1
|
Xu Z, Ye M, Li L, Dong Z, Su X, Zhao J, Li J. Recyclable high-performance and fully biodegradable cassava starch composite hydrogels based on dynamic cross-linking. Int J Biol Macromol 2025; 310:143117. [PMID: 40228769 DOI: 10.1016/j.ijbiomac.2025.143117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 04/08/2025] [Accepted: 04/10/2025] [Indexed: 04/16/2025]
Abstract
Hydrogels possess properties such as biocompatibility and flexibility, which render them promising multifunctional viscoelastic materials. Despite recent significant advancements in hydrogel technology, their applications remain constrained by factors such as inadequate mechanical performance, limited self-healing properties, and challenges related to recycling. This study presents a straightforward strategy utilizing dialdehyde cassava starch and gelatin to design a self-healing, recyclable hydrogel material with superior mechanical properties, achieved through dynamic molecular interactions, including Schiff base complexes and hydrogen bonds. These interactions are facilitated by the incorporation of dialdehyde cassava starch (DCS), prepared by oxidizing cassava starch (CS) with sodium periodate (NaIO4), into the gelatin matrix. The addition of dialdehyde cassava starch endows the hydrogel material with remarkable properties, including outstanding tensile strength (133.22 kPa), exceptional compressive strength (1035.9 kPa), significant swelling stability, and self-healing capabilities. Notably, this gelatin/dialdehyde cassava starch hydrogel (GDCSH) demonstrates complete recyclability, thereby contributing to the reduction of environmental pollution. Overall, this study proposes a high-performance cassava starch composite hydrogel based on dynamic interactions, which may facilitate advancements in hydrogel materials research.
Collapse
Affiliation(s)
- Zhuhan Xu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Mengting Ye
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China.
| | - Long Li
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Zhaojun Dong
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Xiuru Su
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Jiuhui Zhao
- Henan Century Baiyun Paper Group Company Limited, No. 14, Worker Road, Suiping County, Zhumadian City, Henan Province, China.
| | - Jun Li
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China.
| |
Collapse
|
2
|
Amara U, Xu L, Hussain I, Yang K, Hu H, Ho D. MXene Hydrogels for Soft Multifunctional Sensing: A Synthesis-Centric Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2405047. [PMID: 39501918 DOI: 10.1002/smll.202405047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/28/2024] [Indexed: 01/11/2025]
Abstract
Intelligent wearable sensors based on MXenes hydrogels are rapidly advancing the frontier of personalized healthcare management. MXenes, a new class of transition metal carbon/nitride synthesized only a decade ago, have proved to be a promising candidate for soft sensors, advanced human-machine interfaces, and biomimicking systems due to their controllable and high electrical conductivity, as well as their unique mechanical properties as derived from their atomistically thin layered structure. In addition, MXenes' biocompatibility, hydrophilicity, and antifouling properties render them particularly suitable to synergize with hydrogels into a composite for mechanoelectrical functions. Nonetheless, while the use of MXene as a multifunctional surface or an electrical current collector such as an energy device electrode is prevalent, its incorporation into a gel system for the purpose of sensing is vastly less understood and formalized. This review provides a systematic exposition to the synthesis, property, and application of MXene hydrogels for intelligent wearable sensors. Specific challenges and opportunities on the synthesis of MXene hydrogels and their adoption in practical applications are explicitly analyzed and discussed to facilitate cross gemination across disciplines to advance the potential of MXene multifunctional sensing hydrogels.
