1
|
Jiang R, Nilam M, Piselli C, Winterhalter M, Guo DS, Yu SY, Hennig A, Nau WM. Vesicle-Encapsulated Chemosensing Ensembles Allow Monitoring of Transmembrane Uptake Coupled with Enzymatic Reactions. Angew Chem Int Ed Engl 2025; 64:e202425157. [PMID: 39785152 DOI: 10.1002/anie.202425157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 01/12/2025]
Abstract
Compartmentalized models with coupled catalytic networks are considered as "protocells" in the context of research related to the origin of life. To model the kinetics of a simple cellular uptake-metabolism process, we use a compartmentalized protocell system that combines liposome-encapsulated intravesicular reporter pairs with co-encapsulated enzymes to monitor the membrane transport of a substrate (analyte uptake) and its subsequent enzymatic reaction inside the vesicles (metabolism to the product). The intravesicular chemosensing ensembles consist of the macrocycles cucurbit[7]uril or p-sulfonatocalix[4]arene and matching fluorescent dyes to set up suitable reporter pairs. When these macrocycle/dye reporter pairs are co-encapsulated with enzymes (trypsin, protein kinase A, or butyrylcholinesterase), it is possible to monitor first the transport of different substrates (polylysine, protamine, H-LRRWSLG-OH, or butyrylcholine) through added pores (outer membrane proteins F and C), with synthetic carriers (amphiphilic calixarenes), or by direct permeation (only for butyrylcholine). The subsequent enzymatic conversions of the substrates after they have entered the corresponding protocells can be monitored as consecutive reactions. The new type of in vitro assays can be applied to different enzymes and analytes, affording a comprehensive chemosensing system of high chemical complexity.
Collapse
Affiliation(s)
- Ruixue Jiang
- School of Science, Constructor University, Campus Ring 1, 28759, Bremen, Germany
| | - Mohamed Nilam
- School of Science, Constructor University, Campus Ring 1, 28759, Bremen, Germany
| | - Claudio Piselli
- School of Science, Constructor University, Campus Ring 1, 28759, Bremen, Germany
| | - Mathias Winterhalter
- School of Science, Constructor University, Campus Ring 1, 28759, Bremen, Germany
| | - Dong-Sheng Guo
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Nankai University, Tianjin, 300071, China
| | - Sin-Yi Yu
- School of Science, Constructor University, Campus Ring 1, 28759, Bremen, Germany
| | - Andreas Hennig
- Center for Cellular Nanoanalytics (CellNanOs), Department of Biology and Chemistry, Universität Osnabrück, Barbarastraße 7, 49069, Osnabrück, Germany
| | - Werner M Nau
- School of Science, Constructor University, Campus Ring 1, 28759, Bremen, Germany
| |
Collapse
|
2
|
Selivanovitch E, Ostwalt A, Chao Z, Daniel S. Emerging Designs and Applications for Biomembrane Biosensors. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2024; 17:339-366. [PMID: 39018354 PMCID: PMC11913122 DOI: 10.1146/annurev-anchem-061622-042618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
Nature has inspired the development of biomimetic membrane sensors in which the functionalities of biological molecules, such as proteins and lipids, are harnessed for sensing applications. This review provides an overview of the recent developments for biomembrane sensors compatible with either bulk or planar sensing applications, namely using lipid vesicles or supported lipid bilayers, respectively. We first describe the individual components required for these sensing platforms and the design principles that are considered when constructing them, and we segue into recent applications being implemented across multiple fields. Our goal for this review is to illustrate the versatility of nature's biomembrane toolbox and simultaneously highlight how biosensor platforms can be enhanced by harnessing it.
