1
|
Fujii MY, Manabe H, Ogura T. Novel design of pyrrolidonecarboxylic acid and sodium dilauramidoglutamide lysine complex for targeted drug delivery to human stratum corneum. Int J Pharm 2025; 675:125561. [PMID: 40187708 DOI: 10.1016/j.ijpharm.2025.125561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/24/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
Pyrrolidone carboxylic acid (PCA) functions as a moisturizer in the stratum corneum (SC) because it is mainly localized in corneocytes. However, technologies developed to date enable PCA to permeate through the skin without specifically accumulating PCA within the SC and corneocytes. The aim of this study was to develop a method to increase the concentration of PCA in the SC through the complexation of PCA with sodium dilauramidoglutamide lysine (DLGL). Complexation was confirmed by visual inspection, infrared spectroscopy, and differential scanning calorimetry. PCA exhibited a shift in its amide peak and a decrease in its unfrozen water content upon complexation with DLGL, which occurred via the amide group. Permeation parameters and levels were determined using a skin model and ex vivo human skin combined with tape-stripping tests and confocal Raman microscopy. DLGL increased the concentration of PCA in the skin model and human SC despite minimally enhancing cumulative permeation. PCA also exhibited a decrease in its diffusion coefficient and an increase in its partition coefficient upon complexation with DLGL. Moreover, the complex of PCA with DLGL changed the shape of corneocytes. Small-angle X-ray scattering of a membrane model of SC intercellular lipids exposed to this complex in solution revealed that the complex did not significantly increase the flexibility of the membrane model. This method is expected to be applied to topical formulations for the delivery of sodium PCA to SC and corneocytes.
Collapse
Affiliation(s)
- Mika Yoshimura Fujii
- SHISEIDO CO., LTD., MIRAI Technology Institute, 1-2-11 Takashima, Nishi-ku, Yokohama 220-0011, Japan.
| | - Hiroko Manabe
- SHISEIDO CO., LTD., MIRAI Technology Institute, 1-2-11 Takashima, Nishi-ku, Yokohama 220-0011, Japan
| | - Taku Ogura
- SHISEIDO CO., LTD., MIRAI Technology Institute, 1-2-11 Takashima, Nishi-ku, Yokohama 220-0011, Japan
| |
Collapse
|
2
|
Pan X, Qin D, Song K, Dong A. Environmental friendly warp yarn coating from feather wastes with enhanced toughness and tenacity via thiol-ene click chemistry grafting modification. BIORESOUR BIOPROCESS 2025; 12:10. [PMID: 39946041 PMCID: PMC11825430 DOI: 10.1186/s40643-025-00838-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/31/2024] [Indexed: 02/16/2025] Open
Abstract
The development of biodegradable and environmental friendly wrap sizing agent is beneficial for reducing the impact of textile desizing effluent on environment. In this work, green and biodegradable keratin sizing agent with enhanced toughness and tenacity was prepared by adjusting side chain tails structure via thiol-ene click chemistry grafting modification for warp yarn slashing against film thermal-embrittlement and fracture during weaving. Feather keratin from waste feather has become an attractive target to replace petroleum-based Poly (vinyl alcohol) sizes due to its easy film-forming ability, excellent adhesive property, biodegradability and low cost. However, keratin yarn coating showed brittleness and easily peeled off from weaving yarn which highly restrict its application. Thus, polymer branched side chain tails with a structure that similar to the wrap yarn was grafted onto keratin molecular chain by utilizing its distinctive thio group as anchor point by means of click chemistry. The results showed that grafting modification could obviously improve the adhesiveness of keratin sizing by the principle of similarity compatibility. The sizing performance, desizing performance as well as its degradability were comprehensively studied. Successful utilization of modified keratin sizes will bring opportunities for the green and sustainable development of textile industry.
Collapse
Affiliation(s)
- Xing Pan
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, College of Textile Science and Engineering, International Institute of Silk, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China
- Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province, Shaoxing University, Shaoxing, Zhejiang, 312000, China
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China
| | - Daen Qin
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, College of Textile Science and Engineering, International Institute of Silk, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China
- Zheijiang Sci-Tech University Tongxiang Research Institute, Tongxiang, 345000, China
| | - Kaili Song
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, College of Textile Science and Engineering, International Institute of Silk, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China.
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China.
| | - Aixue Dong
- Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province, Shaoxing University, Shaoxing, Zhejiang, 312000, China
| |
Collapse
|
3
|
Sjöberg T, Fsahaye A, Nilsson EJ, Letasiova S, Namro I, Visdal-Johnsen L, Hrapovic N, Smiljanic S, Österlund C, Engblom J, Björklund S. Niacinamide and its impact on stratum corneum hydration and structure. Sci Rep 2025; 15:4953. [PMID: 39929949 PMCID: PMC11811021 DOI: 10.1038/s41598-025-88899-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 01/31/2025] [Indexed: 02/13/2025] Open
Abstract
Niacinamide (NIA) is widely used in skincare for its favorable safety profile, anti-aging effects, and proven clinical efficacy in treating various skin conditions. However, its direct impact on the hydration and molecular organization of the stratum corneum (SC), the primary skin barrier, remains unclear. This study examines how NIA influences the SC's lipid matrix organization, soft keratin structure, and water sorption behavior across varying relative humidity (RH) levels. Using small- and wide-angle X-ray diffraction and dynamic vapor sorption measurements, we compared NIA-treated SC samples to untreated controls under different RHs. The main findings show that while NIA is non-hygroscopic, it enhances water uptake of the SC at high humidity (95% RH). At low humidity (60% RH), NIA swells the keratin monomer spacing, although the SC water content remains low, suggesting a plasticizing effect that could increase SC flexibility in dry conditions. NIA also modifies the diffraction intensities from the lipid matrix differently at 60% and 95% RH, implying that it interacts with the SC lipid matrix and influences the water distribution within the SC lipid and protein domains. These effects appear independent of the investigated dose regime, indicating a specific concentration threshold. Overall, NIA shows distinct interaction with keratin, swelling the spacing between keratin monomers in dry conditions, without acting as a traditional keratolytic agent.
Collapse
Affiliation(s)
- Thomas Sjöberg
- Department of Biomedical Sciences, Malmö University, Malmö, Sweden
- Biofilms Research Center for Biointerfaces, Malmö University, Malmö, Sweden
| | - Andebrhan Fsahaye
- Department of Biomedical Sciences, Malmö University, Malmö, Sweden
- Biofilms Research Center for Biointerfaces, Malmö University, Malmö, Sweden
| | - Emelie J Nilsson
- Department of Biomedical Sciences, Malmö University, Malmö, Sweden
- Biofilms Research Center for Biointerfaces, Malmö University, Malmö, Sweden
| | | | | | | | - Nina Hrapovic
- Global Research & Development, Oriflame Cosmetics AB, Stockholm, Sweden
| | - Sandra Smiljanic
- Global Research & Development, Oriflame Cosmetics AB, Stockholm, Sweden
| | | | - Johan Engblom
- Department of Biomedical Sciences, Malmö University, Malmö, Sweden
- Biofilms Research Center for Biointerfaces, Malmö University, Malmö, Sweden
| | - Sebastian Björklund
- Department of Biomedical Sciences, Malmö University, Malmö, Sweden.