Collapse
Affiliation(s)
- Umay Amara
- School of Materials Science and Engineering, Anhui University, Hefei, 230601, China
- Department of Material Science and Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Lingtian Xu
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Iftikhar Hussain
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Kai Yang
- Department of Material Science and Engineering, City University of Hong Kong, Hong Kong, 999077, China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering, Hong Kong, 999077, China
| | - Haibo Hu
- School of Materials Science and Engineering, Anhui University, Hefei, 230601, China
| | - Derek Ho
- Department of Material Science and Engineering, City University of Hong Kong, Hong Kong, 999077, China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering, Hong Kong, 999077, China
| |
Collapse
|
3
|
Yao M, Hsieh JC, Tang KWK, Wang H. Hydrogels in wearable neural interfaces. MED-X 2024; 2:23. [PMID: 39659711 PMCID: PMC11625692 DOI: 10.1007/s44258-024-00040-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/21/2024] [Accepted: 10/06/2024] [Indexed: 12/12/2024]
Abstract
The integration of wearable neural interfaces (WNIs) with the human nervous system has marked a significant progression, enabling progress in medical treatments and technology integration. Hydrogels, distinguished by their high-water content, low interfacial impedance, conductivity, adhesion, and mechanical compliance, effectively address the rigidity and biocompatibility issues common in traditional materials. This review highlights their important parameters-biocompatibility, interfacial impedance, conductivity, and adhesiveness-that are integral to their function in WNIs. The applications of hydrogels in wearable neural recording and neurostimulation are discussed in detail. Finally, the opportunities and challenges faced by hydrogels for WNIs are summarized and prospected. This review aims to offer a thorough examination of hydrogel technology's present landscape and to encourage continued exploration and innovation. As developments progress, hydrogels are poised to revolutionize wearable neural interfaces, offering significant enhancements in healthcare and technological applications. Graphical Abstract
Collapse
Affiliation(s)
- Mengmeng Yao
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712 USA
| | - Ju-Chun Hsieh
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712 USA
| | - Kai Wing Kevin Tang
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712 USA
| | - Huiliang Wang
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712 USA
| |
Collapse
|
4
|
Wan Y, Zhang L, Wu T, Tang C, Song H, Cao Q. High-performance and frost-resistance MXene co-ionic liquid conductive hydrogel printed by electrohydrodynamic for flexible strain sensor. J Colloid Interface Sci 2024; 669:688-698. [PMID: 38733880 DOI: 10.1016/j.jcis.2024.05.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/01/2024] [Accepted: 05/07/2024] [Indexed: 05/13/2024]
Abstract
Conductive hydrogels with high performance and frost resistance are essential for flexible electronics, electronic skin, and soft robots. Nonetheless, the preparation of hydrogel-based flexible strain sensors with rapid response, wide strain detection range, and high sensitivity remains a considerable challenge. Furthermore, the inevitable freezing and evaporation of water in sub-zero temperatures and dry environments lead to the loss of flexibility and conductivity in hydrogels, which seriously limits their practical application. In this work, ionic liquids (ILs) and MXene are introduced into gelatin/polyacrylamide (PAM) precursor solution, and a PAM/gelatin/ILs/MXene/glycerol (PGIMG) hydrogel-based flexible strain sensor with MXene co-ILs ion-electron composite conductive network is prepared by combining the electrohydrodynamic (EHD) printing method and in-situ photopolymerization. The introduction of ILs provides an ionic conductive channel for the hydrogel. The introduction of MXene nanosheets forms an interpenetrating network with gelatin and PAM, which not only provides a conductive channel, but also improves the mechanical and sensing properties of the hydrogel-based flexible strain sensor. The prepared PGIMG hydrogel with the MXene co-ILs ion-electron composite conductive network demonstrates a tensile strength of 0.21 MPa at 602.82 % strain, the conductivity of 1.636 × 10-3 S/cm, high sensitivity (Gauge Factor, GF = 4.17), a wide strain detection range (1-600 %), and the response/recovery times (73 ms and 74 ms). In addition, glycerol endows the hydrogel with excellent freezing (-60 °C) and water retention properties. The application of the hydrogel-based flexible strain sensor in the field of human motion detection and information transmission shows the great potential of wearable devices, electronic skin, and information encryption transmission.
