1
|
Zhu Y, Ye C, Xiao X, Sun Z, Li X, Fu L, Karimi-Maleh H, Chen J, Lin CT. Graphene-based electrochemical sensors for antibiotics: sensing theories, synthetic methods, and on-site monitoring applications. MATERIALS HORIZONS 2025; 12:343-363. [PMID: 39431856 DOI: 10.1039/d4mh00776j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Owing to the extensive use of antibiotics for treating infectious diseases in livestock and humans, the resulting residual antibiotics are a burden to the ecosystem and human health. Hence, for human health and ecological safety, it is critical to determine the residual antibiotics with accuracy and convenience. Graphene-based electrochemical sensors are an effective tool to detect residual antibiotics owing to their advantages, such as, high sensitivity, simplicity, and time efficiency. In this work, we comprehensively summarize the recent advances in graphene-based electrochemical sensors used for detecting antibiotics, including modifiers for electrode fabrication, theoretical elaboration of electrochemical sensing mechanisms, and practical applications of portable electrochemical platforms for the on-site monitoring of antibiotics. It is anticipated that the current review will be a valuable reference for comprehensively comprehending graphene-based electrochemical sensors and further promoting their applications in the fields of healthcare, environmental protection, and food safety.
Collapse
Affiliation(s)
- Yangguang Zhu
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, P. R. China.
- Laboratory of Environmental Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, P. R. China
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Chen Ye
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Xiao Xiao
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - Zhuang Sun
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, P. R. China.
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Xiufen Li
- Laboratory of Environmental Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Li Fu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, P. R. China
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
- School of Engineering, Lebanese American University, Byblos 1102-2801, Lebanon
| | - Jun Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - Cheng-Te Lin
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, P. R. China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, P. R. China
| |
Collapse
|
2
|
Zhao L, Zhang D, Zhang Y, Huang C, Gao J, Wang F. Including the rare cubane cluster cobalt coordination polymer as the fluorescent sensing material for selectively and sensitively detecting the nitrofurantoin antibiotic. Talanta 2024; 280:126726. [PMID: 39173246 DOI: 10.1016/j.talanta.2024.126726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 08/24/2024]
Abstract
More and more attention has been paid to food safety. Due to the overuse and misuse of antibiotics, the problem of antibiotic residues in animal food is one of the important challenges to ensure food safety. The development of a feasible strategy to detect antibiotic residues in animal food has become desirable. In this paper, we creatively synthesize a water-stable fluorescence sensing material, namely, Co(Ⅱ)-Coordination polymer [Co2(CA) (L)0.5 (H2O)3] n (L = 1,4-bis(imidazole-1-ylmethyl) benzene, CA= Citric acid). The single crystal X-ray diffraction shows that it crystallizes in tetragonal space group I-4. It is worth mentioning that there exists the rare Co4(μ3-O)4 cubane cluster structure and Co8 cluster units. Those adjacent Co8 cluster units are connected into an infinite two-dimensional net structure by four flexible bridged L ligands. Finally, the Co(Ⅱ)-Coordination polymer (CP) further develops into the three-dimensional supramolecular structure via the hydrogen bonds of O-H⋯O and C-H⋯O. It could selectively detect the antibiotic-nitrofurantoin (NFT) residue by way of fluorescence quenching, Co-CP for the detection of NFT shows broad linearity from 0 to 200 μM, with a detection limit of 0.13 μM and strong anti-interference ability. It is used to detect the NFT residual of tap water and milk with a spiked recovery of 86.35-112.47 %.
Collapse
Affiliation(s)
- Lingyan Zhao
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, China; College of Qian'an, North China University of Science and Technology, Qian'an, Hebei, 064400, China.
| | - Dianwei Zhang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, China
| | - Yuhua Zhang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, China
| | - Cuimiao Huang
- College of Qian'an, North China University of Science and Technology, Qian'an, Hebei, 064400, China
| | - Ju Gao
- College of Qian'an, North China University of Science and Technology, Qian'an, Hebei, 064400, China
| | - Fenghuan Wang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, China.