- Biofilms Research Center for Biointerfaces, Malmö University, Malmö, Sweden.
| |
Collapse
|
4
|
Martin M, Chantemargue B, Trouillas P. Skin Hydration by Natural Moisturizing Factors, a Story of H-Bond Networking. J Phys Chem B 2025; 129:844-852. [PMID: 39792037 DOI: 10.1021/acs.jpcb.4c05473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Dry skin is a common condition that is experienced by many. Besides being particularly present during the cold season, various diseases exist all year round, leading to localized xerosis. To prevent it, the skin is provided with natural moisturizing factors (NMFs). They are small amino acids or derivatives found in the outermost layer of the skin, the stratum corneum (SC). They are often claimed to be highly efficient humectants, increasing the water content to maintain the fluidity of the skin. However, alternative mechanisms have been proposed, suggesting that NMFs themselves may act as lipid mobility amplifiers. This work aims at investigating the role of three NMFs, namely, urea (URE), glycerol (GLY), and urocanic acid/urocanate (UCA/UCO) in SC in silico models, considering two different levels of humidity. Molecular dynamic simulations showed an increase in the diffusion of different lipid components, mainly free fatty acids (FFAs) and ceramide acyl chain moieties, in the presence of either high water content or NMFs. The membrane properties were modified, as seen by an increased thickness and greater lateral stiffness. All NMFs exhibited a similar impact, whereas UCA revealed slight differences according to its charged state. By studying NMF-water intermolecular interactions, we highlighted the role of NMF as a regulator of membrane perturbations while ensuring membrane fluidity. This role allows NMFs to prevent destabilization of the skin membrane in the presence of high water content. This study, performed at an atomistic resolution, highlighted a strong H-bond network between lipids involving mainly ceramides but also all other components. This network can be modified in the presence of a high water concentration or NMFs, resulting in modifications of membrane properties, rationalizing hydration effects.
Collapse
Affiliation(s)
- Marving Martin
- INSERM U1248 Pharmacology & Transplantation, Univ. Limoges, CBRS, 2 Rue du Prof. Descottes, F-87000 Limoges, France
- InSiliBio, 1 Avenue d'Ester, Ester Technopôle, F-87000 Limoges, France
| | | | - Patrick Trouillas
- INSERM U1248 Pharmacology & Transplantation, Univ. Limoges, CBRS, 2 Rue du Prof. Descottes, F-87000 Limoges, France
- RCPTM CATRIN Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| |
Collapse
|
5
|
Perrone B, Gunnarsson M, Bernin D, Sparr E, Topgaard D. Cryogenic probe technology enables multidimensional solid-state NMR of the stratum corneum without isotope labeling. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2024; 134:101972. [PMID: 39357420 DOI: 10.1016/j.ssnmr.2024.101972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/19/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024]
Abstract
Solid-state NMR has great potential for investigating molecular structure, dynamics, and organization of the stratum corneum, the outer 10-20 μm of the skin, but is hampered by the unfeasibility of isotope labelling as generally required to reach sufficient signal-to-noise ratio for the more informative multidimensional NMR techniques. In this preliminary study of pig stratum corneum at 35 °C and water-free conditions, we demonstrate that cryogenic probe technology offers sufficient signal boost to observe previously undetectable minor resonances that can be uniquely assigned to fluid cholesterol, ceramides, and triacylglycerols, as well as enables 1H-1H spin diffusion monitored by 2D 1H-13C HETCOR to estimate 1-100 nm distances between specific atomic sites on proteins and lipids. The new capabilities open up for future multidimensional solid-state NMR studies to answer long-standing questions about partitioning of additives, such as pharmaceutically active substances, between solid and liquid domains within the protein and lipid phases in the stratum corneum and the lipids of the sebum.
Collapse
Affiliation(s)
| | | | - Diana Bernin
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, Sweden
| | - Emma Sparr
- Department of Chemistry, Lund University, Lund, Sweden
| | | |
Collapse
|
6
|
Sagrafena I, Morin M, Paraskevopoulos G, Nilsson EJ, Hrdinová I, Kováčik A, Björklund S, Vávrová K. Structure and function of skin barrier lipids: Effects of hydration and natural moisturizers in vitro. Biophys J 2024; 123:3951-3963. [PMID: 39390747 PMCID: PMC11617626 DOI: 10.1016/j.bpj.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/13/2024] [Accepted: 10/08/2024] [Indexed: 10/12/2024] Open
Abstract
Lipid membranes play a crucial role in regulating the body's water balance by adjusting their properties in response to hydration. The intercellular lipid matrix of the stratum corneum (SC), the outermost skin layer, serves as the body's primary defense against environmental factors. Osmolytes, including urocanic acid (UCA) and glycerol, are key components of the natural moisturizing factor that help the SC resist osmotic stress from dry environments. This study examines the effects of UCA and glycerol (each at 5 mol %) on isolated human SC lipids. For this, different techniques were employed, offering complementary information of the system's multiscale characteristics, including humidity-scanning quartz crystal microbalance with dissipation monitoring, infrared spectroscopy, x-ray diffraction, electrical impedance spectroscopy, and studies of water loss and permeability. Our results show that UCA increases water sorption and makes lipid films more liquid-like at high relative humidity, without significantly altering the lipid lamellar structure, chain order, or orthorhombic chain packing. Lipid films containing UCA exhibited higher water loss and significantly higher model drug permeability compared to lipid films without UCA. Further, incorporation of UCA resulted in kinetically faster changes in electrical properties upon contact with aqueous solution compared with control lipids. These observations suggest that UCA reduces lipid cohesion in regions other than the acyl chain-rich leaflets, which may impact SC desquamation. In contrast, glycerol did not influence the hydration or permeability of the SC lipid matrix. However, it increased the proportion of orthorhombic domains at high humidities and slowed the kinetics of the hydration process, as evidenced by slower changes in the dielectric properties of the lipid film. These findings suggest that glycerol enhances lipid cohesion rather than increasing water uptake, which is typically the expected function of humectants. Consequently, UCA and glycerol appear to have distinct roles in maintaining epidermal homeostasis.