Collapse
Affiliation(s)
- Yu Wan
- School of Mechanical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Libing Zhang
- College of Information Science and Engineering, Jiaxing University, Jiaxing 314001, China.
| | - Ting Wu
- College of Information Science and Engineering, Jiaxing University, Jiaxing 314001, China.
| | - Chengli Tang
- College of Information Science and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Haijun Song
- College of Information Science and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Qianqian Cao
- College of Information Science and Engineering, Jiaxing University, Jiaxing 314001, China
| |
Collapse
|
5
|
Yang Y, Suo D, Xu T, Zhao S, Xu X, Bei HP, Wong KKY, Li Q, Zheng Z, Li B, Zhao X. Sprayable biomimetic double mask with rapid autophasing and hierarchical programming for scarless wound healing. SCIENCE ADVANCES 2024; 10:eado9479. [PMID: 39141725 PMCID: PMC11323895 DOI: 10.1126/sciadv.ado9479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/08/2024] [Indexed: 08/16/2024]
Abstract
Current sprayable hydrogel masks lack the stepwise protection, cleansing, and nourishment of extensive wounds, leading to delayed healing with scarring. Here, we develop a sprayable biomimetic double wound mask (BDM) with rapid autophasing and hierarchical programming for scarless wound healing. The BDMs comprise hydrophobic poly (lactide-co-propylene glycol-co-lactide) dimethacrylate (PLD) as top layer and hydrophilic gelatin methacrylate (GelMA) hydrogel as bottom layer, enabling swift autophasing into bilayered structure. After photocrosslinking, BDMs rapidly solidify with strong interfacial bonding, robust tissue adhesion, and excellent joint adaptiveness. Upon implementation, the bottom GelMA layer could immediately release calcium ion for rapid hemostasis, while the top PLD layer could maintain a moist, breathable, and sterile environment. These traits synergistically suppress the inflammatory tumor necrosis factor-α pathway while coordinating the cyclic guanosine monophosphate/protein kinase G-Wnt/calcium ion signaling pathways to nourish angiogenesis. Collectively, our BDMs with self-regulated construction of bilayered structure could hierarchically program the healing progression with transformative potential for scarless wound healing.
Collapse
Affiliation(s)
- Yuhe Yang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Di Suo
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Tianpeng Xu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Shuai Zhao
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Xiaoxiao Xu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, Guangdong 518057, China
| | - Ho-Pan Bei
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, Guangdong 518057, China
| | - Kenneth Kak-yuen Wong
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Qibin Li
- Research Center for Intelligent Aesthetic Medicine, PolyU-Hangzhou Technology and Innovation Research Institute, Hangzhou, Zhejiang 310016, China
- Hangzhou Industrial Investment Group Co., Ltd., Hangzhou, Zhejiang, 310025, China
| | - Zijian Zheng
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- Research Institute for Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Bin Li
- Medical 3D Printing Center, Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Orthopedic Institute, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Xin Zhao
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, Guangdong 518057, China
- Research Center for Intelligent Aesthetic Medicine, PolyU-Hangzhou Technology and Innovation Research Institute, Hangzhou, Zhejiang 310016, China
- Research Institute for Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
- Research Institute for Future Food, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| |
Collapse
|
6
|
Zhu Y, Yao D, Gao X, Chen J, Wang H, You T, Lu C, Pang X. Recyclable Bimodal Polyvinyl Alcohol/PEDOT:PSS Hydrogel Sensors for Highly Sensitive Strain and Temperature Sensing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:32466-32480. [PMID: 38864420 DOI: 10.1021/acsami.4c05878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Multimodal flexible sensors, consisting of multiple sensing units, can sense and recognize different external stimuli by outputting different types of response signals. However, the recovery and recycling of multimodal sensors are impeded by complex structures and the use of multiple materials. Here, a bimodal flexible sensor that can sense strain by resistance change and temperature by voltage change was constructed using poly(vinyl alcohol) hydrogel as a matrix and poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT:PSS) as a sensing material due to its conductivity and thermoelectric effect. The plasticity of hydrogels, along with the simplicity of the sensor's components and structure, facilitates easy recovery and recycling. The incorporation of citric acid and ethylene glycol improved the mechanical properties, strain hysteresis, and antifreezing properties of the hydrogels. The sensor exhibits a remarkable response to strain, characterized by high sensitivity (gauge factor of 4.46), low detection limit (0.1%), fast response and recovery times, minimal hysteresis, and excellent stability. Temperature changes induced by hot air currents, hot objects, and light cause the sensor to exhibit high response sensitivity, fast response time, and good stability. Additionally, variations in ambient humidity and temperature minimally affect the sensor's strain response, and temperature response remains unaffected by humidity changes. The recycled sensors are essentially unchanged for bimodal sensing of strain and temperature. Finally, bimodal sensors are applied to monitor body motion, and robots to sense external stimuli.
