1
|
Huang H, Liang Q, Li G, Guo H, Wang Z, Yan G, Li X, Duan H, Wang J. Robust Spray Combustion Enabling Hierarchical Porous Carbon-Supported FeCoNi Alloy Catalyst for Zn-Air Batteries. ACS APPLIED MATERIALS & INTERFACES 2025; 17:7763-7772. [PMID: 39838650 DOI: 10.1021/acsami.4c19069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Rechargeable Zn-air batteries (RZABs) are poised for industrial application, yet they require low-cost, high-performance catalysts that efficiently facilitate both the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER). The pivotal challenge lies in designing multimetal active sites and optimizing the carbon skeleton structure to modulate catalyst activity. In this study, we introduce a novel hierarchical porous carbon-supported FeCoNi bifunctional catalyst, synthesized via a spray combustion method. The carbon, derived from sucrose, was tailored into a hierarchical porous morphology through etching with NO3- ions and NaCl, thereby significantly increasing the surface area for the interaction of the O2 and electrolyte interaction. The in situ formation of FeCoNi alloy nanoparticles ensures their uniform dispersion and anchoring, facilitating electron transport. The strong interaction and charge transfer at the heterogeneous FeCoNi alloy interfaces, along with nitrogen doping, which enhances the OER/ORR activity, endow the FeCoNi/N-PC catalyst with exceptional bifunctional catalytic properties, characterized by an activity parameter of 0.73 V. Furthermore, the RZAB assembled with this catalyst demonstrates outstanding cycling stability and reversibility, with a minimal round-trip efficiency decay of 7.6% over 1380 cycles (460 h) at 10 mA cm-2.
Collapse
Affiliation(s)
- Hongrui Huang
- National Energy Metal Resources and New Materials Key Laboratory, Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Hunan Provincial Key Laboratory of Nonferrous Value-Added Metallurgy, School of Metallurgy and Environment, Central South University, Changsha 410083, P. R. China
| | - Qianqian Liang
- National Energy Metal Resources and New Materials Key Laboratory, Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Hunan Provincial Key Laboratory of Nonferrous Value-Added Metallurgy, School of Metallurgy and Environment, Central South University, Changsha 410083, P. R. China
| | - Guangchao Li
- National Energy Metal Resources and New Materials Key Laboratory, Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Hunan Provincial Key Laboratory of Nonferrous Value-Added Metallurgy, School of Metallurgy and Environment, Central South University, Changsha 410083, P. R. China
- National Engineering Research Centre of Advanced Energy Storage Materials, Changsha 410205, P. R. China
| | - Huajun Guo
- National Energy Metal Resources and New Materials Key Laboratory, Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Hunan Provincial Key Laboratory of Nonferrous Value-Added Metallurgy, School of Metallurgy and Environment, Central South University, Changsha 410083, P. R. China
- National Engineering Research Centre of Advanced Energy Storage Materials, Changsha 410205, P. R. China
| | - Zhixing Wang
- National Energy Metal Resources and New Materials Key Laboratory, Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Hunan Provincial Key Laboratory of Nonferrous Value-Added Metallurgy, School of Metallurgy and Environment, Central South University, Changsha 410083, P. R. China
- National Engineering Research Centre of Advanced Energy Storage Materials, Changsha 410205, P. R. China
| | - Guochun Yan
- National Energy Metal Resources and New Materials Key Laboratory, Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Hunan Provincial Key Laboratory of Nonferrous Value-Added Metallurgy, School of Metallurgy and Environment, Central South University, Changsha 410083, P. R. China
- National Engineering Research Centre of Advanced Energy Storage Materials, Changsha 410205, P. R. China
| | - Xinhai Li
- National Energy Metal Resources and New Materials Key Laboratory, Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Hunan Provincial Key Laboratory of Nonferrous Value-Added Metallurgy, School of Metallurgy and Environment, Central South University, Changsha 410083, P. R. China
- National Engineering Research Centre of Advanced Energy Storage Materials, Changsha 410205, P. R. China
| | - Hui Duan
- National Energy Metal Resources and New Materials Key Laboratory, Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Hunan Provincial Key Laboratory of Nonferrous Value-Added Metallurgy, School of Metallurgy and Environment, Central South University, Changsha 410083, P. R. China
- National Engineering Research Centre of Advanced Energy Storage Materials, Changsha 410205, P. R. China
| | - Jiexi Wang
- National Energy Metal Resources and New Materials Key Laboratory, Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Hunan Provincial Key Laboratory of Nonferrous Value-Added Metallurgy, School of Metallurgy and Environment, Central South University, Changsha 410083, P. R. China
- National Engineering Research Centre of Advanced Energy Storage Materials, Changsha 410205, P. R. China
| |
Collapse
|
2
|
Gan JC, Jiang ZF, Fang KM, Li XS, Zhang L, Feng JJ, Wang AJ. Low Rh doping accelerated HER/OER bifunctional catalytic activities of nanoflower-like Ni-Co sulfide for greatly boosting overall water splitting. J Colloid Interface Sci 2025; 677:221-231. [PMID: 39142162 DOI: 10.1016/j.jcis.2024.08.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/27/2024] [Accepted: 08/08/2024] [Indexed: 08/16/2024]
Abstract
Facile synthesis of high-efficiency and stable bifunctional electrocatalyst is essential for producing clean hydrogen in energy storage systems. Herein, low Rh-doped flower-like Ni3S2/Co3S4 heterostructures were facilely prepared on porous nickel foam (labeled Rh-Ni3S2/Co3S4/NF) by a hydrothermal method. The correlation of the precursors types with the morphological structures and catalytic properties were rigorously investigated for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in the control groups. The low Rh doping within the catalyst played important role in boosting the catalytic characteristics. The resulting catalyst showed the smaller overpotentials of 197 and 78 mV to drive a current density of 10 mA cm-2 for the OER and HER in alkaline electrolyte, respectively. And the potential only required 1.71 V to drive a current density of 100 mA cm-2 in a water splitting device. It reflects excellent overall water splitting of the home-made Rh-Ni3S2/Co3S4/NF. This strategy shed some constructive light for preparing transition metal sulfide-based electrocatalysts in water splitting devices.
Collapse
Affiliation(s)
- Jia-Chun Gan
- College of Geography and Environmental Sciences, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China
| | - Zuo-Feng Jiang
- College of Geography and Environmental Sciences, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China
| | - Ke-Ming Fang
- College of Geography and Environmental Sciences, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China
| | - Xin-Sheng Li
- College of Geography and Environmental Sciences, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China
| | - Lu Zhang
- College of Geography and Environmental Sciences, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China
| | - Jiu-Ju Feng
- College of Geography and Environmental Sciences, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China
| | - Ai-Jun Wang
- College of Geography and Environmental Sciences, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
3
|
Ren H, Liu H, Qin R, Fu H, Xu W, Jia R, Jiang J, Yang Y, Xu Y, Zeng B, Yuan C, Dai L. Synergy strategy of multi-metals confined in heteroatom framework toward constructing high-performance water oxidation electrocatalysts. J Colloid Interface Sci 2024; 680:976-986. [PMID: 39549356 DOI: 10.1016/j.jcis.2024.11.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/30/2024] [Accepted: 11/08/2024] [Indexed: 11/18/2024]
Abstract
The development of a low-cost, highly active, and non-precious metal catalyst for oxygen evolution reaction (OER) is of great significance. Multi-metallic catalysts containing Fe, Co, and Ni exhibit remarkable OER activity, while the specific contributions of each component and the synergistic effects in the ternary metal catalyst has remained elusive. In this work, we synthesized a series of S and N-doped mono-metallic, bi-metallic, and tri-metallic hollow carbon sphere electrocatalysts (M-SNC) with the goal of enhancing the catalysts OER activity and shedding light on the unique roles and synergistic effects of the various metals in the FeCoNi ternary metal catalyst. Our systematic analyses demonstrated the introduction of Fe effectively reduces the overpotential, Co accelerates the kinetics of OER, and the addition of Ni further improves the OER performance. Benefiting from the synergistic effects, the FeCoNi-SNC exhibits a low overpotential of 270 mV, with no morphological or structural changes after reaction, maintaining high activity for 72 h at 10 mA cm-2. Moreover, the assembled FeCoNi-SNC || Pt/C water electrolysis device operates for 65,000 s with minimal degradation, demonstrating its potential for practical application. This work presents a synergy strategy for the preparation of low-cost and highly efficient OER catalysts and further provides insights into the rational design and preparation of multicomponent catalysts.
