1
|
Li G, Jin Y, Li Y, Cui W, An H, Li R, Neshchimenko VV, Zhu S, Liang Z, Jiang B, Li C. One-Step Self-Assembled WO 3/rGO Microspheres Photoanode Assembled Efficient Photocatalytic Fuel Cells for Simultaneous Organic Pollutant Degradation and Electricity Generation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:47784-47796. [PMID: 39208073 DOI: 10.1021/acsami.4c13178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Photocatalytic fuel cells (PFCs) present a promising and environmentally friendly approach to simultaneously treat organic pollutants in wastewater and electricity generation. The development of photoanodes with high light absorption and carrier mobility is essential for enhancing the performance of PFCs but remains challenging. Herein, a one-step self-assembly strategy was adopted to develop flower-like WO3/rGO microspheres for PFC devices. Attributed to the abundant surface-active sites, enhanced light harvesting, and efficient separation of photogenerated charge carriers, the WO3/rGO photoanode demonstrated superior rhodamine B (RhB) degradation rate (90% in 2 h), maximum power density (4.74 μW/cm2), and maximum photocurrent density (0.096 mA/cm2), 1.4, 2.4, and 4.0 times higher than the corresponding pure WO3 photoanode, respectively. Density functional theory (DFT) calculations reveal that the built-in electric field formed between the interface of WO3 and rGO promotes the transfer of photogenerated electrons from WO3 to rGO, thus exerting a significant impact on improving the migration and separation of photoinduced charge carriers. Moreover, by combining experimental and theoretical results, a complete PFC operation mechanism for the PFC system was proposed. This study focuses on the strategy of constructing rGO-doped photocatalysts to enhance the interfacial charge transfer mechanism, providing a promising approach for the development of high-performance photoanodes in PFC systems.
Collapse
Affiliation(s)
- Guanshu Li
- Key Laboratory of Science and Technology on Material Performance Evaluating in Space Environment, School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Yingmin Jin
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Yumeng Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Wenhao Cui
- Key Laboratory of Science and Technology on Material Performance Evaluating in Space Environment, School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Haojie An
- Key Laboratory of Science and Technology on Material Performance Evaluating in Space Environment, School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Ruxue Li
- Key Laboratory of Science and Technology on Material Performance Evaluating in Space Environment, School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - V V Neshchimenko
- Space Materials Laboratory, Amur State University, Blagoveshchensk 675027, Amur Region, Russia
| | - Shuaikang Zhu
- Institute of Functional Nano & Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, Jiangsu, P. R. China
| | - Zhiqiang Liang
- Institute of Functional Nano & Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, Jiangsu, P. R. China
| | - Bo Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Chundong Li
- Key Laboratory of Science and Technology on Material Performance Evaluating in Space Environment, School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| |
Collapse
|
2
|
Xu M, Xiao X, Chen Y, Zhou X, Parisi L, Ma R. 3D physiologically-informed deep learning for drug discovery of a novel vascular endothelial growth factor receptor-2 (VEGFR2). Heliyon 2024; 10:e35769. [PMID: 39220924 PMCID: PMC11365333 DOI: 10.1016/j.heliyon.2024.e35769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
Angiogenesis is an essential process in tumorigenesis, tumor invasion, and metastasis, and is an intriguing pathway for drug discovery. Targeting vascular endothelial growth factor receptor 2 (VEGFR2) to inhibit tumor angiogenic pathways has been widely explored and adopted in clinical practice. However, most drugs, such as the Food and Drug Administration -approved drug axitinib (ATC code: L01EK01), have considerable side effects and limited tolerability. Therefore, there is an urgent need for the development of novel VEGFR2 inhibitors. In this study, we propose a novel strategy to design potential candidates targeting VEGFR2 using three-dimensional (3D) deep learning and structural modeling methods. A geometric-enhanced molecular representation learning method (GEM) model employing a graph neural network (GNN) as its underlying predictive algorithm was used to predict the activity of the candidates. In the structural modeling method, flexible docking was performed to screen data with high affinity and explore the mechanism of the inhibitors. Small -molecule compounds with consistently improved properties were identified based on the intersection of the scores obtained from both methods. Candidates identified using the GEM-GNN model were selected for in silico modeling using molecular dynamics simulations to further validate their efficacy. The GEM-GNN model enabled the identification of candidate compounds with potentially more favorable properties than the existing drug, axitinib, while achieving higher efficacy.
Collapse
Affiliation(s)
- Mengyang Xu
- Faculty of Biology, Shenzhen MSU-BIT University, Shenzhen, 518172, Guangdong, China
| | - Xiaoyue Xiao
- Faculty of Biology, Shenzhen MSU-BIT University, Shenzhen, 518172, Guangdong, China
| | - Yinglu Chen
- Faculty of Biology, Shenzhen MSU-BIT University, Shenzhen, 518172, Guangdong, China
| | - Xiaoyan Zhou
- Faculty of Biology, Shenzhen MSU-BIT University, Shenzhen, 518172, Guangdong, China
| | - Luca Parisi
- Department of Computer Science, Tutorantis, Edinburgh, EH2 4AN, Scotland, United Kingdom
| | - Renfei Ma
- Faculty of Biology, Shenzhen MSU-BIT University, Shenzhen, 518172, Guangdong, China
| |
Collapse
|
3
|
Tian J, Guan C, Liu C, Fan J, Zhu Y, Sun T, Liu E. Double S-scheme Cu 2-xSe/twinned-Cd 0.5Zn 0.5S homo-heterojunctions with surface plasmon effects for efficient photocatalytic H 2 evolution. J Colloid Interface Sci 2024; 666:481-495. [PMID: 38613971 DOI: 10.1016/j.jcis.2024.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/02/2024] [Accepted: 04/02/2024] [Indexed: 04/15/2024]
Abstract
The enhancement of charge separation and utilization efficiency in both the bulk phase and interface of semiconductor photocatalysts, as well as the expansion of light absorption range, are crucial research topics in the field of photocatalysis. To address this issue, twinned Cd0.5Zn0.5S (T-CZS) homojunctions consisting of wurtzite Cd0.5Zn0.5S (WZ-CZS) and zinc blende Cd0.5Zn0.5S (ZB-CZS) were synthesized via a hydrothermal method to facilitate the bulk-phase charge separation. Meanwhile, Cu2-xSe with localized surface plasmon resonance effect (LSPR) generated by Cu vacancies was also obtained through a hydrothermal process. Due to their opposite electronegativity, a solvent evaporation strategy was employed to combine Cu2-xSe and T-CZS by intermolecular electrostatic. After optimization, the photocatalytic hydrogen (H2) evolution rate of 5 wt% Cu2-xSe/T-CZS reached an impressive value of 60 mmol∙h-1∙g-1, which was 4.6 and 66.6 times higher than that of pure Cu2-xSe and T-CZS, respectively. Furthermore, this composites demonstrated a remarkable rate of 0.46 mmol∙h-1∙g-1 under near-infrared (NIR) wavelength (>800 nm). The enhanced performance observed in Cu2-xSe/T-CZS can be attributed to its unique and efficient double S-scheme charge transfer mechanism which effectively suppresses rapid recombination of electron-hole pairs both within the bulk phase and at the surface interfaces; this conclusion is supported by Density Functional Theory (DFT) calculations as well as electron paramagnetic resonance spectroscopy analysis. Moreover, incorporation of Cu2-xSe enables effective utilization ultraviolet visible-near infrared (UV-Vis-NIR) light by the composites while facilitating injection "hot electrons" into T-CZS for promoting photocatalytic reactions. This study provides a potential strategy for achieving efficient solar energy conversion through synergistic integration of non-stoichiometric plasmonic materials with photocatalysts with twinned-twinned structures.
Collapse
Affiliation(s)
- Jingzhuo Tian
- School of Chemical Engineering/Xi'an Key Laboratory of Special Energy Materials, Northwest University, Xi'an 710069, PR China; Shaanxi Key Laboratory for Carbon Neutral Technology, Xi'an 710069, PR China
| | - Chaohong Guan
- University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Chao Liu
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Jun Fan
- School of Chemical Engineering/Xi'an Key Laboratory of Special Energy Materials, Northwest University, Xi'an 710069, PR China
| | - Yonghong Zhu
- School of Chemical Engineering/Xi'an Key Laboratory of Special Energy Materials, Northwest University, Xi'an 710069, PR China.
| | - Tao Sun
- School of Chemical Engineering/Xi'an Key Laboratory of Special Energy Materials, Northwest University, Xi'an 710069, PR China; Shaanxi Key Laboratory for Carbon Neutral Technology, Xi'an 710069, PR China.
| | - Enzhou Liu
- School of Chemical Engineering/Xi'an Key Laboratory of Special Energy Materials, Northwest University, Xi'an 710069, PR China; Shaanxi Key Laboratory for Carbon Neutral Technology, Xi'an 710069, PR China.
| |
Collapse
|
4
|
Chen D, Gong K, Xu X, Huang C, Lei P. Enhancing the adsorption-photocatalytic efficiency of BiOBr for Congo red degradation by tuning the surface charge and bandgap via an Y 3+-I - co-doping strategy. Phys Chem Chem Phys 2024; 26:17155-17170. [PMID: 38847473 DOI: 10.1039/d4cp00876f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Metal-ion doping and halogen substitution have been largely applied to tune the bandgap of bismuth oxybromide (BiOBr) to upgrade its photodegradation capacity. In this work, the adsorption capacity and photocatalytic behavior of solvothermally synthesized BiOBr photocatalysts can be optimized via the synergistic effect of Y3+- and I--doping. After an adsorption reaction in the dark and exposure for another 80 min to visible light, pure BiOBr can remove 46.5% of Congo red (CR) from water with an initial CR concentration of 50 mg L-1. Meanwhile, Bi0.8Y0.20OBr0.97I0.03, the co-doped catalyst, displays total degradation rates exceeding 98% and 92% with CR dosages of 50 and 100 mg L-1, respectively, demonstrating a doubled degradation capacity. With the co-doping solution, the negative charges on the catalysts reduce, more oxygen vacancies are generated, the bandgap remarkably narrows, and the photoabsorption range broadens for derivation of photoinduced electron-hole pairs. The mechanism for optimized photodegradation behavior and dramatically increased adsorption capacity are discussed based on analyses of the structural evolution, surface properties including the chemical state and surface charge, electrochemical performance and the yield/type of photogenerated species. Density functional theory (DFT) simulations were conducted to investigate the structural state, density of states (DOS) and electrostatic potential.