Collapse
Affiliation(s)
- Irene Sagrafena
- Skin Barrier Research Group, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Maxim Morin
- Biofilms Research Center for Biointerfaces, Malmö University, Malmö, Sweden; Department of Biomedical Science, Faculty of Health and Society, Malmö University, Malmö, Sweden
| | - Georgios Paraskevopoulos
- Skin Barrier Research Group, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Emelie J Nilsson
- Biofilms Research Center for Biointerfaces, Malmö University, Malmö, Sweden; Department of Biomedical Science, Faculty of Health and Society, Malmö University, Malmö, Sweden
| | - Iva Hrdinová
- Skin Barrier Research Group, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Andrej Kováčik
- Skin Barrier Research Group, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Sebastian Björklund
- Biofilms Research Center for Biointerfaces, Malmö University, Malmö, Sweden; Department of Biomedical Science, Faculty of Health and Society, Malmö University, Malmö, Sweden.
| | - Kateřina Vávrová
- Skin Barrier Research Group, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic.
| |
Collapse
|
7
|
Keem MJ, Jo BG, Lee SH, Kim TY, Jung YS, Jeong EJ, Kim KH, Kim SN, Yang MH. Ameliorative effects of Wikstroemia trichotoma 95% EtOH extract on a mouse model of DNCB-induced atopic dermatitis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118398. [PMID: 38823660 DOI: 10.1016/j.jep.2024.118398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/21/2024] [Accepted: 05/26/2024] [Indexed: 06/03/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The genus Wikstroemia has been extensively utilized in traditional Chinese medicine (TCM) for the management of conditions such as coughs, edema, arthritis, and bronchitis. Studies have indicated that the crude extracts of Wikstroemia exhibit anti-inflammatory, anti-allergy, anti-aging, skin psoriasis, anti-cancer, and antiviral properties. In addition, these extracts are known to contain bioactive substances, including flavonoids, coumarins, and lignans. However, few studies have investigated the anti-inflammatory or anti-allergic activities of Wikstroemia trichotoma (Thunb.) Makino against atopic dermatitis (AD). AIM OF THE STUDY The study aimed to explore the potential of a 95% ethanol extract of W. trichotoma (WTE) on the dysfunction of skin barrier and immune system, which are primary symptoms of AD, in 2,4-dinitrochlorobenzene (DNCB)-induced SKH-1 hairless mice and phorbol 12-myristate 13-acetate (PMA)/ionomycin or immunoglobulin E (IgE) + 2,4-dinitrophenylated bovine serum albumin (DNP-BSA) stimulated rat basophilic leukemia cell line (RBL-2H3). Furthermore, we sought to identify the chemical contents of WTE using high-performance liquid chromatography equipped with a photodiode array detector (HPLC-PDA). MATERIALS AND METHODS An in vitro study was conducted using RBL-2H3 cells stimulated with PMA/ionomycin or IgE + DNP-BSA to assess the inhibitory effects of WTE on mast cell degranulation and interleukin-4 (IL-4) mRNA expression levels. For the in vivo study, AD was induced in SKH-1 hairless mice by applying 1% DNCB to the dorsal skin daily for 7 days. Subsequently, 0.1% DNCB solution was applied on alternate days, and mice were orally administered WTE (at 30 or 100 mg/kg/day) dissolved in 0.5% carboxymethyl cellulose (CMC) daily for 2 weeks. Transepidermal water loss (TEWL), skin hydration, skin pH, and total serum IgE levels were measured. RESULTS In DNCB-stimulated SKH-1 hairless mice, WTE administration significantly improved AD symptoms and ameliorated dorsal skin inflammation. Oral administration of WTE led to a significant decrease in skin thickness, infiltration of mast cells, and level of total serum IgE, thus restoring skin barrier function in the DNCB-induced skin lesions. In addition, WTE inhibited β-hexosaminidase release and reduced IL-4 mRNA levels in RBL-2H3 cells. Chemical profile analysis of WTE confirmed the presence of three phenolic compounds, viz. chlorogenic acid, miconioside B, and matteucinol-7-O-β-apiofuranosyl (1 → 6)-β-glucopyranoside. CONCLUSIONS WTE ameliorates AD symptoms by modulating in the skin barrier and immune system dysfunction. This suggests that W. trichotoma extract may offer therapeutic benefits for managing AD.
Collapse
Affiliation(s)
- Min-Ji Keem
- Department of Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea.
| | - Beom-Geun Jo
- Department of Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea.
| | - Sang Heon Lee
- Natural Products Research Institute, Korea Institute of Science and Technology, Gangneung, 25451, Republic of Korea.
| | - Tae-Young Kim
- Department of Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea.
| | - Young Suk Jung
- Department of Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea.
| | - Eun-Ju Jeong
- Department of Green Bio Science, Gyeongsang National University, Jinju, 52725, Republic of Korea.
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Su-Nam Kim
- Natural Products Research Institute, Korea Institute of Science and Technology, Gangneung, 25451, Republic of Korea; Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology, Seoul, 02792, Republic of Korea.
| | - Min Hye Yang
- Department of Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
8
|
Hellal A, Abdelsalam H, Tawfik W, Ibrahim MA. Assessment of doped graphene in the removal of atrazine from water. Sci Rep 2024; 14:21994. [PMID: 39313549 PMCID: PMC11420202 DOI: 10.1038/s41598-024-71886-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/02/2024] [Indexed: 09/25/2024] Open
Abstract
Atrazine is a widely used toxic herbicide that poses a threat to both the environment and human health. This study investigates the removal of Atrazine from water through armchair-hexagonal hexagonal graphene quantum dots (AHEX) simulations. The investigations are performed using density functional theory at the exchange-correlation hybrid functional B3LYP/3-21G level of theory. The activity of pristine AHEX, with a total dipole moment of 0.0 (debye), is enhanced by doping with boron (B), nitrogen (N), and sulfur atoms (S), resulting in increased total dipole moments of 8.99, 5.29, and 4.14 Debye respectively. This enhancement occurs without any structural deformation due to the doping process. Our results show significant adsorption capacity of the doped nanographene for Atrazine, evidenced by the high adsorption energies of 0.52 eV for boron, 0.62 eV for nitrogen, and 2.97 eV for sulfur. Charge distribution on the atrazine complexes further confirms effective interaction, with values of 0.03, - 0.018, and 0.032 (e). UV-vis spectroscopy reveals that the prominent absorption peaks of boron and nitrogen-doped samples, initially at ~ 658.8 and 431 nm, undergo a redshift to ~ 676 and 444.3 nm after adsorption, respectively. This redshift aligns with the dominant excitation moving to lower energies following adsorption. Conversely, the sulfurated nanographene shows a blue shift from 980.66 to 485.41 nm. These findings highlight the potential of doped nanographene as an effective treatment for atrazine-contaminated water.
