1
|
Grodecki K, Geers J, Kwiecinski J, Lin A, Slipczuk L, Slomka PJ, Dweck MR, Nerlekar N, Williams MC, Berman D, Marwick T, Newby DE, Dey D. Phenotyping atherosclerotic plaque and perivascular adipose tissue: signalling pathways and clinical biomarkers in atherosclerosis. Nat Rev Cardiol 2025; 22:443-455. [PMID: 39743563 DOI: 10.1038/s41569-024-01110-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/20/2024] [Indexed: 01/04/2025]
Abstract
Computed tomography coronary angiography provides a non-invasive evaluation of coronary artery disease that includes phenotyping of atherosclerotic plaques and the surrounding perivascular adipose tissue (PVAT). Image analysis techniques have been developed to quantify atherosclerotic plaque burden and morphology as well as the associated PVAT attenuation, and emerging radiomic approaches can add further contextual information. PVAT attenuation might provide a novel measure of vascular health that could be indicative of the pathogenetic processes implicated in atherosclerosis such as inflammation, fibrosis or increased vascularity. Bidirectional signalling between the coronary artery and adjacent PVAT has been hypothesized to contribute to coronary artery disease progression and provide a potential novel measure of the risk of future cardiovascular events. However, despite the development of more advanced radiomic and artificial intelligence-based algorithms, studies involving large datasets suggest that the measurement of PVAT attenuation contributes only modest additional predictive discrimination to standard cardiovascular risk scores. In this Review, we explore the pathobiology of coronary atherosclerotic plaques and PVAT, describe their phenotyping with computed tomography coronary angiography, and discuss potential future applications in clinical risk prediction and patient management.
Collapse
Affiliation(s)
- Kajetan Grodecki
- Department of Biomedical Sciences, and Department of Medicine, Cedars-Sinai Medical Center, Biomedical Imaging Research Institute, Los Angeles, CA, USA
- 1st Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Jolien Geers
- Department of Biomedical Sciences, and Department of Medicine, Cedars-Sinai Medical Center, Biomedical Imaging Research Institute, Los Angeles, CA, USA
- Department of Cardiology, Centrum Voor Hart- en Vaatziekten (CHVZ), Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Jacek Kwiecinski
- Department of Interventional Cardiology and Angiology, National Institute of Cardiology, Warsaw, Poland
| | - Andrew Lin
- Monash Victorian Heart Institute and Monash Health Heart, Monash University, Victorian Heart Hospital, Melbourne, Victoria, Australia
| | - Leandro Slipczuk
- Division of Cardiology, Montefiore Healthcare Network/Albert Einstein College of Medicine, New York, NY, USA
| | - Piotr J Slomka
- Department of Biomedical Sciences, and Department of Medicine, Cedars-Sinai Medical Center, Biomedical Imaging Research Institute, Los Angeles, CA, USA
| | - Marc R Dweck
- British Heart Foundation Centre of Research Excellence, University of Edinburgh, Edinburgh, UK
| | - Nitesh Nerlekar
- Monash Victorian Heart Institute and Monash Health Heart, Monash University, Victorian Heart Hospital, Melbourne, Victoria, Australia
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Michelle C Williams
- British Heart Foundation Centre of Research Excellence, University of Edinburgh, Edinburgh, UK
| | - Daniel Berman
- Department of Biomedical Sciences, and Department of Medicine, Cedars-Sinai Medical Center, Biomedical Imaging Research Institute, Los Angeles, CA, USA
| | - Thomas Marwick
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - David E Newby
- British Heart Foundation Centre of Research Excellence, University of Edinburgh, Edinburgh, UK
| | - Damini Dey
- Department of Biomedical Sciences, and Department of Medicine, Cedars-Sinai Medical Center, Biomedical Imaging Research Institute, Los Angeles, CA, USA.
| |
Collapse
|
2
|
Fiolet ATL, Lin A, Kwiecinski J, Tutein Nolthenius J, McElhinney P, Grodecki K, Kietselaer B, Opstal TS, Cornel JH, Knol RJ, Schaap J, Aarts RAHM, Tutein Nolthenius AMFA, Nidorf SM, Velthuis BK, Dey D, Mosterd A. Effect of low-dose colchicine on pericoronary inflammation and coronary plaque composition in chronic coronary disease: a subanalysis of the LoDoCo2 trial. Heart 2025:heartjnl-2024-325527. [PMID: 40393691 DOI: 10.1136/heartjnl-2024-325527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 04/11/2025] [Indexed: 05/22/2025] Open
Abstract
BACKGROUND Low-dose colchicine (0.5 mg once daily) reduces the risk of major cardiovascular events in coronary disease, but its mechanism of action is not yet fully understood. We investigated whether low-dose colchicine is associated with changes in pericoronary inflammation and plaque composition in patients with chronic coronary disease. METHODS We performed a cross-sectional, nationwide, subanalysis of the Low-Dose Colchicine 2 Trial (LoDoCo2, n=5522). CT angiography studies were performed in 151 participants randomised to colchicine or placebo coronary after a median treatment duration of 28.2 months. Pericoronary adipose tissue (PCAT) attenuation measurements around proximal coronary artery segments and quantitative plaque analysis for the entire coronary tree were performed using artificial intelligence-enabled plaque analysis software. RESULTS Median PCAT attenuation was not significantly different between the two groups (-79.5 Hounsfield units (HU) for colchicine versus -78.7 HU for placebo, p=0.236). Participants assigned to colchicine had a higher volume (169.6 mm3 vs 113.1 mm3, p=0.041) and burden (9.6% vs 7.0%, p=0.035) of calcified plaque, and higher volume of dense calcified plaque (192.8 mm3 vs 144.3 mm3, p=0.048) compared with placebo, independent of statin therapy. Colchicine treatment was associated with a lower burden of low-attenuation plaque in participants on a low-intensity statin, but not in those on a high-intensity statin (pinteraction=0.037). CONCLUSIONS Pericoronary inflammation did not differ among participants who received low-dose colchicine compared with placebo. Low-dose colchicine was associated with a higher volume of calcified plaque, particularly dense calcified plaque, which is considered a feature of plaque stability.
Collapse
Affiliation(s)
- Aernoud T L Fiolet
- Department of Cardiology, University Medical Centre Utrecht, Utrecht, The Netherlands
- Dutch Network for Cardiovascular Research (WCN), Utrecht, The Netherlands
| | - Andrew Lin
- Monash Victorian Heart Institute and Monash Health Heart, Victorian Heart Hospital, Clayton, Victoria, Australia
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Centre, Los Angeles, California, USA
| | - Jacek Kwiecinski
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Centre, Los Angeles, California, USA
- Department of Interventional Cardiology and Angiology, National Institute of Cardiology, Warsaw, Poland
| | - Julie Tutein Nolthenius
- Faculty of Medicine, Amsterdam University Medical Centre Amsterdam, Amsterdam, The Netherlands
| | - Priscilla McElhinney
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Centre, Los Angeles, California, USA
| | - Kajetan Grodecki
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Centre, Los Angeles, California, USA
| | - Bas Kietselaer
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Department of Cardiology, Zuyderland Medical Centre, Heerlen, The Netherlands
| | - Tjerk S Opstal
- Department of Cardiology, Amsterdam University Medical Centre Amsterdam, Amsterdam, The Netherlands
| | - Jan Hein Cornel
- Dutch Network for Cardiovascular Research (WCN), Utrecht, The Netherlands
- Department of Cardiology, Radboud University Medical Centre, Nijmegen, The Netherlands
- Department of Cardiology, Northwest Clinics, Alkmaar, The Netherlands
| | - Remco Jj Knol
- Cardiac Imaging Division, Department of Nuclear Medicine, Noordwest Ziekenhuisgroep, Alkmaar, Noord-Holland, The Netherlands
| | - Jeroen Schaap
- Department of Cardiology, Amphia Hospital, Breda, The Netherlands
| | - Ruud A H M Aarts
- Department of Radiology, Amphia Hospital, Breda, The Netherlands
| | | | - Stefan M Nidorf
- Heart and Vascular Research Institute of Western Australia, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
| | - Birgitta K Velthuis
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Damini Dey
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Centre, Los Angeles, California, USA
| | - Arend Mosterd
- Dutch Network for Cardiovascular Research (WCN), Utrecht, The Netherlands
- Department of Cardiology, Meander MC, Amersfoort, The Netherlands
| |
Collapse
|
3
|
Wang Y, Hou M, Zuo T. Advances in the application of 18F-sodium fluoride PET in the assessment of atherosclerosis. Nucl Med Commun 2025:00006231-990000000-00425. [PMID: 40336263 DOI: 10.1097/mnm.0000000000001988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
Atherosclerosis serves as the primary cause of cardiovascular diseases (CVDs), with its pathological processes encompassing lipid deposition, inflammatory responses, and calcification. Traditional imaging techniques, such as computed tomography angiography and MRI, are primarily utilized for detecting arterial stenosis and calcified plaques, yet they face challenges in accurately assessing plaque activity and instability. 18F-sodium fluoride PET (18F-NaF PET) offers a novel approach for plaque activity and stability assessment by labeling and quantifying arterial wall calcification. This article reviews the advances in the application of 18F-NaF PET in the assessment of atherosclerosis.
Collapse
Affiliation(s)
- Yan Wang
- The Hospital, Qufu Normal University, Jining
| | - Mingyuan Hou
- Department of Oncology intervention, Central Hospital affiliated to Shandong First Medical University, Jinan
- Medical Imaging School, Shandong Second Medical University, Weifang
- Department of Medical Imaging, Qufu Hospital of Traditional Chinese Medicine, Jining, Shandong, China
| | - Taiyang Zuo
- Department of Oncology intervention, Central Hospital affiliated to Shandong First Medical University, Jinan
| |
Collapse
|
4
|
Günay B, Tepe MS, Öztürk HH, Küskün A, Gençbay M. Pericoronary fat attenuation in stenotic and vulnerable coronary artery plaques: Implications for coronary artery disease and associated conditions. Acta Radiol Open 2025; 14:20584601251342312. [PMID: 40416366 PMCID: PMC12099116 DOI: 10.1177/20584601251342312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Accepted: 03/25/2025] [Indexed: 05/27/2025] Open
Abstract
Background Pericoronary adipose tissue density (PCAT) is a parameter that quantifies inflammation and atherosclerosis around the coronary arteries. Purpose To investigate the correlation between PCAT and plaque features, stenosis degrees in coronary arteries (LAD, RCA, Cx) with stenotic vulnerable plaques. Material and methods A Retrospective study including 103 patients (64M, 39F) who underwent coronary computed tomography was retrospectively examined at a single center. PCAT and high-risk plaques were measured independently and compared to stenosis and coronary artery type. Adipose tissue attenuation, ranging from -180 to -25 HU, was measured along the plaque's length and in a 0.5-1 mm region around the perilesional coronary arteries. Results The PCAT values increases with the degree of stenosis in the LAD, Cx, and RCA (r = 0.9161, p < .001; r = 0.9717, p < .001; r = 0.9315, p < .001, respectively). PCAT values demonstrate a positive pattern when plaque length increases in all coronary arteries (r = -0.6316, p < .001; r = -0.8825, p < .001; r = -0.7529, p < .001; LAD, Cx, RCA). PCAT values differed significantly based on plaque type in all coronary arteries. Calcified plaques showed statistically significant differences compared to both soft and mixed plaques (p < .05). Patients with positive remodeling had PCAT values of -69.43 (±8.76) HU, while cases without positive remodeling had PCAT values of -84.54 (±7.65) HU, indicating a significant difference (p < .05). Conclusion The combined evaluation of plaque features, stenosis degree, and PCAT provides a more accurate prediction of possible acute coronary syndrome cases than analyzing stenosis degree alone.
