1
|
Wang L, Wei K, Pan Y, Wei Y, Wang Z, Xu L, Wang Y, Wei X. Facile fabrication of novel magnetic MOFs for highly efficient adsorption and determination of organophosphorus pesticides. Food Chem 2025; 481:143978. [PMID: 40154063 DOI: 10.1016/j.foodchem.2025.143978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/05/2025] [Accepted: 03/19/2025] [Indexed: 04/01/2025]
Abstract
The hazardous effects of residues from organophosphorus pesticides (OPPs) on human health have prompted researchers to look for innovative adsorbents and detecting techniques. Herein, a simple and economical material Fe3O4@PCN-224 was effectively produced as a desirable adsorbent for OPPs residues adsorption by integrating magnetic polydopamine (PDA) with the zirconium-based metal-organic framework (PCN-224). Modification of magnetic cores with PCN-224 allowed a dramatic increase in surface area and porosity to enhance pesticide adsorption. Moreover, the adsorption mechanisms inferred that π-π interactions, covalent bonds, and hydrogen bonds may promote the beneficial adsorption of OPPs by Fe3O4@PCN-224. Finally, the Fe3O4@PCN-224-based HPLC method exhibited with low detection limits (0.014-0.051 μg/L), good precision (1.70 % - 3.49 %), wide linearity (1-100 μg/L, R2 ≥ 0.9936), satisfactory recoveries (86.16 % - 106.45 %), and high enrichment factors (92-101), demonstrating its significant potential for efficient extraction, enrichment, and analysis of OPPs in complex matrix samples.
Collapse
Affiliation(s)
- Li Wang
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Kang Wei
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Yi Pan
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Yang Wei
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Zhengwu Wang
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Lurong Xu
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Yuanfeng Wang
- Institute of Food Engineering, College of Life Science, Shanghai Normal University, 100 Guilin Road, Xuhui District, Shanghai 200234, China
| | - Xinlin Wei
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China.
| |
Collapse
|
2
|
Zhang T, Tang X, Xing J, Xu H, Yan R, Zhao Y. Structural remodeling of UiO-66(Ce) into oxygen vacancy defect-rich CeO 2: Enhancing selective adsorption of As(III). JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138462. [PMID: 40339374 DOI: 10.1016/j.jhazmat.2025.138462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/30/2025] [Accepted: 04/30/2025] [Indexed: 05/10/2025]
Abstract
Long-term exposure to arsenic-contaminated water endangers human health. Removing arsenite (As(III)) efficiently and selectively from water is challenging due to its higher toxicity and mobility than arsenate (As(V)). This study successfully synthesizes ultrasmall, defect-rich CeO2 (CeO2-D) with abundant oxygen vacancy derived from metal organic framework (MOF) UiO-66(Ce) via simple acetate etching. The structurally remodeled CeO2-D can achieve As(III) adsorption capacities of 189 mg/g at natural pH, which surpasses that of UiO-66(Ce) by 32.6-fold. At pH 11, the As(III) adsorption capacities can reach higher to 247 mg/g far beyond the literature reports. Meanwhile, in binary As(III/V) solution, CeO2-D's adsorption selectivity for As(III)/As(V) increased from 3-fold to 8-fold from natural pH to about 11. Density functional theory (DFT) results prove CeO2-D's adsorption energy for As(III) is significantly lower than As(V). CeO2-D's superior adsorption for As(III) is dominated by the synergistic effect between oxygen vacancy defects and reversible Ce3+/Ce4+ redox. Conversely, As(V) adsorption predominantly proceeds via As(V)OCe coordination bonds. This study presents a novel, simple and straightforward strategy to modify MOF structure, enabling precise control of selectivity and adsorption capacity for As(III). The CeO2-D arsenic removal strategy shows advantages in alkaline arsenic wastewater, providing a scalable, cost-effective solution for groundwater and industrial treatment.
Collapse
Affiliation(s)
- Tao Zhang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, Institute of Eco-Chongming and School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Xu Tang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, Institute of Eco-Chongming and School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Jing Xing
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, Institute of Eco-Chongming and School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Huan Xu
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, Institute of Eco-Chongming and School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Ruyu Yan
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, Institute of Eco-Chongming and School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Yaping Zhao
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, Institute of Eco-Chongming and School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
3
|
Zhang X, Yan M, Chen P, Li J, Li Y, Li H, Liu X, Chen Z, Yang H, Wang S, Wang J, Tang Z, Huang Q, Lei J, Hayat T, Liu Z, Mao L, Duan T, Wang X. Emerging MOFs, COFs, and their derivatives for energy and environmental applications. Innovation (N Y) 2025; 6:100778. [PMID: 39991481 PMCID: PMC11846040 DOI: 10.1016/j.xinn.2024.100778] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 12/23/2024] [Indexed: 02/25/2025] Open
Abstract
Traditional fossil fuels significantly contribute to energy supply, economic development, and advancements in science and technology. However, prolonged and extensive use of fossil fuels has resulted in increasingly severe environmental pollution. Consequently, it is imperative to develop new, clean, and pollution-free energy sources with high energy density and versatility as substitutes for conventional fossil fuels, although this remains a considerable challenge. Simultaneously, addressing water pollution is a critical concern. The development, design, and optimization of functional nanomaterials are pivotal to advancing new energy solutions and pollutant remediation. Emerging porous framework materials such as metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), recognized as exemplary crystalline porous materials, exhibit potential in energy and environmental applications due to their high specific surface area, adjustable pore sizes and structures, permanent porosity, and customizable functionalities. This work provides a comprehensive and systematic review of the applications of MOFs, COFs, and their derivatives in emerging energy technologies, including the oxygen reduction reaction, oxygen evolution reaction, hydrogen evolution reaction, lithium-ion batteries, and environmental pollution remediation such as the carbon dioxide reduction reaction and environmental pollution management. In addition, strategies for performance adjustment and the structure-effect relationships of MOFs, COFs, and their derivatives for these applications are explored. Interaction mechanisms are summarized based on experimental discussions, theoretical calculations, and advanced spectroscopy analyses. The challenges, future prospects, and opportunities for tailoring these materials for energy and environmental applications are presented.