Collapse
Affiliation(s)
- Hanzhong Ren
- College of Materials, Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen 361005, China
| | - Hao Liu
- College of Materials, Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen 361005, China
| | - Rentong Qin
- College of Materials, Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen 361005, China
| | - Hucheng Fu
- College of Materials, Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen 361005, China
| | - Weixiang Xu
- College of Materials, Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen 361005, China
| | - Rong Jia
- College of Materials, Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen 361005, China
| | - Jia Jiang
- College of Materials, Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen 361005, China
| | - Yizhang Yang
- College of Materials, Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen 361005, China
| | - Yiting Xu
- College of Materials, Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen 361005, China.
| | - Birong Zeng
- College of Materials, Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen 361005, China
| | - Conghui Yuan
- College of Materials, Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen 361005, China
| | - Lizong Dai
- College of Materials, Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
4
|
Huang Z, Li P, Feng M, Zhu W, Woldu AR, Tong QX, Hu L. Unlocking Fe(III) Ions Improving Oxygen Evolution Reaction Activity and Dynamic Stability of Anodized Nickel Foam. Inorg Chem 2024; 63:15493-15502. [PMID: 39115192 DOI: 10.1021/acs.inorgchem.4c02646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Fe has been reported to play a crucial role in improving the catalytic activity and stability of Ni/Co-based electrocatalysts for the oxygen evolution reaction (OER), while the Fe effect remains intangible. Here, we design several experiments to identify the activity and stability improvement using porous anodized nickel foam (ANF) as the electrode and 1.0 M KOH containing 1000 μM Fe(III) ions as the electrolyte. Systematic investigations reveal that Ni sites serve as hosts to capture Fe ions to create active FeNi-based intermediates on the surface of ANF to improve the OER activity significantly, and Fe ions regulate catalytic equilibrium and maintain the stability for a long time. The system exhibits 242 and 343 mV overpotentials to reach 10 and 1000 mA cm-2 current densities and a robust stability of 360 h at an industrially suitable current density (1000 mA cm-2). This work expands insights into the Fe(III) catalysis effect on the OER efficiency of Ni-based catalysts and provides an economical and practical way to commercial application.
Collapse
Affiliation(s)
- Zanling Huang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, P. R. China
| | - Peipei Li
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, P. R. China
| | - Meijun Feng
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, P. R. China
| | - Weiwei Zhu
- Department of Mechanical Engineering, Shantou University, Guangdong 515063, P. R. China
| | - Abebe Reda Woldu
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, P. R. China
| | - Qing-Xiao Tong
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, P. R. China
| | - Liangsheng Hu
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, P. R. China
- Chemistry and Chemical Engineering, Guangdong Laboratory, Shantou 515063, P. R. China
| |
Collapse
|
5
|
Cheng R, He X, Li K, Ran B, Zhang X, Qin Y, He G, Li H, Fu C. Rational Design of Organic Electrocatalysts for Hydrogen and Oxygen Electrocatalytic Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402184. [PMID: 38458150 DOI: 10.1002/adma.202402184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Indexed: 03/10/2024]
Abstract
Efficient electrocatalysts are pivotal for advancing green energy conversion technologies. Organic electrocatalysts, as cost-effective alternatives to noble-metal benchmarks, have garnered attention. However, the understanding of the relationships between their properties and electrocatalytic activities remains ambiguous. Plenty of research articles regarding low-cost organic electrocatalysts started to gain momentum in 2010 and have been flourishing recently though, a review article for both entry-level and experienced researchers in this field is still lacking. This review underscores the urgent need to elucidate the structure-activity relationship and design suitable electrode structures, leveraging the unique features of organic electrocatalysts like controllability and compatibility for real-world applications. Organic electrocatalysts are classified into four groups: small molecules, oligomers, polymers, and frameworks, with specific structural and physicochemical properties serving as activity indicators. To unlock the full potential of organic electrocatalysts, five strategies are discussed: integrated structures, surface property modulation, membrane technologies, electrolyte affinity regulation, and addition of anticorrosion species, all aimed at enhancing charge efficiency, mass transfer, and long-term stability during electrocatalytic reactions. The review offers a comprehensive overview of the current state of organic electrocatalysts and their practical applications, bridging the understanding gap and paving the way for future developments of more efficient green energy conversion technologies.
Collapse
Affiliation(s)
- Ruiqi Cheng
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xiaoqian He
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Kaiqi Li
- Christopher Ingold Laboratory, Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - Biao Ran
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xinlong Zhang
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yonghong Qin
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Guanjie He
- Christopher Ingold Laboratory, Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - Huanxin Li
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK
- Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, London, WC1E 7JE, UK
| | - Chaopeng Fu
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
6
|
Zhang L, Liu LL, Feng JJ, Wang AJ. Methanol-induced assembly and pyrolysis preparation of three-dimensional N-doped interconnected open carbon cages supported FeNb 2O 6 nanoparticles for boosting oxygen reduction reaction and Zn-air battery. J Colloid Interface Sci 2024; 661:102-112. [PMID: 38295692 DOI: 10.1016/j.jcis.2024.01.154] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/27/2024]
Abstract
Three-dimensional (3D) hollow carbon is one of advanced nanomaterials widely applied in oxygen reduction reaction (ORR). Herein, iron niobate (FeNb2O6) nanoparticles supported on metal-organic frameworks (MOFs)-derived 3D N-doped interconnected open carbon cages (FeNb2O6/NICC) were prepared by methanol induced assembly and pyrolysis strategy. During the fabrication process, the evaporation of methanol promoted the assembly and cross linkage of ZIF-8, rather than individual particles. The assembled ZIF-8 particles worked as in-situ sacrificial templates, in turn forming hierarchically interconnected open carbon cages after high-temperature pyrolysis. The as-made FeNb2O6/NICC showed a positive onset potential of 1.09 V and a half-wave potential of 0.88 V for the ORR, outperforming commercial Pt/C under the identical conditions. Later on, the as-built Zn-air battery with the FeNb2O6/NICC presented a greater power density of 100.6 mW cm-2 and durable long-cycle stability by operating for 200 h. For preparing 3D hollow carbon materials, this synthesis does not require a tedious removal process of template, which is more convenient than traditional method with silica and polystyrene spheres as templates. This work affords an exceptional example of developing 3D N-doped interconnected hollow carbon composites for energy conversion and storage devices.
Collapse
Affiliation(s)
- Lu Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Ling-Ling Liu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Jiu-Ju Feng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Ai-Jun Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
7
|
Zhang R, Mao YW, Li JQ, Ni LJ, Lin L, Wang AJ, Feng JJ, Cheang TY, Zhou H. Fe single atoms encapsulated in N, P-codoped carbon nanosheets with enhanced peroxidase-like activity for colorimetric detection of methimazole. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 310:123934. [PMID: 38266603 DOI: 10.1016/j.saa.2024.123934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/13/2023] [Accepted: 01/20/2024] [Indexed: 01/26/2024]
Abstract
Excessive use of antithyroid drug methimazole (MMI) in pharmaceutical samples can cause hypothyroidism and symptoms of metabolic decline. Hence, it is urgent to develop rapid, low cost and accurate colorimetric method with peroxidase-like nanozymes for determination of MMI in medical, nutrition and pharmaceutical studies. Herein, Fe single atoms were facilely encapsulated into N, P-codoped carbon nanosheets (Fe SAs/NP-CSs) by a simple pyrolysis strategy, as certified by a series of characterizations. UV-vis absorption spectroscopy was employed to illustrate the high peroxidase-mimicking activity of the resultant Fe SAs/NP-CSs nanozyme through the typical catalysis of 3,3',5,5'-tetramethylbenzidine (TMB) oxidation. The catalytic mechanism was scrutionously investigated by the fluorescence spectroscopy and electron paramagnetic resonance (EPR) tests. Additionally, the introduced MMI had the ability to reduce the oxidation of TMB (termed oxTMB) as a peroxidase inhibitor, coupled by fading the blue color. By virtue of the above findings, a visual colorimetric sensor was established for dual detection of methimazole (MMI) with a linear scope of 5-50 mM and a LOD of 1.57 mM, coupled by assay of H2O2 at a linear range of 3-50 mM. According to the irreversible oxidation of the drug, its screening with acceptable results was achieved on the sensing platform even in commercial tablets The Fe SAs/NP-CSs nanozyme holds great potential for clinical diagnosis and drug analysis.