| |
Collapse
|
3
|
Labriola VF, Amaral LS, Perussi JR, Cavalheiro CCS, Azevedo EB. Nitrofurantoin removal by the photo-Fenton process: degradation, mineralization, and biological inactivation. ENVIRONMENTAL TECHNOLOGY 2024; 45:3418-3427. [PMID: 37204328 DOI: 10.1080/09593330.2023.2215940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/27/2023] [Indexed: 05/20/2023]
Abstract
Antibiotics may induce super-resistant bacteria if they are available in the environment. Therefore, the removal of aqueous nitrofurantoin (NFT), and more importantly, the removal of the remaining antimicrobial activity after treatment, by the photo-Fenton process, was herein studied. Degradation experiments were performed according to an experimental design (0.5% error; factors: concentrations of NFT, Fe3+, and H2O2). Degradation conditions were: 20 mg NFT L-1, 10 mg Fe3+ L-1, and 170 mg H2O2 L-1. Fixed parameters were: 100 mL of the NFT solution, pH 2.5, 15-min stirring, and 25.0 ± 0.5°C. The initial rate constant (k0) and the maximum oxidation capacity (MOC) of the system were 0.61 min-1 and 100%, respectively (R2 = 0.986). 97% of the NFT and 93% of the organic carbon initially present were removed. Five degradation products (DPs) were detected by HPLC-MS and their endpoints estimated by the ECOSAR (ECOlogical Structure-Activity Relationships) 2.0 software. NFT and its DPs presented no toxicity towards Lactuca sativa. The antimicrobial activity (Escherichia coli) of NFT and/or DPs was completely removed in 15 min. Structures were proposed for the detected DPs. In short, the tested advanced oxidation technology (AOP), besides being capable of removing and mineralizing aqueous NFT in a short time, 15 min, also rendered the treated water biologically inactive (no ecotoxicity, no antimicrobial activity).
Collapse
Affiliation(s)
- Vanessa Feltrin Labriola
- Laboratório de Desenvolvimento de Tecnologias Ambientais (LDTAmb), São Carlos Institute of Chemistry, University of São Paulo (USP), São Carlos/SP, Brazil
| | - Larissa Souza Amaral
- Grupo de Fotosensibilizadores, São Carlos Institute of Chemistry, University of São Paulo (USP), São Carlos/SP, Brazil
| | - Janice Rodrigues Perussi
- Grupo de Fotosensibilizadores, São Carlos Institute of Chemistry, University of São Paulo (USP), São Carlos/SP, Brazil
| | | | - Eduardo Bessa Azevedo
- Laboratório de Desenvolvimento de Tecnologias Ambientais (LDTAmb), São Carlos Institute of Chemistry, University of São Paulo (USP), São Carlos/SP, Brazil
| |
Collapse
|
4
|
Yin Y, Zhang J, Ji C, Tao H, Yang Y. Rare [Cu 4I 2] 2+ cationic cluster-based metal-organic framework and hierarchical porous composites design for effective detection and removal of roxarsone and antibiotics. J Colloid Interface Sci 2024; 664:551-560. [PMID: 38484524 DOI: 10.1016/j.jcis.2024.03.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 04/07/2024]
Abstract
Fluorescence quenching induced by photoinduced electron transfer (PET) stands as an effective strategy for identifying water pollutants. Herein, a novel (4, 8)-connected three-dimensional framework Cu(I)-MOF ([Cu2I(tpt)]n) with unique 8-connected [Cu4I2]2+ cationic clusters is designed by employing the nitrogen-rich ligand (Htpt = 5-[4(1H-1,2,4-triazol-1-yl)]phenyl-2H-tetrazole). Water-stabilized Cu(I)-MOF exhibits outstanding fluorescence properties, facilitating its application in detecting organic pollutants in water. Benefiting from the fact that the Cu(I)-MOF possesses a higher lowest unoccupied molecular orbitals (LUMO) energy level than that of the analyte, the rapid d-PET can occur, entitling Cu(I)-MOF to a sensitive fluorescence quenching response to roxarsone (ROX), nitrofurazone (NFZ) and nitrofurantoin (NFT) (with detection limits as low as 0.13 µM, 0.15 µM, and 0.13 µM, respectively). The nitrogen-containing sites of melamine foam (MF) are utilized to facilitate the anchoring and growth of Cu-MOF crystals, which enables the preparation of hierarchical microporous - macroporous Cu(I)-MOF/MF composites. The ordered porous structure of Cu(I)-MOF/MF provides cavities and open sites for the efficient removal of ROX (qmax = 210.6 mg∙g-1), NFZ (qmax = 111.5 mg∙g-1) and NFT (qmax = 238.9 mg∙g-1) from water. This characteristic endows the Cu(I)-MOF/MF with rapid and recyclable adsorption capacity. Therefore, this work provides valuable insights to address the problem of detection and removal of pollutants in the aquatic environment.