Collapse
Affiliation(s)
- Yan Zhu
- School of Chemistry & Chemical Engineering, Henan University of Science &Technology, Luoyang 471003, P. R. China
| | - Dahu Yao
- School of Materials Science and Engineering, Henan University of Science & Technology, Luoyang 471023, P. R. China
| | - Xiping Gao
- School of Materials Science and Engineering, Henan University of Science & Technology, Luoyang 471023, P. R. China
| | - Jing Chen
- School of Materials Science and Engineering, Henan University of Science & Technology, Luoyang 471023, P. R. China
| | - Hui Wang
- School of Chemistry & Chemical Engineering, Henan University of Science &Technology, Luoyang 471003, P. R. China
| | - Tianyan You
- College of Agricultural Equipment Engineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Chang Lu
- School of Materials Science and Engineering, Henan University of Science & Technology, Luoyang 471023, P. R. China
| | - Xinchang Pang
- School of Materials Science and Engineering, Henan University of Science & Technology, Luoyang 471023, P. R. China
| |
Collapse
|
7
|
Li T, Yao R, Ma Z, Tong R, Wang Y, Gu P, Xu J, Ye H, Liu L. A universal solvent-replacement strategy to convert alginate hydrogels into mechanically strong and transparent alginate eutectogels for sensitive strain sensors. Int J Biol Macromol 2024; 271:132789. [PMID: 38845258 DOI: 10.1016/j.ijbiomac.2024.132789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/21/2024] [Accepted: 05/29/2024] [Indexed: 06/20/2024]
Abstract
Eutectogels based on natural polymers have attracted significant attention as an alternative to easily dehydrated hydrogels and expensive ionogels in the development of flexible strain sensors. The feasibility of employing eutectogels derived from pure natural polymers could be greatly enhanced if their mechanical properties satisfy the requirements of applications. Herein, alginate eutectogels (AEs) with high mechanical properties (tensile strain 217 % and strength 2.26 MPa at fracture), and excellent transparency (over 90 %) are acquired via CaCl2 inducing ionic crosslinking and subsequent deep eutectic solvents (DESs, composed of glycerol and choline chloride) initiating physical crosslinking with a universal solvent- replacement strategy. Among them, sodium alginate, a natural polysaccharide polymer, is selected as representative supporting scaffolds and forms water-insoluble alginate hydrogels (AHs) in CaCl2 coagulation bath. The exchange of DESs with water of AHs not only restrengthens the polymer network by physical crosslinking, but also endows the obtained AEs with long-term solvent retention and high temperature resistance. In addition, the AEs not only have high reliability but also exhibit better linear sensitivity in a wide strain range (0-200 %). In particular, the AEs display multiple sensitivity to stretching, bending, and human motions, demonstrating feasibility as sensitive strain sensors.