Collapse
Affiliation(s)
- Xinyue Zhang
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Minjia Yan
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Pei Chen
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Jiaqi Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Yuxuan Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Hong Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Xiaolu Liu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Zhongshan Chen
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Hui Yang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Suhua Wang
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Jianjun Wang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Zhenwu Tang
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Qifei Huang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jiehong Lei
- School of Physics and Astronomy, China West Normal University, Nanchong 637002, China
| | - Tasawar Hayat
- Department of Mathematics, Quaid-I-Azam University, Islamabad 44000, Pakistan
| | - Zhijian Liu
- Department of Power Engineering, North China Electric Power University, Baoding, Hebei 071003, China
| | - Liang Mao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Tao Duan
- State Key Laboratory of Environment-friendly Energy Materials, CAEA Innovation Center of Nuclear Environmental Safety Technology, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
| | - Xiangke Wang
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| |
Collapse
|
4
|
Yoon K, Lee H, Kwon G, Song H. Pyrolytic conversion of cattle manure and acid mine drainage sludge into biochar for oxidative and adsorptive removal of the antibiotic nitrofurantoin. ENVIRONMENTAL RESEARCH 2025; 265:120488. [PMID: 39617152 DOI: 10.1016/j.envres.2024.120488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/15/2024] [Accepted: 11/28/2024] [Indexed: 12/13/2024]
Abstract
Antibiotics in aquatic environments can foster the development of antibiotic-resistant bacteria, posing significant risks to both living organisms and ecosystems. This study explored the thermo-chemical conversion of cattle manure (CM) into biochar and assessed its potential as an environmental medium for removing nitrofurantoin (NFT) from water. The biochar was produced through the co-pyrolysis of CM and acid mine drainage sludge (AMDS) in a N2 condition. The gaseous and liquid products generated during pyrolysis were quantified and characterized. The biochar exhibited both catalytic and adsorptive capability in NFT removal. It effectively activated persulfate to drive oxidative degradation of NFT via radical (SO4•- and •OH) and non-radical (1O2) pathways. NFT adsorption on the biochar involved multiple binding mechanisms, including electrostatic, hydrogen bonds, and π-π EDA interactions, as evidenced by XPS analysis before and after the reaction. Furthermore, the biochar's performance stability was demonstrated through five cycles of reuse and leaching tests. These findings present a viable approach to generate energy from waste by co-pyrolyzing of livestock manure and metal-containing industrial waste, while also producing environmental media capable of removing antibiotics from wastewater through diverse mechanisms.
Collapse
Affiliation(s)
- Kwangsuk Yoon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Heuiyun Lee
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Gihoon Kwon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Hocheol Song
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|
5
|
Wang J, Lin Q, Qiu C, McClements DJ, Ji H, Jin Z. Composite biopolymer foams fabricated from natural aldehyde functionalized chitosan-whey protein amyloid fibrils: Application for removal of phthalate esters from water. Carbohydr Polym 2025; 348:122789. [PMID: 39562067 DOI: 10.1016/j.carbpol.2024.122789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/16/2024] [Accepted: 09/20/2024] [Indexed: 11/21/2024]
Abstract
In this work, composite biopolymer foams from chitosan and whey isolate protein amyloid fibrils were prepared for the removal of phthalate esters from water. Natural aldehyde functionalization enhanced the affinity for dibutyl phthalate (DBP), with citral being the most effective. The citral-grafted foams (WCGC) had tunable hydrophobicity, strong mechanical properties, and good water stability. WCGC1.5 foam exhibited a high removal efficiency (96.06 %) of DBP. The adsorption process reached adsorption equilibrium rapidly within 8 h and could be described by pseudo-second-order kinetic and Freundlich isotherm models, indicating a non-homogeneous and chemisorptive sorption process. The maximum adsorption capacity for DBP reached 332.42 mg/g. Moreover, DBP adsorption could be enhanced in alkaline environment and the removal efficiency increased to 98.27 % at pH 10. The removal efficiency of DBP by WCGC1.5 remained above 85 % after the five adsorption-desorption cycles. WCGC1.5 also showed broad-spectrum adsorption behavior, with strong affinity and removal efficiency for six common plasticizers, including DIBP (85.97 %), DPP (91.7 %), DHXP (99.1 %), DEHP (99.09 %), DNOP (91.6 %) and BBP (89.88 %).
Collapse
Affiliation(s)
- Jilong Wang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative innovation center of food safety and quality control in Jiangsu Province, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qianzhu Lin
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative innovation center of food safety and quality control in Jiangsu Province, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Chao Qiu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative innovation center of food safety and quality control in Jiangsu Province, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - David Julian McClements
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01060, United States
| | - Hangyan Ji
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative innovation center of food safety and quality control in Jiangsu Province, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative innovation center of food safety and quality control in Jiangsu Province, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
6
|
Baig MT, Kayan A. Advanced biopolymer-based Ti/Si-terephthalate hybrid materials for sustainable and efficient adsorption of the tetracycline antibiotic. Int J Biol Macromol 2024; 280:135676. [PMID: 39288857 DOI: 10.1016/j.ijbiomac.2024.135676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/05/2024] [Accepted: 09/13/2024] [Indexed: 09/19/2024]
Abstract
This study involves the synthesis of an organic-inorganic hybrid material consisting of Ti/Si-terephthalate (Ti-TPA-Si) in a 1:1:1 ratio using sol-gel method and its reaction with cellulose and chitosan (Ti-TPA-Si-C and Ti-TPA-Si-CS). Characterization techniques such as XRD, FTIR, SEM, EDS, XPS, BET, TGA, and DTA were used. The incorporation of biopolymers (cellulose and chitosan) into the Ti/Si-terephthalate structure improved the morphology and textural properties of the hybrid materials, leading to increased adsorption capacity and sustainability. Adsorption experiments reveal that Ti-TPA-Si, Ti-TPA-Si-C, and Ti-TPA-Si-CS hybrid materials exhibit a high affinity towards tetracycline, achieving remarkable adsorption efficiencies of 88.27, 89.60, and 88.98 %, respectively. Isotherm studies indicate that the adsorption process follows both Langmuir (R2 = 0.971, 0.990, and 0.994) and Dubinin-Radushkevich (R2 = 0.922, 0.965, and 0.949) isotherm models. According to the Langmuir model, the maximum adsorption capacity (qm) of Ti-TPA-Si, Ti-TPA-Si-C, and Ti-TPA-Si-CS adsorbents was found to be 24.10, 33.56, and 26.59 mg/g, respectively. Kinetic studies indicate that the adsorption process follows both pseudo-second-order (R2 = 0.998, 0.984, and 0.989) and intra-particle diffusion (R2 = 0.995, 0.994, and 0.988) models. Thermodynamic studies reveal that adsorption processes are spontaneous and endothermic in nature. Reusability studies demonstrate their potential for repeated use without significant loss in performance.
Collapse
Affiliation(s)
- Mirza Talha Baig
- Department of Chemistry, Kocaeli University, 41380 Kocaeli, Turkey
| | - Asgar Kayan
- Department of Chemistry, Kocaeli University, 41380 Kocaeli, Turkey.
| |
Collapse
|
7
|
Li K, Chen M, Chen L, Zhao S, Pan W, Li P. Efficient removal of chlortetracycline hydrochloride and doxycycline hydrochloride from aqueous solution by ZIF-67. Heliyon 2024; 10:e36848. [PMID: 39281598 PMCID: PMC11399672 DOI: 10.1016/j.heliyon.2024.e36848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/14/2024] [Accepted: 08/22/2024] [Indexed: 09/18/2024] Open
Abstract
ZIF-67 nanoparticles were synthesized by a simple method at room temperature and used to remove chlortetracycline hydrochloride (CTC) and doxycycline hydrochloride (DOX) from water. ZIF-67 was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), fourier transform infrared spectroscopy (FT-IR), Brunauer-Emmett-Teller (BET) surface area, X-ray photoelectron spectroscopy (XPS), thermogravimetry (TGA) and zeta potential analyzer. The morphology and chemical composition of the synthesized ZIF-67 were characterized. The effects of key parameters such as pH, dosage, temperature, contact time, different initial concentrations and coexisting ions on the adsorption behavior were systematically studied. The results of batch adsorption experiments indicate that the adsorption process conforms to the pseudo-second-order kinetic model and Sips model. At 303K, the removal rates of CTC and DOX at 150 mg/L reached 99.16 % and 97.61 %, and the maximum adsorption capacity of CTC and DOX reached 1411.68 and 1073.28 mg/g, respectively. At the same time, ZIF-67 has excellent stability and reusability. Most importantly, the possible adsorption mechanism is proposed by exploring the changes of SEM, TEM, BET and FT-IR characterization results before and after the reaction, which mainly includes pore filling, electrostatic interaction and π-π interaction. The prepared ZIF-67 has a large specific surface area (1495.967 m2 g-1), achieves a high removal rate within a short time frame, and maintains a high removal rate across a wide pH range. These characteristics make ZIF-67 a potentially promising adsorbent for removing antibiotics from aqueous solutions.