Collapse
Affiliation(s)
- Dongsheng Chen
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China.
| | - Keqian Gong
- State Key Laboratory of New Ceramics and Fine Processing, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China
| | - Xiangyang Xu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China.
- Hunan Key Laboratory of Mineral Materials and Applications, Changsha 410083, China
| | - Chenyu Huang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China.
| | - Pengtao Lei
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China.
| |
Collapse
|
5
|
Kumar A, Singh P, Nguyen VH, Le QV, Ahamad T, Thakur S, Matsagar BM, Kaya S, Maslov MM, Wu KCW, Nguyen LH, Raizada P. DFT and experimental studies of the facet-dependent oxygen vacancies modulated WS 2/BiOCl-OV S-scheme structure for enhanced photocatalytic removal of ciprofloxacin from wastewater. ENVIRONMENTAL RESEARCH 2024; 250:118519. [PMID: 38382660 DOI: 10.1016/j.envres.2024.118519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/09/2024] [Accepted: 02/17/2024] [Indexed: 02/23/2024]
Abstract
The present study explores visible light-assisted photodegradation of ciprofloxacin hydrochloride (CIP) antibiotic as a promising solution to water pollution. The focus is on transforming the optical and electronic properties of BiOCl through the generation of oxygen vacancies (OVs) and the exposure of (110) facets, forming a robust S-scheme heterojunction with WS2. The resultant OVs mediated composite with an optimal ratio of WS2 and BiOCl-OV (4-WS2/BiOCl-OV) demonstrated remarkable efficiency (94.3%) in the visible light-assisted photodegradation of CIP antibiotic within 1.5 h. The CIP degradation using 4-WS2/BiOCl-OV followed pseudo-first-order kinetics with the rate constant of 0.023 min-1, outperforming bare WS2, BiOCl, and BiOCl-OV by 8, 6, and 4 times, respectively. Density functional theory (DFT) analysis aligned well with experimental results, providing insights into the structural arrangement and bandgap analysis of the photocatalysts. Liquid chromatography-mass spectrometry (LC-MS) analysis utilized for identifying potentially degraded products while scavenging experiments and electron paramagnetic resonance (EPR) spin trapping analysis elucidated the S-scheme charge transfer mechanism. This research contributes to advancing the design of oxygen vacancy-mediated S-scheme systems in the realm of photocatalysis, with potential implications for addressing water pollution concerns.
Collapse
Affiliation(s)
- Abhinandan Kumar
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173212, India
| | - Pardeep Singh
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173212, India
| | - Van-Huy Nguyen
- Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India.
| | - Quyet Van Le
- Department of Materials Science and Engineering, Korea University, 145, Anamro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Tansir Ahamad
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Sourbh Thakur
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100, Gliwice, Poland
| | - Babasaheb M Matsagar
- Department of Chemical Engineering, National Taiwan University (NTU), No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Savas Kaya
- Department of Chemistry, Faculty of Science, Sivas Cumhuriyet University, 58140, Sivas, Turkey
| | - Mikhail M Maslov
- Nanoengineering in Electronics, Spintronics and Photonics Institute, National Research Nuclear University "MEPhI", Kashirskoe Shosse 31, Moscow, 115409, Russia
| | - Kevin C-W Wu
- Department of Chemical Engineering, National Taiwan University (NTU), No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Lan Huong Nguyen
- Faculty of Biology and Environment, Ho Chi Minh City University of Industry and Trade (HUIT), 140 Le Trong Tan Street, Tay Thanh Ward, Tan Phu District, Ho Chi Minh City, Viet Nam
| | - Pankaj Raizada
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173212, India.
| |
Collapse
|
6
|
Chen Y, Wang R, Gao H, Huang H, Dong R, Lu C, Kou J. Elevating the Photocatalytic Performance of BiOCl by Promoting Light Utilization: From Co doping to the Microreactor. J Phys Chem Lett 2024; 15:1412-1419. [PMID: 38290430 DOI: 10.1021/acs.jpclett.3c03503] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Owing to its unique layered structure, BiOCl demonstrates high photocatalytic activity. However, its wide bandgap hinders the absorption of visible light. Doping modification is an effective method to expand the light absorption edge of photocatalysts by creating a doping energy level within the bandgap. Herein, Co as a variable valence element was used to dope the BiOCl nanosheets through a simple hydrothermal approach. As a result, the absorption edge of Co-BiOCl extends to the visible light region, and the photocatalytic performance was enhanced by 3.02 times. To overcome the shortcoming of photons being consumed easily in the bulk reactor, a planar microreactor was introduced to reduce the attenuation of light and accelerate the mass transfer. By comparison to the bulk reactor, a maximum of 15.3-fold additional activity promotion emerged. This work combines doping modification and reactor improvement to realize highly efficient photocatalysis in practical application.
Collapse
Affiliation(s)
- Yukai Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
| | - Ruizhe Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
| | - Haiguang Gao
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
| | - Hengming Huang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu 210009, People's Republic of China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, Jiangsu 210009, People's Republic of China
| | - Rulin Dong
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
| | - Chunhua Lu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu 210009, People's Republic of China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, Jiangsu 210009, People's Republic of China
| | - Jiahui Kou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu 210009, People's Republic of China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, Jiangsu 210009, People's Republic of China
| |
Collapse
|
7
|
Li Z, Ji H, Feng Z, Li Z, Gao H, Tan Y, Yao L, Deng Q, Sun Y, Shao M. A rationally designed 3DTiO 2@CdZnS heterojunction photocatalyst for effectively enhanced visible-light-driven hydrogen evolution. Dalton Trans 2024; 53:2551-2557. [PMID: 38221819 DOI: 10.1039/d3dt03532h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Hydrogen production with higher efficiency and lower cost is of great significance for the sustainable development of energy. Zinc cadmium sulfide (CZS) is gaining more attention owing to its excellent photocatalytic properties. However, its development is greatly limited due to photogenerated charge recombination. In this work, an innovative design with a unique 3D morphology was introduced by integrating 3DTiO2 into CZS to form a novel 3DTiO2/CZS heterojunction photocatalyst. As a result, the optimized composite achieved a very high hydrogen production rate of 75.38 mmol h-1 g-1 under visible light, which is 2.4 times higher than that of the original CZS. It can also be greatly demonstrated through photoelectrochemical tests that this unique 3D morphology contributes to the effective separation of electrons and holes, thus dramatically improving the photocatalytic activity of 3DTiO2/CZS composites. The 3DTiO2/CZS composite has a rational energy band structure, which makes it more favorable for the hydrogen precipitation reaction. It is believed that such a modification strategy based on 3DTiO2 can be applied to other similar photocatalysts as well for boosting hydrogen evolution.
Collapse
Affiliation(s)
- Zhuoyang Li
- School of Physics and Materials Science, Guangzhou University, Guangzhou 510006, China.
- Research Center for Advanced Information Materials, Huangpu Research & Graduate School of Guangzhou University, Guangzhou 510555, China
- Joint Institute of Guangzhou University & Institute of Corrosion Science and Technology, Guangzhou University, Guangzhou 510275, China
| | - Hao Ji
- School of Physics and Materials Science, Guangzhou University, Guangzhou 510006, China.
- Research Center for Advanced Information Materials, Huangpu Research & Graduate School of Guangzhou University, Guangzhou 510555, China
- Joint Institute of Guangzhou University & Institute of Corrosion Science and Technology, Guangzhou University, Guangzhou 510275, China
| | - Ziwen Feng
- School of Physics and Materials Science, Guangzhou University, Guangzhou 510006, China.
- Research Center for Advanced Information Materials, Huangpu Research & Graduate School of Guangzhou University, Guangzhou 510555, China
- Joint Institute of Guangzhou University & Institute of Corrosion Science and Technology, Guangzhou University, Guangzhou 510275, China
| | - Zelin Li
- School of Physics and Materials Science, Guangzhou University, Guangzhou 510006, China.
- Research Center for Advanced Information Materials, Huangpu Research & Graduate School of Guangzhou University, Guangzhou 510555, China
| | - Hang Gao
- School of Physics and Materials Science, Guangzhou University, Guangzhou 510006, China.
- Research Center for Advanced Information Materials, Huangpu Research & Graduate School of Guangzhou University, Guangzhou 510555, China
| | - Yipeng Tan
- School of Physics and Materials Science, Guangzhou University, Guangzhou 510006, China.
- Research Center for Advanced Information Materials, Huangpu Research & Graduate School of Guangzhou University, Guangzhou 510555, China
| | - Lingmin Yao
- School of Physics and Materials Science, Guangzhou University, Guangzhou 510006, China.
- Research Center for Advanced Information Materials, Huangpu Research & Graduate School of Guangzhou University, Guangzhou 510555, China
- Joint Institute of Guangzhou University & Institute of Corrosion Science and Technology, Guangzhou University, Guangzhou 510275, China
| | - Qinglin Deng
- School of Physics and Materials Science, Guangzhou University, Guangzhou 510006, China.