Collapse
Affiliation(s)
- Yuanyuan Yin
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China
| | - Jian Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China.
| | - Chengshan Ji
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China
| | - He Tao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China
| | - Yulin Yang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China.
| |
Collapse
|
5
|
Mukundan G, Badhulika S. Composite of a Stabilizer-Free Trimetallic Prussian Blue Analogue (PBA) and Polyaniline (PANI) on 3D Porous Nickel Foam for the Detection of Nitrofurantoin in Biological Fluids. ACS APPLIED BIO MATERIALS 2024; 7:2924-2935. [PMID: 38637912 DOI: 10.1021/acsabm.3c01297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Herein, a facile and highly effective nonenzymatic electrochemical sensing system is designed for the detection of the antibacterial drug nitrofurantoin (NFT). This electrocatalyst is a combination of a trimetallic Prussian blue analogue and conductive polyaniline coated onto a three-dimensional porous nickel foam substrate. A comprehensive set of physicochemical analyses have verified the successful synthesis. The fabricated electrochemical sensor exhibits an impressively low limit of detection (0.096 nM) and quantification (0.338 nM, S/N = 3.3), coupled with a wide linear range spanning from 0.1 nM to 5 mM and a sensitivity of 13.9 μA nM-1 cm-2. This excellent performance is attributed to the collaborative effects of conducting properties of polyaniline (PANI) and the remarkable redox behavior of the Prussian blue analogue (PBA). When both are integrated into the nickel foam, they create a significantly enlarged surface area with numerous catalytic active sites, enhancing the sensor's efficiency. The sensor demonstrates a high degree of specificity for NFT, while effectively minimizing responses to potential interferences such as flutamide, ascorbic acid, glucose, dopamine, uric acid, and nitrophenol, even when present in 2-3-fold higher concentrations. Moreover, to validate its practical utility, the sensor underwent real sample analysis using synthetic urine, achieving outstanding recovery rates of 118 and 101%.
Collapse
Affiliation(s)
- Gopika Mukundan
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad 502285, India
| | - Sushmee Badhulika
- Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285, India
| |
Collapse
|
6
|
Raheem Aleem A, Chen R, Wan T, Song W, Wu C, Qiu X, Zhan Q, Xu K, Gao X, Dong T, Chen X, Yu L, Wen H. Highly water-soluble and biocompatible hyaluronic acid functionalized upconversion nanoparticles as ratiometric nanoprobes for label-free detection of nitrofuran and doxorubicin. Food Chem 2024; 438:137961. [PMID: 38011791 DOI: 10.1016/j.foodchem.2023.137961] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/25/2023] [Accepted: 11/08/2023] [Indexed: 11/29/2023]
Abstract
Antibiotic detection is crucial and challenging because the widespread consumption of antibiotics has shown extensive harmful effects on food, environment and human health. Here, we propose highly water-soluble and biocompatible hyaluronic acid (HYA) functionalized upconversion nanoparticles (UCNPs) for ratiometric detection of multiple antibiotics. The ultraviolet upconversion luminescence (UCL) from UCNPs was significantly quenched by nitrofurazone (NFZ)/nitrofurantoin (NFT), and blue UCL was quenched by doxorubicin (DOX), while red UCL remained unchanged for internal reference. The UCNPs-HYA nanoprobes exhibit excellently sensitive and selective NFZ, NFT and DOX detection in linear range of 2.5-100 μM, 2.5-80 μM, and 2.5-200 μM with the LOD at 0.28 μM (55 μg/kg), 0.20 μM (48 μg/kg) and 0.17 μM (97 μg/kg), respectively. The nanoprobes achieved detecting real samples of NFZ in lake water, liquid milk and chicken meat with satisfactory results, and UCL bioimaging of DOX in HeLa cells. The UCNPs-HYA ratiometric nanoprobes are promising for food samples detection and potential biosensing in the cellular environment.
