M, Fu Y, Zhou X, Yan H, Xu F, Ma D, Tang C. Degradation of tetracycline by FeNi-LDH/Ti 3C 2 photo-Fenton system in water: From performance to mechanism. CHEMOSPHERE 2022; 294:133736. [PMID: 35085622 DOI: 10.1016/j.chemosphere.2022.133736] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/20/2022] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
Recently, photo-Fenton technology has been widely used to degrade tetracycline (TC) because of its great efficiency and wide application range. Herein, Fe-Ni layered double hydroxides (FeNi-LDH)/Ti3C2 photo-Fenton system was constructed in this study. The results showed the introduction of Ti3C2 solved some problems of FeNi-LDH such as poor conductivity, easy aggregation, and high recombination rate of photoelectron. Benefiting from these advantages, FeNi-LDH/Ti3C2 exhibited excellent TC removal rate of 94.7% while pure FeNi-LDH was only 54%. Besides, FeNi-LDH/Ti3C2 possessed strong pH tolerance (2-11) and the removal efficiency was still up to 82% after the four-cycle experiment. Furthermore, the quenching experiments revealed the reaction mechanism, where ∙OH and ·O2- were the primary active radicals for degrading TC. Last, the results of the simulated wastewater treatment and the inorganic ion interference tests showed that FeNi-LDH/Ti3C2 possessed practical application potential. In brief, this study shows that FeNi-LDH/Ti3C2 can offer a certain theoretical basis for the actual development of hydrotalcite in heterogeneous photo-Fenton systems.
Collapse
Affiliation(s)
- Lu Yang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Ling Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Zhongtao Liu
- General Surgery Department, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, PR China
| | - Cui Lai
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China.
| | - Xiaofeng Yang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Xiaoxun Shi
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Shiyu Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Mingming Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Yukui Fu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Xuerong Zhou
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Huchuan Yan
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Fuhang Xu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Dengsheng Ma
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Chensi Tang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| |
Collapse
|
35
|
Liu J, Feng C, Li Y, Zhang Y, Liang Q, Xu S, Li Z, Wang S. Photocatalytic detoxification of hazardous pymetrozine pesticide over two-dimensional covalent-organic frameworks coupling with Ag3PO4 nanospheres. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120644] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
36
|
Lei L, Wang D, Kang Y, de Rancourt de Mimérand Y, Jin X, Guo J. Phosphor-Enhanced, Visible-Light-Storing g-C 3N 4/Ag 3PO 4/SrAl 2O 4:Eu 2+,Dy 3+ Photocatalyst Immobilized on Fractal 3D-Printed Supports. ACS APPLIED MATERIALS & INTERFACES 2022; 14:11820-11833. [PMID: 35195390 DOI: 10.1021/acsami.1c23650] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The combination of a phosphor with semiconductor photocatalysts can provide photoactivity in the dark. Indeed, the phosphor acts as a "light battery", harvesting photons during irradiation and later re-emitting light that can be used by the catalytic phase when in conditions of total darkness. This allows for continued activity of the composite catalyst, even in conditions of unstable light stimulation. In this study, we assess the use of a heterojunction, namely graphitic-C3N4/Ag3PO4, that enables efficient photoactivity specifically under visible light stimulation, in combination with a phosphor that exhibits green-blue phosphorescence (510 nm), that is SrAl2O4:Eu2+,Dy3+. Our findings showed that this combination was particularly interesting, noticeably displaying significant photoactivity in darkness, after short periods of activation by visible light. After finding the right combination and optimal ratios for maximum efficiency, the resulting catalyst composite was immobilized on resin supports with a fractal surface, printed by LCD-SLA 3D printing. The immobilization was effectuated via an aqueous-phase plasma-aided grafting (APPAG) process, using cold plasma discharge (CPD) and using vinylphosphonic acid (VPA) as a coupling agent. Whereas the colloidal photocatalyst displayed a serious problem of partial physical separation between the catalytic phase, g-C3N4/Ag3PO4, and the phosphor, the immobilization of the composite catalyst on polymer supports allowed solving this issue. Photodegradation assessments confirmed that the hybrid supported phosphor-enhanced catalyst was active, notably in dark conditions, as well as fairly photostable. This study offers new prospects for the fabrication of polymer-based panels for water purification, with round-the-clock activity and that are, in addition, extremely easy to recover and reuse, by comparison with colloidal catalysts.