- Research Center for Advanced Information Materials, Huangpu Research & Graduate School of Guangzhou University, Guangzhou 510555, China
| | - Yu Sun
- School of Physics and Materials Science, Guangzhou University, Guangzhou 510006, China.
| | - Mengmeng Shao
- School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China
| |
Collapse
|
8
|
Wang S, Song D, Liao L, Li M, Li Z, Zhou W. Surface and interface engineering of BiOCl nanomaterials and their photocatalytic applications. Adv Colloid Interface Sci 2024; 324:103088. [PMID: 38244532 DOI: 10.1016/j.cis.2024.103088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/29/2023] [Accepted: 01/07/2024] [Indexed: 01/22/2024]
Abstract
BiOCl materials have received much attention because of their unique optical and electrical properties. Still, their unsatisfactory catalytic performance has been troubling researchers, limiting the application of BiOCl-based photocatalysts. Therefore, many researchers have studied the adjustment of BiOCl-based materials to enhance photocatalytic efficiency. This review focuses on surface and interface engineering strategies for boosting the photocatalytic performance of BiOCl-based nanomaterials, including forming oxygen vacancy defects, constructing metal/BiOCl, and the fabrication of semiconductor/BiOCl nanocomposites. The photocatalytic applications of the above composites are also concluded in photodegradation of aqueous pollutants, photocatalytic NO removal, photo-induced H2 production, and CO2 reduction. Special emphasis has been given to the modification methods of BiOCl and photocatalytic mechanisms to provide a more detailed understanding for researchers in the fields of energy conversion and materials sciences.
Collapse
Affiliation(s)
- Shijie Wang
- Shandong Provincial Key Laboratory of Molecular Engineering School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, PR China
| | - Dongxue Song
- School of Chemistry and Materials Science, Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, PR China
| | - Lijun Liao
- Shandong Provincial Key Laboratory of Molecular Engineering School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, PR China.
| | - Mingxia Li
- School of Chemistry and Materials Science, Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, PR China.
| | - Zhenzi Li
- Shandong Provincial Key Laboratory of Molecular Engineering School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, PR China.
| | - Wei Zhou
- Shandong Provincial Key Laboratory of Molecular Engineering School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, PR China.
| |
Collapse
|
9
|
Jabbar ZH, Graimed BH, Hamzah Najm H, Ammar SH, Taher AG. Reasonable decoration of CuO/Cd 0.5Zn 0.5S nanoparticles onto flower-like Bi 5O 7I as boosted step-scheme photocatalyst for reinforced photodecomposition of bisphenol A and Cr(VI) reduction in wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119302. [PMID: 37866185 DOI: 10.1016/j.jenvman.2023.119302] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/24/2023]
Abstract
Building S-scheme heterostructures is a sophisticated approach to receiving outstanding catalysts for environmental detoxification. Herein, ternary CuO/Cd0.5Zn0.5S/Bi5O7I (CO/CZS/BOI) nanocomposites were constructed by in-situ decorating of CuO and Cd0.5Zn0.5S nanoparticles onto Bi5O7I micro-sphere in a facile route. The optimal CO/CZS/BOI reflected reinforced bisphenol A (BPA) photo-oxidation (95% in 70 min) and Cr(VI) photo-reduction (96.6 in 60 min) under visible light. Besides, CO/CZS/BOI afforded 5.10 (4.44), 4.42 (3.71), and 6.60 (5.27) fold reinforcement in the BPA (Cr(VI)) photo-reaction rate compared to BOI, CZS, and CO, respectively. This behavior was linked to the development of S-scheme mechanisms resulting from the co-effects of BOI, CZS, and CO in retaining the optimum redox capacity, facilitating the dissolution of photo-carriers, increasing reactive sites, and strengthening the visible-light response. The parameters influencing the catalytic reaction of CO/CZS/BOI, such as light intensity, catalyst dosage, and pH, were deeply studied. The quenching tests declared the prominent roles •O2- and •OH in the breaking down of BPA and the participation of electrons and •O2- in the photocatalytic conversion of Cr(VI). The cyclic tests verified the robust photostability of CO/CZS/BOI, which is associated with the reintegration process between the free h+ coming from CZS and the photo-induced e- of CO and BOI in the S-scheme system. In conclusion, the present study provides a profound understanding of the photo-reaction mechanism of CO/CZS/BOI and introduces a novel concept for constructing a superior dual-Scheme system for efficient wastewater detoxification.
Collapse
Affiliation(s)
- Zaid H Jabbar
- Building and Construction Techniques Engineering Department, Al-Mustaqbal University College, 51001, Hillah, Babylon, Iraq.
| | - Bassim H Graimed
- Environmental Engineering Department, College of Engineering, University of Baghdad, Baghdad, Iraq
| | | | - Saad H Ammar
- Department of Chemical Engineering, College of Engineering, Al-Nahrain University, Jadriya, Baghdad, Iraq; College of Engineering, University of Warith Al-Anbiyaa, Karbala, Iraq
| | - Athraa G Taher
- Ministry of Oil, Oil Pipelines Company, Daura, Baghdad, Iraq
| |
Collapse
|
10
|
Pei L, Luo Z, Wang X, Ma Z, Nie Y, Zhong J, Yang D, Bandaru S, Su BL. Tunable CO 2-to-syngas conversion via strong electronic coupling in S-scheme ZnGa 2O 4/g-C 3N 4 photocatalysts. J Colloid Interface Sci 2023; 652:636-645. [PMID: 37516580 DOI: 10.1016/j.jcis.2023.07.148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 07/31/2023]
Abstract
The conversion of CO2 into syngas, a mixture of CO and H2, via photocatalytic reduction, is a promising approach towards achieving a sustainable carbon economy. However, the evolution of highly adjustable syngas, particularly without the use of sacrifice reagents or additional cocatalysts, remains a significant challenge. In this study, a step-scheme (S-scheme) 0D ZnGa2O4 nanodots (∼7 nm) rooted g-C3N4 nanosheets (denoted as ZnGa2O4/C3N4) heterojunction photocatalyst was synthesized vis a facial in-situ growth strategy for efficient CO2-to-syngas conversion. Both experimental and theoretical studies have demonstrated that the polymeric nature of g-C3N4 and highly distributed ZnGa2O4 nanodots synergistically contribute to a strong interaction between metal oxide and C3N4 support. Furthermore, the desirable S-scheme heterojunction in ZnGa2O4/C3N4 efficiently promotes charge separation, enabling strong photoredox ability. As a result, the S-scheme ZnGa2O4/C3N4 exhibited remarkable activity and selectivity in photochemical conversion of CO2 into syngas, with a syngas production rate of up to 103.3 μ mol g-1 h-1, even in the absence of sacrificial agents and cocatalyst. Impressively, the CO/H2 ratio of syngas can be tunable within a wide range from 1:4 to 2:1. This work exemplifies the effectiveness of a meticulously designed S-scheme heterojunction photocatalyst for CO2-to-syngas conversion with adjustable composition, thus paving the way for new possibilities in sustainable energy conversion and utilization.
Collapse
Affiliation(s)
- Lang Pei
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China; Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Hangzhou 310018, China
| | - Zhenggang Luo
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Xusheng Wang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zhanfeng Ma
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Yuhang Nie
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Jiasong Zhong
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China.
| | - Ding Yang
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China.
| | - Sateesh Bandaru
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China.
| | - Bao-Lian Su
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, 430070 Wuhan, Hubei, China; Laboratory of Inorganic Materials Chemistry (CMI), University of Namur, 61 rue de Bruxelles, B-5000 Namur, Belgium.
| |
Collapse
|
11
|
Zheng J, Liu J, Feng X, Liu J, Zong S, Liu L, Fang Y. Outstanding photo-thermo synergy in aerobic oxidation of cyclohexane by bismuth tungstate-bismuth oxychloride high-low heterojunction. J Colloid Interface Sci 2023; 651:304-318. [PMID: 37544220 DOI: 10.1016/j.jcis.2023.07.172] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/14/2023] [Accepted: 07/27/2023] [Indexed: 08/08/2023]
Abstract
The difficulty of achieving both high conversion rate and high selectivity is a huge challenge in the catalytic aerobic oxidation of cyclohexane. In this paper, bismuth tungstate-bismuth oxychloride (Bi2WO6-BiOCl) nanoflower heterojunctions prepared via a one-step solvothermal process were applied in the photo-thermo synergetic catalytic oxidation of cyclohexane in the dried air. With the addition of little water at different reaction temperature, the ratio of bismuth to tungsten and the mass ratio of Bi2WO6 to BiOCl can be precisely tailored in the nanoflower sphere composites with thin nanosheets. Their microscopic morphology, elemental composition, crystal structure, and photoelectrochemical characteristics were explored by different characterization methods. The Bi2WO6-BiOCl composites possessed poor photocatalytic and thermal performances with the low conversion rates of 1.43% and 2.68%, respectively. However, through the photo-thermo catalytic oxidation process, an exceptional conversion rate of 13.32% was achieved with excellent selectivity of 99.22% for cyclohexanone and cyclohexanol (KA oil) using the same Bi2WO6-BiOCl composites. This superior performance outstrips Bi2WO6 flowers, BiOCl nanosheets and Bi2WO6-BiOCl composites with other compounding ratios. The creation of a high-low heterojunction in the Bi2WO6-BiOCl composite was confirmed by band energy analysis. The opto-electronic analysis, band energy analysis, sacrifice experiments, and active radical analysis were employed to elucidate the mechanism for the exceptional photo-thermo catalytic performance in detail. This work offers an exploratory solution to the challenges of high energy consumption and the difficulty in simultaneously achieving high selectivity and high conversion rates in cyclohexane oxidation, thus holding significant value.
