1
|
Zhou Y, Wang Z, Niu P, Chen Z, Li Z, Su M, Liu Y. Realizing fast-charging capability of silicon anode via ternary doping and structural disorder. J Colloid Interface Sci 2025; 691:137372. [PMID: 40132424 DOI: 10.1016/j.jcis.2025.137372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/18/2025] [Accepted: 03/17/2025] [Indexed: 03/27/2025]
Abstract
Silicon (Si) is a potential fast-charging anode material for lithium-ion batteries (LIBs) due to its high energy density and suitable lithium insertion potential. However, the slow kinetics and significant volume changes during lithiation/delithiation hinder its practical application. High-entropy alloying of silicon enhances electronic conductivity and mitigates volume expansion, leading to improved rate performance. Nevertheless, the synergistic effects of high-entropy alloying and crystal structure on silicon-based anodes remain underexplored. Herein, a ternary doping alloy (Si-FeTiP) anode material with an amorphous structure was prepared via high-energy ball milling. The uniformly distributed microcrystalline phases of FeSi2 and TiP enhanced the electronic conductivity and structural stability of the Si anode. The local disordered structure of the amorphous silicon phase mitigates lithiation-induced stress, while the isotropic nature of the amorphous structure facilitates excellent Li+ diffusion kinetics in the Si-FeTiP composite. As a result, the Si-FeTiP anode exhibits an excellent rate capability of 658 mAh g-1 at 10 A g-1 and a capacity retention of 80.3 % after 500 cycles at 2 A g-1. This study enhances our understanding of how crystal structure influences ion transport and electrochemical performance. Furthermore, it provides valuable insights for the design of multivariate fast-charging silicon-based anode materials.
Collapse
Affiliation(s)
- Yu Zhou
- School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013 Jiangsu, China
| | - Zhijie Wang
- School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013 Jiangsu, China
| | - Penghu Niu
- School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013 Jiangsu, China
| | - Zhangqiang Chen
- School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013 Jiangsu, China
| | - Zhonghua Li
- School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013 Jiangsu, China
| | - Mingru Su
- School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013 Jiangsu, China.
| | - Yunjian Liu
- School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013 Jiangsu, China.
| |
Collapse
|
2
|
Zhang H, Fan G, Leng D, Liu S, Cai L. Graphene Oxide Nanosheets for Delivery of RNAi and Plant Immune Stimulation for Sustained Protection against Plant Viruses. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:11110-11120. [PMID: 40266879 DOI: 10.1021/acs.jafc.4c12485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Given the dearth of effective antiviral drugs, the exogenous delivery of dsRNA for RNAi against plant viral diseases holds great promise. Here, we present an effective delivery approach of dsRNA utilizing graphene oxide nanosheets (GONs) on mature plant leaves via a spray. Our method achieves rapid and sustained gene knockdown, reducing the level of the target gene to 46% by day 2, and continuously releases dsRNA for at least 6 days. The coupling of GONs with specific fragments of coat protein and replicase gene dsRNA exhibited a superior antiviral effect compared to specific fragments of RNA-dependent replicase and movement protein. The coupling of GONs with the specific fragment of the replicase gene even has 87.2% protection against TMV. Moreover, the nanocomplex GONs@dsRNA can also stimulate plant immunity through bursts of reactive oxygen species without harming growth. Overall, our findings present a robust and convenient tool for plant virus control.