Collapse
Affiliation(s)
- Ekaterina Selivanovitch
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, USA;
| | - Alexis Ostwalt
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, USA;
| | - Zhongmou Chao
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, USA;
| | - Susan Daniel
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, USA;
| |
Collapse
|
3
|
Holliday EG, Zhang B. Machine learning-enabled colorimetric sensors for foodborne pathogen detection. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 111:179-213. [PMID: 39103213 DOI: 10.1016/bs.afnr.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
In the past decade, there have been various advancements to colorimetric sensors to improve their potential applications in food and agriculture. One application of growing interest is sensing foodborne pathogens. There are unique considerations for sensing in the food industry, including food sample destruction, specificity amidst a complex food matrix, and high sensitivity requirements. Incorporating novel technology, such as nanotechnology, microfluidics, and smartphone app development, into colorimetric sensing methodology can enhance sensor performance. Nonetheless, there remain challenges to integrating sensors with existing food safety infrastructure. Recently, increasingly advanced machine learning techniques have been employed to facilitate nondestructive, multiplex detection for feasible assimilation of sensors into the food industry. With its ability to analyze and make predictions from highly complex data, machine learning holds potential for advanced yet practical colorimetric sensing of foodborne pathogens. This article summarizes recent developments and hurdles of machine learning-enabled colorimetric foodborne pathogen sensing. These advancements underscore the potential of interdisciplinary, cutting-edge technology in providing safer and more efficient food systems.
Collapse
Affiliation(s)
- Emma G Holliday
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL, United States
| | - Boce Zhang
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL, United States.
| |
Collapse
|
4
|
Takallu S, Aiyelabegan HT, Zomorodi AR, Alexandrovna KV, Aflakian F, Asvar Z, Moradi F, Behbahani MR, Mirzaei E, Sarhadi F, Vakili-Ghartavol R. Nanotechnology improves the detection of bacteria: Recent advances and future perspectives. Heliyon 2024; 10:e32020. [PMID: 38868076 PMCID: PMC11167352 DOI: 10.1016/j.heliyon.2024.e32020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/23/2024] [Accepted: 05/27/2024] [Indexed: 06/14/2024] Open
Abstract
Nanotechnology has advanced significantly, particularly in biomedicine, showing promise for nanomaterial applications. Bacterial infections pose persistent public health challenges due to the lack of rapid pathogen detection methods, resulting in antibiotic overuse and bacterial resistance, threatening the human microbiome. Nanotechnology offers a solution through nanoparticle-based materials facilitating early bacterial detection and combating resistance. This study explores recent research on nanoparticle development for controlling microbial infections using various nanotechnology-driven detection methods. These approaches include Surface Plasmon Resonance (SPR) Sensors, Surface-Enhanced Raman Scattering (SERS) Sensors, Optoelectronic-based sensors, Bacteriophage-Based Sensors, and nanotechnology-based aptasensors. These technologies provide precise bacteria detection, enabling targeted treatment and infection prevention. Integrating nanoparticles into detection approaches holds promise for enhancing patient outcomes and mitigating harmful bacteria spread in healthcare settings.