Collapse
Affiliation(s)
- Jia Zheng
- Guangdong University of Technology, School of Light Industry & Chemical Engineering, Guangzhou Key Lab Clean Transport Energy Chemistry, Guangzhou 510006, China; Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Jieyang 515200, China
| | - Jincheng Liu
- Guangdong University of Technology, School of Light Industry & Chemical Engineering, Guangzhou Key Lab Clean Transport Energy Chemistry, Guangzhou 510006, China; Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Jieyang 515200, China.
| | - Xuyang Feng
- Guangdong University of Technology, School of Light Industry & Chemical Engineering, Guangzhou Key Lab Clean Transport Energy Chemistry, Guangzhou 510006, China; Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Jieyang 515200, China
| | - Jiarong Liu
- Guangdong University of Technology, School of Light Industry & Chemical Engineering, Guangzhou Key Lab Clean Transport Energy Chemistry, Guangzhou 510006, China; Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Jieyang 515200, China
| | - Shuang Zong
- Guangdong University of Technology, School of Light Industry & Chemical Engineering, Guangzhou Key Lab Clean Transport Energy Chemistry, Guangzhou 510006, China; Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Jieyang 515200, China
| | - Lingling Liu
- Guangdong University of Technology, School of Light Industry & Chemical Engineering, Guangzhou Key Lab Clean Transport Energy Chemistry, Guangzhou 510006, China; Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Jieyang 515200, China
| | - Yanxiong Fang
- Guangdong University of Technology, School of Light Industry & Chemical Engineering, Guangzhou Key Lab Clean Transport Energy Chemistry, Guangzhou 510006, China; Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Jieyang 515200, China
| |
Collapse
|
12
|
Li H, Jin X, Li Q, Chen Z. Interface coupling effect in biomass-derived iron sulfide nanomaterials triggering efficient hydrogen peroxide activation. J Colloid Interface Sci 2023; 650:1032-1043. [PMID: 37459727 DOI: 10.1016/j.jcis.2023.07.079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/08/2023] [Accepted: 07/13/2023] [Indexed: 08/17/2023]
Abstract
Slow electron migration in iron sulfide nanoparticles (C-FeS NPs) synthesized by co-precipitation severely limits the activation performance of hydrogen peroxide (H2O2). Herein, a biofunctional FeS NPs (P-FeS NPs) derived from Pinus massoniana Lamb biomass, with interface coupling effect, was used for enhanced H2O2 activation and norfloxacin (NOR) degradation. It was discovered that P-FeS NPs exhibited superior catalytic activity (100%) compared to C-FeS NPs (53.1%). Fe atoms of FeS NPs and hydroxyl groups (-OH) of Pinus massoniana Lamb biomass were mutually coupled to produce Fe-OH interfacial sites, which significantly increased the generation of multi-reactive species by accelerating the transfer of electrons across interfaces. Additionally, radical quenching tests elucidated that singlet oxygen (1O2) (66.6%) played a leading role, while hydroxyl radicals (•OH) (14.5%) and superoxide radicals (•O2-) (18.9%) were secondary oxidants. Finally, P-FeS NPs showed a high tolerance to a wide range of pH conditions and could remove 96.4% NOR from wastewater. Overall, this work generates important insights into understanding how green sustainable interfacial catalysts can accelerate catalytic activity.
Collapse
Affiliation(s)
- Heng Li
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental and Resource Sciences, Fujian Normal University, Fuzhou 350117, Fujian Province, China
| | - Xiaoying Jin
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental and Resource Sciences, Fujian Normal University, Fuzhou 350117, Fujian Province, China.
| | - Qin Li
- School of Engineering and Built Environment, and Queensland Micro-and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia
| | - Zuliang Chen
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental and Resource Sciences, Fujian Normal University, Fuzhou 350117, Fujian Province, China.
| |
Collapse
|
13
|
Yang L, Li H, Jin X, Chen Z. The origins of potentially superior properties and multifunctionalities of carbon-nano zero-valent iron in the carbonization pyrolysis process. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118457. [PMID: 37352626 DOI: 10.1016/j.jenvman.2023.118457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/24/2023] [Accepted: 06/16/2023] [Indexed: 06/25/2023]
Abstract
Although carbon-nano zero-valent iron (C@nZVI) composites with unique properties have been used for environmental remediation, the origins of their superior properties and multifunctionalities of C@nZVI still need to be verified. Here, iron precursor nanoparticles (PML-Fe NPs) synthesized by Pinus massoniana Lamb and carbonized C@nZVI were systemically compared to reveal the origins of the structure and performance of C@nZVI composites. Characterizations showed that structure-modulated C@nZVI has favorable properties of good crystallinity, graphite carbon-rich structure but also defects when compared to PML-Fe NPs. The resultant carbon layer fundamentally improved its dispersion and anti-oxidation properties. Further experiments demonstrated that the evolution of material crystallinity, graphitization and defects affected the reaction pathway of hexavalent chromium (Cr(VI)), oxytetracycline hydrochloride (OTC), and 17β-estradiol (βE2). The multifunctionalities covered adsorption, reduction and catalytic oxidation. This study explains the origins of multifunctional C@nZVI by understanding the structure-property correlation in the carbonization process.
Collapse
Affiliation(s)
- Lu Yang
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, 350117, Fujian Province, China
| | - Heng Li
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, 350117, Fujian Province, China
| | - Xiaoying Jin
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, 350117, Fujian Province, China.
| | - Zuliang Chen
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, 350117, Fujian Province, China.
| |
Collapse
|
14
|
Chen L, Chuang Y, Nguyen TB, Wu CH, Chen CW, Dong CD. A novel tungsten diselenide nanoparticles for enhanced photocatalytic performance of Cr (VI) reduction and ciprofloxacin (CIP). CHEMOSPHERE 2023; 339:139701. [PMID: 37543232 DOI: 10.1016/j.chemosphere.2023.139701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/30/2023] [Accepted: 07/30/2023] [Indexed: 08/07/2023]
Abstract
Nanoparticles (NPs) fabrication is a significant approach to enhance the visible light response of photocatalysts, to realize inexpensive and more harmful compound removal, at larger scale. The poor electrons and holes separation capability and low light activity of bulk materials can be notably enhanced through developing NPs. From photocatalytic investigation, better performance was received in the tungsten diselenide (WSe2) NPs than that in bare WSe2, exhibiting the action of restrained recombination of charge carriers in the NPs. The photocatalytic Cr(VI) reduction efficiency of WSe2 NPs is 2.7 folds greater than that by bare WSe2. On the other hand, the photocatalytic efficiency follows the order of nano WSe2-3 > nano WSe2-2 > nano WSe2-1 > bare WSe2, nano WSe2-3 is nearly 2.7 folds greater than that of bare WSe2. The results imply the fabrication of WSe2 NPs and it possesses improved visible light utilization. The proposed WSe2 NPs have merged with the three aspects of photocatalytic capability including the visible light activity, the valid separation of photo-response charge carriers and enough surface active sites owing to the nanoscale formed. This research endows conduct on the potential style of NPs for photo-response water environmental remediation.
Collapse
Affiliation(s)
- Linjer Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan
| | - Yuliv Chuang
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan
| | - Thanh-Binh Nguyen
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan
| | - Chung-Hsin Wu
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 80778, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan; Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan.
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan; Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan.
| |
Collapse
|
15
|
Jabbar ZH, Graimed BH, Ammar SH, Alsunbuli MM, Hamood SA, Hamzah Najm H, Taher AG. Design and construction of a robust ternary Bi 5O 7I/Cd 0.5Zn 0.5S/CuO photocatalytic system for boosted photodegradation of antibiotics via dual-S-scheme mechanisms: Environmental factors and degradation intermediates. ENVIRONMENTAL RESEARCH 2023; 234:116554. [PMID: 37423353 DOI: 10.1016/j.envres.2023.116554] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/29/2023] [Accepted: 07/02/2023] [Indexed: 07/11/2023]
Abstract
The detection of efficacious and environment-friendly nanomaterials with prominent photocatalytic performance is crucial for the detoxification of antibiotics in wastewater. Herein, a dual-S-scheme Bi5O7I/Cd0.5Zn0.5S/CuO semiconductor was designed and fabricated via a simple approach to degrade tetracycline (TC) and other types of antibiotics under LED illumination. However, Cd0.5Zn0.5S and CuO nanoparticles were decorated on the surface of the Bi5O7I microsphere to create a dual-S-scheme system that stimulates visible-light utilization and facilitates the dissolution of excited photo-curriers. Therefore, the Bi5O7I/Cd0.5Zn0.5S/CuO system offers strong redox ability, which reflects reinforced photocatalytic activity and robust stability. The ternary heterojunction discloses enhanced TC detoxification efficiency of 92% in 60 min with TC destruction rate constant of 0.04034 min-1, outperforming pure Bi5O7I, Cd0.5Zn0.5S, and CuO by 4.27, 3.20, and 4.80 folds, respectively. Besides, Bi5O7I/Cd0.5Zn0.5S/CuO manifests outstanding photo-activity against a series of antibiotics like norfloxacin, enrofloxacin, ciprofloxacin, and levofloxacin under the same operational conditions. The active species detection, TC destruction pathways, catalyst stability, and photoreaction mechanisms of Bi5O7I/Cd0.5Zn0.5S/CuO were accurately explained in detail. Summarily, this work introduces a new class of dual-S-scheme system with strengthened catalytic properties to effectively eliminate the antibiotics in wastewater under visible-light illumination.