Collapse
Affiliation(s)
- Tengfei Li
- Key Laboratory of Air-driven Equipment of Zhejiang Province, College of Mechanical Engineering, Quzhou University, Quzhou 324000, China
| | - Rui Yao
- Key Laboratory of Air-driven Equipment of Zhejiang Province, College of Mechanical Engineering, Quzhou University, Quzhou 324000, China
| | - Zhihui Ma
- Key Laboratory of Air-driven Equipment of Zhejiang Province, College of Mechanical Engineering, Quzhou University, Quzhou 324000, China
| | - Ruiping Tong
- Key Laboratory of Air-driven Equipment of Zhejiang Province, College of Mechanical Engineering, Quzhou University, Quzhou 324000, China.
| | - Yifu Wang
- Key Laboratory of Air-driven Equipment of Zhejiang Province, College of Mechanical Engineering, Quzhou University, Quzhou 324000, China
| | - Ping Gu
- Key Laboratory of Air-driven Equipment of Zhejiang Province, College of Mechanical Engineering, Quzhou University, Quzhou 324000, China
| | - Junfei Xu
- Key Laboratory of Air-driven Equipment of Zhejiang Province, College of Mechanical Engineering, Quzhou University, Quzhou 324000, China.
| | - Huan Ye
- Key Laboratory of Air-driven Equipment of Zhejiang Province, College of Mechanical Engineering, Quzhou University, Quzhou 324000, China
| | - Linfeng Liu
- Key Laboratory of Air-driven Equipment of Zhejiang Province, College of Mechanical Engineering, Quzhou University, Quzhou 324000, China
| |
Collapse
|
8
|
Boland CS. Performance analysis of solution-processed nanosheet strain sensors-a systematic review of graphene and MXene wearable devices. NANOTECHNOLOGY 2024; 35:202001. [PMID: 38324912 DOI: 10.1088/1361-6528/ad272f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 02/07/2024] [Indexed: 02/09/2024]
Abstract
Nanotechnology has led to the realisation of many potentialInternet of Thingsdevices that can be transformative with regards to future healthcare development. However, there is an over saturation of wearable sensor review articles that essentially quote paper abstracts without critically assessing the works. Reported metrics in many cases cannot be taken at face value, with researchers overly fixated on large gauge factors. These facts hurt the usefulness of such articles and the very nature of the research area, unintentionally misleading those hoping to progress the field. Graphene and MXenes are arguably the most exciting organic and inorganic nanomaterials for polymer nanocomposite strain sensing applications respectively. Due to their combination of cost-efficient, scalable production and device performances, their potential commercial usage is very promising. Here, we explain the methods for colloidal nanosheets suspension creation and the mechanisms, metrics and models which govern the electromechanical properties of the polymer-based nanocomposites they form. Furthermore, the many fabrication procedures applied to make these nanosheet-based sensing devices are discussed. With the performances of 70 different nanocomposite systems from recent (post 2020) publications critically assessed. From the evaluation of these works using universal modelling, the prospects of the field are considered. Finally, we argue that the realisation of commercial nanocomposite devices may in fact have a negative effect on the global climate crisis if current research trends do not change.
Collapse
Affiliation(s)
- Conor S Boland
- School of Mathematical and Physical Sciences, University of Sussex, Brighton, BN1 9QH, United Kingdom
| |
Collapse
|
9
|
Navitski I, Ramanaviciute A, Ramanavicius S, Pogorielov M, Ramanavicius A. MXene-Based Chemo-Sensors and Other Sensing Devices. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:447. [PMID: 38470777 DOI: 10.3390/nano14050447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/15/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024]
Abstract
MXenes have received worldwide attention across various scientific and technological fields since the first report of the synthesis of Ti3C2 nanostructures in 2011. The unique characteristics of MXenes, such as superior mechanical strength and flexibility, liquid-phase processability, tunable surface functionality, high electrical conductivity, and the ability to customize their properties, have led to the widespread development and exploration of their applications in energy storage, electronics, biomedicine, catalysis, and environmental technologies. The significant growth in publications related to MXenes over the past decade highlights the extensive research interest in this material. One area that has a great potential for improvement through the integration of MXenes is sensor design. Strain sensors, temperature sensors, pressure sensors, biosensors (both optical and electrochemical), gas sensors, and environmental pollution sensors targeted at volatile organic compounds (VOCs) could all gain numerous improvements from the inclusion of MXenes. This report delves into the current research landscape, exploring the advancements in MXene-based chemo-sensor technologies and examining potential future applications across diverse sensor types.