Collapse
Affiliation(s)
- Ahmed Hellal
- Department of Laser in Meteorology, Photochemistry and Agriculture (LAMPA), National Institute of Laser Enhanced Sciences, Cairo University, Giza, 12613, Egypt
| | - Hazem Abdelsalam
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, People's Republic of China
- Theoretical Physics Department, National Research Centre, El-Buhouth Str., Dokki, Giza, 12622, Egypt
| | - Walid Tawfik
- Department of Laser in Meteorology, Photochemistry and Agriculture (LAMPA), National Institute of Laser Enhanced Sciences, Cairo University, Giza, 12613, Egypt
| | - Medhat A Ibrahim
- Spectroscopy Department, National Research Centre, Giza, 12622, Egypt.
- Molecular Modeling and Spectroscopy Laboratory, Centre of Excellence for Advanced Science, National Research Centre, 33 El-Bohouth St., Dokki, Giza, 12622, Egypt.
| |
Collapse
|
9
|
Labecka N, Szczepanczyk M, Mojumdar E, Sparr E, Björklund S. Unraveling UVB effects: Catalase activity and molecular alterations in the stratum corneum. J Colloid Interface Sci 2024; 666:176-188. [PMID: 38593652 DOI: 10.1016/j.jcis.2024.03.200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/25/2024] [Accepted: 03/29/2024] [Indexed: 04/11/2024]
Abstract
AIM Ultraviolet B (UVB) radiation can compromise the functionality of the skin barrier through various mechanisms. We hypothesize that UVB induce photochemical alterations in the components of the outermost layer of the skin, known as the stratum corneum (SC), and modulate its antioxidative defense mechanisms. Catalase is a well-known antioxidative enzyme found in the SC where it acts to scavenge reactive oxygen species. However, a detailed characterization of acute UVB exposure on the activity of native catalase in the SC is lacking. Moreover, the effects of UVB irradiation on the molecular dynamics and organization of the SC keratin and lipid components remain unclear. Thus, the aim of this work is to characterize consequences of UVB exposure on the structural and antioxidative properties of catalase, as well as on the molecular and global properties of the SC matrix surrounding the enzyme. EXPERIMENTS The effect of UVB irradiation on the catalase function is investigated by chronoamperometry with a skin covered oxygen electrode, which probes the activity of native catalase in the SC matrix. Circular dichroism is used to explore changes of the catalase secondary structure, and gel electrophoresis is used to detect fragmentation of the enzyme following the UVB exposure. UVB induced alterations of the SC molecular dynamics and structural features of the SC barrier, as well as its water sorption behavior, are investigated by a complementary set of techniques, including natural abundance 13C polarization transfer solid-state NMR, wide-angle X-ray diffraction, Fourier transform infrared (FTIR) spectroscopy, and dynamic vapor sorption microbalance. FINDINGS The findings show that UVB exposure impairs the antioxidative function of catalase by deactivating both native catalase in the SC matrix and lyophilized catalase. However, UVB radiation does not alter the secondary structure of the catalase nor induce any observable enzyme fragmentation, which otherwise could explain deactivation of its function. NMR measurements on SC samples show a subtle increase in the molecular mobility of the terminal segments of the SC lipids, accompanied by a decrease in the mobility of lipid chain trans-gauche conformers after high doses of UVB exposure. At the same time, the NMR data suggest increased rigidity of the polypeptide backbone of the keratin filaments, while the molecular mobility of amino acid residues in random coil domains of keratin remain unaffected by UVB irradiation. The FTIR data show a consistent decrease in absorbance associated with lipid bond vibrations, relative to the main protein bands. Collectively, the NMR and FTIR data suggest a small modification in the composition of fluid and solid phases of the SC lipid and protein components after UVB exposure, unrelated to the hydration capacity of the SC tissue. To conclude, UVB deactivation of catalase is anticipated to elevate oxidative stress of the SC, which, when coupled with subtle changes in the molecular characteristics of the SC, may compromise the overall skin health and elevate the likelihood of developing skin disorders.
Collapse
Affiliation(s)
- Nikol Labecka
- Department of Biomedical Science, Malmö University, SE-205 06 Malmö, Sweden; Biofilms Research Center for Biointerfaces, Malmö University, SE-205 06 Malmö, Sweden; Division of Physical Chemistry, Chemistry Department, Lund University, SE-221 00 Lund, Sweden
| | - Michal Szczepanczyk
- Department of Biomedical Science, Malmö University, SE-205 06 Malmö, Sweden; Biofilms Research Center for Biointerfaces, Malmö University, SE-205 06 Malmö, Sweden
| | - Enamul Mojumdar
- Department of Biomedical Science, Malmö University, SE-205 06 Malmö, Sweden; Biofilms Research Center for Biointerfaces, Malmö University, SE-205 06 Malmö, Sweden; Division of Physical Chemistry, Chemistry Department, Lund University, SE-221 00 Lund, Sweden; CR Competence AB, Box 124, 22100 Lund, Sweden
| | - Emma Sparr
- Division of Physical Chemistry, Chemistry Department, Lund University, SE-221 00 Lund, Sweden
| | - Sebastian Björklund
- Department of Biomedical Science, Malmö University, SE-205 06 Malmö, Sweden; Biofilms Research Center for Biointerfaces, Malmö University, SE-205 06 Malmö, Sweden.
| |
Collapse
|
10
|
Chen Q, Wei N, Lu Y. A modified protocol for studying filaggrin degradation using a reconstructed human epidermis model under low and high humidity. Int J Cosmet Sci 2024; 46:380-390. [PMID: 38124299 DOI: 10.1111/ics.12937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/08/2023] [Accepted: 11/17/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Filaggrin (FLG) is an essential protein that plays a vital role in maintaining skin barrier function and moisture levels, allowing the skin to adapt to dry environments. However, the precise temporal dynamics of FLG metabolism in the human epidermis remain poorly understood, and suitable tools to study these time-dependent effects are currently lacking. OBJECTIVE To investigate the molecular mechanisms and time course of FLG metabolism and skin barrier function under high- and low-humidity conditions, utilizing a reconstructed epidermis model. METHODS EpiSkin specimens cultured under humid or dry conditions for varying durations (2-48 h) were compared by assessing FLG degradation and skin barrier formation using immunofluorescence staining and western blotting. RESULTS Under conditions of low humidity, the proteolysis of FLG in EpiSkin increased between 4 and 12 h and was accompanied by elevated levels of cysteine-aspartic protease (caspase)-14. The expression of peptidyl arginine deiminase 1 and calpain 1 also increased at 4 h. However, after 24 h, the expression of these three FLG-degrading proteins significantly decreased. Conversely, the levels of pyrrolidone-5-carboxylic acid and urocanic acid initially decreased at 2 h and then increased between 12 and 24 h. Additionally, the expression of skin barrier proteins, such as FLG, transglutaminase 5, loricrin and zonula occludens-1, decreased starting from 12 h. Notably, epidermal cell viability and activity were also inhibited. CONCLUSION We propose a reliable and ethical model to study the temporal dynamics of FLG metabolism and its role in skin barrier function. Using a commercially reconstructed epidermis to mimic dry skin formation obviates the need for animal and human testing.