Collapse
Affiliation(s)
- Rui Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yan-Wen Mao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Jia-Qi Li
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Ling-Jie Ni
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Lei Lin
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Ai-Jun Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Jiu-Ju Feng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Tuck Yun Cheang
- Department of Breast Care Centre, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China.
| | - Hongyan Zhou
- Department of Neurology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China.
| |
Collapse
|
8
|
Zhao C, Ma C, Zhang F, Li W, Hong C, Bao F. Co 3O 4/NiCo 2O 4 heterojunction as oxygen evolution reaction catalyst for efficient luminol anode electrochemiluminescence. J Colloid Interface Sci 2024; 659:728-738. [PMID: 38211490 DOI: 10.1016/j.jcis.2024.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/30/2023] [Accepted: 01/03/2024] [Indexed: 01/13/2024]
Abstract
Luminol has garnered significant attention from analysts as one of the most effective and commonly used electrochemiluminescence (ECL) reagents. However, the efficient luminescence of luminol anode is limited by the excitation of various reactive oxygen species (ROS). Typically, ROS are generated through co-reactive reagents and dissolved oxygen. Unfortunately, the former suffers from two drawbacks, namely biotoxicity and instability, while the latter cannot offer sufficient oxygen due to its limited solubility in aqueous solutions. Consequently, a low decomposition rate is usually obtained, leading to insufficient ROS. Therefore, there is an urgent need to develop efficient luminol anode systems. This study focuses on the use of zeolitic imidazolate framework-67 (ZIF-67) as a template, employing a controlled chemical etching method to create a ZIF-67/Ni-Co-layered double hydroxide (LDH). The intermediate composite is then annealed in air, resulting in the formation of a Co3O4/NiCo2O4 double-shelled nanobox (DSNB) heterostructure. Due to its structural advantages, the DSNB exhibits excellent electrocatalytic performance in the oxygen evolution reaction (OER). Furthermore, it was found that both the intermediates and products of OER can directly participate in the luminol chemiluminescence process, ultimately resulting in a 700-fold increase in the electrochemiluminescence (ECL) signal compared to an equal molar concentration of luminol solution. This work not only establishes the OER-mediated ECL system but also deepens the understanding of the relationship between ROS and luminol, providing a new pathway to study the luminol anodic ECL luminescence system.
Collapse
Affiliation(s)
- Chulei Zhao
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, China
| | - Chaoyun Ma
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, China
| | - Fuping Zhang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, China
| | - Wenjun Li
- Department of Chemistry, Center for BioAnalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Chenglin Hong
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, China.
| | - Fuxi Bao
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, China.
| |
Collapse
|
9
|
Lian Y, Xu J, Zhou W, Lin Y, Bai J. Research Progress on Atomically Dispersed Fe-N-C Catalysts for the Oxygen Reduction Reaction. Molecules 2024; 29:771. [PMID: 38398523 PMCID: PMC10892989 DOI: 10.3390/molecules29040771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
The efficiency and performance of proton exchange membrane fuel cells (PEMFCs) are primarily influenced by ORR electrocatalysts. In recent years, atomically dispersed metal-nitrogen-carbon (M-N-C) catalysts have gained significant attention due to their high active center density, high atomic utilization, and high activity. These catalysts are now considered the preferred alternative to traditional noble metal electrocatalysts. The unique properties of M-N-C catalysts are anticipated to enhance the energy conversion efficiency and lower the manufacturing cost of the entire system, thereby facilitating the commercialization and widespread application of fuel cell technology. This article initially delves into the origin of performance and degradation mechanisms of Fe-N-C catalysts from both experimental and theoretical perspectives. Building on this foundation, the focus shifts to strategies aimed at enhancing the activity and durability of atomically dispersed Fe-N-C catalysts. These strategies encompass the use of bimetallic atoms, atomic clusters, heteroatoms (B, S, and P), and morphology regulation to optimize catalytic active sites. This article concludes by detailing the current challenges and future prospects of atomically dispersed Fe-N-C catalysts.
Collapse
Affiliation(s)
- Yuebin Lian
- School of Optoelectronic Engineering, Changzhou Institute of Technology, Changzhou 213032, China
| | - Jinnan Xu
- School of Chemistry and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, China; (J.X.)
| | - Wangkai Zhou
- School of Chemistry and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, China; (J.X.)
| | - Yao Lin
- Research Center of Secondary Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou 213022, China;
| | - Jirong Bai
- Research Center of Secondary Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou 213022, China;
| |
Collapse
|
10
|
Zhang K, Deng Y, Wu Y, Wang L, Yan L. Prussian-blue-analogue derived FeNi 2S 4/NiS nanoframes supported by N-doped graphene for highly efficient methanol oxidation electrocatalysis. J Colloid Interface Sci 2023; 647:246-254. [PMID: 37253293 DOI: 10.1016/j.jcis.2023.05.150] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/16/2023] [Accepted: 05/22/2023] [Indexed: 06/01/2023]
Abstract
The design of effective and robust non-noble metal electrocatalysts to enhance catalytic reaction kinetic is critical to promote methanol oxidation catalysis. Herein, hierarchical Prussian blue analogue (PBA)-derived sulfide heterostructures supported by N-doped graphene (FeNi2S4/NiS-NG) as efficient catalysts have been developed for methanol oxidation reaction (MOR). Benefiting from the merits of hollow nanoframes structure and heterogeneous sulfide synergy, FeNi2S4/NiS-NG composite not only possesses abundant active sites to boost the catalytic properties but also alleviates the CO poisoning effect during the process exhibiting favorable kinetic behavior toward MOR. Specifically, the remarkable catalytic activity (97.6 mA cm-2/1544.3 mA mg-1) of FeNi2S4/NiS-NG for methanol oxidation was achieved, superior to most reported non-noble electrocatalysts. Additionally, the catalyst showed competitive electrocatalytic stability, with a current density of over 90% after 2000 consecutive CV cycles. This study offers promising insights into the rational modulation of the morphology and components of precious-metal-free catalysts for fuel cell applications.
Collapse
Affiliation(s)
- Kefu Zhang
- Department of Chemical Physics, Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Jinzairoad 96, Hefei 230026, Anhui, China
| | - Yongqi Deng
- Department of Chemical Physics, Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Jinzairoad 96, Hefei 230026, Anhui, China
| | - Yihan Wu
- Department of Chemical Physics, Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Jinzairoad 96, Hefei 230026, Anhui, China
| | - Lele Wang
- Department of Chemical Physics, Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Jinzairoad 96, Hefei 230026, Anhui, China
| | - Lifeng Yan
- Department of Chemical Physics, Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Jinzairoad 96, Hefei 230026, Anhui, China.
| |
Collapse
|
11
|
Chen MT, Huang ZX, Ye X, Zhang L, Feng JJ, Wang AJ. Caffeine derived graphene-wrapped Fe 3C nanoparticles entrapped in hierarchically porous FeNC nanosheets for boosting oxygen reduction reaction. J Colloid Interface Sci 2023; 637:216-224. [PMID: 36701867 DOI: 10.1016/j.jcis.2023.01.077] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/11/2023] [Accepted: 01/15/2023] [Indexed: 01/19/2023]
Abstract
It is a vital requirement to explore high-efficiency and stable electrocatalysts for oxygen reduction reaction (ORR) to further relieve energy depletion. However, it is a critical challenge to develop low cost and high-quality carbon-based catalysts. Herein, a caffeine chelation-triggered pyrolysis approach was developed to construct graphene-wrapped Fe3C nanoparticles incorporated in hierarchically porous FeNC nanosheets (G-Fe3C/FeNC). The present Fe salt and its content as well as the pyrolysis temperature were carefully investigated in the control groups. The G-Fe3C/FeNC catalyst showed a more positive onset potential (Eonset = 1.09 V) and half-wave potential (E1/2 = 0.88 V) in a 0.1 M KOH solution, which outperformed commercial Pt/C (E1/2 = 0.83 V, Eonset = 0.95 V), showing the excellent catalytic performance for the ORR activity, coupled with remarkable stability (only 0.18 mV negative shift in E1/2 after 2000 cycles). This work provides some valuable insights for developing advanced electrocatalysts for energy storage and conversion related research.