Collapse
Affiliation(s)
- Burak Günay
- Kırklareli Research and Training Hospital, Kırklareli, Center, Turkey
| | | | | | - Atakan Küskün
- Kırklareli Research and Training Hospital, Kırklareli, Center, Turkey
| | - Murat Gençbay
- Kırklareli Research and Training Hospital, Kırklareli, Center, Turkey
| |
Collapse
|
5
|
Cheng K, Hii R, Lim E, Yuvaraj J, Nicholls SJ, Dey D, Lin A, Wong DTL. Effect of statin therapy on coronary inflammation assessed by pericoronary adipose tissue computed tomography attenuation. Eur Heart J Cardiovasc Imaging 2025; 26:784-793. [PMID: 40037525 PMCID: PMC12042745 DOI: 10.1093/ehjci/jeaf062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 02/04/2025] [Indexed: 03/06/2025] Open
Abstract
AIMS Pericoronary adipose tissue (PCAT) attenuation on coronary computed tomography angiography (CCTA) is an imaging biomarker of coronary inflammation. The natural history of PCAT attenuation remains unknown. High-intensity statin therapy has pleiotropic anti-inflammatory effects. We sought to assess temporal changes in PCAT attenuation in patients with and without statin therapy. METHODS AND RESULTS This was a multicentre observational study that included consecutive patients with stable coronary artery disease (CAD) undergoing clinically indicated serial CCTA with identical scan parameters ≥ 12 months apart between May 2013 and July 2022. Using semi-automated software, PCAT attenuation was measured on a per-lesion level (PCATlesion) and per-patient level around the proximal right coronary artery (PCATRCA). Of the 96 patients (57 ± 11 years, 60% male), 34 patients were not on a statin at baseline or follow-up (statin-naive), 26 patients were commenced on a statin after the baseline scan (statin-commenced), and 34 patients were on a statin at both time points (statin-continued). There was no significant difference between the groups for age, sex, body mass index (BMI), and prevalence of traditional cardiovascular risk factors except for dyslipidaemia (25.0% vs. 34.6% vs. 64.7%, P < 0.01 for trend). At a median follow-up of 3.8 years, there was a significant reduction in PCATlesion in the statin-commenced (-79.4 ± 11.7 to -86.5 ± 10 HU, P < 0.001) and the statin-continued (-83.5 ± 8.5 to -90.6 ± 8.5 HU, P = 0.001) groups. Meanwhile, no significant difference in PCATlesion was observed in the statin-naïve group (-84.4 ± 9.7 to -86.6 ± 9.5, P = 0.1). Multivariate analysis showed statin intensity and LDL change to be independently associated with percentage change of PCATlesion, after correcting for cardiovascular risk factors, changes in body weight, and coronary artery calcium score. CONCLUSION Statin therapy was associated with a reduction in PCATlesion, while no significant change in PCATlesion was observed without statin therapy. If validated in larger studies, PCAT attenuation could potentially be used to monitor the response of the coronary arteries to statins and guide treatment.
Collapse
Affiliation(s)
- Kevin Cheng
- Monash Cardiovascular Research Centre, Victorian Heart Institute, Monash University and Monash Health, 631 Blackburn Road, Clayton, Victoria 3168, Australia
- Department of Medicine, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Rachael Hii
- Monash Cardiovascular Research Centre, Victorian Heart Institute, Monash University and Monash Health, 631 Blackburn Road, Clayton, Victoria 3168, Australia
| | - Egynne Lim
- Monash Cardiovascular Research Centre, Victorian Heart Institute, Monash University and Monash Health, 631 Blackburn Road, Clayton, Victoria 3168, Australia
| | - Jeremy Yuvaraj
- Monash Cardiovascular Research Centre, Victorian Heart Institute, Monash University and Monash Health, 631 Blackburn Road, Clayton, Victoria 3168, Australia
- Department of Medicine, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Stephen J Nicholls
- Monash Cardiovascular Research Centre, Victorian Heart Institute, Monash University and Monash Health, 631 Blackburn Road, Clayton, Victoria 3168, Australia
- Department of Medicine, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Damini Dey
- Department of Imaging (Division of Nuclear Medicine), Medicine, and Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, USA
| | - Andrew Lin
- Monash Cardiovascular Research Centre, Victorian Heart Institute, Monash University and Monash Health, 631 Blackburn Road, Clayton, Victoria 3168, Australia
- Department of Medicine, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
- Department of Imaging (Division of Nuclear Medicine), Medicine, and Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, USA
| | - Dennis T L Wong
- Monash Cardiovascular Research Centre, Victorian Heart Institute, Monash University and Monash Health, 631 Blackburn Road, Clayton, Victoria 3168, Australia
- Department of Medicine, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| |
Collapse
|
6
|
Miller RJH, Yi J, Shanbhag A, Marcinkiewicz A, Patel KK, Lemley M, Ramirez G, Geers J, Chareonthaitawee P, Wopperer S, Berman DS, Di Carli M, Dey D, Slomka PJ. Deep learning-quantified body composition from positron emission tomography/computed tomography and cardiovascular outcomes: a multicentre study. Eur Heart J 2025:ehaf131. [PMID: 40159388 DOI: 10.1093/eurheartj/ehaf131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/15/2024] [Accepted: 02/17/2025] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND AND AIMS Positron emission tomography (PET)/computed tomography (CT) myocardial perfusion imaging (MPI) is a vital diagnostic tool, especially in patients with cardiometabolic syndrome. Low-dose CT scans are routinely performed with PET for attenuation correction and potentially contain valuable data about body tissue composition. Deep learning and image processing were combined to automatically quantify skeletal muscle (SM), bone and adipose tissue from these scans and then evaluate their associations with death or myocardial infarction (MI). METHODS In PET MPI from three sites, deep learning quantified SM, bone, epicardial adipose tissue (EAT), subcutaneous adipose tissue (SAT), visceral adipose tissue (VAT), and intermuscular adipose tissue (IMAT). Sex-specific thresholds for abnormal values were established. Associations with death or MI were evaluated using unadjusted and multivariable models adjusted for clinical and imaging factors. RESULTS This study included 10 085 patients, with median age 68 (interquartile range 59-76) and 5767 (57%) male. Body tissue segmentations were completed in 102 ± 4 s. Higher VAT density was associated with an increased risk of death or MI in both unadjusted [hazard ratio (HR) 1.40, 95% confidence interval (CI) 1.37-1.43] and adjusted (HR 1.24, 95% CI 1.19-1.28) analyses, with similar findings for IMAT, SAT, and EAT. Patients with elevated VAT density and reduced myocardial flow reserve had a significantly increased risk of death or MI (adjusted HR 2.49, 95% CI 2.23-2.77). CONCLUSIONS Volumetric body tissue composition can be obtained rapidly and automatically from standard cardiac PET/CT. This new information provides a detailed, quantitative assessment of sarcopenia and cardiometabolic health for physicians.
Collapse
Affiliation(s)
- Robert J H Miller
- Departments of Medicine (Division of Artificial Intelligence in Medicine), Imaging and Biomedical Sciences, Cedars-Sinai Medical Center, 6500 Wilshire Blvd, Suite 420, Los Angeles, CA 90048, USA
- Department of Cardiac Sciences, University of Calgary, Calgary, AB, Canada
| | - Jirong Yi
- Departments of Medicine (Division of Artificial Intelligence in Medicine), Imaging and Biomedical Sciences, Cedars-Sinai Medical Center, 6500 Wilshire Blvd, Suite 420, Los Angeles, CA 90048, USA
| | - Aakash Shanbhag
- Departments of Medicine (Division of Artificial Intelligence in Medicine), Imaging and Biomedical Sciences, Cedars-Sinai Medical Center, 6500 Wilshire Blvd, Suite 420, Los Angeles, CA 90048, USA
- Signal and Image Processing Institute, Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, USA
| | - Anna Marcinkiewicz
- Departments of Medicine (Division of Artificial Intelligence in Medicine), Imaging and Biomedical Sciences, Cedars-Sinai Medical Center, 6500 Wilshire Blvd, Suite 420, Los Angeles, CA 90048, USA
- Center of Radiological Diagnostics, National Medical Institute of the Ministry of the Interior and Administration, Warsaw, Poland
| | - Krishna K Patel
- Department of Medicine (Cardiology) and Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mark Lemley
- Departments of Medicine (Division of Artificial Intelligence in Medicine), Imaging and Biomedical Sciences, Cedars-Sinai Medical Center, 6500 Wilshire Blvd, Suite 420, Los Angeles, CA 90048, USA
| | - Giselle Ramirez
- Departments of Medicine (Division of Artificial Intelligence in Medicine), Imaging and Biomedical Sciences, Cedars-Sinai Medical Center, 6500 Wilshire Blvd, Suite 420, Los Angeles, CA 90048, USA
| | - Jolien Geers
- Departments of Medicine (Division of Artificial Intelligence in Medicine), Imaging and Biomedical Sciences, Cedars-Sinai Medical Center, 6500 Wilshire Blvd, Suite 420, Los Angeles, CA 90048, USA
- Department of Cardiology, Centrum voor Hart-en Vaatziekten (CHVZ), Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | | | - Samuel Wopperer
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Daniel S Berman
- Departments of Medicine (Division of Artificial Intelligence in Medicine), Imaging and Biomedical Sciences, Cedars-Sinai Medical Center, 6500 Wilshire Blvd, Suite 420, Los Angeles, CA 90048, USA
| | - Marcelo Di Carli
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Brigham and Women's Hospital, Boston, MA, USA
| | - Damini Dey
- Departments of Medicine (Division of Artificial Intelligence in Medicine), Imaging and Biomedical Sciences, Cedars-Sinai Medical Center, 6500 Wilshire Blvd, Suite 420, Los Angeles, CA 90048, USA
| | - Piotr J Slomka
- Departments of Medicine (Division of Artificial Intelligence in Medicine), Imaging and Biomedical Sciences, Cedars-Sinai Medical Center, 6500 Wilshire Blvd, Suite 420, Los Angeles, CA 90048, USA
| |
Collapse
|
7
|
Annink ME, Kraaijenhof JM, Beverloo CYY, Oostveen RF, Verberne HJ, Stroes ESG, Nurmohamed NS. Estimating inflammatory risk in atherosclerotic cardiovascular disease: plaque over plasma? Eur Heart J Cardiovasc Imaging 2025; 26:444-460. [PMID: 39657321 PMCID: PMC11879196 DOI: 10.1093/ehjci/jeae314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/04/2024] [Accepted: 11/29/2024] [Indexed: 12/12/2024] Open
Abstract
Inflammation is an important driver of disease in the context of atherosclerosis, and several landmark trials have shown that targeting inflammatory pathways can reduce cardiovascular event rates. However, the high cost and potentially serious adverse effects of anti-inflammatory therapies necessitate more precise patient selection. Traditional biomarkers of inflammation, such as high-sensitivity C-reactive protein, show an association with cardiovascular risk on a population level but do not have specificity for local plaque inflammation. Nowadays, advancements in non-invasive imaging of the vasculature enable direct assessment of vascular inflammation. Positron emission tomography (PET) tracers such as 18F-fluorodeoxyglucose enable detection of metabolic activity of inflammatory cells but are limited by low specificity and myocardial spillover effects. 18F-sodium fluoride is a tracer that identifies active micro-calcification in plaques, indicating vulnerable plaques. Gallium-68 DOTATATE targets pro-inflammatory macrophages by binding to somatostatin receptors, which enhances specificity for plaque inflammation. Coronary computed tomography angiography (CCTA) provides high-resolution images of coronary arteries, identifying high-risk plaque features. Measuring pericoronary adipose tissue attenuation on CCTA represents a novel marker of vascular inflammation. This review examines both established and emerging methods for assessing atherosclerosis-related inflammation, emphasizing the role of advanced imaging in refining risk stratification and guiding personalized therapies. Integrating these imaging modalities with measurements of systemic and molecular biomarkers could shift atherosclerotic cardiovascular disease management towards a more personalized approach.