Collapse
Affiliation(s)
- Zaid H Jabbar
- Building and Construction Techniques Engineering Department, Al-Mustaqbal University College, 51001, Hillah, Babylon, Iraq.
| | - Bassim H Graimed
- Environmental Engineering Department, College of Engineering, University of Baghdad, Baghdad, Iraq
| | - Saad H Ammar
- Department of Chemical Engineering, College of Engineering, Al-Nahrain University, Jadriya, Baghdad, Iraq; College of Engineering, University of Warith Al-Anbiyaa, Karbala, Iraq
| | - Maye M Alsunbuli
- Architecture Engineering Department, College of Engineering, University of Baghdad, Baghdad, Iraq
| | - Sarah A Hamood
- Biomedical Engineering Department, Al-Esraa University, Baghdad, Iraq
| | | | - Athraa G Taher
- Ministry of Oil, Oil Pipelines Company, Daura, Baghdad, Iraq
| |
Collapse
|
16
|
Shi K, Zhou M, Wang F, Li X, Huang W, Lu K, Yang K, Yu C. Perylene diimide/iron phthalocyanine Z-scheme heterojunction with strong interfacial charge transfer through π-π interaction: Efficient photocatalytic degradation of tetracycline hydrochloride. CHEMOSPHERE 2023; 329:138617. [PMID: 37037355 DOI: 10.1016/j.chemosphere.2023.138617] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 05/03/2023]
Abstract
The development of an all-organic Z-scheme heterojunction photocatalyst with the matched band structure, efficient electron transfer and excellent photocatalytic performance is valuable for a sustainable future. A novel perylene diimide/phthalocyanine iron (PDI/FePc) heterojunctions with strong π-π interaction were synthesized by a self-assembled method, which exhibited strong visible-light-driven photocatalytic degradation activities of tetracycline hydrochloride (TC). The TC removal rate over PDI/FePc was achieved three times and 87.5 times higher than that of PDI and FePc. PDI/FePc (131.1 mv·dec-1) presented a lower Taffel slope than that of PDI (228.6 mv·dec-1) for the oxidation. This may be due to the strong π-π interactions between PDI and FePc, which can reduce the layer spacing of the supramolecular structure and facilitate the separation and transfer of photogenerated carriers in the built-in electric field. In addition, radical quenching tests revealed that superoxide radicals (•O2-) acted as a dominant role in photocatalytic oxidation. An increscent specific surface area of PDI decorated by FePc also gave the rapid pathway for charge transfer and enhanced the adsorption ability. This provides a new idea for the formation of heterojunction to improve the photocatalytic activity of organic supramolecular materials.
Collapse
Affiliation(s)
- Kaiyang Shi
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, Jiangxi, China
| | - Man Zhou
- School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou, 341000, Jiangxi, China
| | - Fulin Wang
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, Jiangxi, China
| | - Xiangwei Li
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, Jiangxi, China
| | - Weiya Huang
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, Jiangxi, China
| | - Kangqiang Lu
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, Jiangxi, China
| | - Kai Yang
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, Jiangxi, China.
| | - Changlin Yu
- School of Chemical Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, Guangdong, China.
| |
Collapse
|
17
|
Zhao J, Li C, Yu Q, Zhu Y, Liu X, Li S, Liang C, Zhang Y, Huang L, Yang K, Zhang Z, Zhai Y. Interface engineering of Mn 3O 4/Co 3O 4 S-scheme heterojunctions to enhance the photothermal catalytic degradation of toluene. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131249. [PMID: 36966624 DOI: 10.1016/j.jhazmat.2023.131249] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/10/2023] [Accepted: 03/19/2023] [Indexed: 06/18/2023]
Abstract
Transition metal oxides have high photothermal conversion capacity and excellent thermal catalytic activity, and their photothermal catalytic ability can be further improved by reasonably inducing the photoelectric effect of semiconductors. Herein, Mn3O4/Co3O4 composites with S-scheme heterojunctions were fabricated for photothermal catalytic degradation of toluene under ultraviolet-visible (UV-Vis) light irradiation. The distinct hetero-interface of Mn3O4/Co3O4 effectively increases the specific surface area and promotes the formation of oxygen vacancies, thus facilitating the generation of reactive oxygen species and migration of surface lattice oxygen. Theoretical calculations and photoelectrochemical characterization demonstrate the existence of a built-in electric field and energy band bending at the interface of Mn3O4/Co3O4, which optimizes the photogenerated carriers' transfer path and retains a higher redox potential. Under UV-Vis light irradiation, the rapid transfer of electrons between interfaces promotes the generation of more reactive radicals, and the Mn3O4/Co3O4 shows a substantial improvement in the removal efficiency of toluene (74.7%) compared to single metal oxides (53.3% and 47.5%). Moreover, the possible photothermal catalytic reaction pathways of toluene over Mn3O4/Co3O4 were also investigated by in situ DRIFTS. The present work offers valuable guidance toward the design and fabrication of efficient narrow-band semiconductor heterojunction photothermal catalysts and provides deeper insights into the mechanism of photothermal catalytic degradation of toluene.
Collapse
Affiliation(s)
- Jungang Zhao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Caiting Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China.
| | - Qi Yu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Youcai Zhu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Xuan Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Shanhong Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Caixia Liang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Ying Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Le Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Kuang Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Ziang Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Yunbo Zhai
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
18
|
Sarkar P, Neogi S, De S. Accelerated radical generation from visible light driven peroxymonosulfate activation by Bi 2MoO 6/doped gCN S-scheme heterojunction towards Amoxicillin mineralization: Elucidation of the degradation mechanism. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131102. [PMID: 36870125 DOI: 10.1016/j.jhazmat.2023.131102] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/16/2023] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
A novel S-scheme photocatalyst Bi2MoO6 @doped gCN (BMO@CN) was prepared through a facile microwave (MW) assisted hydrothermal process and further employed to degrade Amoxicillin (AMOX), by peroxymonosulfate (PMS) activation with visible light (Vis) irradiation. The reduction in electronic work functions of the primary components and strong PMS dissociation generate abundant electron/hole (e-/h+) pairs and SO4*-,*OH,O2*-reactive species, inducing remarkable degeneration capacity. Optimized doping of Bi2MoO6 on doped gCN (upto 10 wt%) generates excellent heterojunction interface with facile charge delocalization and e-/h+ separation, as a combined effect of induced polarization, layered hierarchical structure oriented visible light harvesting and formation of S-scheme configuration. The synergistic action of 0.25 g/L BMO(10)@CN and 1.75 g/L PMS dosage can degrade 99.9% of AMOX in less than 30 min of Vis irradiation, with a rate constant (kobs) of 0.176 min-1. The mechanism of charge transfer, heterojunction formation and the AMOX degradation pathway was thoroughly demonstrated. The catalyst/PMS pair showed a remarkable capacity to remediate AMOX-contaminated real-water matrix. The catalyst removed 90.1% of AMOX after five regeneration cycles. Overall, the focus of this study is on the synthesis, illustration and applicability of n-n type S-scheme heterojunction photocatalyst to the photodegradation and mineralization of typical emerging pollutants in the water matrix.
Collapse
Affiliation(s)
- Poulomi Sarkar
- Department of Chemical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Sudarsan Neogi
- Department of Chemical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Sirshendu De
- Department of Chemical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| |
Collapse
|
19
|
Sun Q, Hu X, Zhao Y, Zhang J, Sheng J. Construction of Co 3O 4 anchored on Bi 2MoO 6 microspheres for highly efficient photocatalytic peroxymonosulfate activation towards degradation of norfloxacin. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27674-y. [PMID: 37213017 DOI: 10.1007/s11356-023-27674-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/11/2023] [Indexed: 05/23/2023]
Abstract
Dissolved antibiotics have been a research subject due to their widespread presence and potential threats in drinking water treatment. To enhance the photocatalytic activity of Bi2MoO6 for the degradation of norfloxacin (NOR), the heterostructured Co3O4/Bi2MoO6 (CoBM) composites were synthesized by employing ZIF-67-derived Co3O4 on Bi2MoO6 microspheres. The as-synthesized resultant material 3-CoBM by 300 °C calcination was characterized by XRD, SEM, XPS, transient photocurrent techniques, and EIS. The photocatalytic performance was evaluated by monitoring different concentrations, NOR removal from aqueous solution. Compared with Bi2MoO6, 3-CoBM exhibited the better adsorption and elimination capacity of NOR due to the combined effect between peroxymonosulfate activation and photocatalytic reaction. The influences of catalyst dosage, PMS dosage, various interfering ions (Cl-, NO3-, HCO3-, and SO42-), pH value, and type of antibiotics for application removal were also invested. By activating PMS under visible-light irradiation, 84.95% of metronidazole (MNZ) can be degraded within 40 min, and NOR and tetracycline (TC) can be completely degraded using 3-CoBM. Degradation mechanism was elucidated by quenching tests in combination with EPR measurement, and the degree of activity of the active groups from strong to weak is h+, SO4-•, and •OH, respectively. The degradation products and conceivable degradation pathways of NOR were speculated by LC-MS. In combination of excellent peroxymonosulfate activation and highly enhanced photocatalytic performance, this newly Co3O4/Bi2MoO6 catalyst might be a promising candidate for degrading emerging antibiotic contamination in wastewater.
Collapse
Affiliation(s)
- Qing Sun
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xiaofang Hu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yingjie Zhao
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jian Zhang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jiawei Sheng
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
20
|
Xue B, Li Q, Wang L, Deng M, Zhou H, Li N, Tan M, Hao D, Du H, Wang Q. Ferric-ellagate complex: A promising multifunctional photocatalyst. CHEMOSPHERE 2023; 332:138829. [PMID: 37156288 DOI: 10.1016/j.chemosphere.2023.138829] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 05/10/2023]
Abstract
The semiconductors have exhibited great potential in the field of photocatalytic energy production, environmental remediation and bactericidal. Nevertheless, those inorganic semiconductors are still restricted in commercial application due to the drawbacks of easy agglomeration and low solar energy conversion efficiency. Herein, ellagic acid (EA) based metal-organic complexes (MOCs) were synthesized through a facile stirring process at room temperature with Fe3+, Bi3+ and Ce3+ as the metal center. The EA-Fe photocatalyst exhibited superior photocatalytic activity toward Cr(VI) reduction, where Cr(VI) were completely removed within 20 min. Meanwhile, EA-Fe also displayed good photocatalytic degradation of organic contaminants and photocatalytic bactericidal performance. The photodegradation rates of TC and RhB by EA-Fe were 15 and 5 times that by bare EA, respectively. Moreover, EA-Fe was capable of effectively eliminating both E. coli and S. aureus bacteria. It was found that EA-Fe was capable of generating superoxide radicals, which could participate in the reduction of heavy metals, degradation of organic contaminants and inactivation of bacteria. A photocatalysis-self-Fenton system could be established by EA-Fe solely. This work would provide a new insight for designing multifunctional MOCs with high photocatalytic efficiency.