Collapse
Affiliation(s)
- Meng-Ting Chen
- Key laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Zheng-Xiong Huang
- Key laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Xin Ye
- Key laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Lu Zhang
- Key laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Jiu-Ju Feng
- Key laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Ai-Jun Wang
- Key laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
12
|
Liang X, Liu Z, Fu J, Zhang H, Huang J, Ren S, Zhang Z, Chen Q, Xiao Y, Ruan W, Ma J. Dissolvable templates to prepare Pt-based porous metallic glass for the oxygen reduction reaction. NANOSCALE 2023; 15:6802-6811. [PMID: 36951672 DOI: 10.1039/d2nr06794c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Oxygen reduction reaction (ORR) plays a crucial role in electrochemical energy conversion and storage devices such as metal-air batteries and water electrolyzers. Herein, a hierarchical nanoporous platinum-based metallic glass (NPMG) was developed by a facile fabrication method by dissolving in a liquid. The surface topography of the sample can be easily modulated by controlling the particle size of sodium chloride. As a result, the NPMG was proved to be efficient and robust as the ORR catalysts with super hydrophilicity and self-renewal capacity. The half-wave potential of the platinum-based porous material was 835 mV at 0.1 M KOH, even higher than that of the commercial Pt/C catalyst (823 mV) and the previously reported platinum material. In particular, platinum-based porous materials have extremely long stability (more than 500 h) through the self-renewal surface, which perfectly meets the requirements of catalyst stability in batteries. Our study has a better inspiration for developing and applying novel catalysts to prepare metal-air batteries.
Collapse
Affiliation(s)
- Xiong Liang
- Shenzhen Key Laboratory of High Performance Nontraditional Manufacturing, College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Zehang Liu
- Shenzhen Key Laboratory of High Performance Nontraditional Manufacturing, College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Jianan Fu
- Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Heting Zhang
- Shenzhen Key Laboratory of High Performance Nontraditional Manufacturing, College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Jinbiao Huang
- Shenzhen Key Laboratory of High Performance Nontraditional Manufacturing, College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Shuai Ren
- Shenzhen Key Laboratory of High Performance Nontraditional Manufacturing, College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Zhenxuan Zhang
- Shenzhen Key Laboratory of High Performance Nontraditional Manufacturing, College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Qing Chen
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Yong Xiao
- School of Materials Science and Engineering, Wuhan University of Technology, China
| | - Wenqing Ruan
- Shenzhen Key Laboratory of High Performance Nontraditional Manufacturing, College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Jiang Ma
- Shenzhen Key Laboratory of High Performance Nontraditional Manufacturing, College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
13
|
Iron-doped Nickel Sulfide Nanoparticles Grown on N-doped Reduced Graphene Oxide as Efficient Electrocatalysts for Oxygen Evolution Reaction. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
14
|
Zhao Q, Tan X, Liu T, Hou S, Ni W, Huang H, Zhang J, Yang Z, Li D, Hu H, Wu M. Engineering adjacent N, P and S active sites on hierarchical porous carbon nanoshells for superior oxygen reduction reaction and rechargeable Zn-air batteries. J Colloid Interface Sci 2023; 633:1022-1032. [PMID: 36516678 DOI: 10.1016/j.jcis.2022.11.144] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022]
Abstract
Heteroatom-doped carbon materials have been regarded as sustainable alternatives to the noble-metal catalysts for oxygen reduction reaction (ORR), while the catalytic performances still remain unsatisfactory. Herein, we develop a metal-free adjacent N, P and S-codoped hierarchical porous carbon nanoshells (NPS-HPCNs) through a novel layer-by-layer template coating method. The NPS-HPCNs is rationally fabricated by crosslinking of polyethyenemine (PEI) and phytic acid (PA) on nano-SiO2 template surface and subsequently coating of viscous sulfur-bearing petroleum pitch, followed by pyrolysis and alkaline etching. Soft X-ray absorption near-edge spectroscopy (XANES) analysis and density functional theory (DFT) calculations prove the engineering of adjacent N, P and S atoms to generate synergistic and reinforced active sites for oxygen electrocatalysis. The NPS-HPCNs manifests excellent ORR activity with a half-wave potential (E1/2) of 0.86 V, as well as promoted durability and methanol tolerance in alkaline medium. Remarkably, the NPS-HPCNs-based Zn-air battery delivers an open-circuit voltage of 1.479 V, a considerable peak power density of 206 mW cm-2 and robust cycling stability (over 200 h), even exceeding the commercial Pt/C catalyst. This study offers fundamental insights into the construction and synergistic mechanism of adjacent heteroatoms on carbon substrate, providing advanced metal-free electrocatalysts for Zn-air batteries and other energy conversion and storage devices.
Collapse
Affiliation(s)
- Qingshan Zhao
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, College of New Energy, China University of Petroleum (East China), Qingdao 266580, China
| | - Xiaojie Tan
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, College of New Energy, China University of Petroleum (East China), Qingdao 266580, China
| | - Tengfei Liu
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, College of New Energy, China University of Petroleum (East China), Qingdao 266580, China
| | - Shuai Hou
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, College of New Energy, China University of Petroleum (East China), Qingdao 266580, China
| | - Wanxin Ni
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, College of New Energy, China University of Petroleum (East China), Qingdao 266580, China
| | - Hao Huang
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, College of New Energy, China University of Petroleum (East China), Qingdao 266580, China
| | - Jinqiang Zhang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Zhongxue Yang
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, College of New Energy, China University of Petroleum (East China), Qingdao 266580, China
| | - Dawei Li
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, College of New Energy, China University of Petroleum (East China), Qingdao 266580, China
| | - Han Hu
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, College of New Energy, China University of Petroleum (East China), Qingdao 266580, China
| | - Mingbo Wu
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, College of New Energy, China University of Petroleum (East China), Qingdao 266580, China.
| |
Collapse
|
15
|
Lignin-derived hierarchical porous flower-like carbon nanosheets decorated with biomass carbon quantum dots for efficient oxygen reduction. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
16
|
Co nanoparticles/N-doped carbon nanotubes: Facile synthesis by taking Co-based complexes as precursors and electrocatalysis on oxygen reduction reaction. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
17
|
Chen R, Yin H, Wang L, Zhang Z, Ding J, Zhang J, Wan H, Guan G. Enwrapping g-C3N4 on In2O3 hollow hexagonal tubular for photocatalytic CO2 conversion: Construction, characterization, and Z-scheme mechanism insight. J Colloid Interface Sci 2022; 631:122-132. [DOI: 10.1016/j.jcis.2022.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/26/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
|
18
|
Tin-nitrogen coordination boosted lithium-storage sites and electrochemical properties in covalent-organic framework with layer-assembled hollow structure. J Colloid Interface Sci 2022; 622:591-601. [DOI: 10.1016/j.jcis.2022.04.166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/12/2022] [Accepted: 04/27/2022] [Indexed: 11/22/2022]
|
19
|
Zhang R, Hu Z, Ning T, Chen N, Shang Z, He M, Wu J, Shi H. Heterophase stimulated active species evolution in iron/cobalt sulfide nanocomposites for oxygen evolution. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
20
|
Deng Y, Pang J, Ge W, Zhang M, Zhang W, Zhang W, Xiang M, Zhou Q, Bai J. Constructing atomically-dispersed Mn on ZIF-derived nitrogen-doped carbon for boosting oxygen reduction. Front Chem 2022; 10:969905. [PMID: 36092675 PMCID: PMC9454009 DOI: 10.3389/fchem.2022.969905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/18/2022] [Indexed: 11/22/2022] Open
Abstract
Exploring durable and highly-active non-noble-metal nanomaterials to supersede Pt-based nanomaterials is an effective way, which can reduce the cost and boost the catalytic efficiency of oxygen reduction reaction (ORR). Herein, we constructed atomically-dispersed Mn atoms on the ZIF-derived nitrogen-doped carbon frameworks (Mn-Nx/NC) by stepwise pyrolysis. The Mn-Nx/NC relative to pure nitrogen-doped carbon (NC) exhibited superior electrocatalytic activity with a higher half-wave potential (E1/2 = 0.88 V) and a modest Tafel slope (90 mV dec−1) toward ORR. The enhanced ORR performance of Mn-Nx/NC may be attributed to the existence of Mn-Nx active sites, which can more easily adsorb intermediates, promoting the efficiency of ORR. This work provides a facile route to synthesize single-atom catalysts for ORR.