Collapse
Affiliation(s)
- Ke Li
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun, 130118, China
| | - Miaomiao Chen
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun, 130118, China
| | - Lei Chen
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun, 130118, China
| | - Songying Zhao
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun, 130118, China
| | - Wenbo Pan
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun, 130118, China
| | - Pan Li
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun, 130118, China
| |
Collapse
|
8
|
Ren D, Zhu B, Xiong J, Huang K, Cai M, Liu C, Bai X, Liu T, Zhang X, Zou B. A novel design of copper selenide/zinc selenide/Nitrogen-doped carbon derived from MOF for sulfadiazine adsorption: Performance and mechanism. J Colloid Interface Sci 2024; 669:804-815. [PMID: 38749219 DOI: 10.1016/j.jcis.2024.05.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/22/2024] [Accepted: 05/08/2024] [Indexed: 05/27/2024]
Abstract
Herein, a novel copper selenide/zinc selenide/Nitrogen-doped carbon (Cu2Se/ZnSe/NC) sphere was constructed via a combination of cation exchange, selenization and carbonization approaches with zinc-based metal-organic frameworks (ZIF-8) as precursor for sulfadiazine (SDZ) removal. Compared with the ZnSe/NC, the defective Cu2Se/ZnSe interface in the optimizing Cu-ZnSe/NC2 sample caused a remarkably improved adsorption performance. Notably, the adsorption capacity of 129.32 mg/g was better than that of mostly reported adsorbents for SDZ. And the adsorption referred to multiple-layer physical-chemical process that was spontaneous and exothermic. Besides, the Cu-ZnSe/NC2 displayed fast adsorption equilibrium of about 20 min and significant anti-interference ability for inorganic ions. Specially, the adsorbent possessed excellent stability and reusability, which could also be applied for rhodamine B (RhB), methylene blue (MB), and methyl orange (MO) dyes removal. Ultimately, the charge redistribution of Cu2Se/ZnSe interface greatly contributes the superior adsorption performance for SDZ, in which electrostatic attraction occupied extremely crucial status as compared to π-π electron-donor-acceptor (π-π EDA) interaction and hydrogen bonding (H-bonding), as revealed by the density function theory (DFT) calculations and experimental results. This study can provide a guideline for design of high-efficient adsorbent with interfacial charge redistribution.
Collapse
Affiliation(s)
- Donglou Ren
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China.
| | - Bin Zhu
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Jun Xiong
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Kai Huang
- Guangxi Vocational & Technical Institute of Industry, Nanning 530001 Guangxi, China
| | - Muzhi Cai
- Key Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang Province, Institute of Optoelectronic Materials and Devices, China Jiliang University, Hangzhou, 310018, China
| | - Cong Liu
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Xiaojing Bai
- School of Materials Science and Engineering, Anyang Institute of Technology, Anyang, Henan, 455000, China
| | - Tao Liu
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China.
| | - Xianghua Zhang
- ISCR (Institut des Sciences Chimiques de Rennes)-CNRS, UMR 6226, Univ. Rennes, F-35000, Rennes, France
| | - Bingsuo Zou
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China.
| |
Collapse
|
9
|
Gao Y, Zheng L, Duan L, Bi J. Separable Metal-Organic Framework-Based Materials for the Adsorption of Emerging Contaminants. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39024504 DOI: 10.1021/acs.langmuir.4c01308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Thousands of chemicals have been released into the environment in recent decades. The presence of emerging contaminants (ECs) in water has emerged as a pressing concern. Adsorption is a viable solution for the removal of ECs. Metal-organic frameworks (MOFs) have shown great potential as efficient adsorbents, but their dispersed powder form limits their practical applications. Recently, researchers have developed various separable MOF-based adsorbents to improve their recyclability. The purpose of this review is to summarize the latest developments in the construction of separable MOF-based adsorbents and their applications in adsorbing ECs. The construction strategies for separable MOFs are classified into four categories: magnetic MOFs, MOF-fiber composites, MOF gels, and binder-assisted shaping. Typical emerging contaminants include pesticides, pharmaceuticals and personal care products, and endocrine-disrupting compounds. The adsorption performance of different materials is evaluated based on the results of static and dynamic adsorption experiments. Additionally, the regeneration methods of MOF-based adsorbents are discussed in detail to facilitate effective recycling and reuse. Finally, challenges and potential future research opportunities are proposed, including reducing performance losses during the shaping process, developing assessment systems based on dynamic purification and real polluted water, optimizing regeneration methods, designing multifunctional MOFs, and low-cost, large-scale synthesis of MOFs.
Collapse
Affiliation(s)
- Yanxin Gao
- Department of Environmental Science and Engineering, Fuzhou University, Minhou, Fujian 350108, P. R. China
| | - Lisi Zheng
- Department of Environmental Science and Engineering, Fuzhou University, Minhou, Fujian 350108, P. R. China
| | - Longying Duan
- Department of Environmental Science and Engineering, Fuzhou University, Minhou, Fujian 350108, P. R. China
| | - Jinhong Bi
- Department of Environmental Science and Engineering, Fuzhou University, Minhou, Fujian 350108, P. R. China
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Minhou, Fujian 350108, P. R. China
| |
Collapse
|
10
|
Salahshoori I, Vaziri A, Jahanmardi R, Mohseni MM, Khonakdar HA. Molecular Simulation Studies of Pharmaceutical Pollutant Removal (Rosuvastatin and Simvastatin) Using Novel Modified-MOF Nanostructures (UIO-66, UIO-66/Chitosan, and UIO-66/Oxidized Chitosan). ACS APPLIED MATERIALS & INTERFACES 2024; 16:26685-26712. [PMID: 38722359 DOI: 10.1021/acsami.4c01365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
The ubiquitous presence of pharmaceutical pollutants in the environment significantly threatens human health and aquatic ecosystems. Conventional wastewater treatment processes often fall short of effectively removing these emerging contaminants. Therefore, the development of high-performance adsorbents is crucial for environmental remediation. This research utilizes molecular simulation to explore the potential of novel modified metal-organic frameworks (MOFs) in pharmaceutical pollutant removal, paving the way for the design of efficient wastewater treatment strategies. Utilizing UIO-66, a robust MOF, as the base material, we developed UIO-66 functionalized with chitosan (CHI) and oxidized chitosan (OCHI). These modified MOFs' physical and chemical properties were first investigated through various characterization techniques. Subsequently, molecular dynamics simulation (MDS) and Monte Carlo simulation (MCS) were employed to elucidate the adsorption mechanisms of rosuvastatin (ROSU) and simvastatin (SIMV), two prevalent pharmaceutical pollutants, onto these nanostructures. MCS calculations demonstrated a significant enhancement in the adsorption energy by incorporating CHI and OCHI into UIO-66. This increased ROSU from -14,522 to -16,459 kcal/mol and SIMV from -17,652 to -21,207 kcal/mol. Moreover, MDS reveals ROSU rejection rates in neat UIO-66 to be at 40%, rising to 60 and 70% with CHI and OCHI. Accumulation rates increase from 4 Å in UIO-66 to 6 and 9 Å in UIO-CHI and UIO-OCHI. Concentration analysis shows SIMV rejection surges from 50 to 90%, with accumulation rates increasing from 6 to 11 Å with CHI and OCHI in UIO-66. Functionalizing UIO-66 with CHI and OCHI significantly enhanced the adsorption capacity and selectivity for ROSU and SIMV. Abundant hydroxyl and amino groups facilitated strong interactions, improving performance over that of unmodified UIO-66. Surface functionalization plays a vital role in customizing the MOFs for pharmaceutical pollutant removal. These insights guide next-gen adsorbent development, offering high efficiency and selectivity for wastewater treatment.