Collapse
Affiliation(s)
- Maxim E Annink
- Department of Vascular Medicine, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands
| | - Jordan M Kraaijenhof
- Department of Vascular Medicine, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands
| | - Cheyenne Y Y Beverloo
- Department of Vascular Medicine, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands
| | - Reindert F Oostveen
- Department of Vascular Medicine, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands
| | - Hein J Verberne
- Department of Radiology & Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands
| | - Erik S G Stroes
- Department of Vascular Medicine, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands
| | - Nick S Nurmohamed
- Department of Vascular Medicine, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands
- Department of Cardiology, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081HV Amsterdam, The Netherlands
| |
Collapse
|
8
|
Asada K, Saito Y, Takaoka H, Kitahara H, Kobayashi Y. Relation of Perivascular Adipose Tissues on Computed Tomography to Coronary Vasospasm. Rev Cardiovasc Med 2025; 26:26327. [PMID: 40026501 PMCID: PMC11868876 DOI: 10.31083/rcm26327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/14/2024] [Accepted: 11/21/2024] [Indexed: 03/05/2025] Open
Abstract
Background Coronary computed tomography angiography (CTA) can be used to quantitatively and qualitatively evaluate the characteristics of perivascular adipose tissue (PVAT), including PVAT volume and perivascular fat attenuation index (FAI). Moreover, PVAT volume and perivascular FAI on CTA are reportedly high in patients with vasospastic angina (VSA); however, previous investigations have focused on the patient rather than vessel-level analyses. Therefore, this study aimed to assess the relationship between coronary vasospasm and PVAT or FAI by using coronary CTA at the vessel level. Methods This retrospective study included 51 patients who underwent intracoronary acetylcholine (ACh) provocation testing for the VSA diagnosis and coronary CTA within a 6-month interval. A total of 125 coronary vessels were evaluated. PVAT and FAI on CTA were quantitatively evaluated. The primary interest of the present study was to determine the relationship between PVAT volume and FAI- and ACh-induced coronary vasospasms at the vessel level. Results Of the 51 patients, 24 (47.1%) had a positive ACh provocation test (VSA), with 40 of 125 (32.0%) vessels having ACh-induced vasospasm. Obstructive epicardial coronary artery disease was observed in 12 vessels (9.6%). No significant differences in PVAT volume or FAI were identified between vessels with and without ACh-induced vasospasms. Similarly, PVAT volume and FAI did not differ significantly in the individual major coronary arteries between patients with and without positive ACh provocation test results. In contrast, FAI was significantly higher in vessels with obstructive coronary artery disease than in those without. Conclusions In patients undergoing intracoronary ACh provocation tests and coronary CTA, no significant association was observed between ACh-induced coronary vasospasm and PVAT volume or FAI at the vessel level. However, FAI significantly increased in vessels with epicardial coronary disease.
Collapse
Affiliation(s)
- Kazunari Asada
- Department of Cardiovascular Medicine, Chiba University Graduate School of Medicine, 260-8677 Chiba, Japan
| | - Yuichi Saito
- Department of Cardiovascular Medicine, Chiba University Graduate School of Medicine, 260-8677 Chiba, Japan
| | - Hiroyuki Takaoka
- Department of Cardiovascular Medicine, Chiba University Graduate School of Medicine, 260-8677 Chiba, Japan
| | - Hideki Kitahara
- Department of Cardiovascular Medicine, Chiba University Graduate School of Medicine, 260-8677 Chiba, Japan
| | - Yoshio Kobayashi
- Department of Cardiovascular Medicine, Chiba University Graduate School of Medicine, 260-8677 Chiba, Japan
| |
Collapse
|
9
|
Du Y, Zhang H, Gao X. Prognostic value of lesion-specific pericoronary adipose tissue attenuation? Importantly, but not yet! Eur Heart J Cardiovasc Imaging 2025; 26:382. [PMID: 39658218 DOI: 10.1093/ehjci/jeae318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 12/04/2024] [Indexed: 12/12/2024] Open
Affiliation(s)
- Yu Du
- Department of Cardiology, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung, and Blood Vessel Disease, Capital Medical University, 100029 Beijing, China
| | - Hongkai Zhang
- Department of Radiology, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung, and Vascular Diseases, Capital Medical University, 100029 Beijing, China
| | - Xuelian Gao
- Department of Radiology, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung, and Vascular Diseases, Capital Medical University, 100029 Beijing, China
| |
Collapse
|
10
|
Markousis-Mavrogenis G, Habib M, Huck DM, Andre F, Steen H, Mukherjee M, Mavrogeni SI, Weber B. Emerging Imaging Techniques for Atherosclerosis in Systemic Immune-Mediated Inflammatory Conditions. Arterioscler Thromb Vasc Biol 2025; 45:11-22. [PMID: 39540283 PMCID: PMC12055239 DOI: 10.1161/atvbaha.124.321202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Atherosclerosis affects patients with systemic immune-mediated inflammatory diseases at an increased rate compared with the general population. In recent years, our understanding of the pathophysiology of atherosclerosis has advanced considerably. Nevertheless, cardiovascular imaging modalities that can adequately assess the biological background of atherosclerosis have not reached widespread clinical adoption. Novel developments in cardiac imaging have the potential to enhance the diagnostic yield of these modalities further while providing essential insights into the anatomy, composition, and biology of atherosclerotic lesions. In this review, we highlight some of the latest developments in the field for the evaluation of atherosclerosis using advances in echocardiography, computed tomography, positron emission tomography, and cardiovascular magnetic resonance. Additionally, we discuss evidence specifically in patients with immune-mediated inflammatory diseases and outline unmet research needs for future development.
Collapse
Affiliation(s)
- George Markousis-Mavrogenis
- Departments of Cardiology, Angiology and Pneumology, Heidelberg University, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
- University Research Institute of Maternal and Child Health and Precision Medicine and UNESCO Chair in Adolescent Healthcare, Medical School, National and Kapodistrian University of Athens, Aghia Sophia Children’s Hospital, Athens, Greece
| | - Muzzamal Habib
- Heart and Vascular Center, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis St, Boston, MA 02115, USA
| | - Daniel M. Huck
- Heart and Vascular Center, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis St, Boston, MA 02115, USA
| | - Florian Andre
- Departments of Cardiology, Angiology and Pneumology, Heidelberg University, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Henning Steen
- Departments of Cardiology, Angiology and Pneumology, Heidelberg University, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Monica Mukherjee
- Division of Cardiology, Johns Hopkins University, Baltimore, MD, USA
| | - Sophie I. Mavrogeni
- University Research Institute of Maternal and Child Health and Precision Medicine and UNESCO Chair in Adolescent Healthcare, Medical School, National and Kapodistrian University of Athens, Aghia Sophia Children’s Hospital, Athens, Greece
- Onassis Cardiac Surgery Center, Athens, Greece
- University of Padova, Padova, Italy
| | - Brittany Weber
- Heart and Vascular Center, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis St, Boston, MA 02115, USA
| |
Collapse
|
11
|
Queiroz M, Sena CM. Perivascular adipose tissue: a central player in the triad of diabetes, obesity, and cardiovascular health. Cardiovasc Diabetol 2024; 23:455. [PMID: 39732729 PMCID: PMC11682657 DOI: 10.1186/s12933-024-02549-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 12/17/2024] [Indexed: 12/30/2024] Open
Abstract
Perivascular adipose tissue (PVAT) is a dynamic tissue that affects vascular function and cardiovascular health. The connection between PVAT, the immune system, obesity, and vascular disease is complex and plays a pivotal role in the pathogenesis of vascular diseases such as atherosclerosis, hypertension, and vascular inflammation. In cardiometabolic diseases, PVAT becomes a significant source of proflammatory adipokines, leading to increased infiltration of immune cells, in cardiometabolic diseases, PVAT becomes a significant source of proinflammatory adipokines, leading to increased infiltration of immune cells, promoting vascular smooth muscle cell proliferation and migrationpromoting vascular smooth muscle cell proliferation and migration. This exacerbates vascular dysfunction by impairing endothelial cell function and promoting endothelial activation. Dysregulated PVAT also contributes to hemodynamic alterations and hypertension through enhanced sympathetic nervous system activity and impaired vasodilatory capacity of PVAT-derived factors. Therapeutic interventions targeting key components of this interaction, such as modulating PVAT inflammation, restoring adipokine balance, and attenuating immune cell activation, hold promise for mitigating obesity-related vascular complications. Lifestyle interventions, pharmacological agents targeting inflammatory pathways, and surgical approaches aimed at reducing PVAT mass or improving adipose tissue function are potential therapeutic avenues for managing vascular diseases associated with obesity and PVAT dysfunction.