Collapse
Affiliation(s)
- Abdur Raheem Aleem
- Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, Guangdong Engineering Technology Research Center of Modern Fine Chemical Engineering, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China; Smart Medical Innovation Technology Center, Guangdong University of Technology, Guangzhou 510006, China; Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory (Rongjiang Laboratory), Jieyang 515200, China
| | - Rihui Chen
- Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, Guangdong Engineering Technology Research Center of Modern Fine Chemical Engineering, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Tonghua Wan
- Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, Guangdong Engineering Technology Research Center of Modern Fine Chemical Engineering, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Wei Song
- Analysis and Test Center, Guangdong University of Technology, Guangzhou 510006, China
| | - Chuyan Wu
- Centre for Optical and Electromagnetic Research, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Xue Qiu
- Centre for Optical and Electromagnetic Research, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Qiuqiang Zhan
- Centre for Optical and Electromagnetic Research, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Kuncheng Xu
- Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, Guangdong Engineering Technology Research Center of Modern Fine Chemical Engineering, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Xin Gao
- Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, Guangdong Engineering Technology Research Center of Modern Fine Chemical Engineering, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Tianci Dong
- Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, Guangdong Engineering Technology Research Center of Modern Fine Chemical Engineering, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiang Chen
- Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, Guangdong Engineering Technology Research Center of Modern Fine Chemical Engineering, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China; Smart Medical Innovation Technology Center, Guangdong University of Technology, Guangzhou 510006, China; Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory (Rongjiang Laboratory), Jieyang 515200, China
| | - Lin Yu
- Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, Guangdong Engineering Technology Research Center of Modern Fine Chemical Engineering, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China; Smart Medical Innovation Technology Center, Guangdong University of Technology, Guangzhou 510006, China; Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory (Rongjiang Laboratory), Jieyang 515200, China
| | - Hongli Wen
- Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, Guangdong Engineering Technology Research Center of Modern Fine Chemical Engineering, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China; Smart Medical Innovation Technology Center, Guangdong University of Technology, Guangzhou 510006, China; Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory (Rongjiang Laboratory), Jieyang 515200, China.
| |
Collapse
|
7
|
Tho LH, Khuyen BX, Mai NXD, Tran NHT. Potential of a deep eutectic solvent in silver nanoparticle fabrication for antibiotic residue detection. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:426-434. [PMID: 38655542 PMCID: PMC11035980 DOI: 10.3762/bjnano.15.38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/19/2024] [Indexed: 04/26/2024]
Abstract
Deep eutectic solvents (DESs) have recently emerged as an alternative solvent for nanoparticle synthesis. There have been numerous advancements in the fabrication of silver nanoparticles (Ag NPs), but the potential of DESs in Ag NP synthesis was neither considered nor studied carefully. In this study, we present a novel strategy to fabricate Ag NPs in a DES (Ag NPs-DES). The DES composed of ᴅ-glucose, urea, and glycerol does not contain any anions to precipitate with Ag+ cations. Our Ag NPs-DES sample is used in a surface-enhanced Raman scattering (SERS) sensor. The two analytes for SERS quantitation are nitrofurantoin (NFT) and sulfadiazine (SDZ) whose residues can be traced down to 10-8 M. The highest enhancement factors (EFs) are competitive at 6.29 × 107 and 1.69 × 107 for NFT and SDZ, respectively. Besides, the linearity coefficients are extremely close to 1 in the range of 10-8 to 10-3 M of concentration, and the SERS substrate shows remarkable uniformity along with great selectivity. This powerful SERS performance indicates that DESs have tremendous potential in the synthesis of nanomaterials for biosensor substrate construction.