Collapse
Affiliation(s)
- Sara Takallu
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Abolfazl Rafati Zomorodi
- Department of Bacteriology & Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Fatemeh Aflakian
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Zahra Asvar
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farhad Moradi
- Department of Bacteriology & Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahrokh Rajaee Behbahani
- Department of Bacteriology & Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Esmaeil Mirzaei
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Firoozeh Sarhadi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Roghayyeh Vakili-Ghartavol
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
5
|
Huang F, Sun C, Dong J, Wu X, Du Y, Hu Q, Zhou L. Ultra-sensitive fluorescent biosensor for multiple bacteria detection based on CDs/QDs@ZIF-8 and microfluidic fluidized bed. Mikrochim Acta 2024; 191:237. [PMID: 38570419 DOI: 10.1007/s00604-024-06303-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/07/2024] [Indexed: 04/05/2024]
Abstract
An ultra-sensitive fluorescent biosensor based on CDs/QDs@ZIF-8 and microfluidic fluidized bed was developed for rapid and ultra-sensitive detection of multiple target bacteria. The zeolitic imidazolate frameworks (ZIF-8) act as the carrier to encapsulate three kinds of fluorescence signal molecules from the CDs/QDs@ZIF-8 signal amplification system. Besides, three kinds of target pathogenic bacteria were automatically, continuously, and circularly captured by the magnetic nanoparticles (MNPs) in the microfluidic fluidized bed. The neutral Na2EDTA solution was the first time reported to not only dissolve the ZIF-8 frameworks from the MNPs-bacteria-CDs/QDs@ZIF-8 sandwich complexes, but also release the CDs/QDs from sandwich complexes with no loss of fluorescence signal. Due to the advantages of signal amplification and automated sample pretreatment, the proposed fluorescent biosensor can simultaneously detect Escherichia coli O157:H7, Salmonella paratyphi A, and Salmonella paratyphi B as low as 101 CFU/mL within 1.5 h, respectively. The mean recovery in spiked milk samples can reach 99.18%, verifying the applicability of this biosensor in detecting multiple bacteria in real samples.
Collapse
Affiliation(s)
- Fengchun Huang
- National Key Laboratory of Biochemical Engineering, PLA Key Laboratory of Biopharmaceutical Production & Formulation Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
- Innovation Academy for Green Manufacture Institute, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
- Institute of Agro-Product Quality and Safety, of Quality Standard & Testing Technology for Agro-Products, Key Laboratory, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chongsi Sun
- National Key Laboratory of Biochemical Engineering, PLA Key Laboratory of Biopharmaceutical Production & Formulation Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
- Innovation Academy for Green Manufacture Institute, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
| | - Jinying Dong
- National Key Laboratory of Biochemical Engineering, PLA Key Laboratory of Biopharmaceutical Production & Formulation Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Xiaoya Wu
- National Key Laboratory of Biochemical Engineering, PLA Key Laboratory of Biopharmaceutical Production & Formulation Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
- Innovation Academy for Green Manufacture Institute, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
| | - Yuguang Du
- National Key Laboratory of Biochemical Engineering, PLA Key Laboratory of Biopharmaceutical Production & Formulation Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
- Innovation Academy for Green Manufacture Institute, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
- Biosafety Research Center Yangtze River Delta in Zhangjiagang, Suzhou, 215611, People's Republic of China
| | - Qiushi Hu
- National Key Laboratory of Biochemical Engineering, PLA Key Laboratory of Biopharmaceutical Production & Formulation Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
- Innovation Academy for Green Manufacture Institute, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
- Biosafety Research Center Yangtze River Delta in Zhangjiagang, Suzhou, 215611, People's Republic of China
| | - Lei Zhou
- National Key Laboratory of Biochemical Engineering, PLA Key Laboratory of Biopharmaceutical Production & Formulation Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China.
- Innovation Academy for Green Manufacture Institute, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
- Biosafety Research Center Yangtze River Delta in Zhangjiagang, Suzhou, 215611, People's Republic of China.
| |
Collapse
|
6
|
Benariba MA, Hannachi K, Rhouati A, Al-Ansi W, Cai R, Zhou N. Enhanced sensitivity in Staphylococcus aureus detection: Unveiling the impact of lipid composition on the performance of carboxyfluorescein (CF)-Loaded liposome-based assay. Talanta 2024; 270:125577. [PMID: 38141467 DOI: 10.1016/j.talanta.2023.125577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 12/10/2023] [Accepted: 12/19/2023] [Indexed: 12/25/2023]
Abstract
Liposomes have emerged as versatile nanocarriers, finding applications not only in drug delivery but also in pathogen detection and diagnostics. This study aimed to enhance the sensitivity of liposomes to Staphylococcus aureus by investigating the impact of lipid composition on liposomes loaded with 5(6)-carboxyfluorescein (CF). Liposomes were fabricated using various concentrations of cholesterol (10-40 mol%) combined with saturated phospholipids. Dynamic light scattering results revealed that higher cholesterol concentrations led to reduced liposome size, CF release (%), and entrapment efficiency (%). Liposome sensitivity towards S. aureus was evaluated by using CF-loaded liposomes with and without aptamer insertion. Liposomes with a higher cholesterol content (40 mol%) exhibited a strong ability to detect low bacterial concentrations down to 5 × 102 CFU/mL without relying solely on specific receptor-ligand recognition. However, functionalizing the liposome with an aptamer further improved the specificity and sensitivity of S. aureus detection at even lower concentrations, down to 80 CFU/mL, in the wide range of 80-107 CFU/mL. This study highlights the potential for optimizing the lipid composition of liposomes to improve their sensitivity for pathogen detection, particularly when combined with aptamer-based strategies.