Collapse
Affiliation(s)
- Lei Lei
- Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China
| | - Deyu Wang
- Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China
| | - Yongfu Kang
- Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China
| | - Yoann de Rancourt de Mimérand
- Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China
| | - Xiaoyun Jin
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Jia Guo
- Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China
| |
Collapse
|
37
|
Zhu C, He Q, Yao H, Le S, Chen W, Chen C, Wang S, Duan X. Amino-functionalized NH 2-MIL-125(Ti)-decorated hierarchical flowerlike Znln 2S 4 for boosted visible-light photocatalytic degradation. ENVIRONMENTAL RESEARCH 2022; 204:112368. [PMID: 34774832 DOI: 10.1016/j.envres.2021.112368] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/27/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
Developing novel heterojunction photocatalysts with visible-light response and remarkable photocatalytic activity have been verified to applying for the photodegradation of antibiotics in water environment. Herein, NH2-MIL-125(Ti) was integrated with flowerlike ZnIn2S4 to construct NH2-MIL-125(Ti)@ZnIn2S4 heterostructure using a one-pot solvothermal method. The photocatalytic performance was evaluated by the degradation of tetracycline (TC) under visible light illumination. The optimized NM(2%)@ZIS possesses a photodegradation rate (92.8%) and TOC removal efficiency (58.5%) superior to pristine components, which can be principally attributed to the positive cooperative effects of well-matched energy level positions, strong visible-light-harvesting capacity, and abundant coupling interfaces between the two. Moreover, the probable TC degradation mechanism was also clarified using the active species trapping experiments. This study inspires further design and construction of NH2-MIL-125(Ti) and ZnIn2S4 based photocatalysts for effective removal of antibiotics in water environment.
Collapse
Affiliation(s)
- Chengzhang Zhu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Qiuying He
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Haiqian Yao
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Shukun Le
- Chemical Engineering College, Inner Mongolia University of Technology, Huhhot, 010051, China.
| | - Wenxia Chen
- School of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, 476000, China.
| | - Chuanxiang Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Shaobin Wang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Xiaoguang Duan
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA, 5005, Australia
| |
Collapse
|
38
|
Yang Y, Ji W, Li X, Lin H, Chen H, Bi F, Zheng Z, Xu J, Zhang X. Insights into the mechanism of enhanced peroxymonosulfate degraded tetracycline using metal organic framework derived carbonyl modified carbon-coated Fe 0. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127640. [PMID: 34753650 DOI: 10.1016/j.jhazmat.2021.127640] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
Tetracycline (TC) is a commonly used antibiotic that has gained wide spread notoriety owing to its high environmental risks. In this study, rich carbonyl-modified carbon-coated Fe0 was obtained by pyrolysis of MIL-100(Fe) in an Ar atmosphere, and used to activate peroxymonosulfate (PMS) for the degradation of tetracycline in water. The roles of Fe0, carbon and surface carbonyl on PMS activation were investigated. Fe0 continuously activated PMS, acted as a sustained-release source of Fe2+, and could effectively activate PMS to produce SO4•-, O2•- and •OH. Carbon was found to do responsible for electron transportation during the activation of PMS and slow down the oxidation of Fe0. The carbonyl group on the carbon surface layer was the active site of 1O2, which explains the enhanced performance for TC degradation. When Ca = 0.1 g/L and C0 = 0.4 mM, TC degradation rate reached 96%, which was attributed to the synergistic effect of radicals (i.e., SO4•-, O2•-, •OH) and non-radical (i.e., 1O2). Finally, the degradation pathway was proposed by combining density functional theory (DFT) calculations with liquid chromatography-mass spectrometry (LC-MS), toxicities of the intermediate products were also evaluated. All results show that carbonyl-modified carbon-coated Fe0 possesses promising capacity for the removal of antibiotics from water.