Collapse
Affiliation(s)
- Le Hong Tho
- Faculty of Materials Science and Technology, University of Science, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
- Center for Innovative Materials and Architectures (INOMAR), Ho Chi Minh City, Viet Nam
| | - Bui Xuan Khuyen
- Institute of Materials Science, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Ngoc Xuan Dat Mai
- Vietnam National University, Ho Chi Minh City, Vietnam
- Center for Innovative Materials and Architectures (INOMAR), Ho Chi Minh City, Viet Nam
| | - Nhu Hoa Thi Tran
- Faculty of Materials Science and Technology, University of Science, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| |
Collapse
|
8
|
Rao VS, Sharma R, Paul DR, Almáši M, Sharma A, Kumar S, Nehra SP. Architecting the Z-scheme heterojunction of Gd 2O 3/g-C 3N 4 nanocomposites for enhanced visible-light-induced photoactivity towards organic pollutants degradation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:98773-98786. [PMID: 36702986 DOI: 10.1007/s11356-023-25360-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 01/11/2023] [Indexed: 06/18/2023]
Abstract
A basic calcination process in one step was employed to create g-C3N4 photocatalytic composites modified by Gd2O3 nanoparticles. SEM (scanning electron microscopy), FTIR (Fourier-transform infrared spectroscopy), XRD (X-ray diffraction), EIS (electrochemical impedance spectroscopy), PL (photoluminescence studies) as well as TEM (transmission electron microscopy), XPS (X-ray photoelectron spectroscopy), and CV (cyclic voltammetry) were employed to explain the structural traits, optical properties, and morphological features of the processed photocatalyst. The findings show that Gd2O3 (Gd) does not affect the sample's crystalline structure but rather increases g-C3N4 surface area by spreading it superficially. Furthermore, Gd can redshift the light absorption peak, reduce the energy gap, and improve the efficiency with which photogenerated holes and electrons are removed in g-C3N4. The surface morphology of g-C3N4, in particular, could be significantly enhanced. We similarly employed three distinct photocatalytic complexes of Gd2O3 and g-C3N4 in 1:1, 2:1, and 3:1 proportions to degrade methylene blue (MB). After 100 min in visible light (400-800 nm), the photodegradation rate of composites is 58.8% for 1:1 (GG1), 94.5% for 2:1 (GG2), and 92% for 3:1 (GG3). In addition to the MB dye, the photocatalytic activity of synthesized materials was also studied for methyl orange. The result shows phenomenal degradation values, i.e.; for GG1 86%, GG2 96%, and for GG3 84.6%. The narrow band gap that separates the photogenerated electron and hole enhances g-C3N4 ability to degrade photo-catalytically. From the result, we concluded that the photocurrent and cyclic photocatalytic degradation of methylene blue shows that a composition of 2:1 Gd2O3/g-C3N4 has high photocatalytic stability.
Collapse
Affiliation(s)
- Vikrant Singh Rao
- Center of Excellence for Energy and Environmental Studies, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039, Sonipat, India
| | - Rishabh Sharma
- Center of Excellence for Energy and Environmental Studies, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039, Sonipat, India
- Interdisciplinary Program in Climate Studies (IDPCS), Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Devina Rattan Paul
- Center of Excellence for Energy and Environmental Studies, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039, Sonipat, India
| | - Miroslav Almáši
- Department of Inorganic Chemistry, Faculty of Science, P. J. Safarik University, Moyzesova 11, 041 54, Kosice, Slovak Republic
| | - Anshu Sharma
- Department of Physics, School of Engineering & Technology (SoET), Central University of Haryana, Mahendragarh, 123031, India
| | - Suresh Kumar
- Department of Electronic Science, Kurukshetra University, Kurukshetra, 1336119, India
| | - Satya Pal Nehra
- Center of Excellence for Energy and Environmental Studies, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039, Sonipat, India.