Collapse
Affiliation(s)
- Qilong Chen
- Technology Innovation Center, JAKA Biotech. Co., Ltd., Shanghai, China
| | - Ning Wei
- Technology Innovation Center, JAKA Biotech. Co., Ltd., Shanghai, China
| | - Yina Lu
- Technology Innovation Center, JAKA Biotech. Co., Ltd., Shanghai, China
- School of Biotechnology, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
11
|
Lan L, Ping J, Li H, Wang C, Li G, Song J, Ying Y. Skin-Inspired All-Natural Biogel for Bioadhesive Interface. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401151. [PMID: 38558183 DOI: 10.1002/adma.202401151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/27/2024] [Indexed: 04/04/2024]
Abstract
Natural material-based hydrogels are considered ideal candidates for constructing robust bio-interfaces due to their environmentally sustainable nature and biocompatibility. However, these hydrogels often encounter limitations such as weak mechanical strength, low water resistance, and poor ionic conductivity. Here, inspired by the role of natural moisturizing factor (NMF) in skin, a straightforward yet versatile strategy is proposed for fabricating all-natural ionic biogels that exhibit high resilience, ionic conductivity, resistance to dehydration, and complete degradability, without necessitating any chemical modification. A well-balanced combination of gelatin and sodium pyrrolidone carboxylic acid (an NMF compound) gives rise to a significant enhancement in the mechanical strength, ionic conductivity, and water retention capacity of the biogel compared to pure gelatin hydrogel. The biogel manifests temperature-controlled reversible fluid-gel transition properties attributed to the triple-helix junctions of gelatin, which enables in situ gelation on diverse substrates, thereby ensuring conformal contact and dynamic compliance with curved surfaces. Due to its salutary properties, the biogel can serve as an effective and biocompatible interface for high-quality and long-term electrophysiological signal recording. These findings provide a general and scalable approach for designing natural material-based hydrogels with tailored functionalities to meet diverse application needs.
Collapse
Affiliation(s)
- Lingyi Lan
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Jianfeng Ping
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, P. R. China
- Innovation Platform of Micro/Nano Technology for Biosensing, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| | - Huiyan Li
- The State Key Laboratory of Industrial Control Technology, Institute of Cyber Systems and Control, Zhejiang University, Hangzhou, 310027, P.R. China
| | - Chengjun Wang
- Department of Engineering Mechanics and Soft Matter Research Center, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou, 310027, P.R. China
| | - Guang Li
- The State Key Laboratory of Industrial Control Technology, Institute of Cyber Systems and Control, Zhejiang University, Hangzhou, 310027, P.R. China
| | - Jizhou Song
- Department of Engineering Mechanics and Soft Matter Research Center, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou, 310027, P.R. China
| | - Yibin Ying
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, P. R. China
- Innovation Platform of Micro/Nano Technology for Biosensing, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| |
Collapse
|
12
|
Yang M, Zhu J, Bi S, Wang R, Wang H, Yue F, Niu Z. The Construction of Anion-Induced Solvation Structures in Low-concentration Electrolyte for Stable Zinc Anodes. Angew Chem Int Ed Engl 2024; 63:e202400337. [PMID: 38351433 DOI: 10.1002/anie.202400337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Indexed: 02/29/2024]
Abstract
Aqueous zinc-ion batteries (ZIBs) are promising large-scale energy storage devices because of their low cost and high safety. However, owing to the high activity of H2O molecules in electrolytes, hydrogen evolution reaction and side reactions usually take place on Zn anodes. Herein, additive-free PCA-Zn electrolyte with capacity of suppressing the activity of free and solvated H2O molecules was designed by selecting the cationophilic and solventophilic anions. In such electrolyte, contact ion-pairs and solvent-shared ion-pairs were achieved even at low concentration, where PCA- anions coordinate with Zn2+ and bond with solvated H2O molecules. Simultaneously, PCA- anions also induce the construction of H-bonds between free H2O molecules and them. Therefore, the activity of free and solvated H2O molecules is effectively restrained. Furthermore, since PCA- anions possess a strong affinity with metal Zn, they can also adsorb on Zn anode surface to protect Zn anode from the direct contact of H2O molecules, inhibiting the occurrence of water-triggered side reactions. As a result, plating/stripping behavior of Zn anodes is highly reversible and the coulombic efficiency can reach to 99.43 % in PCA-Zn electrolyte. To illustrate the feasibility of PCA-Zn electrolyte, the Zn||PANI full batteries were assembled based on PCA-Zn electrolyte and exhibited enhanced cycling performance.
Collapse
Affiliation(s)
- Min Yang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Jiacai Zhu
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Songshan Bi
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Rui Wang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Huimin Wang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Fang Yue
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Zhiqiang Niu
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
13
|
Mijaljica D, Townley JP, Spada F, Harrison IP. The heterogeneity and complexity of skin surface lipids in human skin health and disease. Prog Lipid Res 2024; 93:101264. [PMID: 37940006 DOI: 10.1016/j.plipres.2023.101264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/27/2023] [Accepted: 11/02/2023] [Indexed: 11/10/2023]
Abstract
The outermost epidermal layer of the skin, the stratum corneum, is not simply a barrier that safeguards skin integrity from external insults and invaders, it is also a delicately integrated interface composed of firm, essentially dead corneocytes and a distinctive lipid matrix. Together, the stratum corneum lipid matrix and sebum lipids derived from sebaceous glands give rise to a remarkably complex but quite unique blend of skin surface lipids that demonstrates tremendous heterogeneity and provides the skin with its indispensable protective coating. The stratum corneum lipid matrix is composed primarily of three major lipid classes: ceramides, non-esterified fatty acids and cholesterol, whereas sebum is a waxy mixture predominantly composed of acylglycerols, wax esters, non-esterified fatty acids, squalene, cholesterol and cholesterol esters. The balance of these skin surface lipids in terms of their relative abundance, composition, molecular organisation and dynamics, and their intricate interactions play a crucial role in the maintenance of healthy skin. For that reason, even minuscule alterations in skin surface lipid properties or overall lipid profile have been implicated in the aetiology of many common skin diseases including atopic dermatitis, psoriasis, xerosis, ichthyosis and acne. Novel lipid-based interventions aimed at correcting the skin surface lipid abnormalities have the potential to repair skin barrier integrity and the symptoms associated with such skin diseases, even though the exact mechanisms of lipid restoration remain elusive.