Collapse
|
21
|
Zhang W, Liang Z, Tian W, Liu Y, Du Y, Chen M, Cao D. 3D porous carbon conductive network with highly dispersed Fe-N xsites catalysts for oxygen reduction reaction. NANOTECHNOLOGY 2022; 33:455701. [PMID: 35896089 DOI: 10.1088/1361-6528/ac8487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Intrinsic activity and reactive numbers are considered two important factors in oxygen reduction reaction (ORR) catalysts. Herein, we report the rational design and synthesis of a strongly coupled hybrid material comprising of FeZn nanoparticles (FeZn NPs) supported by a three-dimensional carbon conductive network (FeZn NPs@3D-CN) for increased ORR performance. Fe-N-C sites can offer high intrinsic activity owing to the unique bonding and oxygen vacancies, and the carbon conductive network facilitating the exposure to active sites, and increasing electron transport. Because of the synergetic effect of the conductive networks containing Fe-N-C and polyaniline, the catalysts exhibited ORR activity in an alkaline medium via a four-electron transfer process. FeZn NPs@3D-CN exhibited outstanding performance with a limited current density (6.2 mA cm-2), the Tafel slope (81.19 mV dec-1), and stability (23 mV negative shift after 2000 cycles), which were superior to those of 20% Pt/C (5.7 mA cm-2, 75.1 mV dec-1, 36 mV negative shift after 2000 cycles). This research highlights the effect of conductive networks expanding pathways and reducing the resistance of mass transport, which is a facile method to generate superior ORR electrocatalysts.
Collapse
Affiliation(s)
- Wenxin Zhang
- School of Physics and Electronic Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Zhiwei Liang
- School of Physics and Electronic Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Wensheng Tian
- School of Physics and Electronic Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Yuan Liu
- School of Physics and Electronic Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Yuanzhen Du
- School of Physics and Electronic Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Mingming Chen
- School of Physics and Electronic Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Dawei Cao
- School of Physics and Electronic Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| |
Collapse
|
22
|
Lin SY, Zhang X, Sang SY, Zhang L, Feng JJ, Wang AJ. Bio-derived FeNi alloy confined in N-doped carbon nanosheets as efficient air electrodes for Zn-air battery. J Colloid Interface Sci 2022; 628:499-507. [PMID: 35933867 DOI: 10.1016/j.jcis.2022.07.180] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/21/2022] [Accepted: 07/29/2022] [Indexed: 10/16/2022]
Abstract
It is imperative to design and manufacture electrocatalysts towards oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) for popularization of rechargeable Zn-air batteries. Herein, FeNi alloy confined in N-doped carbon nanosheets (FeNi@NCSs) was harvested via a facile complexation-pyrolysis strategy from the mixture of guanine and metal chlorides. After strictly exploring the pyrolysis temperature and metal types, the resulted FeNi@NCSs showed greatly improved performances on both the ORR (onset potential of 0.93 V and half-wave potential of 0.84 V) and OER (overpotential of 318 mV at 10 mA cm-2 and 379 mV at 100 mA cm-2). Further, the FeNi@NCSs based Zn-air battery exhibited a higher open circuit voltage (1.496 V), a larger power density (128.8 mW cm-2), and prominent durability (360 cycles, 120 h). This study provides an appealing approach to utilize biomass for synthesis of low-cost and high-efficiency electrocatalysts in energy associated systems.
Collapse
Affiliation(s)
- Shi-Yi Lin
- College of Geography and Environmental Sciences, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Xin Zhang
- College of Geography and Environmental Sciences, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Si-Ying Sang
- College of Geography and Environmental Sciences, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Lu Zhang
- College of Geography and Environmental Sciences, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Jiu-Ju Feng
- College of Geography and Environmental Sciences, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Ai-Jun Wang
- College of Geography and Environmental Sciences, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
23
|
Manganese, iron co-doped Ni2P nanoflowers as a powerful electrocatalyst for oxygen evolution reaction. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
24
|
Hierarchical porous N-doped carbon encapsulated CoFe2O4-CoO nanoparticles derived from layered double hydroxide/chitosan biocomposite for the enhanced degradation of tetracycline. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
25
|
Lee SH, Choi M, Moon JK, Kim SW, Lee S, Ryu I, Choi J, Kim S. Electrosorption removal of cesium ions with a copper hexacyanoferrate electrode in a capacitive deionization (CDI) system. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
26
|
Chu Y, Zhang X, Deng B, Wang K, Tan X. A facile method to synthesize 3D nanosheets of Fe/S doped α-Ni(OH)2 as an electrocatalyst for improved oxygen evolution reaction. NANOTECHNOLOGY 2022; 33:405605. [PMID: 35245913 DOI: 10.1088/1361-6528/ac5aeb] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
S-doped Fe/Ni oxide and Fe/Ni hydride oxide catalysts exhibit good oxygen evolution reaction (OER) performance. Nevertheless, the over-doping of S and the agglomeration of active sites still hinder the improvement of the performance of these catalysts. The S/O ratio regulation can optimize the electronic structure effectively so as to improve the OER performance of the catalysts, but few studies have focused on this study. Here, we find a facile room-temperature method to synthesize the unique 3D ultra-thin FeNiOS nanosheets with an adjustable S/O ratio for OER. The FeNiOS-NS catalysts exhibit excellent OER performance with an overpotential of 235 mV at 10 mA cm-2and a small Tafel slope of 64.2 mV dec-1in 0.1 M KOH, which originated from the sufficient exposure of the active Fe-Ni component and the optimized electronic structure due to the tunable S/O ratio. This study demonstrates a novel strategy to optimize the OER performance of Ni-based catalysts.
Collapse
Affiliation(s)
- Yuanyuan Chu
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, No. 399 Binshui West Road, Tianjin 300387, People's Republic of China
- School of Chemistry and Chemical Engineering, Tiangong University, No. 399 Binshui West Road, Tianjin 300387, People's Republic of China
| | - Xiaoxiao Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, No. 399 Binshui West Road, Tianjin 300387, People's Republic of China
- School of Chemistry and Chemical Engineering, Tiangong University, No. 399 Binshui West Road, Tianjin 300387, People's Republic of China
| | - Bohan Deng
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, No. 399 Binshui West Road, Tianjin 300387, People's Republic of China
- School of Chemistry and Chemical Engineering, Tiangong University, No. 399 Binshui West Road, Tianjin 300387, People's Republic of China
| | - Kuixiao Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, No. 399 Binshui West Road, Tianjin 300387, People's Republic of China
- School of Chemistry and Chemical Engineering, Tiangong University, No. 399 Binshui West Road, Tianjin 300387, People's Republic of China
| | - Xiaoyao Tan
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, No. 399 Binshui West Road, Tianjin 300387, People's Republic of China
- School of Chemistry and Chemical Engineering, Tiangong University, No. 399 Binshui West Road, Tianjin 300387, People's Republic of China
| |
Collapse
|
27
|
Ruan QD, Liu LL, Wu DH, Feng JJ, Zhang L, Wang AJ. Cobalt phosphide nanoparticles encapsulated in manganese, nitrogen co-doped porous carbon nanosheets with rich nanoholes for high-efficiency oxygen reduction reaction. J Colloid Interface Sci 2022; 627:630-639. [PMID: 35872420 DOI: 10.1016/j.jcis.2022.07.061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/06/2022] [Accepted: 07/09/2022] [Indexed: 01/18/2023]
Abstract
It is a challenging task to research oxygen reduction electrocatalysts with cost-effectiveness, high-performance and ultra-stability to replace traditional noble metal catalysts in renewable energy conversion/storage devices. Herein, cobalt phosphide (Co2P) nanoparticles encapsulated in Mn, N co-doped porous carbon nanosheets with abundant nanoholes (Co2P/Mn,N-PCNS) were prepared by a alizarin complexone coordination regulated pyrolysis at 800 °C. In the controlled experiments, the pyrolysis temperature and metal types were investigated in details. The resultant catalyst exhibited rapid mass/charge transfer and superior oxygen reduction reaction (ORR) performance (Eonset = 0.96 V; E1/2 = 0.86 V vs RHE), surpassing commercial Pt/C. This work presents some constructive guidelines for synthesis of appealing ORR electrocatalysts in renewable energy technology.
Collapse
Affiliation(s)
- Qi-Dong Ruan
- College of Geography and Environmental Sciences, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Ling-Ling Liu
- College of Geography and Environmental Sciences, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Dong-Hui Wu
- College of Geography and Environmental Sciences, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Jiu-Ju Feng
- College of Geography and Environmental Sciences, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Lu Zhang
- College of Geography and Environmental Sciences, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Ai-Jun Wang
- College of Geography and Environmental Sciences, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
28
|
Feng YG, He JW, Chen DN, Jiang LY, Wang AJ, Bao N, Feng JJ. A sandwich-type electrochemical immunosensor for CYFRA 21-1 based on probe-confined in PtPd/polydopamine/hollow carbon spheres coupled with dendritic Au@Rh nanocrystals. Mikrochim Acta 2022; 189:271. [PMID: 35789294 DOI: 10.1007/s00604-022-05372-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/05/2022] [Indexed: 10/17/2022]
Abstract
A signal-on sandwich-like electrochemical immunosensor was built for determination of cytokeratin 19 fragments 21-1 (CYFRA 21-1) in non-small cell lung cancer (NSCLC) by confining electroactive dye (e.g., methylene blue, MB) as a probe for amplifying signals. Specifically, core-shell gold@rhodium dendritic nanocrystals (Au@Rh DNCs) behaved as a substrate for primary antibody and accelerate interfacial electron transfer. Besides, hollow carbon spheres (HCSs) were subsequently modified with polydopamine (PDA) and PtPd nanoparticles for sequential integration of the secondary antibody and confinement of MB as a label, termed as MB/PtPd/PDA/HCSs for clarity. The built sensors showed a broad linear range (100 fg mL-1 ~ 100 ng mL-1) for detection of CYFRA 21-1 with an ultra-low detection limit (31.72 fg mL-1, S/N = 3), coupled with satisfactory performance in human serum samples. This work can be explored for assays of other proteins and provides some constructive insights for early and accurate diagnosis of NSCLC.