Collapse
Affiliation(s)
- Biao Xue
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Qiang Li
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Longyang Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Man Deng
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Hao Zhou
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Ningyi Li
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Meng Tan
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Derek Hao
- School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| | - Hao Du
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Qi Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China.
| |
Collapse
|
21
|
Alajmi BM, Basaleh AS, Ismail AA, Mohamed RM. Bi2S3 incorporated mesoporous ZrO2 networks as an effective photocatalyst for photocatalytic oxidation of thiophene. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|
22
|
Chen X, Chen J, Li N, Li J, He J, Xu S, Zhu Y, Yao L, Lai Y, Zhu R. Ag 3PO 4-anchored La 2Ti 2O 7 nanorod as a Z-Scheme heterostructure composite with boosted photogenerated carrier separation and enhanced photocatalytic performance under natural sunlight. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 323:121322. [PMID: 36813103 DOI: 10.1016/j.envpol.2023.121322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/13/2023] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
Developing wide spectra-responsive photocatalysts has attracted considerable attention in the photocatalytic technology to achieve excellent catalytic activity. Ag3PO4, with strong response to light spectra shorter than 530 nm, shows extremely outstanding photocatalytic oxidation ability. Unfortunately, the photocorrosion of Ag3PO4 is still the biggest obstacle to its application. Herein, the La2Ti2O7 nanorod was used to anchor Ag3PO4 nanoparticles in this study, and a novel Z-Scheme La2Ti2O7/Ag3PO4 heterostructure composite was constructed. Remarkably, the composite showed strong responsive to most of the spectra in natural sunlight. The Ag0 formed in-situ acted as the recombination center of photogenerated carriers, which promoted their efficient separation and contributed to the improved photocatalytic performance of the heterostructure. When the mass ratio of Ag3PO4 in the La2Ti2O7/Ag3PO4 catalyst was 50%, the degradation rate constant of Rhodamine B (RhB), methyl orange (MO), chloroquine phosphate (CQ), tetracycline (TC), and phenol under natural sunlight irradiation were 0.5923, 0.4463, 0.1399, 0.0493, and 0.0096 min-1, respectively. Furthermore, the photocorrosion of the composite was greatly inhibited, 76.49% of CQ and 83.96% of RhB were still degraded after four cycles. Besides, the holes and O2•- played a significant role in RhB degradation, and it included multiple mechanisms of deethylation, deamination, decarboxylation, and cleavage of ring-structures. Moreover, the treated solution can also show safety to the water receiving environment. Overall, the synthesized Z-Scheme La2Ti2O7/Ag3PO4 composite exhibited immense potential for removing various organic pollutants through photocatalytic technology under natural sunlight irradiation.
Collapse
Affiliation(s)
| | | | - Ning Li
- Foshan University, Foshan 528225, China; Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510610, China
| | - Jiesen Li
- Foshan University, Foshan 528225, China; Department of Research and Development, Guangzhou Ginpie Technology Co., Ltd., Guangzhou 510670, China
| | - Juhua He
- Foshan University, Foshan 528225, China; Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Song Xu
- Foshan University, Foshan 528225, China
| | - Yanping Zhu
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Liang Yao
- Foshan University, Foshan 528225, China
| | - Yiqi Lai
- Foshan University, Foshan 528225, China
| | - Runliang Zhu
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| |
Collapse
|
23
|
Sun L, Li W, Ma C, Lv G, Feng H, Pu Y, Sun T, Chen S. Fabrication of direct Z-scheme Cu 2O@V-CN (octa) heterojunction with exposed (111) lattice planes and nitrogen-rich vacancies for rapid sterilization. J Colloid Interface Sci 2023; 645:251-265. [PMID: 37149999 DOI: 10.1016/j.jcis.2023.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/01/2023] [Accepted: 04/05/2023] [Indexed: 05/09/2023]
Abstract
The Z-scheme heterojunction has demonstrated significant potential for promoting photogenerated carrier separation. However, the rational design of all-solid Z-scheme heterojunctions catalysts and the controversies about carrier transfer path of direct Z-scheme heterojunctions catalysts face various challenges. Herein, a novel heterojunction, Cu2O@V-CN (octa), was fabricated using V-CN (carbon nitride with nitrogen-rich vacancies) in-situ electrostatic self-wrapping Cu2O octahedra. Density functional theory (DFT) calculations revealed that the separation of carriers across the Cu2O@V-CN (octa) heterointerface was directly mapped to the Z-scheme mechanism compared to Cu2O/V-CN (sphere). This is because the Cu2O octahedra expose more highly active (111) lattice planes with more terminal Cu atoms and V-CN with abundant nitrogen vacancies to form delocalized electronic structures like electronic reservoirs. This facilitates the wrapping of Cu2O octahedra by V-CN and protects their stability via tighter interfacial contact, thus enhancing the tunneling of carriers for rapid photocatalytic sterilization. These findings provide novel approaches for designing high-efficiency Cu2O-based photocatalytic antifoulants for practical applications.
Collapse
Affiliation(s)
- Lifang Sun
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266500, China
| | - Wen Li
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266500, China
| | - Chengcheng Ma
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266500, China
| | - Gaojian Lv
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266500, China
| | - Huimeng Feng
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266500, China
| | - Yanan Pu
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266500, China
| | - Tianxiang Sun
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266500, China
| | - Shougang Chen
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266500, China.
| |
Collapse
|
24
|
Zheng S, Du H, Yang L, Tan M, Li N, Fu Y, Hao D, Wang Q. PDINH bridged NH 2-UiO-66(Zr) Z-scheme heterojunction for promoted photocatalytic Cr(VI) reduction and antibacterial activity. JOURNAL OF HAZARDOUS MATERIALS 2023; 447:130849. [PMID: 36701978 DOI: 10.1016/j.jhazmat.2023.130849] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/28/2022] [Accepted: 01/20/2023] [Indexed: 06/17/2023]
Abstract
Z-scheme mechanism was a promising approach to considerably enhance photocatalytic activity. In this work, the PDINH/NH2-UiO-66(Zr) (PNU) heterojunctions were made using a facile ball-milling method. As expect, the optimum PNU-1 composite acted as highly active photocatalyst with 97% Cr(VI) to be reduced within 60 min of LED light illumination. Moreover, the antibacterial rate almost reached 100% for E. coli and S. aureus in 4 h, which was more conspicuous than the others. The wider light absorption range, promoted charge separation because of Z-scheme mechanism and efficient generation of reactive 1O2, •O2-, and •OH contributed greatly to the enhanced photocatalytic activity. Meanwhile, the superior stability and repeatability of the composites were also demonstrated by five cyclic experiments and related physicochemical characterizations. Therefore, this work provides a novel insight for designing high-efficiency Z-scheme heterostructures between MOFs and organic PDINH for wastewater remediation.
Collapse
Affiliation(s)
- Shuzhen Zheng
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Hao Du
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Lingxuan Yang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Meng Tan
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Ningyi Li
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Yangjie Fu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Derek Hao
- Centre for Technology in Water and Wastewater (CTWW), School of Civil and Environmental Engineering, University of Technology Sydney (UTS), Sydney, NSW 2007, Australia
| | - Qi Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou 310018, China.
| |
Collapse
|
25
|
Dey AK, Mishra SR, Ahmaruzzaman M. Solar light-based advanced oxidation processes for degradation of methylene blue dye using novel Zn-modified CeO 2@biochar. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:53887-53903. [PMID: 36867337 DOI: 10.1007/s11356-023-26183-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 02/24/2023] [Indexed: 06/19/2023]
Abstract
Herein, a novel nanocomposite, namely, Zn-modified CeO2@biochar (Zn/CeO2@BC), is synthesized via facile one-step sol-precipitation to study its photocatalytic activity towards the removal of methylene blue dye. Firstly, Zn/Ce(OH)4@biochar was precipitated by adding sodium hydroxide to cerium salt precursor; then, the composite was calcined in a muffle furnace to convert Ce(OH)4 into CeO2. The crystallite structure, topographical and morphological properties, chemical compositions, and specific surface area of the synthesized nanocomposite are characterized by XRD, SEM, TEM, XPS, EDS, and BET analysis. The nearly spherical Zn/CeO2@BC nanocomposite has an average particle size of 27.05 nm and a specific surface area of 141.59 m2/g. All the tests showed the agglomeration of Zn nanoparticles over the CeO2@biochar matrix. The synthesized nanocomposite showed remarkable photocatalytic activity towards removing methylene blue, an organic dye commonly found in industrial effluents. The kinetics and mechanism of Fenton-activated dye degradation were studied. The nanocomposite exhibited the highest degradation efficiency of 98.24% under direct solar irradiation of 90 min, at an optimum dosage of 0.2 g l-1 catalyst and 10 ppm dye concentration, in the presence of 25% (V/V) 0.2 ml (4 µl/ml) hydrogen peroxide. The hydroxyl radical generated from H2O2 during the photo-Fenton reaction process was attributed to the nanocomposite's improved photodegradation performance. The degradation process followed pseudo-first-order kinetics having a rate constant (k) value of 0.0274 min-1.