Collapse
Affiliation(s)
- Hongbao Zhang
- College of Tobacco Science of Guizhou University, Guizhou Provincial Key Laboratory for Tobacco Quality Improvement and Efficiency Enhancement/Guizhou Key Lab of Agro-Bioengineering/Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, Guizhou Province 550025, China
| | - Guangjin Fan
- College of Tobacco Science of Guizhou University, Guizhou Provincial Key Laboratory for Tobacco Quality Improvement and Efficiency Enhancement/Guizhou Key Lab of Agro-Bioengineering/Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, Guizhou Province 550025, China
| | - Dongwei Leng
- College of Tobacco Science of Guizhou University, Guizhou Provincial Key Laboratory for Tobacco Quality Improvement and Efficiency Enhancement/Guizhou Key Lab of Agro-Bioengineering/Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, Guizhou Province 550025, China
| | - Shuaikang Liu
- College of Tobacco Science of Guizhou University, Guizhou Provincial Key Laboratory for Tobacco Quality Improvement and Efficiency Enhancement/Guizhou Key Lab of Agro-Bioengineering/Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, Guizhou Province 550025, China
| | - Lin Cai
- College of Tobacco Science of Guizhou University, Guizhou Provincial Key Laboratory for Tobacco Quality Improvement and Efficiency Enhancement/Guizhou Key Lab of Agro-Bioengineering/Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, Guizhou Province 550025, China
| |
Collapse
|
3
|
Zhao J, Wang B, Zhan Z, Hu M, Cai F, Świerczek K, Yang K, Ren J, Guo Z, Wang Z. Boron-doped three-dimensional porous carbon framework/carbon shell encapsulated silicon composites for high-performance lithium-ion battery anodes. J Colloid Interface Sci 2024; 664:790-800. [PMID: 38492380 DOI: 10.1016/j.jcis.2024.03.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/11/2024] [Accepted: 03/09/2024] [Indexed: 03/18/2024]
Abstract
Deleterious volumetric expansion and poor electrical conductivity seriously hinder the application of Si-based anode materials in lithium-ion batteries (LIBs). Herein, boron-doped three-dimensional (3D) porous carbon framework/carbon shell encapsulated silicon (B-3DCF/Si@C) hybrid composites are successfully prepared by two coating and thermal treatment processes. The presence of 3D porous carbon skeleton and carbon shell effectively improves the mechanical properties of the B-3DCF/Si@C electrode during the cycling process, ensures the stability of the electrical contacts of the silicon particles and stabilizes the solid electrolyte interface (SEI) layer, thus enhancing the electronic conductivity and ion migration efficiency of the anode. The developed B-3DCF/Si@C anode has a high reversible capacity, excellent cycling stability and outstanding rate performance. A reversible capacity of 1288.5 mAh/g is maintained after 600 cycles at a current density of 400 mA g-1. The improved electrochemical performance is demonstrated in a full cell using a LiFePO4-based cathode. This study presents a novel approach that not only mitigates the large volume expansion effects in LIB anode materials, but also provides a reference model for the preparation of porous composites with various functionalities.
Collapse
Affiliation(s)
- Junkai Zhao
- Energy Research Institute of Shandong Academy of Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China.
| | - Bo Wang
- Energy Research Institute of Shandong Academy of Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Ziheng Zhan
- Interdisciplinary Research Center of Low-carbon Technology and Equipment, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China
| | - Meiyang Hu
- Interdisciplinary Research Center of Low-carbon Technology and Equipment, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China
| | - Feipeng Cai
- Energy Research Institute of Shandong Academy of Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Konrad Świerczek
- Department of Hydrogen Energy, Faculty of Energy and Fuels, AGH University of Krakow, Krakow 30-059, Poland
| | - Kaimeng Yang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Juanna Ren
- College of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China; Department of Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK
| | - Zhanhu Guo
- Department of Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK
| | - Zhaolong Wang
- Interdisciplinary Research Center of Low-carbon Technology and Equipment, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China.
| |
Collapse
|
4
|
Zhang Z, Ran K, Wang W, Cao S, Zhao R, Zhou H, Xue W, Li H, Wang W, Min Z, Jiang K, Wang K. Plasma-induced oxygen defects in titanium dioxide to address the long-term stability of pseudocapacitive MnO 2 anode for lithium ion batteries. J Colloid Interface Sci 2023; 656:116-124. [PMID: 37984167 DOI: 10.1016/j.jcis.2023.11.087] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023]
Abstract
In this work, we developed Manganese and Titanium based oxide composites with oxygen defects (MnOx@aTiOy) via plasma processing as anodes of lithium ion batteries. By appropriately adjusting the defect concentration, the ion transport kinetics and electrical conductivity of the electrodes are significantly improved, showing stable capacity retention. Furthermore, the incremental capacity is further activated and long-term stable cycling performance is achieved, with a specific capacity of 829.5 mAh/g at 1 A/g after 2000 cycles. To scrutinize the lithium migration paths and energy barriers in MnO2 and Mn2O3, the density functional theory (DFT) calculations is performed to explore the lithium migration paths and energy barriers. Although the transformation of MnO2 into Mn2O3 through oxygen defects was initially surmised to inhibit Li ions along their standard routes, our results indicate quite the contrary. In fact, the composite's lithium diffusion rate saw a substantial increase. This can be accredited to the pronounced enhancement of conductivity and ion transport efficiency in the amorphous and porous TiOy.