Collapse
Affiliation(s)
- Yi-Ge Feng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Jia-Wen He
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Di-Nan Chen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Lu-Yao Jiang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Ai-Jun Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Ning Bao
- School of Public Health, Nantong University, Nantong, 226019, China.
| | - Jiu-Ju Feng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|
29
|
Ko TE, Hosseini S, Tseng CM, Tsai JE, Wang WH, Li YY. Tetrafunctional electrocatalyst for oxygen reduction, oxygen evolution, hydrogen evolution, and carbon dioxide reduction reactions. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
30
|
Water-regulated and bioinspired one-step pyrolysis of iron-cobalt nanoparticles-capped carbon nanotubes/porous honeycombed nitrogen-doped carbon composite for highly efficient oxygen reduction. J Colloid Interface Sci 2022; 618:352-361. [DOI: 10.1016/j.jcis.2022.03.083] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/18/2022] [Accepted: 03/19/2022] [Indexed: 12/15/2022]
|
31
|
Huang Y, Liu Y, Deng Y, Zhang J, He B, Sun J, Yang Z, Zhou W, Zhao L. Enhancing the bifunctional activity of CoSe 2 nanocubes by surface decoration of CeO 2 for advanced zinc-air batteries. J Colloid Interface Sci 2022; 625:839-849. [PMID: 35772210 DOI: 10.1016/j.jcis.2022.06.094] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/07/2022] [Accepted: 06/20/2022] [Indexed: 10/31/2022]
Abstract
The coupling of oxygen evolution and reduction reactions (OER and ORR) plays a key role in rechargeable Zn-air batteries (ZABs). However, both OER and ORR still suffer from sluggish kinetics, even when using the mainstream precious metal-based catalysts. Herein, oxygen vacancies-rich CeO2 decorated CoSe2 nanocubes are proposed as a novel air electrode to drive OER and ORR for ZABs. The resultant CeO2 coupled CoSe2 nanocubes (CeO2@CoSe2-NCs) catalyst exhibits a significantly enhanced bifunctional activity relative to the pristine CoSe2-NCs and the pristine CeO2. Moreover, an assembled ZABs using this CeO2@CoSe2-NCs electrode delivers a high output power density of 153 mW cm-2 and a long-life stability over 400 cycles, superior to the benchmark Pt/C-IrO2 electrode. Theoretical calculations reveal that the electronic interaction and oxygen vacancies in CeO2@CoSe2-NCs contribute to efficient oxygen electrocatalysis. This protocol provides a promising approach of constructing oxygen vacancies in hybrid catalysts for energy conversion and storage devices.
Collapse
Affiliation(s)
- Yonglong Huang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Yuzhou Liu
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Yanzhu Deng
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Jing Zhang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Beibei He
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China; Shenzhen Research Institute, China University of Geosciences, Shenzhen 518000, China.
| | - Jian Sun
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Zhihong Yang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Wei Zhou
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Ling Zhao
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China; Shenzhen Research Institute, China University of Geosciences, Shenzhen 518000, China.
| |
Collapse
|
32
|
He B, Deng Y, Wang H, Wang R, Jin J, Gong Y, Zhao L. Metal organic framework derived perovskite/spinel heterojunction as efficient bifunctional oxygen electrocatalyst for rechargeable and flexible Zn-air batteries. J Colloid Interface Sci 2022; 625:502-511. [PMID: 35749845 DOI: 10.1016/j.jcis.2022.06.048] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/23/2022] [Accepted: 06/10/2022] [Indexed: 01/19/2023]
Abstract
Interface engineering strategy has been developed to design efficient catalysts for boosting electrocatalytic performance in past few decades. Herein, heterojunctions of PrCoO3/Co3O4 nanocages (PCO/Co3O4 NCs) with atomic-level engineered interfaces and rich oxygen vacancies are proposed for Zn-air batteries. The synthesized product shows exceptional bifunctional activity and robust stability towards oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). The enhanced catalytic capacity is primary attributed to the synergistic effect of PCO/Co3O4, evidenced by the experimental results and theoretical calculations. More importantly, the PCO/Co3O4 NCs assembled liquid Zn-air battery exhibits a power density of 182 mW cm-2 and a long-term operation of 185 h. When assembled into solid-state cable type battery, this newly designed catalyst also reaches a stable open circuit voltage (1.359 V) and a peak power density of 85 mW cm-3. Our findings provide essential guidelines of engineering heterostructured electrocatalysts for future wearable electronic devices.
Collapse
Affiliation(s)
- Beibei He
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China; Zhejiang Institute, China University of Geosciences (Wuhan), Hangzhou, 311305, China.
| | - Yanzhu Deng
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Huanwen Wang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China; Zhejiang Institute, China University of Geosciences (Wuhan), Hangzhou, 311305, China
| | - Rui Wang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Jun Jin
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Yansheng Gong
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Ling Zhao
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China; Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, 388 Lumo Road, Wuhan 430074, China
| |
Collapse
|
33
|
Zhang W, Chen YP, Zhang L, Feng JJ, Li XS, Wang AJ. Theophylline-regulated pyrolysis synthesis of nitrogen-doped carbon nanotubes with iron-cobalt nanoparticles for greatly boosting oxygen reduction reaction. J Colloid Interface Sci 2022; 626:653-661. [DOI: 10.1016/j.jcis.2022.06.130] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/07/2022] [Accepted: 06/24/2022] [Indexed: 01/17/2023]
|
34
|
Sandwich-like superstructure of in-situ self-assembled hetero-structured carbon nanocomposite for improving electrocatalytic oxygen reduction. J Colloid Interface Sci 2022; 616:34-43. [DOI: 10.1016/j.jcis.2022.02.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 01/28/2022] [Accepted: 02/08/2022] [Indexed: 11/23/2022]
|
35
|
Ruan QD, Zhang L, Feng JJ, You LX, Wang ZG, Wang AJ. Three-dimensional self-supporting superstructured double-sided nanoneedles arrays of iron carbide nanoclusters embedded in manganese, nitrogen co-doped carbon for highly efficient oxygen reduction reaction. J Colloid Interface Sci 2022; 614:655-665. [PMID: 35123217 DOI: 10.1016/j.jcis.2022.01.125] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/13/2022] [Accepted: 01/20/2022] [Indexed: 01/06/2023]
Abstract
Nitrogen- and transition metal-dual doped carbon materials with low cost and high catalytic performances are considered as one of promising alternatives for noble metal catalysts in acceleration of oxygen reduction reaction (ORR). In this work, three-dimensional (3D) self-supporting superstructures of iron carbide (Fe3C) nanoclusters entrapped in manganese (Mn)- and nitrogen (N)-dual doped carbon nanosheets covered with double-sided nanoneedles carbon arrays (Fe3C/Mn,N-NCAs) are simply synthesized by a coordination pyrolysis method, in which dicyandiamide mainly behaves as nitrogen source and 1-(2-pyridylazo)-2-naphthol (PAN) as carbon source. Integration of the unique 3D self-supporting superstructures and synergistic effects of the multi-compositions, the as-obtained catalyst displays appealing ORR performance such as the much positive onset potential (Eonset = 0.98 V vs. RHE) and half-wave potential (E1/2 = 0.88 V vs. RHE), as well as a just 10 mV negative shift in E1/2 after 2000 cycles, surpassing commercial Pt/C. This work provides some valuable perspectives for preparation of high-efficiency and low-cost non-noble metal ORR electrocatalysts in energy transformation and storage correlated systems.