Collapse
Affiliation(s)
- Iman Salahshoori
- Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, P.O. Box 14515-775, Tehran 1477893855, Iran
| | - Ali Vaziri
- Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, P.O. Box 14515-775, Tehran 1477893855, Iran
| | - Reza Jahanmardi
- Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, P.O. Box 14515-775, Tehran 1477893855, Iran
| | - Mehdi Moayed Mohseni
- Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, P.O. Box 14515-775, Tehran 1477893855, Iran
| | - Hossein Ali Khonakdar
- Department of Polymer Processing, Iran Polymer and Petrochemical Institute, P.O. Box 14965-115, Tehran 14977-13115, Iran
| |
Collapse
|
11
|
He X, Chang C. Construction of SU-102 for adsorption and photocatalytic synergistic removal of tetracycline. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:24446-24460. [PMID: 38438646 DOI: 10.1007/s11356-024-32737-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 02/27/2024] [Indexed: 03/06/2024]
Abstract
Tetracycline (TC) is a significant group of broad-spectrum antibiotics that are frequently employed in medical health and animal husbandry. However, the problem of TC residues has been increasing globally with the large-scale production and widespread use, posing a serious threat to the human health and ecological environment. In this paper, a green plant-based MOF SU-102 was prepared, and the adsorption characteristics of SU-102 on TC were investigated. SU-102 was columnar crystal with considerable specific surface area and pore structure, and it could adsorb TC quickly and effectively. And compared to SU-102-a, the adsorption rate of TC by SU-102-b has increased by nearly four times. The adsorption reaction was a spontaneous, entropy-gaining, heat-absorbing process. The adsorption mechanisms between SU-102 and TC were π-π interaction and hydrogen bonding. In addition, SU-102 also had considerable photocatalytic properties, and its application in adsorbent desorption treatment effectively solved the problem of secondary pollution.
Collapse
Affiliation(s)
- Xiaohui He
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, China
| | - Chun Chang
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, China.
- College of Environment and Chemical Engineering, Dalian University, Dalian, 116622, China.
| |
Collapse
|
12
|
Niculescu AG, Mihaiescu B, Mihaiescu DE, Hadibarata T, Grumezescu AM. An Updated Overview of Magnetic Composites for Water Decontamination. Polymers (Basel) 2024; 16:709. [PMID: 38475395 DOI: 10.3390/polym16050709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Water contamination by harmful organic and inorganic compounds seriously burdens human health and aquatic life. A series of conventional water purification methods can be employed, yet they come with certain disadvantages, including resulting sludge or solid waste, incomplete treatment process, and high costs. To overcome these limitations, attention has been drawn to nanotechnology for fabricating better-performing adsorbents for contaminant removal. In particular, magnetic nanostructures hold promise for water decontamination applications, benefiting from easy removal from aqueous solutions. In this respect, numerous researchers worldwide have reported incorporating magnetic particles into many composite materials. Therefore, this review aims to present the newest advancements in the field of magnetic composites for water decontamination, describing the appealing properties of a series of base materials and including the results of the most recent studies. In more detail, carbon-, polymer-, hydrogel-, aerogel-, silica-, clay-, biochar-, metal-organic framework-, and covalent organic framework-based magnetic composites are overviewed, which have displayed promising adsorption capacity for industrial pollutants.
Collapse
Affiliation(s)
- Adelina-Gabriela Niculescu
- Research Institute of the University of Bucharest-ICUB, University of Bucharest, 050657 Bucharest, Romania
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, Gh. Polizu St. 1-7, 060042 Bucharest, Romania
| | - Bogdan Mihaiescu
- Research Institute of the University of Bucharest-ICUB, University of Bucharest, 050657 Bucharest, Romania
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, Gh. Polizu St. 1-7, 060042 Bucharest, Romania
| | - Dan Eduard Mihaiescu
- Department of Organic Chemistry, Politehnica University of Bucharest, 011061 Bucharest, Romania
| | - Tony Hadibarata
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, Gh. Polizu St. 1-7, 060042 Bucharest, Romania
- Environmental Engineering Program, Faculty of Engineering and Science, Curtin University, Miri 98009, Malaysia
| | - Alexandru Mihai Grumezescu
- Research Institute of the University of Bucharest-ICUB, University of Bucharest, 050657 Bucharest, Romania
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, Gh. Polizu St. 1-7, 060042 Bucharest, Romania
| |
Collapse
|
13
|
Li K, Chen M, Chen L, Zhao S, Pan W, Li P, Han Y. Adsorption of tetracycline from aqueous solution by ZIF-8: Isotherms, kinetics and thermodynamics. ENVIRONMENTAL RESEARCH 2024; 241:117588. [PMID: 37926231 DOI: 10.1016/j.envres.2023.117588] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/16/2023] [Accepted: 11/01/2023] [Indexed: 11/07/2023]
Abstract
In this study, ZIF-8 nanoparticles were synthesized using a simple method at room temperature. The ZIF-8 nanoparticles were then characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), BET (Brunauer-Emmett-Teller) specific surface area, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA) and zeta potential. Subsequent batch adsorption experiments evaluated the adsorption performance of ZIF-8 on tetracycline, examining key pa-rameters like reaction time, pH, temperature, and adsorbent dosage. The results revealed a removal rate for TC of up to 90.59%. The adsorption data aligned with the Sips model, showcasing a maximum adsorption capacity of 359.61 mg/g at 303K. Further, the adsorption kinetics adhered to the pseudo-second-order kinetic model with an equilibrium adsorption capacity of 90 mg/g at 303K. The considerable specific surface area of ZIF-8, standing at 1674.169 m2/g, likely enhances the adsorption efficacy. Analysis using XRD and FTIR confirmed the adsorption of TC on the ma-terial's surface. Overall, the predominant driving forces behind the adsorption process were identified as electrostatic interactions and π-π stacking interactions.