Collapse
Affiliation(s)
- Marcelo Queiroz
- Institute of Physiology, iCBR, Faculty of Medicine, University of Coimbra, Subunit 1, polo 3, Azinhaga de Santa Comba, Celas, 3000-548, Coimbra, Portugal
| | - Cristina M Sena
- Institute of Physiology, iCBR, Faculty of Medicine, University of Coimbra, Subunit 1, polo 3, Azinhaga de Santa Comba, Celas, 3000-548, Coimbra, Portugal.
| |
Collapse
|
12
|
Kwiecinski J, Wang KL, Tzolos E, Moss A, Daghem M, Adamson PD, Dey D, Molek-Dziadosz P, Dawson D, Arumugam P, Sabharwal N, Greenwood JP, Townend JN, Calvert PA, Rudd JH, Berman D, Verjans JW, Williams MC, Slomka P, Dweck MR, Newby DE. Sex differences in coronary atherosclerotic plaque activity using 18F-sodium fluoride positron emission tomography. Eur J Nucl Med Mol Imaging 2024; 51:3934-3943. [PMID: 38926161 PMCID: PMC11774508 DOI: 10.1007/s00259-024-06810-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024]
Abstract
INTRODUCTION There are sex differences in the extent, severity, and outcomes of coronary artery disease. We aimed to assess the influence of sex on coronary atherosclerotic plaque activity measured using coronary 18F-sodium fluoride (18F-NaF) positron emission tomography (PET), and to determine whether 18F-NaF PET has prognostic value in both women and men. METHODS In a post-hoc analysis of observational cohort studies of patients with coronary atherosclerosis who had undergone 18F-NaF PET CT angiography, we compared the coronary microcalcification activity (CMA) in women and men. RESULTS Baseline 18F-NaF PET CT angiography was available in 999 participants (151 (15%) women) with 4282 patient-years of follow-up. Compared to men, women had lower coronary calcium scores (116 [interquartile range, 27-434] versus 205 [51-571] Agatston units; p = 0.002) and CMA values (0.0 [0.0-1.12] versus 0.53 [0.0-2.54], p = 0.01). Following matching for plaque burden by coronary calcium scores and clinical comorbidities, there was no sex-related difference in CMA values (0.0 [0.0-1.12] versus 0.0 [0.0-1.23], p = 0.21) and similar proportions of women and men had no 18F-NaF uptake (53.0% (n = 80) and 48.3% (n = 73); p = 0.42), or CMA values > 1.56 (21.8% (n = 33) and 21.8% (n = 33); p = 1.00). Over a median follow-up of 4.5 [4.0-6.0] years, myocardial infarction occurred in 6.6% of women (n = 10) and 7.8% of men (n = 66). Coronary microcalcification activity greater than 0 was associated with a similarly increased risk of myocardial infarction in both women (HR: 3.83; 95% CI:1.10-18.49; p = 0.04) and men (HR: 5.29; 95% CI:2.28-12.28; p < 0.001). CONCLUSION Although men present with more coronary atherosclerotic plaque than women, increased plaque activity is a strong predictor of future myocardial infarction regardless of sex.
Collapse
Affiliation(s)
- Jacek Kwiecinski
- Department of Interventional Cardiology and Angiology, Institute of Cardiology, Alpejska 42, Warsaw, 04-628, Poland.
| | - Kang-Ling Wang
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Evangelos Tzolos
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Alastair Moss
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Marwa Daghem
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Philip D Adamson
- Christchurch Heart Institute, University of Otago, Christchurch, New Zealand
| | - Damini Dey
- Departments of Medicine (Artificial Intelligence in Medicine), Imaging, and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | | | - Dana Dawson
- Aberdeen Cardiovascular and Diabetes Centre, University of Aberdeen, Aberdeen, United Kingdom
| | | | - Nikant Sabharwal
- Oxford University Hospitals, NHS Foundation Trust, Oxford, United Kingdom
| | - John P Greenwood
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, and Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - John N Townend
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Patrick A Calvert
- Royal Papworth Hospital, University of Cambridge, Cambridge, United Kingdom
| | - James Hf Rudd
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Daniel Berman
- Departments of Medicine (Artificial Intelligence in Medicine), Imaging, and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Johan W Verjans
- Australian Institute for Machine Learning, The University of Adelaide, Adelaide, Australia
- Royal Adelaide Hospital, Adelaide, Australia
| | - Michelle C Williams
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Piotr Slomka
- Departments of Medicine (Artificial Intelligence in Medicine), Imaging, and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Marc R Dweck
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - David E Newby
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
13
|
van Rosendael SE, Shiyovich A, Cardoso RN, Souza Freire CV, van Rosendael AR, Lin FY, Larocca G, Bienstock SW, Blankstein R, Shaw LJ. The Role of Cardiac Computed Tomography Angiography in Risk Stratification for Coronary Artery Disease. JOURNAL OF THE SOCIETY FOR CARDIOVASCULAR ANGIOGRAPHY & INTERVENTIONS 2024; 3:102230. [PMID: 39649823 PMCID: PMC11624369 DOI: 10.1016/j.jscai.2024.102230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/24/2024] [Accepted: 06/12/2024] [Indexed: 12/11/2024]
Abstract
Coronary computed tomography angiography (CCTA) allows the assessment of the presence and severity of obstructive and nonobstructive atherosclerotic coronary artery disease. With software developments incorporating artificial intelligence-based automated image analysis along with improved spatial resolution of CT scanners, volumetric measurements of atherosclerotic plaque, detection of high-risk plaque features, and delineation of pericoronary adipose tissue density can now be readily and accurately evaluated for a given at-risk patient. Many of these expanded diagnostic measures have been shown to be prognostically useful for prediction of major adverse cardiac events. The incremental value of plaque quantification over diameter stenosis has yet to be thoroughly discovered in current studies. Furthermore, the physiological significance of lesions can also be assessed with CT-derived fractional flow reserve, myocardial CT perfusion, and more recently shear stress, potentially leading to selective invasive coronary angiography and revascularization. Along with these technological advancements, there has been additional high-quality evidence for CCTA including large randomized clinical trials supporting high-level recommendations from many international clinical practice guidelines. Current trials largely compare a CCTA vs functional testing strategy, yet there is minimal evidence on CCTA plaque-guided therapeutic trials to measure regression of atherosclerosis and prevention of major coronary artery disease events. In this review, we summarize current evidence on comprehensive risk assessment with CCTA and future directions.
Collapse
Affiliation(s)
- Sophie E. van Rosendael
- Icahn School of Medicine at Mount Sinai, Mount Sinai Heart, Zena and Michael A. Wiener Cardiovascular Institute, and Marie-Josée and Henry R. Kravis Center for Cardiovascular Health, New York, New York
| | - Arthur Shiyovich
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Rhanderson N. Cardoso
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Camila Veronica Souza Freire
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | | | - Fay Y. Lin
- Icahn School of Medicine at Mount Sinai, Mount Sinai Heart, Zena and Michael A. Wiener Cardiovascular Institute, and Marie-Josée and Henry R. Kravis Center for Cardiovascular Health, New York, New York
| | - Gina Larocca
- Icahn School of Medicine at Mount Sinai, Mount Sinai Heart, Zena and Michael A. Wiener Cardiovascular Institute, and Marie-Josée and Henry R. Kravis Center for Cardiovascular Health, New York, New York
| | - Solomon W. Bienstock
- Icahn School of Medicine at Mount Sinai, Mount Sinai Heart, Zena and Michael A. Wiener Cardiovascular Institute, and Marie-Josée and Henry R. Kravis Center for Cardiovascular Health, New York, New York
| | - Ron Blankstein
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Leslee J. Shaw
- Icahn School of Medicine at Mount Sinai, Mount Sinai Heart, Zena and Michael A. Wiener Cardiovascular Institute, and Marie-Josée and Henry R. Kravis Center for Cardiovascular Health, New York, New York
| |
Collapse
|
14
|
Antoniades C, Chan K. Calcification vs Inflammation: The Modern Toolkit for Cardiovascular Risk Assessment. JACC Cardiovasc Imaging 2024; 17:1225-1228. [PMID: 39384268 DOI: 10.1016/j.jcmg.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 08/22/2024] [Indexed: 10/11/2024]
Affiliation(s)
- Charalambos Antoniades
- Acute Multidisciplinary Imaging and Interventional Centre, British Heart Foundation Centre of Research Excellence, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, National Institute for Health and Care Research Oxford Biomedical Research Centre, University of Oxford, Oxford, England, United Kingdom.
| | - Kenneth Chan
- Acute Multidisciplinary Imaging and Interventional Centre, British Heart Foundation Centre of Research Excellence, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, National Institute for Health and Care Research Oxford Biomedical Research Centre, University of Oxford, Oxford, England, United Kingdom
| |
Collapse
|
15
|
van Rosendael SE, Kamperidis V, Maaniitty T, de Graaf MA, Saraste A, McKay-Goodall GE, Jukema JW, Knuuti J, Bax JJ. Pericoronary adipose tissue for predicting long-term outcomes. Eur Heart J Cardiovasc Imaging 2024; 25:1351-1359. [PMID: 39106525 PMCID: PMC11441029 DOI: 10.1093/ehjci/jeae197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/25/2024] [Accepted: 07/24/2024] [Indexed: 08/09/2024] Open
Abstract
AIMS Pericoronary adipose tissue (PCAT) attenuation obtained by coronary computed tomography angiography (CCTA) has been associated with coronary inflammation and outcomes. Whether PCAT attenuation is predictive of major adverse cardiac events (MACE) during long-term follow-up is unknown. METHODS AND RESULTS Symptomatic patients with coronary artery disease (CAD) who underwent CCTA were included, and clinical outcomes were evaluated. PCAT was measured at all lesions for all three major coronary arteries using semi-automated software. A comparison between patients with and without MACE was made on both a per-lesion and a per-patient level. The predictive value of PCAT attenuation for MACE was assessed in Cox regression models. In 483 patients (63.3 ± 8.5 years, 54.9% men), 1561 lesions were analysed over a median follow-up duration of 9.5 years. The mean PCAT attenuation was not significantly different between patients with and without MACE. At a per-patient level, the adjusted hazard ratio (HR) and 95% confidence interval (CI) for MACE were 0.970 (95% CI: 0.933-1.008, P = 0.121) when the average of all lesions per patient was analysed, 0.992 (95% CI: 0.961-1.024, P = 0.622) when only the most obstructive lesion was evaluated, and 0.981 (95% CI: 0.946-1.016, P = 0.285) when only the lesion with the highest PCAT attenuation per individual was evaluated. Adjusted HRs for vessel-specific PCAT attenuation in the right coronary artery, left anterior descending artery, and left circumflex artery were 0.957 (95% CI: 0.830-1.104, P = 0.548), 0.989 (95% CI: 0.954-1.025, P = 0.550), and 0.739 (95% CI: 0.293-1.865, P = 0.522), respectively, in predicting long-term MACE. CONCLUSION In patients referred to CCTA for clinically suspected CAD, PCAT attenuation did not predict MACE during long-term follow-up.