Collapse
Affiliation(s)
- Qi-Dong Ruan
- College of Geography and Environmental Sciences, College of Chemistry and Life Sciences, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, China
| | - Lu Zhang
- College of Geography and Environmental Sciences, College of Chemistry and Life Sciences, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, China
| | - Jiu-Ju Feng
- College of Geography and Environmental Sciences, College of Chemistry and Life Sciences, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, China
| | - Le-Xing You
- College of Geography and Environmental Sciences, College of Chemistry and Life Sciences, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, China.
| | - Zhi-Gang Wang
- College of Geography and Environmental Sciences, College of Chemistry and Life Sciences, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, China
| | - Ai-Jun Wang
- College of Geography and Environmental Sciences, College of Chemistry and Life Sciences, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
36
|
Kang H, Peng H, Kang Y, Hao Y, Yan X, Li L, Liu F, Wang W, Lei Z. Porous rare earth-transition metal bimetallic oxide nanoparticles oxygen electrocatalyst for rechargeable Zinc-air battery. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
37
|
Xu C, Niu Y, Gong S, Liu X, Xu M, Liu T, Chen Z. Integrating Bimetal Alloy into N-Doped Carbon Nanotubes@Nanowires Superstructure for Zn-Air Batteries. CHEMSUSCHEM 2022; 15:e202200312. [PMID: 35275443 DOI: 10.1002/cssc.202200312] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/11/2022] [Indexed: 06/14/2023]
Abstract
Exploring bifunctional oxygen electrocatalysts with low cost and high performance is critical to the development of rechargeable zinc-air batteries, but it still remains a huge challenge. In this work, a "coordination construction-pyrolysis/self-catalyzed growth" approach was employed to fabricate branches@trunks-like, N-doped carbon nanotubes@nanowires superstructure with uniformly incorporated CoFe alloy nanoparticles (CoFe@CNTs-NWs). The rational design of such hierarchical architecture could effectively enlarge the exposure of active sites, modulate their electronic structure, and assist the electron transfer and mass diffusion, thus benefiting both ORR and OER. The resultant CoFe@CNTs-NWs displayed prominent bifunctional electrocatalytic activity and stability with a minimized oxygen overpotential of 0.71 V. When used as a cathode for zinc-air batteries, it provided a high peak power density of 131 mW cm-2 and remarkable charge-discharge stability for at least 400 cycles (130 h). This study presents a successful demonstration for optimizing the electrocatalytic performance by elaborate nanostructure and carbon matrix hybridization with simultaneous modulation of electronic structure, thus providing a new avenue to the rational design of transition metal-based oxygen electrocatalysts.
Collapse
Affiliation(s)
- Chen Xu
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Yanli Niu
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Shuaiqi Gong
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Xuan Liu
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Mingze Xu
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Tao Liu
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Zuofeng Chen
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| |
Collapse
|
38
|
Well entrapped platinum-iron nanoparticles on three-dimensional nitrogen-doped ordered mesoporous carbon as highly efficient and durable catalyst for oxygen reduction and zinc-air battery. J Colloid Interface Sci 2022; 621:275-284. [PMID: 35461142 DOI: 10.1016/j.jcis.2022.04.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 01/19/2023]
Abstract
The high-performance and durable oxygen reduction reaction (ORR) catalyst on air cathode is a key component in assembly of Zn-air batteries. Herein, three-dimensional N-doped ordered mesoporous carbon (3D N-OMC) was first prepared with silica as a template via pyrolysis with assistance of dicyandiamide as a N-doping agent, combined by full adsorption of platinum (II) acetylacetonate (Pt(acac)2) and iron (II) phthalocyanine (FePc) via π-π interactions. After further pyrolysis of the resulting mixture, many PtFe nanoparticles were efficiently incorporated in 3D N-OMC (termed as PtFe@3D N-OMC for simplicity). Control experiments were certificated the important role of the pyrolysis temperature played in this synthesis. The resultant composite synergistically combines advantages of hierarchically accessible surfaces, highly open structure, and well-dispersed PtFe particles, which endow the PtFe@3D N-OMC with onset and half-wave potentials of 0.98 and 0.86 V in alkaline media, respectively, showing appealing catalytic activity for the ORR. Most significantly, the PtFe@3D N-OMC based Zn-air battery has a high power density of 80.57 mW cm-2 and long-term durability (220 h, 660 cycles). This work opens a new avenue for design of high-efficiency and durable ORR electrocatalysts in energy conversion and storage systems.
Collapse
|
39
|
Wu Y, Qin D, Meng S, Zhang C, Deng B. Carbon quantum dots with blue/near infrared emissions for ratiometric fluorescent lornoxicam sensing and bio-imaging. Mikrochim Acta 2022; 189:157. [PMID: 35347472 DOI: 10.1007/s00604-022-05262-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/05/2022] [Indexed: 11/28/2022]
Abstract
An economical and eco-friendly hydrothermal method for the preparation of nitrogen-doped carbon quantum dots (N-CQDs) was studied with rambutan peel and lysine. The morphology, structure, and optical properties of N-CQDs were characterized by transmission electron microscopy, Fourier transform infrared spectrometry, X-ray powder diffractometer, X-ray photoelectron spectrometry, and UV spectrophotometry. The synthesized N-CQDs have excellent characteristics such as strong fluorescence, good dispersion, high stability, and excellent water solubility. The absolute fluorescence quantum yield is 1.02%, the average particle size is 1.63 nm, and the maximum excitation wavelength is 340 nm. The maximum emission wavelengths are 430 nm and 800 nm. As a quencher, lornoxicam (LNX) was used to quench the fluorescence of N-CQDs with the mechanism of inner filter effect. The fluorescence ratio of N-CQDs (F430/F800) shows a good linear relationship to the concentration of LNX. The linear range and the detection limit of LNX are 0.01‒100 and 0.003 μmol/L, respectively. An effective ratiometric fluorescence probe for the detection of LNX was constructed. The method has the advantages of low detection limit, high sensitivity, wide linear range, and can be applied to the determination of LNX in real samples. Moreover, according to the excitation-dependent fluorescence behavior, dual-wavelength emission, and biocompatibility of N-CQDs, it has been applied to cell imaging.
Collapse
Affiliation(s)
- Yusheng Wu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, Guangxi, China
| | - Dongmiao Qin
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, Guangxi, China
| | - Shuo Meng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, Guangxi, China
| | - Chuqing Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, Guangxi, China
| | - Biyang Deng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, Guangxi, China.
| |
Collapse
|
40
|
Label-free electrochemical biosensor for determination of procalcitonin based on graphene-wrapped Co nanoparticles encapsulated in carbon nanobrushes coupled with AuPtCu nanodendrites. Mikrochim Acta 2022; 189:110. [PMID: 35178584 DOI: 10.1007/s00604-022-05179-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 01/06/2022] [Indexed: 10/19/2022]
Abstract
A new label-free electrochemical immunosensor was constructed for quantitative detection of procalcitonin (PCT), by employing AuPtCu nanodendrites (AuPtCu NDs, prepared by a one-pot solvothermal method) and graphene-wrapped Co nanoparticles encapsulated in 3D N-doped carbon nanobrushes (G-Co@ NCNBs), obtained by self-catalyzed chemical vapor deposition as immune-sensing platform. Impressively, the home-made nanocomposite enlarged the highly accessible active sites and promoted the mass/electron transport, in turn showing the efficient synergistic catalysis towards H2O2 reduction, combined by greatly increasing the loading capacity of the PCT antibody (Ab). The as-constructed sensor displayed a dynamic linear range of 0.0001 ~ 100 ng mL-1 along with an ultra-low limit of detection (LOD = 0.011 pg mL-1, S/N = 3) and was further explored for determination of PCT in a diluted serum sample with acceptable results. The sensor provides some valuable guidelines for bioassay and early diagnosis of sepsis.