| |
Collapse
|
9
|
Dave PN, Sirach R. Effects of Barium‐Copper‐Cobalt oxide composites supported on reduced graphene oxide in the thermolysis of ammonium perchlorate and 3‐nitro‐1,2,4‐triazol‐5‐one. ChemistrySelect 2023. [DOI: 10.1002/slct.202204797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- Pragnesh N. Dave
- Department of Chemistry Sardar Patel University Vallabh Vidyanagar 388 120 Gujarat India
| | - Ruksana Sirach
- Department of Chemistry Sardar Patel University Vallabh Vidyanagar 388 120 Gujarat India
| |
Collapse
|
10
|
Sakthivel R, Liu TY, Chung RJ. Bimetallic Cu 5Zn 8 alloy-embedded hollow porous carbon nanocubes derived from 3D-Cu/ZIF-8 as efficient electrocatalysts for environmental pollutant detection in water bodies. ENVIRONMENTAL RESEARCH 2023; 216:114609. [PMID: 36272591 DOI: 10.1016/j.envres.2022.114609] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Excessive use of nitrofurantoin (NFT) and its residues can be harmful to the ecosystem, and to mitigate this, rapid and cost-effective detection of NFT in water bodies is needed. In this regard, we prepared a three-dimensional (3D) copper-zeolitic imidazole framework (Cu/ZIF-8)-derived bimetallic Cu5Zn8 alloy-embedded hollow porous carbon nanocubes (Cu5Zn8/HPCNC) for electrochemical detection of NFT. The resultant material is characterized using suitable spectrophotometry and voltammetry methods. Cu5Zn8/HPCNC is an effective electrocatalyst with high electrical conductivity and a fast electron transfer rate. It also has more catalytic active sites for improved electrochemical reduction of NFT. Fabricated Cu5Zn8/HPCNC-modified screen-printed electrode (SPE) for NFT reduction have a wide linear range with a low detection limit, and high sensitivity (15.343 μA μМ-1 cm-2), appreciable anti-interference ability with related nitro compounds, storage stability, reproducibility, and repeatability. Also, the practicability of Cu5Zn8/HPCNC/SPE can be successfully employed in NFT monitoring in water bodies (drinking water, pond water, river water, and tap water) with satisfactory recoveries.
Collapse
Affiliation(s)
- Rajalakshmi Sakthivel
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, 10608, Taiwan
| | - Ting-Yu Liu
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, 243303, Taiwan; Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan City, 32003, Taiwan
| | - Ren-Jei Chung
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, 10608, Taiwan.
| |
Collapse
|
11
|
Albadi Y, Ivanova MS, Grunin LY, Makarin RA, Komlev AS, Chebanenko MI, Nevedomskyi VN, Popkov VI. Ultrasound-assisted co-precipitation synthesis of GdFeO 3 nanoparticles: structure, magnetic and MRI contrast properties. Phys Chem Chem Phys 2022; 24:29014-29023. [PMID: 36426648 DOI: 10.1039/d2cp03688f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Superparamagnetic nanocrystals of gadolinium orthoferrite (GdFeO3) with close to isometric morphology were successfully synthesized by heat treatment of gadolinium and iron(III) hydroxides obtained by direct co-precipitation with and without ultrasonic irradiation. The obtained samples were investigated by PXRD, low-temperature nitrogen adsorption-desorption isotherm measurements, HRTEM and VSM. It was established that ultrasonication during co-precipitation led to a decrease in the average size of GdFeO3 crystallites obtained after heat treatment by approximately 19%, an increase in their BET specific surface area by more than two times, a decrease in the degree of their aggregation by about five times and an improvement in their magnetic properties due to the increase in phase homogeneity. The colloidal solutions of the GdFeO3 nanoparticles synthesized using ultrasound were investigated by 1H NMR to measure the T1 and T2 relaxation times of water protons at 0.47 T. The resulting relaxivities r1 and r2 were approximately recalculated at 1.5, 3 and 4.7 T on the basis of a semi-statistical ad hoc method by analyzing the literature data for a number of structurally similar compounds with reported relaxivity values at different NMR frequencies. According to the experimental and predicted values of the r2/r1 ratio, the investigated GdFeO3 sample may be classified as a T1-contrast agent for MRI at 0.47 and 1.5 T, as a T1-T2 dual-modal contrast agent at 3 T and as a T2-contrast agent at 4.7 T.