Collapse
Affiliation(s)
- Mohamed Aimene Benariba
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China; Bioengineering Laboratory, Ecole Nationale Supérieure de Biotechnologie, Ville Universitaire Ali Mendjeli, BP E66 25100, Constantine, Algeria
| | - Kanza Hannachi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, China
| | - Amina Rhouati
- Bioengineering Laboratory, Ecole Nationale Supérieure de Biotechnologie, Ville Universitaire Ali Mendjeli, BP E66 25100, Constantine, Algeria
| | - Waleed Al-Ansi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, China
| | - Rongfeng Cai
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Nandi Zhou
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
7
|
Takegami S, Danzako M, Konishi A. Detection of dopamine levels using a polydiacetylene liposomal aequorin bioluminescent device with octadecylboronic acid. ANAL SCI 2024; 40:353-356. [PMID: 38062250 DOI: 10.1007/s44211-023-00469-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/07/2023] [Indexed: 02/06/2024]
Abstract
The development of an easy-to-use and rapid method for the determination of dopamine levels is desirable for the diagnosis of neurological conditions, such as Parkinson's disease, which are characterized by low levels of dopamine. Herein, a polydiacetylene liposomal aequorin bioluminescent device (PLABD) containing octadecylboronic acid (OBA) as a recognition material (PLABD-OBA) was prepared for the determination of dopamine concentrations in aqueous solution. The bioluminescent signals of the photoprotein aequorin in PLABD-OBA increased according to increasing dopamine concentrations. The calibration curve showed good linearity over a dopamine concentration range of 70-700 µM (r = 0.918), with a detection limit of 7.5 µM. The addition of other catecholamines to the PLABD-OBA resulted in low bioluminescent signals of aequorin. Because the physiological levels of dopamine are generally 0.001-1.0 µM, this system had insufficient sensitivity for the clinical monitoring of dopamine levels. However, the PLABD-OBA developed herein is an easy-to-use and rapid analytical method that is specific for dopamine.
Collapse
Affiliation(s)
- Shigehiko Takegami
- Laboratory of Analytical Chemistry, Kyoto Pharmaceutical University, 5 Misasaginakauchi-cho, Yamashina-ku, Kyoto, 607-8414, Japan.