Collapse
Affiliation(s)
- Ke Li
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun, 130118, China; State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.
| | - Miaomiao Chen
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun, 130118, China.
| | - Lei Chen
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun, 130118, China.
| | - Songying Zhao
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun, 130118, China.
| | - Wenbo Pan
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun, 130118, China.
| | - Pan Li
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun, 130118, China.
| | - Yanchao Han
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.
| |
Collapse
|
14
|
Li H, Wu J, Bai J, Wu J, Wu J. Determination of Lincomycin in Milk Using Cu-Based Metal-Organic Framework Adsorbent and Liquid Chromatography-Tandem Mass Spectrometry. Molecules 2023; 28:5307. [PMID: 37513181 PMCID: PMC10385680 DOI: 10.3390/molecules28145307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/16/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Antibiotic drug residues can adversely affect the human body. Lincomycin is a common veterinary drug that can form residues in foods of animal origin. However, the detection of trace residue levels of lincomycin residues in real samples is challenging. Here, a simple solid phase extraction (SPE) method was developed for the enrichment of lincomycin from cow milk samples before its detection by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). The adsorbent used in the SPE was a Cu-based metal-organic framework (Cu-MOF) prepared by the solvothermal synthesis approach. The prepared MOFs were characterized using scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FT-IR), X-ray diffractometry (XRD), differential thermogravimetric analysis (TG-DTA), and N2 adsorption-desorption experiments. The adsorption capacity (adsorption equilibrium, extraction time, pH), and elution solvent parameters were investigated. Under the optimized conditions of the HPLC-MS/MS method, lincomycin was detected in the linear range of 10-200 g/L with a detection limit of 0.013 ng/mL. Commercial milk samples were spiked with lincomycin, and a recovery rate between 92.3% and 97.2% was achieved. Therefore, the current method can be successfully applied for the enrichment and determination of lincomycin from milk samples.
Collapse
Affiliation(s)
- Hanle Li
- College of Food Science Sciences, Shanxi Normal University, Taiyuan 030000, China
| | - Jinhai Wu
- College of Food Science Sciences, Shanxi Normal University, Taiyuan 030000, China
| | - Jialei Bai
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Jianhu Wu
- College of Food Science Sciences, Shanxi Normal University, Taiyuan 030000, China
| | - Jin Wu
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| |
Collapse
|
15
|
Wang Q, Zuo W, Tian Y, Kong L, Cai G, Zhang H, Li L, Zhang J. Functionally-designed floatable amino-modified ZnLa layered double hydroxides/cellulose acetate beads for tetracycline removal: Performance and mechanism. Carbohydr Polym 2023; 311:120752. [PMID: 37028855 DOI: 10.1016/j.carbpol.2023.120752] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/01/2023] [Accepted: 02/23/2023] [Indexed: 03/04/2023]
Abstract
The over-reliance on tetracycline antibiotics (TC) in the animal husbandry and medical field has seriously affected the safety of the ecological environment. Therefore, how to effectively treat tetracycline wastewater has always been a long-term global challenge. Here, we developed a novel polyethyleneimine (PEI)/Zn-La layered double hydroxides (LDH)/cellulose acetate (CA) beads with cellular interconnected channels to strengthen the TC removal. The results of the exploration on its adsorption properties illustrated that the adsorption process exhibited a favorable correlation with the Langmuir model and the pseudo-second-order kinetic model, namely monolayer chemisorption. Among the many candidates, the maximum adsorption capacity of TC by 10 %PEI-0.8LDH/CA beads was 316.76 mg/g. Apart from that, the effects of pH, interfering species, actual water matrix and recycling on the adsorption of TC by PEI-LDH/CA beads were also analyzed to verify their superior removal capability. The potential for industrial-scale applications was expanded through fixed-bed column experiments. The proven adsorption mechanisms mainly included electrostatic interaction, complexation, hydrogen bonding, n-π EDA effect and cation-π interaction. The self-floating high-performance PEI-LDH/CA beads exploited in this work provided fundamental support for the practical application of antibiotic-based wastewater treatment.
Collapse
Affiliation(s)
- Qinyu Wang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wei Zuo
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Yu Tian
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lingchao Kong
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Guiyuan Cai
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Haoran Zhang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lipin Li
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jun Zhang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
16
|
Zhong J, Yuan X, Xiong J, Wu X, Lou W. Solvent-dependent strategy to construct mesoporous Zr-based metal-organic frameworks for high-efficient adsorption of tetracycline. ENVIRONMENTAL RESEARCH 2023; 226:115633. [PMID: 36931373 DOI: 10.1016/j.envres.2023.115633] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 03/03/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
The accumulated antibiotics in the aquatic environment pose great threat to human and ecological health, boosting the development of porous materials for antibiotic removal. Mesoporous metal-organic frameworks (MOFs) have shown great promise in adsorption, which, however, usually need supramolecular design or cooperative template strategy for synthesis. Here we report the successful construction of mesoporous zirconium based metal-organic frameworks (Zr-MOFs) via a simple solvent-dependent strategy. Regulation of the ratio of water to N, N-dimethylacetamide during synthesis determined the porous structure of the synthesized MOFs. Systematic characterizations including SEM, FTIR, XRD and nitrogen sorption isotherm were carried out for structure analysis of the MOFs. With water fraction of 20% (v/v), the obtained Zr-MOF exhibited the highest adsorption capacity (Qmax of 337.0 mg⋅g-1) towards tetracycline (TC). The adsorption kinetics fitted the pseudo-second-order kinetics, and the adsorption isotherms fitted the Freundlich model well. Adsorption mechanism investigation revealed that the abundant Zr-OH groups stemming from coordination defects mainly accounted for TC adsorption. The hydrogen bonding interaction between TC and Zr-MOF and the generated mesopores contributed to the satisfactory adsorption capacity. This work is anticipated to provide insights on facile synthesis of mesoporous MOFs and application in environmental remediation.