Collapse
Affiliation(s)
- Akshay Kumar Dey
- Department of Chemistry, National Institute of Technology, Silchar, 788010, Assam, India
| | - Soumya Ranjan Mishra
- Department of Chemistry, National Institute of Technology, Silchar, 788010, Assam, India
| | - Md Ahmaruzzaman
- Department of Chemistry, National Institute of Technology, Silchar, 788010, Assam, India.
| |
Collapse
|
26
|
Liu C, He X, Xu Q, Chen M. A general way to realize the bi-directional promotion effects on the photocatalytic removal of heavy metals and organic pollutants in real water by a novel S-scheme heterojunction: Experimental investigations, QSAR and DFT calculations. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130551. [PMID: 37055965 DOI: 10.1016/j.jhazmat.2022.130551] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/16/2022] [Accepted: 12/03/2022] [Indexed: 06/19/2023]
Abstract
Heavy metals (HMs) often coexist with organic pollutants (OPs) in real surface water. Is it possible to find a general way that the removal of one from these two pollutants will promote the elimination of another pollutant? Herein, the bi-directional promotion effects (BPEs) on synchronous removal of Cr(VI) (i.e., hexavalent chromium) and OPs were achieved by a SnNb2O6/CuInS2 S-scheme heterojunction. Specifically, the apparent rate constants are 0.161 min-1 [(Cr(VI)] and 0.019 min-1 [Tetracycline hydrochloride (TCH)] in coexisting Cr(VI)/TCH system (which are 3.74 and 1.58 times, respectively, compared to the mono-pollutant system), indicating OPs indeed can act as hole scavengers (electron donors) to consume plenty of photoinduced holes and enable more photoexcited electrons to attend to Cr(VI) photoreduction. More significantly, OPs (i.e., TCH, atrazine and 4-chlorophenol) with different molecular structures possess different adiabatic ionization potentials (AIPs), in an inversely linear relationship with BPEs, i.e., the lower AIP value is, the higher electron-donating ability is, the better BPEs present. Finally, TCH and its degradation intermediates toxicity was forecasted via quantitative structure-activity relationship, demonstrating the toxicity decrease of TCH during the photocatalytic process. This work provides a general strategy for simultaneous removal of contaminants, contributing to wastewater purification.
Collapse
Affiliation(s)
- Chen Liu
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Xinxia He
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Qixuan Xu
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Ming Chen
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China.
| |
Collapse
|
27
|
Mostafavi M, Mahmoodzadeh K, Habibi Z, Yousefi M, Brask J, Mohammadi M. Immobilization of Bacillus amyloliquefaciens protease "Neutrase" as hybrid enzyme inorganic nanoflower particles: A new biocatalyst for aldol-type and multicomponent reactions. Int J Biol Macromol 2023; 230:123140. [PMID: 36621745 DOI: 10.1016/j.ijbiomac.2023.123140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/27/2022] [Accepted: 01/01/2023] [Indexed: 01/07/2023]
Abstract
Organic-inorganic hybrid nanoflowers (hNFs) with commercial protease "Neutrase" is proposed and characterized as efficient and green biocatalysts for promiscuous catalysis in aldol-type and multicomponent reactions. Neutrase hNFs [Neutrase-(Cu/Ca/Co/Mn)3(PO4)2] are straightforwardly prepared through mixing metal ion (Cu2+, Ca2+, Co2+ or Mn2+) aqueous solutions with Neutrase in phosphate buffer (pH 7.4, 10 mM) resulting in precipitation (3 days). The hNFs were characterized by various techniques including scanning electron microscopy (SEM), energy dispersive X-ray (EDX), element mapping, X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). In SEM images, the metal-Neutrase complexes revealed flower-like or granular structures after hybridization. The effect of metal ions and enzyme concentrations on the morphology and enzyme activity of the Neutrase-hNFs was examined. The synthesized Neutrase-Mn hNFs showed superior activity and stability compared to free Neutrase. Traditional organic CC coupling reactions such as aldol condensation, decarboxylative aldol, Knoevenagel, Hantzsch-type reactions and synthesis of 4H-pyran derivatives were used to test the generality and scope of Neutrase promiscuity, while optimizing conditions for the Neutrase-Mn hNF biocatalyst. Briefly, Neutrase-Mn3(PO4)2 hNFs showed excellent enzyme activity, stability and reusability, qualifying as effective reusable catalysts for coupling reactions under mild conditions.
Collapse
Affiliation(s)
- Mostafa Mostafavi
- Department of Pure Chemistry, Faculty of Chemistry, Shahid Beheshti University, G.C., Tehran, Iran
| | - Kazem Mahmoodzadeh
- Department of Pure Chemistry, Faculty of Chemistry, Shahid Beheshti University, G.C., Tehran, Iran
| | - Zohreh Habibi
- Department of Pure Chemistry, Faculty of Chemistry, Shahid Beheshti University, G.C., Tehran, Iran.
| | - Maryam Yousefi
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.
| | - Jesper Brask
- Novozymes A/S, Krogshøjvej 36, 2880, Bagsværd, Copenhagen, Denmark
| | - Mehdi Mohammadi
- Bioprocess Engineering Department, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
28
|
Wang Z, Ma Y, Shi Y, Wang S, Gao M, Qiu Y, Li C. Bi2WO6/red phosphorus heterojunction photocatalyst with excellent visible light photodegrading activity. Chem Phys Lett 2023. [DOI: 10.1016/j.cplett.2023.140422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
29
|
Jabbar ZH, Graimed BH, Okab AA, Alsunbuli MM, Al-husseiny RA. Construction of 3D flower-like Bi5O7I/Bi/Bi2WO6 heterostructure decorated NiFe2O4 nanoparticles for photocatalytic destruction of Levofloxacin in aqueous solution: Synergistic effect between S-scheme and SPR action. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
30
|
Xie K, Xu S, Xu K, Hao W, Wang J, Wei Z. BiOCl Heterojunction photocatalyst: Construction, photocatalytic performance, and applications. CHEMOSPHERE 2023; 317:137823. [PMID: 36649899 DOI: 10.1016/j.chemosphere.2023.137823] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/14/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
BiOCl semiconductors have attracted extensive amounts of attention and have substantial potential in alleviating energy shortages, improving sterilization performance, and solving environmental issues. To improve the optical quantum efficiency of layered BiOCl, the lifetimes of photogenerated electron-hole pairs, and BiOCl reduction capacity. During the past decade, researchers have designed many effective methods to weaken the effects of these limitations, and heterojunction construction is regarded as one of the most promising strategies. In this paper, BiOCl heterojunction photocatalysts designed and synthesized by various research groups in recent years were reviewed, and their photocatalytic properties were tested. Among them, direct Z-scheme and S-scheme photocatalysts have high redox potentials and intense redox capabilities. Hence, they exhibit excellent photocatalytic activity. Furthermore, the applications of BiOCl heterojunctions for pollutant degradation, CO2 reduction, water splitting, N2 fixation, organic synthesis, and tumor ablation are also reviewed. Finally, we summarize research on the BiOCl heterojunctions and put forth new insights on overcoming their present limitations.
Collapse
Affiliation(s)
- Kefeng Xie
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China.
| | - Shengyuan Xu
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Kai Xu
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Wei Hao
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Jie Wang
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Zheng Wei
- Cancer Research Institute, Henan Academy Institute of Chinese Medicine, Zhengzhou 450000, Henan, China; School of Basic Medicine Sciences, Henan University of Chinese Medicine; Zhengzhou 450004, China.
| |
Collapse
|
31
|
Sang T, Zhong Y, Jiang S, Xue XG, Hu CH, Wang DH, Ye JC, Wei NN, Liu H. EDTA promoted Cr(VI) reduction in semiconductor/insulator photocatalyst: Performance, mechanistic insight and DFT calculation. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
32
|
Fabrication of Ti-doped Bi2S3/NiO p-n heterojunction with enhanced visible-light–driven photocatalytic activity. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
33
|
Cui Z, Tian S, Liu X, Wang Q, Zeng S, Si J. Electrospinning preparation of TPU/TiO2/PANI fiber membrane with enhanced dye degradation and photocatalytic Cr(VI) reduction. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
34
|
Visible light-activated Cu3TiO4 photocatalyst for the one-pot multicomponent synthesis of imidazo-pyrimido acridines. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2022.110310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
35
|
Banerjee D, Banerjee P, Kar AK. Structure-correlated excitation wavelength-dependent optical properties of ZnO nanostructures for multifunctional applications. NEW J CHEM 2023. [DOI: 10.1039/d2nj04571k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Excitation wavelength-dependent visible emissions from ZnO nanostructures demonstrate that defect states are insufficient to explain their optical properties.