Collapse
Affiliation(s)
- Ilya Navitski
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), Sauletekio av. 3, LT-10257 Vilnius, Lithuania
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
| | - Agne Ramanaviciute
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
| | - Simonas Ramanavicius
- Department of Organic Chemistry, State Research Institute Center for Physical Sciences and Technology, Saulėtekio av. 3, LT-10257 Vilnius, Lithuania
| | - Maksym Pogorielov
- Biomedical Research Centre, Sumy State University, 2, Kharkivska Str., 40007 Sumy, Ukraine
- Institute of Atomic Physics and Spectroscopy, University of Latvia, 3 Jelgavas St., LV-1004 Riga, Latvia
| | - Arunas Ramanavicius
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
| |
Collapse
|
10
|
Wang F, Chen C, Zhu D, Li W, Liu J, Wang J. Ultrastretchable and highly conductive hydrogels based on Fe 3+- lignin nanoparticles for subzero wearable strain sensor. Int J Biol Macromol 2023; 253:126768. [PMID: 37683743 DOI: 10.1016/j.ijbiomac.2023.126768] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/30/2023] [Accepted: 09/04/2023] [Indexed: 09/10/2023]
Abstract
Conductive hydrogels have attracted considerable interest for potential applications in soft robotics, electronic skin and human monitoring. However, insufficient mechanical characteristics, low adhesion and unsatisfactory electrical conductivity severely restrict future application possibilities of hydrogels. Herein, lignin nanoparticles (LNPs)-Fe3+-ammonium persulfate (APS) catalytic system was introduced to assemble Poly(2-hydroxyethyl methacrylate)/LNPs/Ca2+ (PHEMA/LNPs/Ca) hydrogels. Due to the abundant metal coordination and hydrogen bonds, the composite hydrogel displayed ultrahigh stretchable capacity (3769 %), adhesion properties (248 kPa for skin) and self-healing performance. Importantly, hydrogel sensors possess with high durability, strain sensitivity (GF = 8.75), fast response time and freeze resistance (-20 °C) that could be employed to monitor motion signals in low-temperature regime. Therefore, the LNPs-Fe3+ catalytic system has great potential in preparing hydrogel for various applications such as human-computer interaction, artificial intelligence, personal healthcare and subzero wearable devices. At the same time, incorporation of natural macromolecules into polymer hydrogels is tremendous research significance for investigating high-value utilization of lignin.
Collapse
Affiliation(s)
- Fang Wang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Key Lab for the Chemistry and Utilization of Agricultural and Forest Biomass, Nanjing Forestry University, Nanjing 210037, China.
| | - Cheng Chen
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Dingfeng Zhu
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Wen Li
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jiaqi Liu
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jiajun Wang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
11
|
Li X, Sun F. An Ultrastretchable Gradient Ionogel Induced by a Self-Floating Strategy for Strain Sensing. ACS APPLIED MATERIALS & INTERFACES 2023; 15:37717-37727. [PMID: 37523492 DOI: 10.1021/acsami.3c06894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
The fabrication of gradient ionogels for flexible strain sensors remains challenging because of the complex preparation procedures, and it is still difficult to prepare highly stretchable ionogels (strain > 10000%). In this study, a strategy is proposed to successfully fabricate gradient ionogels and apply them to flexible strain sensors by utilizing the self-floating character of the polysiloxane cross-linker. A gradient ionogel with ultrahigh stretchability (>14000%) is prepared via a one-step in situ photopolymerization process of the precursor with long-chain poly(dimethylsiloxane) bis(2-methyl acrylate) (PDMSMA). PDMSMA, which has a self-floating ability and excellent flexibility, induces a gradient composition distribution in the ionogel, thereby endowing the ionogel with superior stretchability and gradient changes in conductivity and adhesivity from the top to the bottom layer. Because of multiple molecular interactions, the bottom surface of the ionogel possesses good resilience and self-adhesion, whereas the top surface, which has a high PDMSMA content, shows a nonsticky performance. As a result, a singular gradient ionogel having both a sticky bottom surface and a nonsticky top surface is achieved. Furthermore, the flexible strain sensor that is created based on these gradient ionogels exhibits high sensitivity (its gauge factor reaching 5.08), a wide detection range (1-1500%), fast response times, and good linearity. Notably, the detection signal remains repeatable over 1000 uninterrupted strain cycles. The fabricated strain sensor was further utilized to monitor joint movements and physiological signals. This work provides a facile strategy for fabricating gradient ionogels and shows their application potential in the field of flexible electronics.