Collapse
Affiliation(s)
- Jin Zhong
- Lab of Applied Biocatalysis, School of Food Science and Technology, South China University of Technology, Guangzhou, 510640, Guangdong, China
| | - Xin Yuan
- Lab of Applied Biocatalysis, School of Food Science and Technology, South China University of Technology, Guangzhou, 510640, Guangdong, China
| | - Jun Xiong
- Lab of Applied Biocatalysis, School of Food Science and Technology, South China University of Technology, Guangzhou, 510640, Guangdong, China
| | - Xiaoling Wu
- Lab of Applied Biocatalysis, School of Food Science and Technology, South China University of Technology, Guangzhou, 510640, Guangdong, China.
| | - Wenyong Lou
- Lab of Applied Biocatalysis, School of Food Science and Technology, South China University of Technology, Guangzhou, 510640, Guangdong, China.
| |
Collapse
|
17
|
Li Y, Wang X, Xia J, Zhou G, Wang X, Wang D, Zhang J, Cheng J, Gao F. Flower-like Thiourea-Formaldehyde Resin Microspheres for the Adsorption of Silver Ions. Polymers (Basel) 2023; 15:polym15112423. [PMID: 37299222 DOI: 10.3390/polym15112423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/14/2023] [Accepted: 05/17/2023] [Indexed: 06/12/2023] Open
Abstract
Around a quarter of annual worldwide silver consumption comes from recycling. It remains a primary target for researchers to increase the silver ion adsorption capacity of the chelate resin. Herein, a series of flower-like thiourea-formaldehyde microspheres (FTFM) possessing diameters of 15-20 μm were prepared via a one-step reaction under acidic conditions, and the effects of the monomer molar ratio and reaction time on the micro-flower morphology, specific surface area, and silver ion adsorption performance were explored. The nanoflower-like microstructure showed the maximum specific surface area 18.98 ± 0.949 m2/g, which was 55.8 times higher than that of the solid microsphere control. As a result, the maximum silver ion adsorption capacity was 7.95 ± 0.396 mmol/g, which was 10.9 times higher than that of the control. Kinetic studies showed that the equilibrium adsorption amount of FT1F4M was 12.61 ± 0.016 mmol/g, which was 11.6 times higher than that of the control. Additionally, the isotherm study of the adsorption process was performed, and the maximum adsorption capacity of FT1F4M was 18.17 ± 1.28 mmol/g, which was 13.8 times that of the control according to the Langmuir adsorption model. Its high absorption efficiency, convenient preparation strategy, and low cost recommend FTFM bright for further use in industrial applications.
Collapse
Affiliation(s)
- Yuhan Li
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaoli Wang
- Aerospace Research Institute of Materials & Processing Technology, Beijing 100076, China
| | - Jing Xia
- Ansteel Beijing Research Institute Co., Ltd., Beijing 102200, China
| | - Guangwei Zhou
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaomu Wang
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, China
| | - Dingxuan Wang
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, China
| | - Junying Zhang
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jue Cheng
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, China
| | - Feng Gao
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
18
|
Zhang X, Liu Y, Qu L, Han R. Adsorption of 2,4-dichlorophenoxyacetic acid and glyphosate from water by Fe 3O 4-UiO-66-NH 2 obtained in a simple green way. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:60574-60589. [PMID: 37032407 DOI: 10.1007/s11356-023-26737-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/27/2023] [Indexed: 04/11/2023]
Abstract
In this study, a green adsorbent (Fe3O4-UiO-66-NH2) with the ability of addressing the issues of separation and recovery of UiO-66-NH2 is obtained using a simple co-precipitation method under environmentally benign conditions. Various characterization techniques are utilized for evaluating the properties of the developed adsorbent. The capability of Fe3O4-UiO-66-NH2 towards 2,4-dichlorophenoxyacetic acid (2,4-D) and glyphosate (GP) from solution is explored. The results revealed that the magnetization process did not destroy the crystal structure of UiO-66-NH2, which ensured that Fe3O4-UiO-66-NH2 had good adsorption performance for 2,4-D and GP. The adsorption processes showed a wide pH application range, high salt tolerance, and regeneration performance as well as an excellent adsorption rate. Results from thermodynamic study showed that both processes were spontaneous and endothermic. The unit uptake ability of Fe3O4-UiO-66-NH2 for 2,4-D and GP reached up to 249 mg·g-1 and 183 mg·g-1 from Langmuir model at 303 K, respectively. When solid-liquid ratio was 2 g·L-1, Fe3O4-UiO-66-NH2 can reduce the content of 2,4-D or GP with the initial density of 100 mg·L-1 below the drinking water requirement limit. In addition, the reusability efficiency of Fe3O4-UiO-66-NH2 towards 2,4-D and GP was found to be 86% and 80% using 5 mmol·L-1 NaOH as eluent. Analysis of simulated water samples indicated that Fe3O4-UiO-66-NH2 could achieve the single or simultaneous removal of 2,4-D and GP from wastewater. Summarily, Fe3O4-UiO-66-NH2 as a green adsorbent can serve as an alternative for removing 2,4-D and GP from water body.
Collapse
Affiliation(s)
- Xiaoting Zhang
- College of Chemistry, Green Catalysis Center, Zhengzhou University, No. 100 of Kexue Road, Zhengzhou, 450001, People's Republic of China
| | - Yang Liu
- College of Chemistry, Green Catalysis Center, Zhengzhou University, No. 100 of Kexue Road, Zhengzhou, 450001, People's Republic of China
| | - Lingbo Qu
- College of Chemistry, Green Catalysis Center, Zhengzhou University, No. 100 of Kexue Road, Zhengzhou, 450001, People's Republic of China
| | - Runping Han
- College of Chemistry, Green Catalysis Center, Zhengzhou University, No. 100 of Kexue Road, Zhengzhou, 450001, People's Republic of China.
| |
Collapse
|
19
|
Wang S, Liu Y, Hu Y, Shen W. A magnetic MIL-125-NH 2@chitosan composite as a separable adsorbent for the removal of Cr(VI) from wastewater. Int J Biol Macromol 2023; 226:1054-1065. [PMID: 36436607 DOI: 10.1016/j.ijbiomac.2022.11.222] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
Metal-organic frameworks (MOFs) are gradually used since of their huge specific surface area and superior pore structure. However, there are problems such as easy aggregation and difficult separation in water treatment. In this study, we prepared composite microspheres (FMCS-1) by modifying MIL-125-NH2 with Fe3O4 and chitosan. The structural characterization and performance analysis of the materials showed that the introduction of chitosan effectively prevents the stacking of MOFs. The magnetic test manifested that Fe3O4 solved the problem of the difficult separation of MOFs from water. The removal potential of toxic Cr(VI) was tested by adsorption experiments. The isotherm model indicated that FMCS-1 is a single molecular layer adsorbent with a maximum adsorption capacity of 109.46 mg/g at pH = 2. The adsorption kinetics showed that the adsorption of Cr(VI) by FMCS-1 was chemical adsorption. The acid resistance test demonstrated that FMCS-1 can exist stably in acid solutions. The recycling experiments proved that the adsorbent can be reused and the removal percentage still reaches 50 % after 5 cycles. This work expands the application of MOFs in water treatment and also provides an effective adsorbent for Cr(VI) removal.
Collapse
Affiliation(s)
- Shichen Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Yixuan Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Yue Hu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Weibo Shen
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; College of Science, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
20
|
Chernomorova MA, Myakinina MS, Zhinzhilo VA, Uflyand IE. Analytical Determination of Cephalosporin Antibiotics Using Coordination Polymer Based on Cobalt Terephthalate as a Sorbent. Polymers (Basel) 2023; 15:polym15030548. [PMID: 36771849 PMCID: PMC9919266 DOI: 10.3390/polym15030548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
In this work, a coordination polymer based on cobalt terephthalate was obtained and characterized by elemental analysis, infrared spectroscopy, X-ray diffraction analysis, and scanning electron microscopy. The coordination polymer was tested as a sorbent for the solid-phase extraction of cephalosporin antibiotics, including ceftriaxone, cefotaxime, and cefazolin, from aqueous solutions. The coordination polymer had a high adsorption capacity (520.0 mg/g). Antibiotics adsorption followed pseudo-second order kinetic model and the Freundlich isotherm model. The calculated thermodynamic parameters indicate a spontaneous process. The resulting coordination polymer has good stability and reusability. The possibility of separating the studied cephalosporins on a chromatographic column filled with a coordination polymer was shown. This work opens great prospects for the development and application of a coordination polymer based on cobalt terephthalate for the removal of cephalosporins from ambient water.