Collapse
Affiliation(s)
- Sophie E van Rosendael
- Department of Cardiology, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden, The Netherlands
| | - Vasileios Kamperidis
- First Department of Cardiology, Medical School, AHEPA Hospital, Aristotle University of Thessaloniki, , St. Kiriakidi 1, Thessaloniki GR-54636, Greece
| | - Teemu Maaniitty
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
| | - Michiel A de Graaf
- Department of Cardiology, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden, The Netherlands
| | - Antti Saraste
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
- Heart Center, Turku University Hospital and University of Turku, Turku, Finland
| | - George E McKay-Goodall
- St. Vincent’s Hospital Sydney, University of New South Wales Medical School, Sydney, NSW, Australia
| | - J Wouter Jukema
- Department of Cardiology, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden, The Netherlands
- Netherlands Heart Institute, Utrecht, The Netherlands
| | - Juhani Knuuti
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
| | - Jeroen J Bax
- Department of Cardiology, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden, The Netherlands
| |
Collapse
|
16
|
Simantiris S, Pappa A, Papastamos C, Korkonikitas P, Antoniades C, Tsioufis C, Tousoulis D. Perivascular Fat: A Novel Risk Factor for Coronary Artery Disease. Diagnostics (Basel) 2024; 14:1830. [PMID: 39202318 PMCID: PMC11353828 DOI: 10.3390/diagnostics14161830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/17/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
Perivascular adipose tissue (PVAT) interacts with the vascular wall and secretes bioactive factors which regulate vascular wall physiology. Vice versa, vascular wall inflammation affects the adjacent PVAT via paracrine signals, which induce cachexia-type morphological changes in perivascular fat. These changes can be quantified in pericoronary adipose tissue (PCAT), as an increase in PCAT attenuation in coronary computed tomography angiography images. Fat attenuation index (FAI), a novel imaging biomarker, measures PCAT attenuation around coronary artery segments and is associated with coronary artery disease presence, progression, and plaque instability. Beyond its diagnostic capacity, PCAT attenuation can also ameliorate cardiac risk stratification, thus representing an innovative prognostic biomarker of cardiovascular disease (CVD). However, technical, biological, and anatomical factors are weakly related to PCAT attenuation and cause variation in its measurement. Thus, to integrate FAI, a research tool, into clinical practice, a medical device has been designed to provide FAI values standardized for these factors. In this review, we discuss the interplay of PVAT with the vascular wall, the diagnostic and prognostic value of PCAT attenuation, and its integration as a CVD risk marker in clinical practice.
Collapse
Affiliation(s)
- Spyridon Simantiris
- 1st Cardiology Department, Hippokration Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.S.)
| | - Aikaterini Pappa
- Cardiology Department, Konstantopouleio General Hospital, 14233 Nea Ionia, Greece
| | - Charalampos Papastamos
- 1st Cardiology Department, Hippokration Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.S.)
| | | | - Charalambos Antoniades
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX1 3QT, UK
| | - Constantinos Tsioufis
- 1st Cardiology Department, Hippokration Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.S.)
| | - Dimitris Tousoulis
- 1st Cardiology Department, Hippokration Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.S.)
| |
Collapse
|
17
|
Tuttolomondo D, Ticinesi A, Dey D, Martini C, Nouvenne A, Nicastro M, De Filippo M, Sverzellati N, Nicolini F, Meschi T, Gaibazzi N. Coronary inflammation on chest computed tomography and COVID-19 mortality. Eur Radiol 2024; 34:5153-5163. [PMID: 38221582 DOI: 10.1007/s00330-023-10573-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 12/06/2023] [Accepted: 12/14/2023] [Indexed: 01/16/2024]
Abstract
OBJECTIVES The main factors associated with coronavirus disease-19 (COVID-19) mortality are age, comorbidities, pattern of inflammatory response, and SARS-CoV-2 lineage involved in infection. However, the clinical course of the disease is extremely heterogeneous, and reliable biomarkers predicting adverse prognosis are lacking. Our aim was to elucidate the prognostic role of a novel marker of coronary artery disease inflammation, peri-coronary adipose tissue attenuation (PCAT), available from high-resolution chest computed tomography (HRCT) in COVID-19 patients with severe disease requiring hospitalization. METHODS Two distinct groups of patients were admitted to Parma University Hospital in Italy with COVID-19 in March 2020 and March 2021 (first- and third-wave peaks of the COVID-19 pandemic in Italy, with the prevalence of wild-type and B.1.1.7 SARS-CoV-2 lineage, respectively) were retrospectively enrolled. The primary endpoint was in-hospital mortality. Demographic, clinical, laboratory, HRCT data, and coronary artery HRCT features (coronary calcium score and PCAT attenuation) were collected to show which variables were associated with mortality. RESULTS Among the 769 patients enrolled, 555 (72%) were discharged alive, and 214 (28%) died. In multivariable logistic regression analysis age (p < 0.001), number of chronic illnesses (p < 0.001), smoking habit (p = 0.006), P/F ratio (p = 0.001), platelet count (p = 0.002), blood creatinine (p < 0.001), non-invasive mechanical ventilation (p < 0.001), HRCT visual score (p < 0.001), and PCAT (p < 0.001), but not the calcium score, were independently associated with in-hospital mortality. CONCLUSION Coronary inflammation, measured with PCAT on non-triggered HRCT, appeared to be independently associated with higher mortality in patients with severe COVID-19, while the pre-existent coronary atherosclerotic burden was not associated with adverse outcomes after adjustment for covariates. CLINICAL RELEVANCE STATEMENT The current study demonstrates that a relatively simple measurement, peri-coronary adipose tissue attenuation (PCAT), available ex-post from standard high-resolution computed tomography, is strongly and independently associated with in-hospital mortality. KEY POINTS • Coronary inflammation can be measured by the attenuation of peri-coronary adipose tissue (PCAT) on high-resolution CT (HRCT) without contrast media. • PCAT is strongly and independently associated with in-hospital mortality in SARS-CoV-2 patients. • PCAT might be considered an independent prognostic marker in COVID-19 patients if confirmed in other studies.
Collapse
Affiliation(s)
- Domenico Tuttolomondo
- Cardiology Unit, Azienda Ospedaliero-Universitaria di Parma, Via Antonio Gramsci 14, 43126, Parma, Italy
| | - Andrea Ticinesi
- Department of Medicine and Surgery, University of Parma, Via Antonio Gramsci 14, 43126, Parma, Italy
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Via Antonio Gramsci 14, 43126, Parma, Italy
| | - Damini Dey
- Cedars-Sinai Medical Center, Biomedical Imaging Research Institute, Los Angeles, CA, USA
| | - Chiara Martini
- Department of Medicine and Surgery, University of Parma, Via Antonio Gramsci 14, 43126, Parma, Italy.
- Diagnostic Department, Azienda Ospedaliero-Universitaria di Parma, Via Gramsci 14, 43126, Parma, Italy.
| | - Antonio Nouvenne
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Via Antonio Gramsci 14, 43126, Parma, Italy
| | - Maria Nicastro
- Department of Medicine and Surgery, University of Parma and Unit of Occupational Medicine and Industrial Toxicology, University Hospital of Parma, 43121, Parma, Italy
| | - Massimo De Filippo
- Department of Medicine and Surgery, Section of Radiology, University of Parma, Maggiore Hospital, Via Gramsci 14, 43125, Parma, Italy
| | - Nicola Sverzellati
- Diagnostic Department, Azienda Ospedaliero-Universitaria di Parma, Via Gramsci 14, 43126, Parma, Italy
| | - Francesco Nicolini
- Department of Cardiac Surgery, Parma University Hospital, Via Gramsci 14, 43126, Parma, Italy
| | - Tiziana Meschi
- Department of Medicine and Surgery, University of Parma, Via Antonio Gramsci 14, 43126, Parma, Italy
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Via Antonio Gramsci 14, 43126, Parma, Italy
| | - Nicola Gaibazzi
- Cardiology Unit, Azienda Ospedaliero-Universitaria di Parma, Via Antonio Gramsci 14, 43126, Parma, Italy
| |
Collapse
|
18
|
Jing M, Xi H, Yang J, Zhu H, Sun Q, Ren W, Deng L, Han T, Zhang Y, Zhou J. Relationship between pericoronary fat-attenuation values quantified by coronary computed tomography angiography and coronary artery disease severity. Clin Radiol 2024; 79:e1021-e1030. [PMID: 38821757 DOI: 10.1016/j.crad.2024.02.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/17/2024] [Accepted: 02/28/2024] [Indexed: 06/02/2024]
Abstract
AIM To explore the relationship between pericoronary fat-attenuation index (FAI) values and coronary artery disease (CAD) severity measured using coronary computed tomography angiography (CCTA). MATERIALS AND METHODS This study retrospectively included 428 patients with CAD who were eligible and underwent CCTA at our hospital. CAD severity on CCTA images including obstructive stenosis and extensive lesions, and segment stenosis and involvement score (SSS, SIS), and CAD-RADS classification were assessed. FAI values for left anterior descending (LAD), left circumflex (LCX) branches, and right coronary artery (RCA) were quantified using fully automated software. The relationship between FAI values and CAD severity was assessed using univariate and multivariate regression models. RESULTS Univariate analyses showed that sex and current smoking were associated with elevated FAILAD and FAILCX values (all P<0.05), whereas CAD severity was not relevant (all P>0.05). Not only clinical factors such as sex, current smoking, and hypertension were associated with elevated FAIRCA, but also indicators to assess CAD severity including obstructive stenosis, SIS, and SSS were related to it (all P<0.05). Multivariate analysis demonstrated that after correcting for the effects of other conventional cardiovascular risk factors and CCTA imaging features, current smoking was an independent risk factor for elevated FAI values (odds ratio [OR] = 0.569, 0.458, and 0.517; all P<0.05), whereas that SSS (OR=1.041, P=0.027) for elevated FAIRCA values. CONCLUSION Following correction for conventional cardiovascular risk factors and imaging characteristics, current smoking was an independent clinical risk factor for elevated FAI values, and SSS was an independent risk factor for elevated FAIRCA values.