Collapse
|
41
|
Hu X, Wang Y, Zuping X, Song P, Wang AJ, Qian Z, Yuan PX, Zhao T, Feng JJ. Novel Aggregation-Enhanced PEC Photosensitizer Based on Electrostatic Linkage of Ionic Liquid with Protoporphyrin IX for Ultrasensitive Detection of Molt-4 Cells. Anal Chem 2022; 94:3708-3717. [PMID: 35172575 DOI: 10.1021/acs.analchem.1c05578] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nowadays, aggregation quenching of most organic photosensitizers in aqueous media seriously restricts analytical and biomedical applications of photoelectrochemical (PEC) sensors. In this work, an aggregation-enhanced PEC photosensitizer was prepared by electrostatically bonding protoporphyrin IX (PPIX) with an ionic liquid of 1-butyl-3-methylimidazole tetrafluoroborate ([BMIm][BF4]), termed as PPIX-[BMIm] for clarity. The resultant PPIX-[BMIm] showed weak photocurrent in pure dimethyl sulfoxide (DMSO, good solvent), while the PEC signals displayed a 44.1-fold enhancement in a water (poor solvent)/DMSO binary solvent with a water fraction (fw) of 90%. Such PEC-enhanced mechanism was critically studied by electrochemistry and density functional theory (DFT) calculation in some detail. Afterward, a label-free PEC cytosensor was built for ultrasensitive bioassay of acute lymphoblastic leukemia (molt-4) cells by electrodepositing Au nanoparticles (Au NPs) on the PPIX-[BMIm] aggregates and sequential assembly of protein tyrosine kinase (PTK) aptamer DNA (aptDNA). The resultant cytosensor showed a wide linear range (300 to 3 × 105 cells mL-1) with a limit of detection (LOD) as low as 63 cells mL-1. The aggregation-enhanced PEC performance offers a valuable and practical pathway for synthesis of advanced organic photosensitizer to explore its PEC applications in early diagnosis of tumors.
Collapse
Affiliation(s)
- Xiang Hu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Ying Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Xiong Zuping
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Pei Song
- Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, China
| | - Ai-Jun Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Zhaosheng Qian
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Pei-Xin Yuan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Tiejun Zhao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Jiu-Ju Feng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
42
|
Ultrasensitive photoelectrochemical aptasensor for detecting telomerase activity based on Ag 2S/Ag decorated ZnIn 2S 4/C 3N 4 3D/2D Z-scheme heterostructures and amplified by Au/Cu 2+-boron-nitride nanozyme. Biosens Bioelectron 2022; 203:114048. [PMID: 35121445 DOI: 10.1016/j.bios.2022.114048] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/25/2022] [Indexed: 02/07/2023]
Abstract
Enzyme-mediated signal amplification strategies have gained substantial attention in photoelectrochemical (PEC) biosensing, while natural enzyme on the photoelectrode inevitably obstructs the interfacial electron transfer, in turn deteriorating the photocurrent responses. Herein, Au nanoparticles and Cu2+-modified boron nitride nanosheets (AuNPs/Cu2+-BNNS) behaved as nanozyme to achieve remarkable magnification in the PEC signals from a novel signal-off aptasensor for ultra-sensitive assay of telomerase (TE) activity based on Ag2S/Ag nanoparticles decorated ZnIn2S4/C3N4 Z-scheme heterostructures (termed as Ag2S/Ag/ZnIn2S4/C3N4, synthesized by hydrothermal treatment). Specifically, telomerase primer sequences (TS) were extended by TE in the presence of deoxyribonucleoside triphosphates (dNTPs), which was directly bond with the thiol modified complementary DNA (cDNA), achieving efficient linkage with the nanozyme via Au-S bond. The immobilized nanoenzyme catalyzed the oxidation between 4-chloro-1-naphthol (4-CN) and H2O2 to generate insoluble precipitation on the photo-electrode. By virtue of the inhibited PEC signals with the TE-enabled TS extension, an aptasensor for assay of TE activity was developed, showing the wide linear range of 50-5×105 cell mL-1 and a low detection limit of 19 cell mL-1. This work provides some valuable guidelines for developing advanced nanozyme-based PEC bioanalysis of diverse cancer cells.
Collapse
|
43
|
Sun X, Xie Y, chu H, long M, zhang M, Wang Y, Hu X. A highly sensitive electrochemical biosensor for the detection of hydroquinone based on magnetic covalent organic frameworks and enzyme for signal amplification. NEW J CHEM 2022. [DOI: 10.1039/d2nj01764d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Possessing prominent customization in structural design as well as unique physicochemical properties, covalent organic frameworks (COFs) show great potential in biosensing field. In this paper, we prepared a novel COF...
Collapse
|
44
|
Huang J, Shan Q, Fang Y, Zhao N, Feng X. Shape-controlled Mn–Fe PBA derived micromotors for organic pollutant removal. NEW J CHEM 2022. [DOI: 10.1039/d2nj01022d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A new strategy is employed to prepare Mn–Fe PBA derived oxide micromotors with excellent motion performances through co-precipitation and heat treatment, which can be used for organic pollutant degradation with recycling and reusing advantages.
Collapse
Affiliation(s)
- Jing Huang
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), School of Materials Science & Engineering, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Qi Shan
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), School of Materials Science & Engineering, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Yanan Fang
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), School of Materials Science & Engineering, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Ning Zhao
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), School of Materials Science & Engineering, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Xiaomiao Feng
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), School of Materials Science & Engineering, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| |
Collapse
|
45
|
Dong Y, Liu Q, Qi C, Zhang G, Jiang X, Gao D. Surface nitriding to improve the catalytic performance of FeNi 3 for the oxygen evolution reaction. Chem Commun (Camb) 2022; 58:12592-12595. [DOI: 10.1039/d2cc04367j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the oxygen evolution reaction, optimized Fe/Ni–Nx@FeNi3 nanosheets exhibit an overpotential of 251 mV to achieve a current density of 10 mA cm−2 and an excellent durability of 210 h.
Collapse
Affiliation(s)
- Yucan Dong
- Key Laboratory for Magnetism and Magnetic Materials of MOE, Key Laboratory of Special Function Materials and Structure Design of MOE, Lanzhou University, Lanzhou 730000, P. R. China
| | - Qun Liu
- Key Laboratory for Magnetism and Magnetic Materials of MOE, Key Laboratory of Special Function Materials and Structure Design of MOE, Lanzhou University, Lanzhou 730000, P. R. China
| | - Caiyun Qi
- Key Laboratory for Magnetism and Magnetic Materials of MOE, Key Laboratory of Special Function Materials and Structure Design of MOE, Lanzhou University, Lanzhou 730000, P. R. China
| | - Guoqiang Zhang
- Key Laboratory for Magnetism and Magnetic Materials of MOE, Key Laboratory of Special Function Materials and Structure Design of MOE, Lanzhou University, Lanzhou 730000, P. R. China
| | - Xingdong Jiang
- Key Laboratory for Magnetism and Magnetic Materials of MOE, Key Laboratory of Special Function Materials and Structure Design of MOE, Lanzhou University, Lanzhou 730000, P. R. China
| | - Daqiang Gao
- Key Laboratory for Magnetism and Magnetic Materials of MOE, Key Laboratory of Special Function Materials and Structure Design of MOE, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
46
|
Zhang H, Wu S, Deng D, Wang H, Xun S, Chen F, Zhang J, Xu L. The Nitrogen-Doped Carbon Supported Ultra-Small Vanadium Nitride Nanoparticles as a Highly Efficient Oxygen Reduction Electrocatalyst for the Rechargeable Zn–Air battery. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
47
|
Li Y, Xu J, Cheng R, Yang J, Li C, Liu Y, Xu R, Wei Q, Zhang Y. A robust molecularly imprinted electrochemiluminescence sensor based on a Ni–Co nanoarray for the sensitive detection of spiramycin. Analyst 2022; 147:5178-5186. [DOI: 10.1039/d2an01497a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A simple and robust molecularly imprinted electrochemiluminescence sensor for the detection of spiramycin is fabricated based on Ni–Co LDH nanoarrays and is directly used as a sensor platform.
Collapse
Affiliation(s)
- Yunxiao Li
- Provincial Key Laboratory of Rural Energy Engineering in Yunnan, Yunnan Normal University, Kunming 650500, China
| | - Jiwei Xu
- Provincial Key Laboratory of Rural Energy Engineering in Yunnan, Yunnan Normal University, Kunming 650500, China
| | - Rongqi Cheng
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
- Inspection and Testing Center of Liangshan County, Jining 272600, China
| | - Jinghui Yang
- Provincial Key Laboratory of Rural Energy Engineering in Yunnan, Yunnan Normal University, Kunming 650500, China
| | - ChenChen Li
- Provincial Key Laboratory of Rural Energy Engineering in Yunnan, Yunnan Normal University, Kunming 650500, China
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Yingchun Liu
- Provincial Key Laboratory of Rural Energy Engineering in Yunnan, Yunnan Normal University, Kunming 650500, China
| | - Rui Xu
- Provincial Key Laboratory of Rural Energy Engineering in Yunnan, Yunnan Normal University, Kunming 650500, China
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Yong Zhang
- Provincial Key Laboratory of Rural Energy Engineering in Yunnan, Yunnan Normal University, Kunming 650500, China
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| |
Collapse
|