Collapse
|
21
|
Li XY, Ding WQ, Liu P, Xu L, Fu ML, Yuan B. Magnetic Fe3O4/MIL-101 composite as a robust adsorbent for removal of p-arsanilic acid and roxarsenic in the aqueous solution. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
22
|
Velempini T, Ahamed MEH, Pillay K. Heavy-metal spent adsorbents reuse in catalytic, energy and forensic applications- a new approach in reducing secondary pollution associated with adsorption. RESULTS IN CHEMISTRY 2023. [DOI: 10.1016/j.rechem.2023.100901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
|
23
|
Mohan B, Kamboj A, Virender, Singh K, Priyanka, Singh G, JL Pombeiro A, Ren P. Metal-organic frameworks (MOFs) materials for pesticides, heavy metals, and drugs removal: Environmental Safetyaj. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
24
|
Preparation of polyethyleneimine-modified chitosan/Ce-UIO-66 composite hydrogel for the adsorption of methyl orange. Carbohydr Polym 2023; 299:120079. [PMID: 36876761 DOI: 10.1016/j.carbpol.2022.120079] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/23/2022] [Accepted: 09/02/2022] [Indexed: 11/23/2022]
Abstract
In this work, a polyethyleneimine-modified chitosan/Ce-UIO-66 composite hydrogel (PEI-CS/Ce-UIO-66) was prepared using the ex-situ blend method. The synthesized composite hydrogel was characterized by SEM, EDS, XRD, FTIR, BET, XPS, and TG techniques, while the zeta potential was recorded for sample analysis. The adsorbent performance was studied by conducting adsorption experiments using methyl orange (MO), which showed that PEI-CS/Ce-UIO-66 exhibited excellent MO adsorption properties (900.5 ± 19.09 mg/g). The adsorption kinetics of PEI-CS/Ce-UIO-66 could be explained by the pseudo-second-order kinetic model, and its isothermal adsorption followed the Langmuir model. Thermodynamics showed that the adsorption was spontaneous and exothermic at low temperatures. MO could interact with PEI-CS/Ce-UIO-66 via electrostatic interaction, π-π stacking, and hydrogen bonding. The results indicated that the PEI-CS/Ce-UIO-66 composite hydrogel could potentially be used for the adsorption of anionic dyes.
Collapse
|
25
|
Nosakhare Amenaghawon A, Lewis Anyalewechi C, Uyi Osazuwa O, Agbovhimen Elimian E, Oshiokhai Eshiemogie S, Kayode Oyefolu P, Septya Kusuma H. A Comprehensive Review of Recent Advances in the Synthesis and Application of Metal-Organic Frameworks (MOFs) for the Adsorptive Sequestration of Pollutants from Wastewater. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
26
|
Li J, Tian T, Jia Y, Xu N, Yang S, Zhang C, Gao S, Shen W, Wang Z. Adsorption performance and optimization by response surface methodology on tetracycline using Fe-doped ZIF-8-loaded multi-walled carbon nanotubes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:4123-4136. [PMID: 35962890 DOI: 10.1007/s11356-022-22524-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/09/2022] [Indexed: 05/27/2023]
Abstract
Herein, an iron-doped ZIF-8-loaded multi-walled carbon nanotube (FZM) was synthesized and its adsorption performance on tetracycline (TC) was investigated. The experimental conditions (solution pH, temperature, adsorbent dose) were optimized by Box-Behnken design (BBD) in response surface methodology (RSM). The results show that the adsorption effect of TC by FZM is optimal under the conditions of temperature = 298 K, pH = 6, and contact time = 360 min. The adsorption processes of TC by FZM follow the pseudo-second-order (PSO) kinetic and Freundlich isotherm models, indicating that chemisorption is the dominant factor and the adsorption reaction is multi-layer, with a theoretical maximum saturation capacity of 1111.11 mg/g at 298 K. The adsorption thermodynamic results indicate that the adsorption of TC by FZM is a spontaneous and endothermic process. The mechanism of TC adsorption by FZM possibly occurs through hydrogen bonding, surface complexation, π-π interaction, and electrostatic interaction. From the statistical results, the optimal adsorption capacity of TC by FZM is 599.78 mg/g at a pH of 7.1, a temperature of 312.5 K, and an adsorbent dose of 64.43 mg/L, with a deviation of 1.73% from the actual value. Furthermore, regeneration experiments demonstrate that FZM has excellent reusability with a 15% loss of adsorption capacity after four cycles. This study provides some insights to study the adsorption behavior of TC by MOFs and the optimization of the adsorption experimental conditions, and also shows the potential of FZM for TC removal.
Collapse
Affiliation(s)
- Jiacheng Li
- School of Civil Engineering, Nanjing Forestry University, Longpan Road 159#, Nanjing, 210037, China
| | - Tian Tian
- School of Civil Engineering, Nanjing Forestry University, Longpan Road 159#, Nanjing, 210037, China
| | - Yannan Jia
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China
- China Institute of Water Resources and Hydropower Research, Beijing, 100038, China
| | - Nannan Xu
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China
- China Institute of Water Resources and Hydropower Research, Beijing, 100038, China
| | - Shujun Yang
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China
- China Institute of Water Resources and Hydropower Research, Beijing, 100038, China
| | - Chenyue Zhang
- School of Civil Engineering, Nanjing Forestry University, Longpan Road 159#, Nanjing, 210037, China
| | - Shiwei Gao
- School of Civil Engineering, Nanjing Forestry University, Longpan Road 159#, Nanjing, 210037, China
| | - Wei Shen
- Nanjing Municipal Design and Research Institute Co., Ltd., Nanjing, 210008, China
| | - Zheng Wang
- School of Civil Engineering, Nanjing Forestry University, Longpan Road 159#, Nanjing, 210037, China.
| |
Collapse
|
27
|
Abbasnia A, Zarei A, Yeganeh M, Sobhi HR, Gholami M, Esrafili A. Removal of tetracycline antibiotics by adsorption and photocatalytic-degradation processes in aqueous solutions using metal organic frameworks (MOFs): A systematic review. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
28
|
Niu H, Yang H, Tong L, Kamali AR. The adsorption characteristics and performance of gold onto elemental carbon extracted from refractory carbonaceous gold concentrate. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Darabdhara J, Ahmaruzzaman M. Recent developments in MOF and MOF based composite as potential adsorbents for removal of aqueous environmental contaminants. CHEMOSPHERE 2022; 304:135261. [PMID: 35697109 DOI: 10.1016/j.chemosphere.2022.135261] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/25/2022] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
Abstract
With the growth of globalization which has been the primary cause of water pollution, it is utmost necessary for us living being to have access to clean water for the purpose of drinking, washing and various other useful applications. With the purpose of future security and to restore our ecological balance, it is essential to give much significance towards the removal of unwanted toxic contaminants from our water resources. In this regard adsorptive removal of toxic pollutants from wastewater with porous adsorbent is regarded as one of the most promising way for water decontamination process. Metal organic frameworks (MOFs) comprising of uniformly arranged pores, abundant active sites and containing an easily tunable structure has aroused as a promising material for adsorbent to remove the unwanted contaminants from water sources. The adsorption of pollutants by the different MOFs surface are driven by various interactions including π-π, acid-base, electrostatic and H-bonding etc. On the other hand, the removal of various contaminants by MOFs is influenced by various factors including pH, temperature and initial concentration. In this review we will specifically discuss the adsorptive removal of different organic and inorganic pollutants present in our water systems with the use of MOFs as adsorbent along with the various factors and interaction mechanism manipulating the adsorption behaviour.