Collapse
Affiliation(s)
- M Jing
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, China; Second Clinical School, Lanzhou University, Lanzhou, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| | - H Xi
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, China; Second Clinical School, Lanzhou University, Lanzhou, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| | - J Yang
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, China; Second Clinical School, Lanzhou University, Lanzhou, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| | - H Zhu
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, China; Second Clinical School, Lanzhou University, Lanzhou, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| | - Q Sun
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, China; Second Clinical School, Lanzhou University, Lanzhou, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| | - W Ren
- GE Healthcare, Computed Tomography Research Center, Beijing, China
| | - L Deng
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, China; Second Clinical School, Lanzhou University, Lanzhou, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| | - T Han
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, China; Second Clinical School, Lanzhou University, Lanzhou, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| | - Y Zhang
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, China; Second Clinical School, Lanzhou University, Lanzhou, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| | - J Zhou
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, China; Second Clinical School, Lanzhou University, Lanzhou, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China.
| |
Collapse
|
19
|
Wolny R, Geers J, Grodecki K, Kwiecinski J, Williams MC, Slomka PJ, Hasific S, Lin AK, Dey D. Noninvasive Atherosclerotic Phenotyping: The Next Frontier into Understanding the Pathobiology of Coronary Artery Disease. Curr Atheroscler Rep 2024; 26:305-315. [PMID: 38727963 DOI: 10.1007/s11883-024-01205-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2024] [Indexed: 06/22/2024]
Abstract
PURPOSE OF REVIEW Despite recent advances, coronary artery disease remains one of the leading causes of mortality worldwide. Noninvasive imaging allows atherosclerotic phenotyping by measurement of plaque burden, morphology, activity and inflammation, which has the potential to refine patient risk stratification and guide personalized therapy. This review describes the current and emerging roles of advanced noninvasive cardiovascular imaging methods for the assessment of coronary artery disease. RECENT FINDINGS Cardiac computed tomography enables comprehensive, noninvasive imaging of the coronary vasculature, and is used to assess luminal stenoses, coronary calcifications, and distinct adverse plaque characteristics, helping to identify patients prone to future events. Novel software tools, implementing artificial intelligence solutions, can automatically quantify and characterize atherosclerotic plaque from standard computed tomography datasets. These quantitative imaging biomarkers have been shown to improve patient risk stratification beyond clinical risk scores and current clinical interpretation of cardiac computed tomography. In addition, noninvasive molecular imaging in higher risk patients can be used to assess plaque activity and plaque thrombosis. Noninvasive imaging allows unique insight into the burden, morphology and activity of atherosclerotic coronary plaques. Such phenotyping of atherosclerosis can potentially improve individual patient risk prediction, and in the near future has the potential for clinical implementation.
Collapse
Affiliation(s)
- Rafal Wolny
- Department of Interventional Cardiology and Angiology, National Institute of Cardiology, Warsaw, Poland
| | - Jolien Geers
- Department of Biomedical Sciences, and Department of Medicine, Cedars-Sinai Medical Center, Biomedical Imaging Research Institute, Los Angeles, CA, USA
- Department of Cardiology, Centrum Voor Hart- en Vaatziekten (CHVZ), Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Kajetan Grodecki
- Department of Biomedical Sciences, and Department of Medicine, Cedars-Sinai Medical Center, Biomedical Imaging Research Institute, Los Angeles, CA, USA
- 1st Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Jacek Kwiecinski
- Department of Interventional Cardiology and Angiology, National Institute of Cardiology, Warsaw, Poland
| | - Michelle C Williams
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Piotr J Slomka
- Department of Biomedical Sciences, and Department of Medicine, Cedars-Sinai Medical Center, Biomedical Imaging Research Institute, Los Angeles, CA, USA
| | - Selma Hasific
- Department of Biomedical Sciences, and Department of Medicine, Cedars-Sinai Medical Center, Biomedical Imaging Research Institute, Los Angeles, CA, USA
- Department of Cardiology, Odense University Hospital, Odense, Denmark
| | - Andrew K Lin
- Department of Biomedical Sciences, and Department of Medicine, Cedars-Sinai Medical Center, Biomedical Imaging Research Institute, Los Angeles, CA, USA
- Monash Cardiovascular Research Centre, Victorian Heart Institute, Monash University and MonashHeart, Monash Health, Melbourne, VIC, Australia
| | - Damini Dey
- Department of Biomedical Sciences, and Department of Medicine, Cedars-Sinai Medical Center, Biomedical Imaging Research Institute, Los Angeles, CA, USA.
| |
Collapse
|
20
|
Chen M, Hao G, Xu J, Liu Y, Yu Y, Hu S, Hu C. Radiomics analysis of lesion-specific pericoronary adipose tissue to predict major adverse cardiovascular events in coronary artery disease. BMC Med Imaging 2024; 24:150. [PMID: 38886653 PMCID: PMC11184685 DOI: 10.1186/s12880-024-01325-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 06/07/2024] [Indexed: 06/20/2024] Open
Abstract
OBJECTIVE To investigate the prognostic performance of radiomics analysis of lesion-specific pericoronary adipose tissue (PCAT) for major adverse cardiovascular events (MACE) with the guidance of CT derived fractional flow reserve (CT-FFR) in coronary artery disease (CAD). MATERIALS AND METHODS The study retrospectively analyzed 608 CAD patients who underwent coronary CT angiography. Lesion-specific PCAT was determined by the lowest CT-FFR value and 1691 radiomic features were extracted. MACE included cardiovascular death, nonfatal myocardial infarction, unplanned revascularization and hospitalization for unstable angina. Four models were generated, incorporating traditional risk factors (clinical model), radiomics score (Rad-score, radiomics model), traditional risk factors and Rad-score (clinical radiomics model) and all together (combined model). The model performances were evaluated and compared with Harrell concordance index (C-index), area under curve (AUC) of the receiver operator characteristic. RESULTS Lesion-specific Rad-score was associated with MACE (adjusted HR = 1.330, p = 0.009). The combined model yielded the highest C-index of 0.718, which was higher than clinical model (C-index = 0.639), radiomics model (C-index = 0.653) and clinical radiomics model (C-index = 0.698) (all p < 0.05). The clinical radiomics model had significant higher C-index than clinical model (p = 0.030). There were no significant differences in C-index between clinical or clinical radiomics model and radiomics model (p values were 0.796 and 0.147 respectively). The AUC increased from 0.674 for clinical model to 0.721 for radiomics model, 0.759 for clinical radiomics model and 0.773 for combined model. CONCLUSION Radiomics analysis of lesion-specific PCAT is useful in predicting MACE. Combination of lesion-specific Rad-score and CT-FFR shows incremental value over traditional risk factors.
Collapse
Affiliation(s)
- Meng Chen
- Department of Radiology, The First Affiliated Hospital of Soochow University, NO.899 Pinghai Road, Gusu District, Suzhou, Jiangsu, 215006, China
| | - Guangyu Hao
- Department of Radiology, The First Affiliated Hospital of Soochow University, NO.899 Pinghai Road, Gusu District, Suzhou, Jiangsu, 215006, China
| | - Jialiang Xu
- Department of Cardiology, The First Affiliated Hospital of Soochow University, NO.899 Pinghai Road, Gusu District, Suzhou, Jiangsu, 215006, China
| | - Yuanqing Liu
- Department of Radiology, The First Affiliated Hospital of Soochow University, NO.899 Pinghai Road, Gusu District, Suzhou, Jiangsu, 215006, China
| | - Yixing Yu
- Department of Radiology, The First Affiliated Hospital of Soochow University, NO.899 Pinghai Road, Gusu District, Suzhou, Jiangsu, 215006, China
| | - Su Hu
- Department of Radiology, The First Affiliated Hospital of Soochow University, NO.899 Pinghai Road, Gusu District, Suzhou, Jiangsu, 215006, China.
| | - Chunhong Hu
- Department of Radiology, The First Affiliated Hospital of Soochow University, NO.899 Pinghai Road, Gusu District, Suzhou, Jiangsu, 215006, China.
| |
Collapse
|
21
|
Stanek E, Czamara K. Imaging of perivascular adipose tissue in cardiometabolic diseases by Raman spectroscopy: Towards single-cell analysis. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159484. [PMID: 38521491 DOI: 10.1016/j.bbalip.2024.159484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/01/2024] [Accepted: 03/17/2024] [Indexed: 03/25/2024]
Abstract
Perivascular adipose tissue (PVAT) has emerged as a dynamic organ influencing vascular function and cardiovascular health. In this brief review, an overview of the recent research in the investigation of PVAT is presented, ranging from in vivo studies to single-cell methodologies, in particular those based on Raman spectroscopy. The strengths and limitations of each, emphasizing their contributions to the current understanding of PVAT biology were discussed. Ultimately, the integration of these diverse methodologies promises to uncover new therapeutic targets and diagnostic biomarkers, including those emerging from simple Raman spectroscopy-based measurements of alterations in lipid unsaturation degree, invariably associated with PVAT dysfunction.
Collapse
Affiliation(s)
- Ewa Stanek
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland; Jagiellonian University, Doctoral School of Exact and Natural Sciences, 11 Lojasiewicza Str., 30-348 Krakow, Poland
| | - Krzysztof Czamara
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland.
| |
Collapse
|
22
|
West HW, Dangas K, Antoniades C. Advances in Clinical Imaging of Vascular Inflammation: A State-of-the-Art Review. JACC Basic Transl Sci 2024; 9:710-732. [PMID: 38984055 PMCID: PMC11228120 DOI: 10.1016/j.jacbts.2023.10.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/12/2023] [Accepted: 10/12/2023] [Indexed: 07/11/2024]
Abstract
Vascular inflammation is a major contributor to cardiovascular disease, particularly atherosclerotic disease, and early detection of vascular inflammation may be key to the ultimate reduction of residual cardiovascular morbidity and mortality. This review paper discusses the progress toward the clinical utility of noninvasive imaging techniques for assessing vascular inflammation, with a focus on coronary atherosclerosis. A discussion of multiple modalities is included: computed tomography (CT) imaging (the major focus of the review), cardiac magnetic resonance, ultrasound, and positron emission tomography imaging. The review covers recent progress in new technologies such as the novel CT biomarkers of coronary inflammation (eg, the perivascular fat attenuation index), new inflammation-specific tracers for positron emission tomography-CT imaging, and others. The strengths and limitations of each modality are explored, highlighting the potential for multi-modality imaging and the use of artificial intelligence image interpretation to improve both diagnostic and prognostic potential for common conditions such as coronary artery disease.
Collapse
Affiliation(s)
- Henry W. West
- Acute Multidisciplinary Imaging and Interventional Centre, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
- Central Clinical School, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Katerina Dangas
- Acute Multidisciplinary Imaging and Interventional Centre, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Charalambos Antoniades
- Acute Multidisciplinary Imaging and Interventional Centre, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
23
|
Kwiecinski J. Role of 18F-sodium fluoride positron emission tomography in imaging atherosclerosis. J Nucl Cardiol 2024; 35:101845. [PMID: 38479575 DOI: 10.1016/j.nuclcard.2024.101845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/26/2024] [Accepted: 03/06/2024] [Indexed: 04/08/2024]
Abstract
Atherosclerosis involving vascular beds across the human body remains the leading cause of death worldwide. Coronary and peripheral artery disease, which are almost universally a result of atherosclerotic plaque, can manifest clinically as myocardial infarctions, ischemic stroke, or acute lower-limb ischemia. Beyond imaging myocardial perfusion and blood-flow, nuclear imaging has the potential to depict the activity of the processes that are directly implicated in the atherosclerotic plaque progression and rupture. Out of several tested tracers to date, the literature is most advanced for 18F-sodium fluoride positron emission tomography. In this review, we present the latest data in the field of atherosclerotic 18F-sodium fluoride positron emission tomography imaging, discuss the advantages and limitation of the techniques, and highlight the aspects that require further research in the future.