Collapse
Affiliation(s)
- Xuechun Li
- College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Fang Sun
- College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
- Anqing Research Institute, Beijing University of Chemical Technology, Anqing 246000, People's Republic of China
| |
Collapse
|
12
|
Fan M, Li P, Liu B, Gong Y, Luo C, Yang K, Liu X, Fan J, Xue Y. Interface Coordination Engineering of P-Fe 3O 4/Fe@C Derived from an Iron-Based Metal Organic Framework for pH-Universal Water Splitting. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1909. [PMID: 37446424 DOI: 10.3390/nano13131909] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023]
Abstract
Developing electrocatalysts with high energy conversion efficiency is urgently needed. In this work, P-Fe3O4/Fe@C electrodes with rich under-coordinated Fe atom interfaces are constructed for efficient pH-universal water splitting. The introduction of under-coordinated Fe atoms into the P-Fe3O4/Fe@C interface can increase the local charge density and polarize the 3d orbital lone electrons, which promotes water adsorption and activation to release more H*, thus elevating electrocatalytic activity. As a donor-like catalyst, P-Fe3O4/Fe@C displays excellent electrocatalytic performance with overpotentials of 160 mV and 214 mV in acidic and alkaline electrolytes at 10 mA cm-2, in addition to pH-universal long-term stability.
Collapse
Affiliation(s)
- Minmin Fan
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Peixiao Li
- Beijing Smartchip Microelectronics Technology Company Limited, Beijing 102200, China
| | - Baibai Liu
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| | - Yun Gong
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Chengling Luo
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Kun Yang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xinjuan Liu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jinchen Fan
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yuhua Xue
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
13
|
Wang Z, Xiao C, Roy M, Yuan Z, Zhao L, Liu Y, Guo X, Lu P. Bioinspired skin towards next-generation rehabilitation medicine. Front Bioeng Biotechnol 2023; 11:1196174. [PMID: 37229496 PMCID: PMC10203386 DOI: 10.3389/fbioe.2023.1196174] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
The rapid progress of interdisciplinary researches from materials science, biotechnologies, biomedical engineering, and medicine, have resulted in the emerging of bioinspired skins for various fantasticating applications. Bioinspired skin is highly promising in the application of rehabilitation medicine owing to their advantages, including personalization, excellent biocompatibility, multi-functionality, easy maintainability and wearability, and mass production. Therefore, this review presents the recent progress of bioinspired skin towards next-generation rehabilitation medicine. The classification is first briefly introduced. Then, various applications of bioinspired skins in the field of rehabilitation medicine at home and abroad are discussed in detail. Last, we provide the challenges we are facing now, and propose the next research directions.
Collapse
Affiliation(s)
- Zhenghui Wang
- Department of Rehabilitation, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Chen Xiao
- Department of Rehabilitation, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Mridul Roy
- Department of Oncology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Zhiyao Yuan
- SanQuan College of Xinxiang Medical University, Xinxiang, China
| | - Lingyu Zhao
- Department of Rehabilitation, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Yanting Liu
- Department of Oncology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Xuejun Guo
- Department of Rehabilitation, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Ping Lu
- Department of Oncology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| |
Collapse
|