Collapse
Affiliation(s)
- Yamen Albadi
- Saint Petersburg State Institute of Technology, 190013 Saint Petersburg, Russian Federation. .,Al-Baath University, 77 Homs, Syrian Arab Republic
| | - Maria S Ivanova
- Volga State University of Technology, 424000 Yoshkar-Ola, the Republic of Mari El, Russian Federation.,Resonance Systems GmbH, D-73230 Kirchheim unter Teck, Germany
| | - Leonid Y Grunin
- Volga State University of Technology, 424000 Yoshkar-Ola, the Republic of Mari El, Russian Federation.,Resonance Systems GmbH, D-73230 Kirchheim unter Teck, Germany
| | - Rodion A Makarin
- M. V. Lomonosov Moscow State University, 119991 Moscow, Russian Federation
| | - Aleksei S Komlev
- M. V. Lomonosov Moscow State University, 119991 Moscow, Russian Federation.,National Research Center "Kurchatov Institute", 123182 Moscow, Russian Federation
| | | | | | - Vadim I Popkov
- Ioffe Institute, 194021 Saint Petersburg, Russian Federation
| |
Collapse
|
12
|
In-situ construction of N and P doped Hollow Sphere Carbon for Electrochemical Sensing of Antibiotic Drug from Poultry Sustenance. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
13
|
Magnetic Application of Gadolinium Orthoferrite Nanoparticles Synthesized by Sol–Gel Auto-Combustion Method. Gels 2022; 8:gels8110688. [DOI: 10.3390/gels8110688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/20/2022] [Accepted: 10/20/2022] [Indexed: 11/17/2022] Open
Abstract
In this manuscript, we present the synthesis of gadolinium orthoferrite nanoparticles using the sol–gel auto-combustion technique. The obtained gadolinium orthoferrite nanoparticles were annealed at various temperatures, such as 800 °C, 900 °C, 1000 °C, and 1100 °C. The synthesized materials were analyzed by various instrumental characterizations. The vibrational characteristics of the synthesized samples were verified by FTIR. The surface morphology of the gadolinium orthoferrite nanoparticles was analyzed by FE-SEM and HR-TEM, revealing their spherical structural morphology and uniform particle structure. The presence of the elemental features was analyzed in the gadolinium orthoferrite nanoparticles by EDAX. The surface analysis of the core ranges of the XPS-recorded spectra were obtained for the elemental states of the Gd, Fe, and O factors in the samples, and it additionally characterized the different levels of oxidative states by fitting the levels of the high-resolution parameters of Gd 4d, Fe 2p, and O 1s. The magnetic properties of the samples were investigated by VSM. The measurement of the magnetic parameters revealed that gadolinium orthoferrite nanoparticles exhibit a ferromagnetic nature.
Collapse
|
14
|
Study of Corrosion Mechanisms in Corrosive Media and Their Influence on the Absorption Capacity of Fe2O3/NdFeO3 Nanocomposites. NANOMATERIALS 2022; 12:nano12132302. [PMID: 35808138 PMCID: PMC9267972 DOI: 10.3390/nano12132302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/01/2022] [Accepted: 07/02/2022] [Indexed: 12/10/2022]
Abstract
This paper presents the results of a study of the change in the stability of Fe2O3/NdFeO3 nanocomposites when exposed to aggressive media over a long period of time. The main purpose of these studies is to investigate the mechanisms of degradation and corrosion processes occurring in Fe2O3/NdFeO3 nanocomposites, as well as the influence of the phase composition on the properties and degradation resistance. According to the X-ray phase analysis, it was found that the variation of the initial components leads to the formation of mixed composition nanocomposites with different Fe2O3/NdFeO3 phase ratios. During corrosion tests, it was found that the dominance of the NdFeO3 phase in the composition of nanocomposites leads to a decrease in the degradation and amorphization rate of nanostructures by a factor of 1.5–2 compared to structures in which the Fe2O3 phase dominates. Such a difference in the degradation processes indicates the high stability of two-phase composites. Moreover, in the case of an aqueous medium, nanocomposites dominated by the NdFeO3 phase are practically not subjected to corrosion and deterioration of properties. The results obtained helped to determine the resistance of Fe2O3/NdFeO3 nanocomposites to degradation processes caused by exposure to aggressive media, as well as to determine the mechanisms of property changes in the process of degradation. The results of the study of the absorption capacity of Fe2O3/NdFeO3 nanocomposites in the case of the purification of aqueous media from manganese and arsenic showed that a change in the phase ratio in nanocomposites leads to an increase in the absorption efficiency of pollutants from aqueous media.