Collapse
Affiliation(s)
- Jacek Kwiecinski
- Department of Interventional Cardiology and Angiology, Institute of Cardiology, Warsaw, Poland.
| |
Collapse
|
24
|
Stone GW, Power DA. Noninvasive Imaging of Vulnerable Plaque: One More Piece of the Puzzle. JACC Cardiovasc Imaging 2024; 17:392-395. [PMID: 37921722 DOI: 10.1016/j.jcmg.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 11/04/2023]
Affiliation(s)
- Gregg W Stone
- Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, USA.
| | - David A Power
- Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| |
Collapse
|
25
|
Guimarães J, de Almeida J, Mendes PL, Ferreira MJ, Gonçalves L. Advancements in non-invasive imaging of atherosclerosis: Future perspectives. J Clin Lipidol 2024; 18:e142-e152. [PMID: 38142178 DOI: 10.1016/j.jacl.2023.11.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/11/2023] [Accepted: 11/14/2023] [Indexed: 12/25/2023]
Abstract
Atherosclerosis is a chronic inflammatory disease characterized by the buildup of plaques in arterial walls, leading to cardiovascular diseases and high morbidity and mortality rates worldwide. Non-invasive imaging techniques play a crucial role in evaluating patients with suspected or established atherosclerosis. However, there is a growing body of evidence suggesting the need to visualize the underlying processes of plaque progression and rupture to enhance risk stratification. This review explores recent advancements in non-invasive assessment of atherosclerosis, focusing on computed tomography, magnetic resonance imaging, and nuclear imaging. These advancements provide valuable insights into the assessment and management of atherosclerosis, potentially leading to better risk stratification and improved patient outcomes.
Collapse
Affiliation(s)
- Joana Guimarães
- Cardiology Department, Coimbra's Hospital and University Center, Praceta Mota Pinto, 3000-561 Coimbra, Portugal.
| | - José de Almeida
- Cardiology Department, Coimbra's Hospital and University Center, Praceta Mota Pinto, 3000-561 Coimbra, Portugal
| | - Paulo Lázaro Mendes
- Cardiology Department, Coimbra's Hospital and University Center, Praceta Mota Pinto, 3000-561 Coimbra, Portugal
| | - Maria João Ferreira
- Cardiology Department, Coimbra's Hospital and University Center, Praceta Mota Pinto, 3000-561 Coimbra, Portugal; Faculty of Medicine, Coimbra's University, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Lino Gonçalves
- Cardiology Department, Coimbra's Hospital and University Center, Praceta Mota Pinto, 3000-561 Coimbra, Portugal; Faculty of Medicine, Coimbra's University, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| |
Collapse
|
26
|
Badimon L, Arderiu G, Vilahur G, Padro T, Cordero A, Mendieta G. Perivascular and epicardial adipose tissue. Vascul Pharmacol 2024; 154:107254. [PMID: 38072220 DOI: 10.1016/j.vph.2023.107254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/29/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023]
Affiliation(s)
- Lina Badimon
- Cardiovascular-Program ICCC; Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain; Ciber CV, Instituto Carlos III, Madrid, Spain; Red TERAV, Instituto Carlos III, Madrid, Spain.
| | - Gemma Arderiu
- Cardiovascular-Program ICCC; Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain; Ciber CV, Instituto Carlos III, Madrid, Spain; Red TERAV, Instituto Carlos III, Madrid, Spain
| | - Gemma Vilahur
- Cardiovascular-Program ICCC; Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain; Ciber CV, Instituto Carlos III, Madrid, Spain; Red TERAV, Instituto Carlos III, Madrid, Spain
| | - Teresa Padro
- Cardiovascular-Program ICCC; Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain; Ciber CV, Instituto Carlos III, Madrid, Spain; Red TERAV, Instituto Carlos III, Madrid, Spain
| | - Alberto Cordero
- Ciber CV, Instituto Carlos III, Madrid, Spain; Cardiology Department, Hospital IMED Elche, Alicante, Spain
| | - Guiomar Mendieta
- Cardiology Department, Hospital Clinic, IDIBAPS, Barcelona, Spain
| |
Collapse
|
27
|
Liu H, Li D. Analysis of the correlation between pericoronary adipose tissue mean attenuation and plaque characteristics and stenosis in coronary CT angiography. Medicine (Baltimore) 2024; 103:e37014. [PMID: 38335380 PMCID: PMC10860938 DOI: 10.1097/md.0000000000037014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/01/2023] [Accepted: 01/02/2024] [Indexed: 02/12/2024] Open
Abstract
Coronary artery disease (CAD) is a predominant cardiovascular disorder, particularly in the aging population. The pathophysiology of atherosclerosis involves lipid deposition and inflammation of the arterial walls. With coronary computed tomography angiography offering insights into coronary anatomy and pathology, parameters such as pericoronary adipose tissue mean attenuation (PCATMA) have gained significance in the understanding of cardiac diseases. A retrospective study encompassing 130 patients with CAD was conducted to analyze 269 observation points. Coronary CT Angiography was employed, with specific attention paid to the measurement of PCATMA and a qualitative and quantitative assessment of plaques. Statistical analyses were performed using Statistical Package for the Social Sciences software (version 27.0), independent samples t test, one-way ANOVA, and multivariate logistic regression analysis. There was a notable correlation between PCATMA expression and severity of coronary artery calcification and stenosis. Patients with higher coronary artery calcification scores and more pronounced stenosis had elevated PCATMA values. Variances in PCATMA based on plaque type and degree of stenosis were significant (P < .05). Multivariate logistic regression revealed that plaque presence, type, and degree of stenosis were independent determinants of PCATMA expression. PCATMA expression is closely associated with CAD progression. As plaque calcification and arterial stenosis increase, there is a concomitant increase in PCATMA expression, potentially serving as a pivotal prognostic indicator.
Collapse
Affiliation(s)
- Haolei Liu
- Department of Cardiothoracic Imaging, Tianjin Medical University, Tianjin, China
- Department of Cardiothoracic Imaging, Cangzhou People’s Hospital, Cangzhou, China
| | - Dong Li
- Department of Radiology, Tianjin General Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
28
|
Chen M, Liu B, Li X, Li D, Fan L. Relationship between peri-coronary inflammation and coronary vascular function in patients with suspected coronary artery disease. Front Cardiovasc Med 2024; 11:1303529. [PMID: 38390440 PMCID: PMC10881729 DOI: 10.3389/fcvm.2024.1303529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/25/2024] [Indexed: 02/24/2024] Open
Abstract
Background In this study, we aim to investigate the relationship between the attenuation of peri-coronary adipose tissue (PCAT) in patients with suspected coronary artery disease (CAD) and the assessment of coronary vascular functions using coronary flow reserve (CFR). Methods We included 364 patients who underwent 13N-NH3 positron emission tomography/computed tomography and coronary computed tomography angiography (CCTA). We determined the relationship between fat attenuation index (FAI), PCAT volume, and other qualitative CT-derived anatomic parameters with CFR. Results We detected a decrease in CFR (<2.5) in 206 (57%) patients. At the patient level, those with reduced CFR showed a significantly higher prevalence of diffused atherosclerosis (41% vs. 23%; P < 0.001) and higher FAI (-75.5 HU vs. -77.1 HU; P = 0.014). In patients without obstructive CAD, FAI was significantly higher in those with reduced CFR (-75.5 HU vs. -77.7 HU, P = 0.026). On the vessel level, 1,092 vessels were analyzed, and 642 (59%) exhibited reduced CFR. The vessels with reduced CFR presented a significantly higher prevalence of obstructive CAD (37% vs. 26%; P < 0.001), diffused atherosclerosis (22% vs. 11%; P < 0.001), low-attenuation plaque (6% vs. 3%; P = 0.030), and positive remodeling (7% vs. 2%; P = 0.001). FAI was higher in vessels with reduced CFR (-80.8 HU vs. -81.8 HU; P = 0.045) than in normal CFR. In the patient-level analysis, obstructive CAD, diffused atherosclerosis, and FAI were independently linked with CFR. FAI was still associated with global CFR after adjusting for traditional risk factors (age, hypertension, diabetes, hyperlipidemia, and smoking). FAI remained independently associated with reduced CFR in patients without obstructive CAD. Conclusions Coronary perivascular inflammation evaluated by CCTA was independently associated with coronary vascular function. In patients without obstructive CAD, FAI was higher in the presence of reduced CFR. Altogether, FAI can help reveal microcirculatory damage in patients who do not exhibit epicardial artery stenosis.