Collapse
Affiliation(s)
- Dalibor Mijaljica
- Department of Scientific Affairs, Ego Pharmaceuticals Pty Ltd, 21-31 Malcolm Road, Braeside, Victoria 3195, Australia.
| | - Joshua P Townley
- Department of Scientific Affairs, Ego Pharmaceuticals Pty Ltd, 21-31 Malcolm Road, Braeside, Victoria 3195, Australia.
| | - Fabrizio Spada
- Department of Scientific Affairs, Ego Pharmaceuticals Pty Ltd, 21-31 Malcolm Road, Braeside, Victoria 3195, Australia.
| | - Ian P Harrison
- Department of Scientific Affairs, Ego Pharmaceuticals Pty Ltd, 21-31 Malcolm Road, Braeside, Victoria 3195, Australia.
| |
Collapse
|
14
|
Raghav RS, Verma S, Monika. A Comprehensive Review on Potential Chemical and Herbal Permeation Enhancers Used in Transdermal Drug Delivery Systems. RECENT ADVANCES IN DRUG DELIVERY AND FORMULATION 2024; 18:21-34. [PMID: 38258784 DOI: 10.2174/0126673878272043240114123908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 01/24/2024]
Abstract
Using skin patches to deliver drugs is dependable and doesn't have the same issues as permeation enhancers, which help drugs get through the skin but struggle because of the skin's natural barrier. Strategies are required to increase topical bioavailability to enhance drug absorption. Natural compounds offer a promising solution by temporarily reducing skin barrier resistance and improving drug absorption. Natural substances allow a wider variety of medications to be distributed through the stratum corneum, offering a dependable approach to enhancing transdermal drug delivery. Natural substances have distinct advantages as permeability enhancers. They are pharmacologically effective and safe, inactive, non-allergenic, and non-irritating. These characteristics ensure their suitability for use without causing adverse effects. Natural compounds are readily available and well tolerated by the body. Studies investigating the structure-activity relationship of natural chemicals have demonstrated significant enhancer effects. By understanding the connection between chemical composition and enhancer activity, researchers can identify effective natural compounds for improving drug penetration. In conclusion, current research focuses on utilizing natural compounds as permeability enhancers in transdermal therapy systems. These substances offer safety, non-toxicity, pharmacological inactivity, and non-irritation. Through structure-activity relationship investigations, promising advancements have been made in enhancing drug delivery. Using natural compounds holds enormous potential for improving the penetration of trans-dermally delivered medications.
Collapse
Affiliation(s)
- Rajat Singh Raghav
- Department of Pharmacy, Faculty of Pharmaceutics, Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, 201306, India
| | - Sushma Verma
- Department of Pharmacy, Faculty of Pharmaceutics, Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, 201306, India
| | - Monika
- Department of Pharmacy, Faculty of Pharmaceutics, Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, 201306, India
| |
Collapse
|
15
|
Gupta P, Nagesh K, Garg P, Thomas J, Suryawanshi P, Sethuraman G, Hazarika RD, Verma RJ, Kumar CS, Kumari S, Taneja S, Chavhan V, Thakor P, Pandita A. Evidence-Based Consensus Recommendations for Skin Care in Healthy, Full-Term Neonates in India. Pediatric Health Med Ther 2023; 14:249-265. [PMID: 37654800 PMCID: PMC10465361 DOI: 10.2147/phmt.s414091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/03/2023] [Indexed: 09/02/2023] Open
Abstract
Purpose Neonatal skin care practices guided by personal experience and preferences might be substantially different across different hospital settings. The aim of this consensus recommendation is to provide clinical practice guidance to healthcare practitioners on evidence-based neonatal skin care practices from delivery-to-discharge, in hospital settings. Patients and Methods A Scientific Advisory Board meeting on "Evidence-based Neonatal Skin Care Practices and Protocols" was held in December 2020 with an expert panel comprising neonatologists, pediatricians, obstetricians and gynecologists and pediatric dermatologist. Comprehensive literature search was performed up to 23 March 2021 using PubMed and Google Scholar to retrieve relevant evidence. Results Recommendations were developed on critical aspects of skin care in healthy full-term neonates including cleansing at birth, skin-to-skin care, cord care, diaper area care, initial and routine bathing, cleansers and emollients use, and criteria to choose appropriate skin care products. Recommendations include inclusion of skin assessment in routine neonatal care, first bath timing after cardio-respiratory and thermal stabilization, 6-24 hours after birth; bathing with water alone or adding a mild liquid cleanser could be considered appropriate as it does not impact the developing skin barrier; use of emollients is recommended for neonates with higher risk of development of eczema to maintain and enhance skin barrier function and integrity; and inclusion of skin care advice in neonatal discharge checklist. Importance of rigorous quality control, high-quality clinical trials for assessment of baby products, usage of products that are formulated appropriately for newborns, and full label transparency for baby products were highlighted. The panel identified gaps in literature and discussed the scope for future research. Conclusion These recommendations may help to standardize evidence-based skin care for healthy full-term neonates in Indian hospital settings to improve the quality of care that neonates receive in hospital and facilitate improvement in overall neonatal health outcomes.