Collapse
Affiliation(s)
- Yiqiong Yang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Wenqing Ji
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xingyu Li
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Huidong Lin
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Hongjia Chen
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Fukun Bi
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zenghui Zheng
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jingcheng Xu
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, 516 Jun Gong Road, Shanghai 200093, China
| | - Xiaodong Zhang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
39
|
Rational construction of Ag 3PO 4/WO 3 step-scheme heterojunction for enhanced solar-driven photocatalytic performance of O 2 evolution and pollutant degradation. J Colloid Interface Sci 2022; 608:2549-2559. [PMID: 34763889 DOI: 10.1016/j.jcis.2021.10.178] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 01/07/2023]
Abstract
Heterojunction engineering has been regarded as a promising strategy to sufficiently utilizing photogenerated charge carriers, thus benefiting the improvement of photocatalytic performance. Herein, Ag3PO4/WO3 S-scheme heterojunction was synthesized via a simple deposition-precipitation process, and its photocatalytic activity was evaluated by monitoring water splitting and pollutant degradation under visible light. As a result, Ag3PO4/WO3 with optimized ratio photocatalyst showed enhanced photocatalytic activity in oxygen production (306.6 μmol·L-1·h-1) relative to pure Ag3PO4 (204.4 μmol·L-1·h-1). Additionally, it also exhibits rapid toxicity elimination efficiency over hexavalent chromium ions (Cr6+) and ciprofloxacin (CIP) with degrading rate of 72% and 83% within 30 min, respectively. According to a series characterization, a possible S-scheme photocatalytic mechanism of Ag3PO4/WO3 was demonstrated in detail, which endowed the heterojunction with strong redox abilities to provide powerful diving force towards the photocatalytic reaction. This work presents an innovative perspective to construct Ag3PO4-based S-scheme heterojunctions for boosting photocatalytic performance for various applications.
Collapse
|
40
|
Li N, Chen J, Chen X, Lai Y, Yu C, Yao L, Liang Y. Novel visible-light-driven SrCoO 3/Ag 3PO 4 heterojunction with enhanced photocatalytic performance for tetracycline degradation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:9693-9706. [PMID: 34499304 DOI: 10.1007/s11356-021-16338-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 08/31/2021] [Indexed: 05/26/2023]
Abstract
The semiconductor photocatalytic technology has been considerably studied due to its excellent catalytic performance in water pollution control. Herein, in this study, novel SrCoO3/Ag3PO4 composite materials with different SrCoO3 content were synthesized via a simple hydrothermal synthesis method. The characteristics of the as-prepared samples were detected through SEM/HRTEM, XRD, UV-vis DRS, PL, ESR, FT-IR, and XPS techniques, and then, the photocatalytic performance of SrCoO3/Ag3PO4 toward the degradation of tetracycline was investigated. When the mass ratio of SrCoO3 and Ag3PO4 in the composite was 1:1.5, the degradation rate constant of tetracycline in SrCoO3/Ag3PO4 (1:1.5) system is 0.0102 min-1, which is 1.7 times that of the Ag3PO4, and 3.78 times that of the SrCoO3. In addition, reactive species were also analyzed through the free radical trapping experiment and DMPO spin-trapping ESR spectra analysis, showing that OH•, h+, and O2•-participated in the catalytic degradation process of tetracycline to varying degrees. Finally, the photocatalytic mechanism of SrCoO3/Ag3PO4 was also proposed.
Collapse
Affiliation(s)
- Ning Li
- CAS Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Jieming Chen
- School of Transportation, Civil Engineering & Architecture, Foshan University, Foshan, 528225, China
| | - Xiaojuan Chen
- School of Transportation, Civil Engineering & Architecture, Foshan University, Foshan, 528225, China.
- School of Environmental and Chemical Engineering, Foshan University, Foshan, 528000, China.