| | - Minato Danzako
- Laboratory of Analytical Chemistry, Kyoto Pharmaceutical University, 5 Misasaginakauchi-cho, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Atsuko Konishi
- Laboratory of Analytical Chemistry, Kyoto Pharmaceutical University, 5 Misasaginakauchi-cho, Yamashina-ku, Kyoto, 607-8414, Japan
| |
Collapse
|
8
|
Wang W, Zhang H, Wang D, Wang N, Liu C, Li Z, Wang L, Zhu X, Yu D. Self-powered biosensor using photoactive ternary nanocomposite: Testing the phospholipid content in rhodotorula glutinis oil. Biosens Bioelectron 2023; 242:115751. [PMID: 37839349 DOI: 10.1016/j.bios.2023.115751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/04/2023] [Accepted: 10/09/2023] [Indexed: 10/17/2023]
Abstract
In the field of oil refining, the presence of excessive residual phosphorus in crude oil can significantly impact its quality, thereby emphasizing the necessity for compact and convenient testing equipment. This study primarily focuses on developing of self-powered biosensor (SPB) using immobilizing Choline Oxidase with a photoactive ternary nanocomposite complex (CHOx-BiOI-rGO-Fe3O4 NPs-ITO) as the anode and utilizing a Pt electrode as the cathode. The successful preparation of the ternary composite photoelectrode for the anode was confirmed through a range of characterization techniques, including X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Transmission electron microscopy (TEM), Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), N2 absorption/desorption, Dynamic light scattering (DLS), and Ultraviolet-visible diffuse reflection spectrometer (UV-vis DRS). The electrochemical and photoelectrochemical properties were assessed using an electrochemical workstation, revealing a significant enhancement photoelectrical responsiveness attributed to the formation of heterojunction structures. The SPB exhibited a remarkable linear relationship between the instantaneous photocurrent and phosphatidylcholine (PC) concentration, with a regression equation of I (μA) = 39.62071C (mM) + 3.47271. The linear range covered a concentration range of 0.01-10 mM, and the detection limit (S/N = 3) was determined to be 0.008 mM. It demonstrated excellent reproducibility and storage stability, positioning it a promising alternative to High-performance liquid chromatography (HPLC) for accurate quantification of PC content in rhodotorula glutinis oil. The standard recovery PC content ranged from 98.48% to 103.53%, with a relative standard deviation (RSD) ranging from 1.4% to 2.4%. This research presents a convenient and precise detection device that has the potential to address the issue of lagging detection in the oil refining process.
Collapse
Affiliation(s)
- Weining Wang
- School of Food Engineering, Harbin University of Commerce, Harbin, 150028, China
| | - Hairong Zhang
- School of Computer and Information Engineering, Harbin University of Commerce, Harbin, 150028, China
| | - Donghua Wang
- School of Food Engineering, Harbin University of Commerce, Harbin, 150028, China; School of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Ning Wang
- School of Food Engineering, Harbin University of Commerce, Harbin, 150028, China
| | - Chang Liu
- School of Food Engineering, Harbin University of Commerce, Harbin, 150028, China
| | - Ziyue Li
- School of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Liqi Wang
- School of Food Engineering, Harbin University of Commerce, Harbin, 150028, China; School of Computer and Information Engineering, Harbin University of Commerce, Harbin, 150028, China.
| | - Xiuqing Zhu
- School of Food Engineering, Harbin University of Commerce, Harbin, 150028, China.
| | - Dianyu Yu
- School of Food Science, Northeast Agricultural University, Harbin, 150030, China
| |
Collapse
|
9
|
Magnano San Lio R, Barchitta M, Maugeri A, La Rosa MC, Favara G, Agodi A. Updates on developing and applying biosensors for the detection of microorganisms, antimicrobial resistance genes and antibiotics: a scoping review. Front Public Health 2023; 11:1240584. [PMID: 37744478 PMCID: PMC10512422 DOI: 10.3389/fpubh.2023.1240584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/25/2023] [Indexed: 09/26/2023] Open
Abstract
Background The inappropriate use of antibiotics in clinical and non-clinical settings contributes to the increasing prevalence of multidrug-resistant microorganisms. Contemporary endeavours are focused on exploring novel technological methodologies, striving to create cost-effective and valuable alternatives for detecting microorganisms, antimicrobial resistance genes (ARGs), and/or antibiotics across diverse matrices. Within this context, there exists an increasingly pressing demand to consolidate insights into potential biosensors and their implications for public health in the battle against antimicrobial resistance (AMR). Methods A scoping review was carried out to map the research conducted on biosensors for the detection of microorganisms, ARGs and/or antibiotics in clinical and environmental samples. The Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) checklist was used. Articles published from 1999 to November 2022 and indexed in the following databases were included: MEDLINE, EMBASE, Web of Science, BIOSIS Citation index, Derwent Innovations index, and KCI-Korean Journal. Results The 48 studies included in the scoping review described the development and/or validation of biosensors for the detection of microorganisms, ARGs and/or antibiotics. At its current stage, the detection of microorganisms and/or ARGs has focused primarily on the development and validation of biosensors in clinical and bacterial samples. By contrast, the detection of antibiotics has focused primarily on the development and validation of biosensors in environmental samples. Asides from target and samples, the intrinsic characteristics of biosensors described in the scoping review were heterogenous. Nonetheless, the number of studies assessing the efficacy and validation of the aforementioned biosensor remained limited, and there was also a lack of comparative analyses against conventional molecular techniques. Conclusion Promoting high-quality research is essential to facilitate the integration of biosensors as innovative technologies within the realm of public health challenges, such as antimicrobial resistance AMR. Adopting a One-Health approach, it becomes imperative to delve deeper into these promising and feasible technologies, exploring their potential across diverse sample sets and matrices.