Collapse
Affiliation(s)
- Piyush Gupta
- Department of Pediatrics, University College of Medical Sciences, New Delhi, India
| | - Karthik Nagesh
- Department of Neonatology, Manipal Hospitals Group (MHEPL), Bangalore, Karnataka, India
| | - Pankaj Garg
- Department of Neonatology, Sir Ganga Ram Hospital, New Delhi, India
| | - Jayakar Thomas
- Department of Dermatology, The Tamil Nadu Dr. M.G.R. Medical University, Chennai, Tamil Nadu, India
| | | | - Giridhar Sethuraman
- Department of Neonatology, Chettinad Hospital and Research Institute, Chennai, Tamil Nadu, India
| | - Rashna Dass Hazarika
- Department of Pediatrics & Neonatology, Nemcare Superspecialty Hospital, Guwahati, Assam, India
| | - Rahul J Verma
- Department of Neonatology & General Pediatrics, Sir H.N Reliance Hospital, Mumbai, Maharashtra, India
| | - C Suresh Kumar
- Department of Pediatrics, Apollo Cradle, Jubilee Hills, Hyderabad, Telangana, India
| | - Shantha Kumari
- Department of Obstetrics and Gynecology, Yashoda Hospitals, Hyderabad, Telangana, India
| | - Sunil Taneja
- Sushrut Medical Centre Pvt Ltd, Kanpur, Uttar Pradesh, India
| | - Vaishali Chavhan
- Department of Obstetrics and Gynecology, Sahyadri Superspecialty Hospitals, Pune, Maharashtra, India
| | - Priti Thakor
- Department of Medical Affairs, JNTL Consumer Health (India) Pvt. Ltd., Mumbai, Maharashtra, India
| | - Ankita Pandita
- Department of Medical Affairs, JNTL Consumer Health (India) Pvt. Ltd., Mumbai, Maharashtra, India
| |
Collapse
|
16
|
Savica V. Utility of Urine: From Antiquity to the Moon. EXP CLIN TRANSPLANT 2023; 21:125-127. [PMID: 37496361 DOI: 10.6002/ect.iahncongress.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
In ancient times, religious traditions considered urine a useful distilled product from the body. It has been used as a form of medicinal therapy for many years and is still used by millions of people worldwide who drink their urine for therapeutic purposes. The positive effects of urine on health were reported since the Renaissance for its bactericidal effects on wounds, healing effects on gastric ulcers, improved protein synthesis, regression of liver tumors, and ability to block the growth of tuberculosis mycobacteria. Urine contains a large number of chemical agents, some of which have already been identified, although others are still unknown. It is important to identify these agents through new technological methods, such as mass spectrometry, as new biomarkers of diseases. Recently, the use of urine has been discovered as a "green" element to produce electricity, agriculture fertilizers, generation of water, and building material for lunar bases for future space explorations.
Collapse
Affiliation(s)
- Vincenzo Savica
- From the Accademia Peloritana dei Pericolanti at University of Messina, Ital
| |
Collapse
|
17
|
Hasköylü ME, Gökalsin B, Tornaci S, Sesal C, Öner ET. Exploring the potential of Halomonas levan and its derivatives as active ingredients in cosmeceutical and skin regenerating formulations. Int J Biol Macromol 2023; 240:124418. [PMID: 37080400 DOI: 10.1016/j.ijbiomac.2023.124418] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 04/01/2023] [Accepted: 04/07/2023] [Indexed: 04/22/2023]
Abstract
Demand on natural products that contain biological ingredients mimicking growth factors and cytokines made natural polysaccharides popular in pharmaceutical and cosmetic industries. Levan is the β-(2-6) linked, nontoxic, biocompatible, water-soluble, film former fructan polymer that has diverse applications in pharmacy and cosmeceutical industries with its moisturizing, whitening, anti-irritant, anti-aging and slimming activities. Driven by the limited reports on few structurally similar levan polymers, this study presents the first systematic investigation on the effects of structurally different extremophilic Halomonas levan polysaccharides on human skin epidermis cells. In-vitro experiments with microbially produced linear Halomonas levan (HL), its hydrolyzed, (hHL) and sulfonated (ShHL) derivatives as well as enzymatically produced branched levan (EL) revealed increased keratinocyte and fibroblast proliferation (113-118 %), improved skin barrier function through induced expressions of involucrin (2.0 and 6.43 fold changes for HL and EL) and filaggrin (1.74 and 3.89 fold changes for hHL and ShHL) genes and increased type I collagen (2.63 for ShHL) and hyaluronan synthase 3 (1.41 for HL) gene expressions together with fast wound healing ability within 24 h (100 %, HL) on 2D wound models clearly showed that HL and its derivatives have high potential to be used as natural active ingredients in cosmeceutical and skin regenerating formulations.
Collapse
Affiliation(s)
- Merve Erginer Hasköylü
- Istanbul University-Cerrahpaşa, Institute of Nanotechnology and Biotechnology, Istanbul, Turkey.
| | - Barış Gökalsin
- Marmara University, Department of Biology, Istanbul, Turkey
| | - Selay Tornaci
- IBSB, Marmara University, Department of Bioengineering, Istanbul, Turkey
| | - Cenk Sesal
- Marmara University, Department of Biology, Istanbul, Turkey
| | - Ebru Toksoy Öner
- IBSB, Marmara University, Department of Bioengineering, Istanbul, Turkey
| |
Collapse
|
18
|
Pham QD, Biatry B, Grégoire S, Topgaard D, Sparr E. Solubility of Foreign Molecules in Stratum Corneum Brick and Mortar Structure. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:2347-2357. [PMID: 36716111 PMCID: PMC9933541 DOI: 10.1021/acs.langmuir.2c03092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/12/2023] [Indexed: 06/18/2023]
Abstract
The barrier function of the skin is mainly assured by its outermost layer, stratum corneum (SC). One key aspect in predicting dermal drug delivery and in safety assessment of skin exposure to chemicals is the need to determine the amount of chemical that is taken up into the SC. We here present a strategy that allows for direct measures of the amount of various solid chemicals that can be dissolved in the SC in any environmental relative humidity (RH). A main advantage of the presented method is that it distinguishes between molecules that are dissolved within the SC and molecules that are not dissolved but might be present at, for example, the skin surface. In addition, the method allows for studies of uptake of hydrophobic chemicals without the need to use organic solvents. The strategy relies on the differences in the molecular properties of the added molecules in the dissolved and the excess states, employing detection methods that act as a dynamic filter to spot only one of the fractions, either the dissolved molecules or the excess solid molecules. By measuring the solubility in SC and delipidized SC at the same RHs, the same method can be used to estimate the distribution of the added chemical between the extracellular lipids and corneocytes at different hydration conditions. The solubility in porcine SC is shown to vary with hydration, which has implications for the molecular uptake and transport across the skin. The findings highlight the importance of assessing the chemical uptake at hydration conditions relevant to the specific applications. The methodology presented in this study can also be generalized to study the solubility and partitioning of chemicals in other heterogeneous materials with complex composition and structure.