| | - Yiqi Lai
- School of Transportation, Civil Engineering & Architecture, Foshan University, Foshan, 528225, China
| | - Chunmu Yu
- School of Environmental and Chemical Engineering, Foshan University, Foshan, 528000, China
| | - Liang Yao
- School of Transportation, Civil Engineering & Architecture, Foshan University, Foshan, 528225, China
| | - Yunqing Liang
- School of Environmental and Chemical Engineering, Foshan University, Foshan, 528000, China
| |
Collapse
|
41
|
Liao H, Liu C, Zhong J, Li J. Fabrication of BiOCl with adjustable oxygen vacancies and greatly elevated photocatalytic activity by using bamboo fiber surface embellishment. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127892] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
42
|
Gao Y, Fang X, Chen D, Ma N, Dai W. Ternary photocatalyst of ZIF-8 nanofilms coupled with AgI nanoparticles seamlessly on ZnO microrods for enhanced visible-light photocatalysis degradation. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2021.11.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
43
|
Zou P, Su G, Li Z, Li Y, Zhou T, Kang Y. Oxalic acid modified hexagonal ZnIn2S4 combined with bismuth oxychloride to fabricate a hierarchical dual Z-scheme heterojunction: Accelerating charge transfer to improve photocatalytic activity. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
44
|
Li J, Guo C, Li L, Gu Y, BoK-Hee K, Huang J. Construction of Z-scheme WO3-Cu2O nanorods array heterojunction for efficient photocatalytic degradation of methylene blue. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109248] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
45
|
Kumar A, Thakur PR, Sharma G, Vo DVN, Naushad M, Tatarchuk T, García-Peñas A, Du B, Stadler FJ. Accelerated charge transfer in well-designed S-scheme Fe@TiO 2/Boron carbon nitride heterostructures for high performance tetracycline removal and selective photo-reduction of CO 2 greenhouse gas into CH 4 fuel. CHEMOSPHERE 2022; 287:132301. [PMID: 34826945 DOI: 10.1016/j.chemosphere.2021.132301] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 09/05/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
Designing and fabrication of smart hybrid multifunctional materials for energy/fuel production and environmental detoxification is indeed of great significance for sustainable development. Herein, we synthesized a new well-structured S-scheme heterostructure Fe@TiO2/Boron Carbon nitride (FT/BCN) with high performance tetracycline degradation and selective CO2 photo-reduction to CH4. Under visible light irradiation, 96.3% tetracycline was degraded in 60 min using best performing FT30/BCN sample with a high 83.2% total organic carbon removal in 2 h. The tetracycline degradation rate for FT30/BCN composite catalyst was ∼7 times than bare boron carbon nitride (BCN). The impact of reaction parameters as pH, presence of interfering electrolytes, light source and water matrix was also investigated. The FT30/BCN photocatalyst shows dramatic improvement in CO2 photoreduction as exhibited in 24.7 μmol g-1 h-1 CH4 and 2.4 μmol g-1 h-1 CO evolutions with optimal 91.1% CH4 selectivity. Pure BCN shows a poor 39.1% selectivity. Further, effect of alkali activation, CO2/H2O feed ratio, reducing agent and light source onto CH4 production and selectivity was also investigated. The CH4 evolution and selectivity was improved because of enhanced visible light absorption, high adsorption potential, charge carrier separation and high reducing power of photogenerated electrons induced by an effective S-scheme heterojunction between Fe@TiO2 and boron carbon nitride. An S-scheme (step-scheme) charge transfer mechanism is here operative both during tetracycline removal and CO2 reduction. The drug degradation route and photocatalytic mechanism for antibiotic removal and CO2 reduction was also predicted.
Collapse
Affiliation(s)
- Amit Kumar
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Nanshan District Key Laboratory for Biopolymers and Safety Evaluation, Shenzhen University, Shenzhen, 518055, PR China; International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan, 173229, India; School of Science and Technology, Glocal University, Saharanpur, India.
| | | | - Gaurav Sharma
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Nanshan District Key Laboratory for Biopolymers and Safety Evaluation, Shenzhen University, Shenzhen, 518055, PR China; International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan, 173229, India
| | - Dai-Viet N Vo
- Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam
| | - Mu Naushad
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Tetiana Tatarchuk
- Educational and Scientific Center of Material Science and Nanotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, 76018, Ukraine
| | - Alberto García-Peñas
- Departamento de Ciencia e Ingeniería de Materiales e Ingeniería Química (IAAB), Universidad Carlos III de Madrid, 28911, Leganés, Madrid, Spain
| | - Bing Du
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Nanshan District Key Laboratory for Biopolymers and Safety Evaluation, Shenzhen University, Shenzhen, 518055, PR China
| | - Florian J Stadler
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Nanshan District Key Laboratory for Biopolymers and Safety Evaluation, Shenzhen University, Shenzhen, 518055, PR China.