Collapse
Affiliation(s)
- Jnyanashree Darabdhara
- Department of Chemistry, National Institute of Technology, Silchar, 788010, Assam, India
| | - Md Ahmaruzzaman
- Department of Chemistry, National Institute of Technology, Silchar, 788010, Assam, India.
| |
Collapse
|
30
|
Chen B, Li Y, Du Q, Pi X, Wang Y, Sun Y, Wang M, Zhang Y, Chen K, Zhu J. Effective Removal of Tetracycline from Water Using Copper Alginate @ Graphene Oxide with In-Situ Grown MOF-525 Composite: Synthesis, Characterization and Adsorption Mechanisms. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12172897. [PMID: 36079938 PMCID: PMC9458214 DOI: 10.3390/nano12172897] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/15/2022] [Accepted: 08/21/2022] [Indexed: 05/19/2023]
Abstract
For nanomaterials, such as GO and MOF-525, aggregation is the main reason limiting their adsorption performance. In this research, Alg-Cu@GO@MOF-525 was successfully synthesized by in-situ growth of MOF-525 on Alg-Cu@GO. By dispersing graphene oxide (GO) with copper alginate (Alg-Cu) with three-dimensional structure, MOF-525 was in-situ grown to reduce aggregation. The measured specific surface area of Alg-Cu@GO@MOF-525 was as high as 807.30 m2·g-1, which is very favorable for adsorption. The synthesized material has affinity for a variety of pollutants, and its adsorption performance is significantly enhanced. In particular, tetracycline (TC) was selected as the target pollutant to study the adsorption behavior. The strong acid environment inhibited the adsorption, and the removal percentage reached 96.6% when pH was neutral. Temperature promoted the adsorption process, and 318 K adsorption performance was the best under experimental conditions. Meanwhile, 54.6% of TC could be removed in 38 min, and the maximum adsorption capacity reached 533 mg·g-1, far higher than that of conventional adsorption materials. Kinetics and isotherms analysis show that the adsorption process accords with Sips model and pseudo-second-order model. Thermodynamic study further shows that the chemisorption is spontaneous and exothermic. In addition, pore-filling, complexation, π-π stack, hydrogen bond and chemisorption are considered to be the causes of adsorption.
Collapse
Affiliation(s)
- Bing Chen
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yanhui Li
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
- State Key Laboratory of Bio-Polysaccharide Fiber Forming and Eco-Textile, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
- Correspondence: ; Tel.: +86-532-8595-1842
| | - Qiuju Du
- State Key Laboratory of Bio-Polysaccharide Fiber Forming and Eco-Textile, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Xinxin Pi
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yuqi Wang
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yaohui Sun
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Mingzhen Wang
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yang Zhang
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Kewei Chen
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Jinke Zhu
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| |
Collapse
|
31
|
Fdez-Sanromán A, Pazos M, Sanroman A. Peroxymonosulphate Activation by Basolite ® F-300 for Escherichia coli Disinfection and Antipyrine Degradation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:6852. [PMID: 35682435 PMCID: PMC9180711 DOI: 10.3390/ijerph19116852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 02/04/2023]
Abstract
In this study, the removal of persistent emerging and dangerous pollutants (pharmaceuticals and pathogens) in synthetic wastewater was evaluated by the application of heterogeneous Advanced Oxidation Processes. To do that, a Metal-Organic Framework (MOF), Basolite® F-300 was selected as a catalyst and combined with peroxymonosulfate (PMS) as oxidants in order to generate sulphate radicals. Several key parameters such as the PMS and Basolite® F-300 concentration were evaluated and optimized using a Central Composite Experimental Design for response surface methodology for the inactivation of Escherichia coli. The assessment of the degradation of an analgesic and antipyretic pharmaceutical, antipyrine, revealed that is necessary to increase the concentration of PMS and amount of Basolite® F-300, in order to diminish the treatment time. Finally, the PMS-Basolite® F-300 system can be used for at least four cycles without a reduction in its ability to disinfect and degrade persistent emerging and dangerous pollutants such as pharmaceuticals and pathogens.
Collapse
Affiliation(s)
| | | | - Angeles Sanroman
- CINTECX, Department of Chemical Engineering, Campus As Lagoas-Marcosende, Universidade de Vigo, 36310 Vigo, Spain; (A.F.-S.); (M.P.)
| |
Collapse
|
32
|
Synthesis of ferroferric oxide@silicon dioxide/cobalt-based zeolitic imidazole frameworks for the removal of doxorubicin hydrochloride from wastewater. J Colloid Interface Sci 2022; 624:108-120. [PMID: 35660880 DOI: 10.1016/j.jcis.2022.05.150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 11/22/2022]
Abstract
Due to its low-cost, eco-friendliness and easy mode of separation biosynthesized magnetic ferroferric oxide (Fe3O4) can be successfully used for the removal of organic contaminants from wastewater. However, there are some challenges that to date have limited this compound's practical removal efficiency. Thus, in this study, a cobalt-based zeolitic imidazole frameworks (ZIF-67) coated biosynthesized ferroferric oxide@silicon dioxide (Fe3O4@SiO2) magnetic composite (Fe3O4@SiO2/ZIF-67) was prepared to address these issues and subsequently used to remove doxorubicin hydrochloride (DOX). Characterization results showed that the fabricated composite exhibited significant magnetic properties (16.1 emu·g-1) with a size ranging between 50 and 250 nm. The amount of DOX adsorbed by the composite (90.7 mg·g-1) was much higher than either of the component parts, which were only 35.7 and 82.5 mg·g-1 for Fe3O4@SiO2 and ZIF-67 respectively. This indicated enhanced DOX adsorption by Fe3O4@SiO2/ZIF-67. The DOX adsorption best fit a pseudo-second order kinetic and Langmuir adsorption model. These studies suggested that the DOX adsorption mechanism involved a combination of electrostatic interactions, π-π stacking, hydrogen bonding and pore filling. Regeneration and application studies, exposing Fe3O4@SiO2/ZIF-67 to real water samples, practically demonstrated that Fe3O4@SiO2/ZIF-67 with propensity for magnetic separation and recycle is a promising nanomaterial for DOX removal.
Collapse
|