Collapse
|
15
|
Titanium nanoparticle anchored functionalized MWCNTs for electrochemical detection of ractopamine in porcine samples with ultrahigh sensitivity. Food Chem 2022; 378:132083. [PMID: 35033720 DOI: 10.1016/j.foodchem.2022.132083] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 12/15/2021] [Accepted: 01/04/2022] [Indexed: 01/01/2023]
Abstract
We develop a disposable electrochemical sensor using a titanium nanoparticles (Ti NPs)-anchored functionalized multi-walled carbon nanotube (Ti@f-MWCNTs) composite as electrochemical sensing interface for the detection of ractopamine (RAC). The sensor demonstrated superior electrochemical sensing ability with a broad linear response range (0.01-185 μM) and ultralow detection limit (0.0038 µM). In addition, the stability, repeatability, reproducibility, and anti-interference ability of the Ti@f-MWCNTs sensor were satisfactory. The practicability of the sensor was effectively employed for the determination of RAC in porcine samples including pork, pig urine, and pig serum with substantial recoveries in the range of 92%-99% and a relative standard deviation of less than 5%.
Collapse
|
16
|
Fluorescently Labeled Gadolinium Ferrate/Trigadolinium Pentairon(III) Oxide Nanoparticles: Synthesis, Characterization, In Vivo Biodistribution, and Application for Visualization of Myocardial Ischemia-Reperfusion Injury. MATERIALS 2022; 15:ma15113832. [PMID: 35683129 PMCID: PMC9181512 DOI: 10.3390/ma15113832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023]
Abstract
Various gadolinium compounds have been proposed as contrasting agents for magnetic resonance imaging (MRI). In this study, we suggested a new synthesis method of gadolinium ferrate/trigadolinium pentairon(III) oxide nanoparticles (GF/TPO NPs). The specific surface area of gadolinium ferrate (GdFeO3) and trigadolinium pentairon(III) oxide (Gd3Fe5O12) nanoparticles was equal to 42 and 66 m2/g, respectively. The X-ray diffraction analysis confirmed that the synthesized substances were GdFeO3 and Gd3Fe5O12. The gadolinium content in the samples was close to the theoretically calculated value. The free gadolinium content was negligible. Biodistribution of the GF/TPO NPs was studied in rats by fluorescent imaging and Fe2+/Fe3+ quantification demonstrating predominant accumulation in such organs as lung, kidney, and liver. We showed in the in vivo rat model of myocardial ischemia–reperfusion injury that GF/TPO NPs are able to target the area of myocardial infarction as evidenced by the significantly greater level of fluorescence. In perspective, the use of fluorescently labeled GF/TPO NPs in multimodal imaging may provide basis for high-resolution 3D reconstruction of the infarcted heart, thereby serving as unique theranostic platform.
Collapse
|
17
|
Lee K, Hajra S, Sahu M, Mishra YK, Kim HJ. Co+3 substituted gadolinium nano-orthoferrites for environmental monitoring: Synthesis, device fabrication, and detailed gas sensing performance. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2021.11.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Karuppusamy N, Mariyappan V, Chen SM, Ramachandran R. A novel electrochemical sensor for the detection of enrofloxacin based on a 3D flower-like metal tungstate-incorporated reduced graphene oxide nanocomposite. NANOSCALE 2022; 14:1250-1263. [PMID: 34994758 DOI: 10.1039/d1nr06343j] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In recent times, metal tungstates have received a lot of attention in various research fields. Accordingly, the CaWO4/RGO (CW/RGO) nanocomposite was prepared by a facile hydrothermal method. The electrocatalytic performance of the hydrothermally prepared CW/RGO nanocomposite was used for the electrochemical detection of the antibiotic medicine enrofloxacin (ENF). The electrocatalytic oxidation performance of ENF was examined by cyclic voltammetry (CV) and amperometry (AMP) techniques. The CV results showed the lowest anodic peak potential and the enhanced anodic peak current response compared to the other modified electrodes. Mainly, our newly proposed sensor exhibited excellent electrochemical performance with the lowest limit of detection (LOD) of 0.021 μM, and a significant linear range of 0.001-115 μM. Additionally, our proposed sensor exhibited good selectivity, great long-term stability, and excellent reproducibility. Then, our proposed sensor was successfully applied to detect the amount of ENF in a milk sample and river water, which exhibited good satisfactory results.
Collapse
Affiliation(s)
- Naveen Karuppusamy
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan.
| | - Vinitha Mariyappan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan.
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan.
| | - Rasu Ramachandran
- Department of Chemistry, The Madura College, Vidya Nagar, Madurai 625 011, Tamil Nadu, India
| |
Collapse
|