| |
Collapse
|
46
|
Novel N,C,S-TiO 2/WO 3/rGO Z-scheme heterojunction with enhanced visible-light driven photocatalytic performance. J Colloid Interface Sci 2021; 610:49-60. [PMID: 34920216 DOI: 10.1016/j.jcis.2021.12.050] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 01/21/2023]
Abstract
Novel N,C,S-TiO2/WO3/rGO Z scheme photocatalyst was successfully synthesized from graphite, TIOT, and ammonium metatungstate precursors. Material characteristics such as crystal structure, surface morphology, functional groups, specific surface area, elemental composition, band gap energy, and electron-hole recombination were characterized by XRD, TEM, BET, SEM/EDX, FT-IR, UV-VIS, and PL methods. The as-synthesized novel N,C,S-TiO2/WO3/rGO Z-scheme heterojunction photocatalyst exhibited visible light-driven photocatalytic activity (the band gap energy = 2.24 eV), could generate both effective electrons and holes, and presented the lowest electron-hole recombination rate compared to all individual components. Different factors impacting the photocatalytic decomposition of Direct Blue 71 (DB 71) by the N,C,S-TiO2/WO3/rGO system were studied. The results showed that pH of the solution, catalyst load, DB 71 initial concentration, and reaction time affected the DB 71 photocatalytic degradation efficiency. The DB 71 degradation completed after 100 min with a typical efficiency of over 91%, which was much better than other photocatalytic systems. The DB 71 degradation process followed the pseudo-first-order kinetics model with coefficients of determination > 0.95 for all conditions. The photocatalyst was easily regenerated, and exhibited a very good stability, with a photocatalytic degradation efficiency of over 83.0% after 3 cycles.
Collapse
|
47
|
Wang R, Zhu P, Liu M, Xu J, Duan M, Luo D. Synthesis and characterization of magnetic ZnFe2O4/Bi0-Bi2MoO6 with Z-scheme heterojunction for antibiotics degradation under visible light. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119339] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
48
|
Xing Y, Cheng J, Li H, Lin D, Wang Y, Wu H, Pan W. Electrospun Ceramic Nanofibers for Photocatalysis. NANOMATERIALS 2021; 11:nano11123221. [PMID: 34947570 PMCID: PMC8707833 DOI: 10.3390/nano11123221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 12/28/2022]
Abstract
Ceramic fiber photocatalysts fabricated by electrospinning hold great potential in alleviating global environmental and energy issues. However, many challenges remain in improving their photocatalytic efficiencies, such as the limited carrier lifetime and solar energy utilization. To overcome these predicaments, various smart strategies have been invented and realized in ceramic fiber photocatalysts. This review firstly attempts to summarize the fundamental principles and bottlenecks of photocatalytic processes. Subsequently, the approaches of doping, surface plasmon resonance, and up-conversion fluorescent to enlarge the light absorption range realized by precursor composition design, electrospinning parameter control, and proper post heat-treatment process are systematically introduced. Furthermore, methods and achievements of prolonging the lifetime of photogenerated carriers in electrospun ceramic fiber photocatalysts by means of introducing heterostructure and defective composition are reviewed in this article. This review ends with a summary and some perspectives on the future directions of ceramic fiber photocatalysts.
Collapse
Affiliation(s)
- Yan Xing
- School of Science, Nanjing University of Posts & Telecommunications (NUPT), Nanjing 210023, China;
- State Key Lab of New Ceramic and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China; (J.C.); (H.L.); (D.L.); (Y.W.); (H.W.)
| | - Jing Cheng
- State Key Lab of New Ceramic and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China; (J.C.); (H.L.); (D.L.); (Y.W.); (H.W.)
| | - Heping Li
- State Key Lab of New Ceramic and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China; (J.C.); (H.L.); (D.L.); (Y.W.); (H.W.)
| | - Dandan Lin
- State Key Lab of New Ceramic and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China; (J.C.); (H.L.); (D.L.); (Y.W.); (H.W.)
| | - Yuting Wang
- State Key Lab of New Ceramic and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China; (J.C.); (H.L.); (D.L.); (Y.W.); (H.W.)
| | - Hui Wu
- State Key Lab of New Ceramic and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China; (J.C.); (H.L.); (D.L.); (Y.W.); (H.W.)
| | - Wei Pan
- State Key Lab of New Ceramic and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China; (J.C.); (H.L.); (D.L.); (Y.W.); (H.W.)