Collapse
Affiliation(s)
- Dhritiman Banerjee
- Micro and Nano Science Laboratory, Department of Physics, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, 826004, India
| | - Payal Banerjee
- Department of Chemistry, National Tsing Hua University, Hsinchu, 300044, Taiwan, Republic of China
| | - Asit Kumar Kar
- Micro and Nano Science Laboratory, Department of Physics, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, 826004, India
| |
Collapse
|
36
|
Jabbar ZH, Okab AA, Graimed BH, Abdullah Issa M, Ammar SH. Fabrication of g-C3N4 nanosheets immobilized Bi2S3/Ag2WO4 nanorods for photocatalytic disinfection of Staphylococcus aureus cells in wastewater: dual S-scheme charge separation pathway. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
37
|
Liang B, Qin F, Yang R, Zheng S, Xu Y, Bai Y, Ma Y, Dai K, Tang Y, Zhang C, Hu C, Zhang R. The precursors’ feeding ratio of NCQDs/NaBiO3•2H2O induced the modulation of hydrothermal reaction products and their photocatalytic properties. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.134966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
38
|
Nie M, Zhou C, Feng W, Xin C, Yu X, Li Q. Hierarchical ZnS layers-coated Ti3+-TiO2 nanostructures for boosted visible-light photocatalytic norfloxacin degradation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
39
|
Balu K, Chicardi E, Sepúlveda R, Durai M, Ishaque F, Chauhan D, Ahn YH. BiOX (X= I or Cl?) modified Na-K2Ti6O13 nanostructured materials for efficient degradation of Tetracycline, Acid Black 1 dye and microbial disinfection in wastewater under Blue LED. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
40
|
Xin C, Zhu S, Liao J, Hou M, Li Q, Yu X, Li S. Rational design of S-scheme AgI/ZrTiO 4-x heterojunctions for remarkably boosted norfloxacin degradation. CHEMOSPHERE 2022; 308:136279. [PMID: 36064018 DOI: 10.1016/j.chemosphere.2022.136279] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/16/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
Emerging S-scheme heterojunction photocatalysts endowed with efficient charge separation and strong redox capacity have stimulated wide interests in dealing with environmental issues nowadays. In this work, we firstly fabricated the oxygen vacancy modified ZrTiO4-x nanocrystals, which was further combined with AgI to build the defective S-scheme AgI/ZrTiO4-x heterojunctions for visible-light photocatalytic norfloxacin degradation. The synthesized ZrTiO4-x nanocrystals and AgI/ZrTiO4-x heterojunctions displayed remarkably boosted norfloxacin degradation performance under visible-light irradiation. The reaction rate constant of the optimized AgI/ZrTiO4-x-5% heterojunction is as high as 0.01419 min-1, which is approximately 43.35 times that of AgI and 7.93 times that of ZrTiO4-x nanocrystals, and far superior to those of commercial TiO2 and commercial ZrO2. The high-performance photocatalytic norfloxacin degradation could be mainly attributed to the formation of S-scheme charge transfer pathways and oxygen vacancy defects. More significantly, AgI/ZrTiO4-x could also realize the effective photo-decomposition of other emerging pollutants. Finally, the visible-light photocatalytic performance and photocatalysis mechanism were investigated.
Collapse
Affiliation(s)
- Changhui Xin
- Henan Engineering Research Center of Resource & Energy Recovery from Waste, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Songwei Zhu
- Henan Engineering Research Center of Resource & Energy Recovery from Waste, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Jinyi Liao
- Henan Engineering Research Center of Resource & Energy Recovery from Waste, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Mingming Hou
- Henan Engineering Research Center of Resource & Energy Recovery from Waste, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Qian Li
- Henan Engineering Research Center of Resource & Energy Recovery from Waste, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Xin Yu
- Henan Engineering Research Center of Resource & Energy Recovery from Waste, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China.
| | - Shijie Li
- National Engineering Research Center for Marine Aquaculture, Institute of Innovation & Application, Zhejiang Ocean University, Zhoushan, Zhejiang Province, 316022, China.
| |
Collapse
|
41
|
Liu J, Wang H, Chang MJ, Li WJ, Zhu WY, Bai G, Yang LQ, Du HL, Luo ZM, Shang T. Efficient doping to synthesize high-performance Co/Fe-BiOCl photocatalyst assisted by the ion release from novel CoFe2O4 nanofiber reservoir. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
42
|
Hou H, Yang W, Sun H, Zhang H, Feng X, Kuang Y. Tailored Synthesis of Ga2O3 Nanofibers Towards Enhanced Photocatalytic Hydrogen Evolution. Catal Letters 2022. [DOI: 10.1007/s10562-022-04217-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
43
|
Khan Y, Sadia H, Ali Shah SZ, Khan MN, Shah AA, Ullah N, Ullah MF, Bibi H, Bafakeeh OT, Khedher NB, Eldin SM, Fadhl BM, Khan MI. Classification, Synthetic, and Characterization Approaches to Nanoparticles, and Their Applications in Various Fields of Nanotechnology: A Review. Catalysts 2022; 12:1386. [DOI: 10.3390/catal12111386] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
Nanoparticles typically have dimensions of less than 100 nm. Scientists around the world have recently become interested in nanotechnology because of its potential applications in a wide range of fields, including catalysis, gas sensing, renewable energy, electronics, medicine, diagnostics, medication delivery, cosmetics, the construction industry, and the food industry. The sizes and forms of nanoparticles (NPs) are the primary determinants of their properties. Nanoparticles’ unique characteristics may be explored for use in electronics (transistors, LEDs, reusable catalysts), energy (oil recovery), medicine (imaging, tumor detection, drug administration), and more. For the aforementioned applications, the synthesis of nanoparticles with an appropriate size, structure, monodispersity, and morphology is essential. New procedures have been developed in nanotechnology that are safe for the environment and can be used to reliably create nanoparticles and nanomaterials. This research aims to illustrate top-down and bottom-up strategies for nanomaterial production, and numerous characterization methodologies, nanoparticle features, and sector-specific applications of nanotechnology.
Collapse
Affiliation(s)
- Yousaf Khan
- Department of Chemistry, Quaid-i-Azam University, Islamabad 44000, Pakistan
| | - Haleema Sadia
- Department of Chemistry, Quaid-i-Azam University, Islamabad 44000, Pakistan
| | | | | | - Amjad Ali Shah
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 44000, Pakistan
| | - Naimat Ullah
- Department of Chemistry, Quaid-i-Azam University, Islamabad 44000, Pakistan
| | - Muhammad Farhat Ullah
- Genome Editing & Sequencing Lab, National Centre for Bioinformatics, Quaid-i-Azam University Islamabad, Islamabad 15320, Pakistan
| | - Humaira Bibi
- Department of Chemistry, Quaid-i-Azam University, Islamabad 44000, Pakistan
| | - Omar T. Bafakeeh
- Department of Industrial Engineering, Jazan University, Jazan 82822, Saudi Arabia
| | - Nidhal Ben Khedher
- Department of Mechanical Engineering, College of Engineering, University of Ha’il, Ha’il 81451, Saudi Arabia
- Laboratory of Thermal and Energy Systems Studies, National School of Engineering of Monastir, University of Monastir, Monastir 5000, Tunisia
| | - Sayed M. Eldin
- Center of Research, Faculty of Engineering, Future University in Egypt, New Cairo 11835, Egypt
| | - Bandar M. Fadhl
- Mechanical Engineering Department, College of Engineering and Islamic Architecture, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Muhammad Ijaz Khan
- Department of Mechanical Engineering, Lebanese American University, Beirut P.O. Box 36, Lebanon
- Department of Mathematics and Statistics, Riphah International University I-14, Islamabad 44000, Pakistan
| |
Collapse
|
44
|
Zhang M, Wang T, Bian C, Yang N, Qi H. Designing novel step-scheme heterojunction g-C3N4/TMCs/GO with effective charge transfer for photocatalytic degradation of organic pollutant under visible light. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
45
|
Shuai C, Zhong S, Shuai Y, Yang W, Peng S, He C. Accelerated anode and cathode reaction due to direct electron uptake and consumption by manganese dioxide and titanium dioxide composite cathode in degradation of iron composite. J Colloid Interface Sci 2022; 632:95-107. [DOI: 10.1016/j.jcis.2022.11.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/26/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022]
|
46
|
A compact Z-scheme heterojunction of BiOCl/Bi2WO6 for efficiently photocatalytic degradation of gaseous toluene. J Colloid Interface Sci 2022; 631:44-54. [DOI: 10.1016/j.jcis.2022.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/26/2022] [Accepted: 11/06/2022] [Indexed: 11/10/2022]
|
47
|
Zheng Y, Sun Y. Construction of a flower-like S-scheme Bi 2WO 6/BiOCl nano-heterojunction with enhanced visible-light photocatalytic properties. NEW J CHEM 2022. [DOI: 10.1039/d2nj04521d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A series of flower-like Bi2WO6/BiOCl photocatalyst were synthesized by a facile hydrothermal method. S-scheme Bi2WO6/BiOCl-3 nano-heterojunction exhibits the excellent photocatalytic activity for degradation of RhB under visible light irradiation.
Collapse
Affiliation(s)
- Yuanyuan Zheng
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Yangang Sun
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| |
Collapse
|
48
|
Kalita J, Bharali L, Dhar SS. Zn-doped hydroxyapatite@g-C 3N 4: a novel efficient visible-light-driven photocatalyst for degradation of pharmaceutical pollutants. NEW J CHEM 2022. [DOI: 10.1039/d2nj04087e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Heterojunction formation has been shown to be an effective technique for tuning nanomaterial features such as chemical reactivity and optical performance.
Collapse
Affiliation(s)
- Juri Kalita
- Department of Chemistry, National Institute of Technology, Silchar, Cachar, 788010, Assam, India
| | - Linkon Bharali
- Department of Chemistry, National Institute of Technology, Silchar, Cachar, 788010, Assam, India
| | - Siddhartha S. Dhar
- Department of Chemistry, National Institute of Technology, Silchar, Cachar, 788010, Assam, India
| |
Collapse
|
49
|
Liu L, Fu H, Zeng Y, Feng L, Zhang T, Liang Q, Xiao X. The enhanced photocatalytic properties of Bi/BiOCl composites for H 2O 2 production. NEW J CHEM 2022. [DOI: 10.1039/d2nj04267c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Efficient production of H2O2via metal Bi and defect co-modified BiOCl.
Collapse
Affiliation(s)
- Liran Liu
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Material Science, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Hanping Fu
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Material Science, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Yating Zeng
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Material Science, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Li Feng
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Material Science, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Tianxiang Zhang
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Material Science, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Qingshuang Liang
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Material Science, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Xiufeng Xiao
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Material Science, Fujian Normal University, Fuzhou, Fujian 350007, China
| |
Collapse
|