Collapse
Affiliation(s)
- Zidong Zhang
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; Engineering Research Center of Power Safety and Efficiency, Ministry of Education, Wuhan, Hubei 430074, China
| | - Ke Ran
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Wenjian Wang
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Shengling Cao
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; Engineering Research Center of Power Safety and Efficiency, Ministry of Education, Wuhan, Hubei 430074, China
| | - Rui Zhao
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Haiping Zhou
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Weidong Xue
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Haomiao Li
- School of Electrical and Electronic Engineering, State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; Engineering Research Center of Power Safety and Efficiency, Ministry of Education, Wuhan, Hubei 430074, China
| | - Wei Wang
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; School of Electrical and Electronic Engineering, State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; Engineering Research Center of Power Safety and Efficiency, Ministry of Education, Wuhan, Hubei 430074, China
| | - Zhou Min
- School of Electrical and Electronic Engineering, State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; Engineering Research Center of Power Safety and Efficiency, Ministry of Education, Wuhan, Hubei 430074, China
| | - Kai Jiang
- School of Electrical and Electronic Engineering, State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; Engineering Research Center of Power Safety and Efficiency, Ministry of Education, Wuhan, Hubei 430074, China
| | - Kangli Wang
- School of Electrical and Electronic Engineering, State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; Engineering Research Center of Power Safety and Efficiency, Ministry of Education, Wuhan, Hubei 430074, China.
| |
Collapse
|
5
|
Luo H, Zhang X, Wang Z, Zhang L, Xu C, Huang S, Pan W, Cai W, Zhang Y. Vanadium-Tailored Silicon Composite with Furthered Ion Diffusion Behaviors for Longevity Lithium-Ion Storage. ACS APPLIED MATERIALS & INTERFACES 2023; 15:4166-4174. [PMID: 36648025 DOI: 10.1021/acsami.2c21884] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
As one of the promising anode materials, silicon has attracted much attention due to its high theoretical specific capacity (∼3579 mAh g-1) and suitable lithium alloying voltage (0.1-0.4 V). Nevertheless, the enormous volume expansion (∼300%) in the process of lithium alloying has a great negative effect on its cyclic stability, which seriously restricts the large-scale industrial preparation of silicon anodes. Herein, we design a facile synthesis strategy combining vanadium doping and carbon coating to prepare a silicon-based composite (V-Si@C). The prepared V-Si@C composite does not merely show improved conductivity but also improved electrochemical kinetics, attributed to the enlarged lattice spacing by V doping. Additionally, the superiority of this doping strategy accompanied by microstructure change is embodied in the relieved volume changes during the repeated charging/discharging process. Notably, the initial capacity of the advanced V-Si@C electrode is 904 mAh g-1 (1 A g-1) and still holds at 1216 mAh g-1 even after 600 cycles, showing superior electrochemical performance. This study offers an alternative direction for the large-scale preparation of high-performance silicon-based anodes.