- Correspondence: ; Tel.: +86-010-6277-2859
| |
Collapse
|
49
|
Constructing electrostatic self-assembled ultrathin porous red 2D g-C 3N 4/Fe 2N Schottky catalyst for high-efficiency tetracycline removal in photo-Fenton-like processes. J Colloid Interface Sci 2021; 607:1527-1539. [PMID: 34583049 DOI: 10.1016/j.jcis.2021.09.112] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 09/14/2021] [Accepted: 09/19/2021] [Indexed: 01/28/2023]
Abstract
The traditional heterogeneous photo-Fenton reaction was mainly restricted by the fewer surface-active sites, low Fe3+/Fe2+ transformation and H2O2 activation efficiency of catalyst. This work designed and fabricated the efficient photo-Fenton Schottky catalysts via a facile electrostatic self-assembly of metallic Fe2N nanoparticles scattering on the surface of red g-C3N4 (ultrathin porous oxygen-doped 2D g-C3N4 nanosheets). The porous morphology and exceptional electrical structure of red g-C3N4 endowed more active sites and facilitated the photoexcited charge separation. Benefitting from the Schottky effect and unique dimensional coupling structure, the strong visible light absorption and fast spatial charge transfer were realized in the Schottky junction system. More strikingly, Fe2N as an efficient co-catalyst was in favor of the trap and export of e-, leading to the Fe3+/Fe2+ transformation and H2O2 activation during the photo-Fenton process. Accordingly, the as-prepared catalysts revealed outstanding activity in photo-Fenton like degradation of tetracycline (TC) although under 5 W white LED light irradiation. Furthermore, the reasonable degradation pathway of TC and corresponding toxicity of the intermediates, as well as the photo-Fenton catalytic mechanism were interpreted and discussed in detail. This study would be a great aid in the development of various Schottky catalysts for heterogeneous photo-Fenton-based environmental remediation systems.
Collapse
|
50
|
Ren T, Huang H, Li N, Chen D, Xu Q, Li H, He J, Lu J. 3D hollow MXene@ZnIn 2S 4 heterojunction with rich zinc vacancies for highly efficient visible-light photocatalytic reduction. J Colloid Interface Sci 2021; 598:398-408. [PMID: 33930744 DOI: 10.1016/j.jcis.2021.04.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 01/27/2023]
Abstract
Well-designed heterojunction semicounductor coupled with high-conductive cocatalyst can obtain boosted photocatalytic activity. Herein, a novel three-dimensional (3D) hollow heterojunction was prepared by coating the indium zinc sulfide (ZnIn2S4) nanosheets with rich-zinc vacancies (VZn) on 3D hollow titanium carbide (Ti3C2). The obtained 3D hollow heterojunction (Ti3C2@ZnIn2S4) achieved effective optical collection and promoted the separation and transmission of photogenerated carriers as well as the surface reaction of spatial separation. In addition, time-resolved photoluminescence and steady-state photoluminescence spectra indicated that the existence of VZn and the introduction of hollow Ti3C2 spherical shell effectively inhibited the recombination of photogenerated carriers and accelerated their separation and transmission, thus further enhancing the photocatalytic activity. In addition, the introduction of 3D hollow Ti3C2 benefited a larger specific surface area for heavy metal adsorption. Due to the unique structural and compositional characteristics, the heterojunction showed high efficiency of Cr(VI) reduction under visible light. In particular, the optimal Ti3C2@ZnIn2S4 heterojunction (1%-Ti3C2@ZnIn2S4) achieved 100% removal of Cr(VI) within 25 min, with a reaction rate constant of 0.225, which was 8.5 times higher than that of the pristine ZnIn2S4. The superior reusability and structural stability further indicated the MXene-based novel photocatalyst is promising for application in environmental remediation.
Collapse
Affiliation(s)
- Tingting Ren
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Huoshuai Huang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Najun Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China.
| | - Dongyun Chen
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Qingfeng Xu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Hua Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Jinghui He
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Jianmei Lu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China.
| |
Collapse
|