Collapse
Affiliation(s)
| | | | | | | | | | - Antonella Agodi
- Department of Medical and Surgical Sciences and Advanced Technologies “GF Ingrassia”, University of Catania, Catania, Italy
| |
Collapse
|
10
|
Kim Y, Ma L, Huang K, Nitin N. Bio-based antimicrobial compositions and sensing technologies to improve food safety. Curr Opin Biotechnol 2023; 79:102871. [PMID: 36621220 DOI: 10.1016/j.copbio.2022.102871] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/30/2022] [Accepted: 11/04/2022] [Indexed: 01/07/2023]
Abstract
Microbial contamination of food products is a significant challenge that impacts food safety and quality. This review focuses on bio-based technologies for enhancing the decontamination of raw foods during postharvest processing, preventing cross-contamination, and rapidly detecting microbial risks. The bio-based antimicrobial compositions include bio-based antimicrobial delivery systems and coatings. The antimicrobial delivery systems are developed using cell-based carriers, microbubbles, and lipid-based colloidal particles. The antimicrobial coatings are engineered by incorporating biopolymers with conventional antimicrobials or cell-based antimicrobial carriers. The bio-based sensing approaches focus on replacing antibodies with more stable and cost-effective bio-receptors, including antimicrobial peptides, bacteriophages, DNAzymes, and engineered liposomes. Together, these approaches can reduce microbial contamination risks and enhance the in-situ detection of microbes.
Collapse
Affiliation(s)
- Yoonbin Kim
- Department of Food Science & Technology, University of California, Davis, CA 95616, USA
| | - Luyao Ma
- Department of Food Science & Technology, University of California, Davis, CA 95616, USA
| | - Kang Huang
- School of Chemical Sciences, The University of Auckland, Auckland 1142, New Zealand
| | - Nitin Nitin
- Department of Food Science & Technology, University of California, Davis, CA 95616, USA; Department of Biological & Agricultural Engineering, University of California, Davis, CA 95616, USA.
| |
Collapse
|
11
|
Kumar S, Wang Z, Zhang W, Liu X, Li M, Li G, Zhang B, Singh R. Optically Active Nanomaterials and Its Biosensing Applications-A Review. BIOSENSORS 2023; 13:85. [PMID: 36671920 PMCID: PMC9855722 DOI: 10.3390/bios13010085] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 12/26/2022] [Accepted: 01/01/2023] [Indexed: 05/17/2023]
Abstract
This article discusses optically active nanomaterials and their optical biosensing applications. In addition to enhancing their sensitivity, these nanomaterials also increase their biocompatibility. For this reason, nanomaterials, particularly those based on their chemical compositions, such as carbon-based nanomaterials, inorganic-based nanomaterials, organic-based nanomaterials, and composite-based nanomaterials for biosensing applications are investigated thoroughly. These nanomaterials are used extensively in the field of fiber optic biosensing to improve response time, detection limit, and nature of specificity. Consequently, this article describes contemporary and application-based research that will be of great use to researchers in the nanomaterial-based optical sensing field. The difficulties encountered during the synthesis, characterization, and application of nanomaterials are also enumerated, and their future prospects are outlined for the reader's benefit.