Collapse
Affiliation(s)
- Hang Luo
- Department of Advanced Energy Materials, College of Materials Science and Engineering, Sichuan University, Chengdu610064, P. R. China
| | - Xuemei Zhang
- Department of Advanced Energy Materials, College of Materials Science and Engineering, Sichuan University, Chengdu610064, P. R. China
| | - Ziyang Wang
- Department of Advanced Energy Materials, College of Materials Science and Engineering, Sichuan University, Chengdu610064, P. R. China
| | - Luxi Zhang
- Department of Advanced Energy Materials, College of Materials Science and Engineering, Sichuan University, Chengdu610064, P. R. China
| | - Changhaoyue Xu
- Department of Advanced Energy Materials, College of Materials Science and Engineering, Sichuan University, Chengdu610064, P. R. China
| | - Sizhe Huang
- Department of Advanced Energy Materials, College of Materials Science and Engineering, Sichuan University, Chengdu610064, P. R. China
| | - Wei Pan
- Department of Advanced Energy Materials, College of Materials Science and Engineering, Sichuan University, Chengdu610064, P. R. China
| | - Wenlong Cai
- Department of Advanced Energy Materials, College of Materials Science and Engineering, Sichuan University, Chengdu610064, P. R. China
| | - Yun Zhang
- Department of Advanced Energy Materials, College of Materials Science and Engineering, Sichuan University, Chengdu610064, P. R. China
| |
Collapse
|
6
|
Liu S, Yin S, Zhang Z, Feng L, Liu Y, Zhang L. Regulation of defects and nitrogen species on carbon nanotube by plasma-etching for peroxymonosulfate activation: Inducing non-radical/radical oxidation of organic contaminants. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129905. [PMID: 36113348 DOI: 10.1016/j.jhazmat.2022.129905] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/12/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
The structural defects and heteroatom dopants of carbonaceous materials play critical roles in their activation of peroxymonosulfate (PMS) for organic pollutants' removal. This study uses plasma-etching technology to control the levels of structural defects and nitrogen species in nitrogen-doped carbon nanotubes (N-CNTs) for excellent PMS activation. The vacancy defects, CO, pyrrolic N and graphitic N could be rationally designed by controlling the plasma-etching time. Obviously, the ID/IG (from 0.56 to 0.94) and CO contents (from 0.07 to 0.44 at%) of N-CNTs increase with rising etching time, exhibiting good linear positive correlations with phenol oxidation rates. Furthermore, through active species identification, quantitative structure-activity relationships analysis and theoretical calculations, vacancy defects (adsorbing PMS O1 site) and CO are confirmed to be the active sites for the generation of 1O2, which is major pathway (82%) for phenol degradation. While radicals induced by pyrrolic N and graphitic N adsorbing PMS O2 site are the minor pathway (18%). Overall, this study sheds new light on the crucial roles of defects and N species in inducing PMS non-radical/radical activation by carbocatalyst via efficiently controlled plasma-etching technology.
Collapse
Affiliation(s)
- Shiqi Liu
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Siyuan Yin
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Zichen Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Li Feng
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| | - Yongze Liu
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| | - Liqiu Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
7
|
Li H, Li H, Yang Z, Lai Y, Yang Q, Duan P, Zheng Z, Liu Y, Sun Y, Zhong B, Wu Z, Guo X. Controlled synthesis of mesoporous Si/C composites anode via confining carbon coating and Mg gas reduction. J Colloid Interface Sci 2022; 627:151-159. [DOI: 10.1016/j.jcis.2022.06.149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/14/2022] [Accepted: 06/26/2022] [Indexed: 10/17/2022]
|
8
|
Strategies for Controlling or Releasing the Influence Due to the Volume Expansion of Silicon inside Si-C Composite Anode for High-Performance Lithium-Ion Batteries. MATERIALS 2022; 15:ma15124264. [PMID: 35744323 PMCID: PMC9228666 DOI: 10.3390/ma15124264] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 02/01/2023]
Abstract
Currently, silicon is considered among the foremost promising anode materials, due to its high capacity, abundant reserves, environmental friendliness, and low working potential. However, the huge volume changes in silicon anode materials can pulverize the material particles and result in the shedding of active materials and the continual rupturing of the solid electrolyte interface film, leading to a short cycle life and rapid capacity decay. Therefore, the practical application of silicon anode materials is hindered. However, carbon recombination may remedy this defect. In silicon/carbon composite anode materials, silicon provides ultra-high capacity, and carbon is used as a buffer, to relieve the volume expansion of silicon; thus, increasing the use of silicon-based anode materials. To ensure the future utilization of silicon as an anode material in lithium-ion batteries, this review considers the dampening effect on the volume expansion of silicon particles by the formation of carbon layers, cavities, and chemical bonds. Silicon-carbon composites are classified herein as coated core-shell structure, hollow core-shell structure, porous structure, and embedded structure. The above structures can adequately accommodate the Si volume expansion, buffer the mechanical stress, and ameliorate the interface/surface stability, with the potential for performance enhancement. Finally, a perspective on future studies on Si-C anodes is suggested. In the future, the rational design of high-capacity Si-C anodes for better lithium-ion batteries will narrow the gap between theoretical research and practical applications.