Collapse
Affiliation(s)
- Quoc Dat Pham
- Division
of Physical Chemistry, Chemistry Department, Lund University, P.O. Box 124, 22100Lund, Sweden
- Gillette
Reading Innovation Centre, 460 Basingstoke Road, ReadingRG2 0QE, Berkshire, U.K.
| | - Bruno Biatry
- L’Oréal
Research & Innovation, 1, avenue Eugène Schueller, 93601Aulnay sous Bois, France
| | - Sébastien Grégoire
- L’Oréal
Research & Innovation, 1, avenue Eugène Schueller, 93601Aulnay sous Bois, France
| | - Daniel Topgaard
- Division
of Physical Chemistry, Chemistry Department, Lund University, P.O. Box 124, 22100Lund, Sweden
| | - Emma Sparr
- Division
of Physical Chemistry, Chemistry Department, Lund University, P.O. Box 124, 22100Lund, Sweden
| |
Collapse
|
19
|
A Review of Moisturizing Additives for Atopic Dermatitis. COSMETICS 2022. [DOI: 10.3390/cosmetics9040075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Atopic dermatitis, the most common form of eczema, is a chronic, relapsing inflammatory skin condition that occurs with dry skin, persistent itching, and scaly lesions. This debilitating condition significantly compromises the patient’s quality of life due to the intractable itching and other associated factors such as disfigurement, sleeping disturbances, and social stigmatization from the visible lesions. The treatment mainstay of atopic dermatitis involves applying topical glucocorticosteroids and calcineurin inhibitors, combined with regular use of moisturizers. However, conventional treatments possess a certain degree of adverse effects, which raised concerns among the patients resulting in non-adherence to treatment. Hence, the modern use of moisturizers to improve barrier repair and function is of great value. One of the approaches includes incorporating bioactive ingredients with clinically proven therapeutic benefits into dermocosmetics emollient. The current evidence suggests that these dermocosmetics emollients aid in the improvement of the skin barrier and alleviate inflammation, pruritus and xerosis. We carried out a critical and comprehensive narrative review of the literature. Studies and trials focusing on moisturizers that include phytochemicals, natural moisturizing factors, essential fatty acids, endocannabinoids, and antioxidants were identified by searching electronic databases (PubMed and MEDLINE). We introduce the current knowledge on the roles of moisturizers in alleviating symptoms of atopic dermatitis. We then further summarize the science and rationale of the active ingredients in dermocosmetics and medical device emollients for treating atopic dermatitis. Finally, we highlight the limitations of the current evidence and future perspectives of cosmeceutical research on atopic dermatitis.
Collapse
|
20
|
Sonoki Y, Dat Pham Q, Sparr E. Beyond Additivity: A mixture of glucose and NaCl can influence skin hydration more than the individual compounds. J Colloid Interface Sci 2022; 613:554-562. [DOI: 10.1016/j.jcis.2021.12.166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/15/2021] [Accepted: 12/24/2021] [Indexed: 11/16/2022]
|
21
|
Kis N, Gunnarsson M, Berkó S, Sparr E. The effects of glycols on molecular mobility, structure, and permeability in stratum corneum. J Control Release 2022; 343:755-764. [PMID: 35150813 DOI: 10.1016/j.jconrel.2022.02.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/28/2022] [Accepted: 02/07/2022] [Indexed: 11/26/2022]
Abstract
The skin provides an attractive alternative to the conventional drug administration routes. Still, it comes with challenges as the upper layer of the skin, the stratum corneum (SC), provides an efficient barrier against permeation of most compounds. One way to overcome the skin barrier is to apply chemical permeation enhancers, which can modify the SC structure. In this paper, we investigated the molecular effect of three different types of glycols in SC: dipropylene glycol (diPG), propylene glycol (PG), and butylene glycol (BG). The aim is to understand how these molecules influence the molecular mobility and structure of the SC components, and to relate the molecular effects to the efficiency of these molecules as permeation enhancers. We used complementary experimental techniques, including natural abundance 13C NMR spectroscopy and wide-angle X-ray diffraction to characterize the molecular consequences of these compounds at different doses in SC at 97% RH humidity and 32 °C. In addition, we study the permeation enhancing effects of the same glycols in comparable conditions using Raman spectroscopy. Based on the results from NMR, we conclude that all three glycols cause increased mobility in SC lipids, and that the addition of glycols has an effect on the keratin filaments in similar manner as Natural Moisturizing Factor (NMF). The highest mobility of both lipids and amino acids can be reached with BG, which is followed by PG. It is also shown that one reaches an apparent saturation level for all three chemicals in SC, after which increased addition of the compound does not lead to further increase in the mobility of SC lipids or protein components. The examination with Raman mapping show that BG and PG give a significant permeation enhancement as compared to SC without any added glycol at corresponding conditions. Finally, we observe a non-monotonic response in permeation enhancement with respect to the concentration of glycols, where the highest concentration does not give the highest permeation. This is explained by the dehydration effects at highest glycol concentrations. In summary, we find a good correlation between the molecular effects of glycols on the SC lipid and protein mobility, and macroscopic permeation enhances of the same molecules.
Collapse
Affiliation(s)
- Nikolett Kis
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, 6720 Szeged, Hungary.
| | - Maria Gunnarsson
- Division of Physical Chemistry, Chemistry Department, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden.
| | - Szilvia Berkó
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, 6720 Szeged, Hungary.
| | - Emma Sparr
- Division of Physical Chemistry, Chemistry Department, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden.
| |
Collapse
|
22
|
Liu M, Chen S, Zhiwen Z, Li H, Sun G, Yin N, Wen J. Anti-ageing peptides and proteins for topical applications: a review. Pharm Dev Technol 2021; 27:108-125. [PMID: 34957891 DOI: 10.1080/10837450.2021.2023569] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Skin ageing is a cumulative result of oxidative stress, predominantly caused by reactive oxygen species (ROS). Respiration, pollutants, toxins, or ultraviolet A (UVA) irradiation produce ROS with 80% of skin damage attributed to UVA irradiation. Anti-ageing peptides and proteins are considered valuable compounds for removing ROS to prevent skin ageing and maintenance of skin health. In this review, skin ageing theory has been illustrated with a focus on the mechanism and relationship with anti-ageing peptides and proteins. The effects, classification, and transport pathways of anti-ageing peptides and proteins across skin are summarized and discussed. Over the last decade, several novel formulations and advanced strategies have been developed to overcome the challenges in the dermal delivery of proteins and peptides for skin ageing. This article also provides an in-depth review of the latest advancements in the dermal delivery of anti-ageing proteins and peptides. Based on these studies, this review prospected several semi-solid dosage forms to achieve topical applicability for anti-ageing peptides and proteins.
Collapse
Affiliation(s)
- Mengyang Liu
- School of Pharmacy, Faculty of Medical and Health Sciences, the University of Auckland, Auckland, New Zealand
| | - Shuo Chen
- School of Pharmacy, Faculty of Medical and Health Sciences, the University of Auckland, Auckland, New Zealand
| | - Zhang Zhiwen
- Shanghai Institute of Materia Medica, Chinese Academy of Science, China
| | - Hongyu Li
- School of Pharmacy, University of Arkansas for Medical Sciences, Arkansas, USA
| | - Guiju Sun
- Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, China
| | - Naibo Yin
- School of Pharmacy, Faculty of Medical and Health Sciences, the University of Auckland, Auckland, New Zealand
| | - Jingyuan Wen
- School of Pharmacy, Faculty of Medical and Health Sciences, the University of Auckland, Auckland, New Zealand
| |
Collapse
|