Collapse
Affiliation(s)
- Santosh Kumar
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Zhi Wang
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Wen Zhang
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Xuecheng Liu
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Muyang Li
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Guoru Li
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Bingyuan Zhang
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Ragini Singh
- College of Agronomy, Liaocheng University, Liaocheng 252059, China
| |
Collapse
|
12
|
Kim H, Shin MJ. Electrospun coaxial microfiber‐based water detecting sensor using expansion pressure mechanism. POLYM ENG SCI 2023. [DOI: 10.1002/pen.26195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Huiseon Kim
- Department of Cosmetics and Biotechnology Semyung University Jecheon South Korea
| | - Min Jae Shin
- Department of Cosmetics and Biotechnology Semyung University Jecheon South Korea
| |
Collapse
|
13
|
Song E, Lee K, Kim J. Tetrazolium-Based Visually Indicating Bacteria Sensor for Colorimetric Detection of Point of Contamination. ACS APPLIED MATERIALS & INTERFACES 2022; 14:38153-38161. [PMID: 35946791 PMCID: PMC9415389 DOI: 10.1021/acsami.2c08613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Protective equipment for detecting bacterial contamination has been in high demand with increasing interest in public health and hygiene. Herein, a fiber-based visually indicating bacteria sensor (VIBS) embedded with iodonitrotetrazolium chloride is developed for the general purpose of detecting live bacteria, and its chromogenic effectiveness is investigated for Gram-negative Escherichia coli and Gram-positive Micrococcus luteus. The developed color intensity is measured by the light absorption coefficient to the scattering coefficient (K/S) based on the Kubelka-Munk equation, and the colorimetric sensitivities of different membranes are examined by calculating the limit of detection (LOD) and the limit of quantification (LOQ). The results demonstrate that the interactions between VIBS and bacteria depend on the wetting properties of membranes. A hydrophobic membrane shows excessive interactions at high concentrations of Gram-negative E. coli bacteria, whose cell membrane is lipophilic. The membrane blended with hydrophobic and hydrophilic polymers displays linear colorimetric responses for both Gram-negative and Gram-positive bacteria strains, demonstrating a reliable sensing capability in the range of the tested bacteria concentration. This study is significant in that explorative experimentations are performed to conceive a proof of concept of a fiber-based bacteria sensor, which is readily applicable in various fields where bacteria pose a threat.
Collapse
Affiliation(s)
- Eugene Song
- Department
of Textiles, Merchandising and Fashion Design, Seoul National University, Seoul 08826, Korea
| | - Kyeongeun Lee
- Department
of Textiles, Merchandising and Fashion Design, Seoul National University, Seoul 08826, Korea
- Reliability
Assessment Center, FITI Testing & Research
Institute, Seoul 07791, Korea
| | - Jooyoun Kim
- Department
of Textiles, Merchandising and Fashion Design, Seoul National University, Seoul 08826, Korea
- Research
Institute of Human Ecology, Seoul National
University, Seoul 08826, Korea
| |
Collapse
|
14
|
Snari RM, Alsahag M, Alisaac A, Bayazeed A, Alsoliemy A, Khalifa ME, El-Metwaly NM. Smart textiles immobilized with hydrazone probe for colorimetric recognition of bacteria. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
15
|
Andina RI, Kingchok S, Laohhasurayotin K, Traiphol N, Traiphol R. Multi-reversible thermochromic polydiacetylene-CuZnFe2O4 magnetic nanocomposites with tunable colorimetric response to acid-base. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|