Collapse
|
9
|
Bai X, Zhang H, Lin J, Zhang G. Durable silicon-carbon composites self-assembled from double-protected heterostructure for lithium-ion batteries. J Colloid Interface Sci 2022; 615:375-385. [PMID: 35149351 DOI: 10.1016/j.jcis.2022.01.191] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/25/2022] [Accepted: 01/30/2022] [Indexed: 12/17/2022]
Abstract
HYPOTHESIS Silicon-carbon composites have been faced with the contact issues between silicon and carbon in the form of material aggregation and inferior dispersion, leading to electrode cracking or kinetic degradation during cycling. In addition to dispersion improvement from interfacial linkage between self-assembled Si nanoparticles (SiNPs) and carbon fibers (CNFs), the positive influences of high-content carboxymethyl cellulose(CMC) (25 wt%) and amorphous carbon are also expected, respectively after the second-step self-assembly and subsequently sintering. EXPERIMENTS A novel composite (i.e. Si-CNF@C) with the decoration of entire SiNPs in the framework of both CNFs and amorphous carbon was prepared via two-step electrostatic self-assembly followed by sintering. Such a composite with heterogeneous nanostructure was used as a lithium-ion battery anode without additional binders or conductive agents. FINDINGS SiNPs can be well protected with CNFs and amorphous carbon against the dispersion and contact problems under both effects of electrostatic attraction and chemical bonding. With the double-protected heterostructure, such a novel Si-CNF@C electrode exhibits highly reversible capacities of 1200 mAh g-1, 982 mAh g-1, and 849 mAh g-1 after 100, 500, and 1000 cycles at 0.5 A g-1, respectively. The long-term cycling stability with a capacity loss of 0.036% per cycle over 1000 cycles is comparable.
Collapse
Affiliation(s)
- Xiao Bai
- Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology (CAST), Beijing 100094, China; State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing (USTB), Beijing 100083, China
| | - Hui Zhang
- Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology (CAST), Beijing 100094, China.
| | - Junpin Lin
- State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing (USTB), Beijing 100083, China.
| | - Guang Zhang
- Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology (CAST), Beijing 100094, China
| |
Collapse
|
10
|
Chen W, Zhang H, Zhu Y, Li Z. Three-dimensional flexible molybdenum oxynitride thin film as a high capacity anode for Li-ion batteries. J Colloid Interface Sci 2021; 611:183-192. [PMID: 34952272 DOI: 10.1016/j.jcis.2021.12.074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 11/27/2022]
Abstract
With the fast development of flexible wearable electronics, mobile electronic equipment, electric tool and electric vehicles, high specific capacity, superior cycle stability and excellent fast-charge performance are required for lithium-ion batteries (LIBs). Nevertheless, commercial graphite with the limited theoretical capacity (372 mAh g-1) and short lifespan is difficult to satisfy the requirements of the new generation of LIBs. In this work, the three-dimensional flexible molybdenum oxynitride (MNO) thin films with non-binder were prepared by magnetron sputtering approach. The charge transfer resistance and Li-ion diffusion coefficient were measured by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV), and the results show that molybdenum nitride is helpful to increase the diffusion and electron transfer of Li-ion. The MNO thin film annealed at 300 °C with irregular aggregate matrix structure shows a discharge capacity of 413 mAh g-1 after 180 cycles at 1 A g-1. The outstanding rate performance and cycle stability suggest that these binder-free thin film electrodes, especially nitrides, offer great opportunity for energy storage systems with fast-charge capabilities.
Collapse
Affiliation(s)
- Wenhao Chen
- School of Materials and Advanced Manufacturing, Hunan University of Technology, Zhuzhou, Hunan 412007, China.
| | - Hong Zhang
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Yirong Zhu
- School of Materials and Advanced Manufacturing, Hunan University of Technology, Zhuzhou, Hunan 412007, China
| | - Zhicheng Li
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, China
| |
Collapse
|