Collapse
Affiliation(s)
- Mengyu Chen
- Department of Radiology, TEDA International Cardiovascular Hospital, Cardiovascular Clinical College of Tianjin Medical University, Tianjin, China
- Department of Radiology, TEDA International Cardiovascular Hospital, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational Medicine, Tianjin, China
| | - Bing Liu
- Department of Radiology, TEDA International Cardiovascular Hospital, Cardiovascular Clinical College of Tianjin Medical University, Tianjin, China
- Department of Radiology, TEDA International Cardiovascular Hospital, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational Medicine, Tianjin, China
| | - Xu Li
- Department of Radiology, TEDA International Cardiovascular Hospital, Cardiovascular Clinical College of Tianjin Medical University, Tianjin, China
- Department of Radiology, TEDA International Cardiovascular Hospital, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational Medicine, Tianjin, China
| | - Dong Li
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Lijuan Fan
- Department of Radiology, TEDA International Cardiovascular Hospital, Cardiovascular Clinical College of Tianjin Medical University, Tianjin, China
- Department of Radiology, TEDA International Cardiovascular Hospital, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational Medicine, Tianjin, China
| |
Collapse
|
29
|
Yamamoto T, Kawamori H, Toba T, Sasaki S, Fujii H, Hamana T, Osumi Y, Iwane S, Naniwa S, Sakamoto Y, Matsuhama K, Fukuishi Y, Hirata K, Otake H. Impact of Pericoronary Adipose Tissue Attenuation on Periprocedural Myocardial Injury in Patients With Chronic Coronary Syndrome. J Am Heart Assoc 2024; 13:e031209. [PMID: 38240235 PMCID: PMC11056154 DOI: 10.1161/jaha.123.031209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 11/15/2023] [Indexed: 02/07/2024]
Abstract
BACKGROUND Perivascular inflammation contributes to the development of atherosclerosis and microcirculatory dysfunction. Pericoronary adipose tissue (PCAT) attenuation, measured by coronary computed tomography angiography, is a potential indicator of coronary inflammation. However, the relationship between PCAT attenuation, microcirculatory dysfunction, and periprocedural myocardial injury (PMI) remains unclear. METHODS AND RESULTS Patients with chronic coronary syndrome who underwent coronary computed tomography angiography before percutaneous coronary intervention were retrospectively identified. PCAT attenuation and adverse plaque characteristics were assessed using coronary computed tomography angiography. The extent of microcirculatory dysfunction was evaluated using the angio-based index of microcirculatory resistance before and after percutaneous coronary intervention. Overall, 125 consecutive patients were included, with 50 experiencing PMI (PMI group) and 75 without PMI (non-PMI group). Multivariable analysis showed that older age, higher angio-based index of microcirculatory resistance, presence of adverse plaque characteristics, and higher lesion-based PCAT attenuation were independently associated with PMI occurrence (odds ratio [OR], 1.07 [95% CI, 1.01-1.13]; P=0.02; OR, 1.06 [95% CI, 1.00-1.12]; P=0.04; OR, 6.62 [95% CI, 2.13-20.6]; P=0.001; and OR, 2.89 [95% CI, 1.63-5.11]; P<0.001, respectively). High PCAT attenuation was correlated with microcirculatory dysfunction before and after percutaneous coronary intervention and its exacerbation during percutaneous coronary intervention. Adding lesion-based PCAT attenuation to the presence of adverse plaque characteristics improved the discriminatory and reclassification ability in predicting PMI. CONCLUSIONS Adding PCAT attenuation at the culprit lesion level to coronary computed tomography angiography-derived adverse plaque characteristics may provide incremental benefit in identifying patients at risk of PMI. Our results highlight the importance of microcirculatory dysfunction in PMI development, particularly in the presence of lesions with high PCAT attenuation. REGISTRATION URL: https://center6.umin.ac.jp/cgi-open-bin/ctr/ctr_view.cgi?recptno=R000057722; Unique identifier: UMIN000050662.
Collapse
Affiliation(s)
- Tetsuya Yamamoto
- Division of Cardiovascular Medicine, Department of Internal MedicineKobe University Graduate School of MedicineKobeJapan
| | - Hiroyuki Kawamori
- Division of Cardiovascular Medicine, Department of Internal MedicineKobe University Graduate School of MedicineKobeJapan
| | - Takayoshi Toba
- Division of Cardiovascular Medicine, Department of Internal MedicineKobe University Graduate School of MedicineKobeJapan
| | - Satoru Sasaki
- Division of Cardiovascular Medicine, Department of Internal MedicineKobe University Graduate School of MedicineKobeJapan
| | - Hiroyuki Fujii
- Division of Cardiovascular Medicine, Department of Internal MedicineKobe University Graduate School of MedicineKobeJapan
| | - Tomoyo Hamana
- Division of Cardiovascular Medicine, Department of Internal MedicineKobe University Graduate School of MedicineKobeJapan
| | - Yuto Osumi
- Division of Cardiovascular Medicine, Department of Internal MedicineKobe University Graduate School of MedicineKobeJapan
| | - Seigo Iwane
- Division of Cardiovascular Medicine, Department of Internal MedicineKobe University Graduate School of MedicineKobeJapan
| | - Shota Naniwa
- Division of Cardiovascular Medicine, Department of Internal MedicineKobe University Graduate School of MedicineKobeJapan
| | - Yuki Sakamoto
- Division of Cardiovascular Medicine, Department of Internal MedicineKobe University Graduate School of MedicineKobeJapan
| | - Koshi Matsuhama
- Division of Cardiovascular Medicine, Department of Internal MedicineKobe University Graduate School of MedicineKobeJapan
| | - Yuta Fukuishi
- Division of Cardiovascular Medicine, Department of Internal MedicineKobe University Graduate School of MedicineKobeJapan
| | - Ken‐ichi Hirata
- Division of Cardiovascular Medicine, Department of Internal MedicineKobe University Graduate School of MedicineKobeJapan
| | - Hiromasa Otake
- Division of Cardiovascular Medicine, Department of Internal MedicineKobe University Graduate School of MedicineKobeJapan
| |
Collapse
|
30
|
Miller RJH, Shanbhag A, Killekar A, Lemley M, Bednarski B, Van Kriekinge SD, Kavanagh PB, Feher A, Miller EJ, Einstein AJ, Ruddy TD, Liang JX, Builoff V, Berman DS, Dey D, Slomka PJ. AI-derived epicardial fat measurements improve cardiovascular risk prediction from myocardial perfusion imaging. NPJ Digit Med 2024; 7:24. [PMID: 38310123 PMCID: PMC10838293 DOI: 10.1038/s41746-024-01020-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/18/2024] [Indexed: 02/05/2024] Open
Abstract
Epicardial adipose tissue (EAT) volume and attenuation are associated with cardiovascular risk, but manual annotation is time-consuming. We evaluated whether automated deep learning-based EAT measurements from ungated computed tomography (CT) are associated with death or myocardial infarction (MI). We included 8781 patients from 4 sites without known coronary artery disease who underwent hybrid myocardial perfusion imaging. Of those, 500 patients from one site were used for model training and validation, with the remaining patients held out for testing (n = 3511 internal testing, n = 4770 external testing). We modified an existing deep learning model to first identify the cardiac silhouette, then automatically segment EAT based on attenuation thresholds. Deep learning EAT measurements were obtained in <2 s compared to 15 min for expert annotations. There was excellent agreement between EAT attenuation (Spearman correlation 0.90 internal, 0.82 external) and volume (Spearman correlation 0.90 internal, 0.91 external) by deep learning and expert segmentation in all 3 sites (Spearman correlation 0.90-0.98). During median follow-up of 2.7 years (IQR 1.6-4.9), 565 patients experienced death or MI. Elevated EAT volume and attenuation were independently associated with an increased risk of death or MI after adjustment for relevant confounders. Deep learning can automatically measure EAT volume and attenuation from low-dose, ungated CT with excellent correlation with expert annotations, but in a fraction of the time. EAT measurements offer additional prognostic insights within the context of hybrid perfusion imaging.
Collapse
Affiliation(s)
- Robert J H Miller
- Departments of Medicine (Division of Artificial Intelligence in Medicine), Imaging and Biomedical Sciences Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Cardiac Sciences, University of Calgary, Calgary, AB, Canada
| | - Aakash Shanbhag
- Departments of Medicine (Division of Artificial Intelligence in Medicine), Imaging and Biomedical Sciences Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Signal and Image Processing Institute, Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, USA
| | - Aditya Killekar
- Departments of Medicine (Division of Artificial Intelligence in Medicine), Imaging and Biomedical Sciences Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Mark Lemley
- Departments of Medicine (Division of Artificial Intelligence in Medicine), Imaging and Biomedical Sciences Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Bryan Bednarski
- Departments of Medicine (Division of Artificial Intelligence in Medicine), Imaging and Biomedical Sciences Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Serge D Van Kriekinge
- Departments of Medicine (Division of Artificial Intelligence in Medicine), Imaging and Biomedical Sciences Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Paul B Kavanagh
- Departments of Medicine (Division of Artificial Intelligence in Medicine), Imaging and Biomedical Sciences Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Attila Feher
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Edward J Miller
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Andrew J Einstein
- Division of Cardiology, Department of Medicine, and Department of Radiology, Columbia University Irving Medical Center and New York-Presbyterian Hospital, New York, NY, USA
| | - Terrence D Ruddy
- Division of Cardiology, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Joanna X Liang
- Departments of Medicine (Division of Artificial Intelligence in Medicine), Imaging and Biomedical Sciences Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Valerie Builoff
- Departments of Medicine (Division of Artificial Intelligence in Medicine), Imaging and Biomedical Sciences Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Daniel S Berman
- Departments of Medicine (Division of Artificial Intelligence in Medicine), Imaging and Biomedical Sciences Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Damini Dey
- Departments of Medicine (Division of Artificial Intelligence in Medicine), Imaging and Biomedical Sciences Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Piotr J Slomka
- Departments of Medicine (Division of Artificial Intelligence in Medicine), Imaging and Biomedical Sciences Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
31
|
Mátyás BB, Benedek I, Raț N, Blîndu E, Parajkó Z, Mihăilă T, Benedek T. Assessing the Impact of Long-Term High-Dose Statin Treatment on Pericoronary Inflammation and Plaque Distribution-A Comprehensive Coronary CTA Follow-Up Study. Int J Mol Sci 2024; 25:1700. [PMID: 38338972 PMCID: PMC10855947 DOI: 10.3390/ijms25031700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/23/2024] [Accepted: 01/28/2024] [Indexed: 02/12/2024] Open
Abstract
Computed tomography angiography (CTA) has validated the use of pericoronary adipose tissue (PCAT) attenuation as a credible indicator of coronary inflammation, playing a crucial role in coronary artery disease (CAD). This study aimed to evaluate the long-term effects of high-dose statins on PCAT attenuation at coronary lesion sites and changes in plaque distribution. Our prospective observational study included 52 patients (mean age 60.43) with chest pain, a low-to-intermediate likelihood of CAD, who had documented atheromatous plaque through CTA, performed approximately 1 year and 3 years after inclusion. We utilized the advanced features of the CaRi-Heart® and syngo.via Frontier® systems to assess coronary plaques and changes in PCAT attenuation. The investigation of changes in plaque morphology revealed significant alterations. Notably, in mixed plaques, calcified portions increased (p < 0.0001), while non-calcified plaque volume (NCPV) decreased (p = 0.0209). PCAT attenuation generally decreased after one year and remained low, indicating reduced inflammation in the following arteries: left anterior descending artery (LAD) (p = 0.0142), left circumflex artery (LCX) (p = 0.0513), and right coronary artery (RCA) (p = 0.1249). The CaRi-Heart® risk also decreased significantly (p = 0.0041). Linear regression analysis demonstrated a correlation between increased PCAT attenuation and higher volumes of NCPV (p < 0.0001, r = 0.3032) and lipid-rich plaque volume (p < 0.0001, r = 0.3281). Our study provides evidence that high-dose statin therapy significantly reduces CAD risk factors, inflammation, and plaque vulnerability, as evidenced by the notable decrease in PCAT attenuation, a critical indicator of plaque progression.
Collapse
Affiliation(s)
- Botond Barna Mátyás
- Clinic of Cardiology, Mureș County Emergency Clinical Hospital, 540136 Târgu Mureș, Romania; (B.B.M.); (I.B.); (E.B.); (Z.P.); (T.M.); (T.B.)
- Doctoral School of Medicine and Pharmacy, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania
| | - Imre Benedek
- Clinic of Cardiology, Mureș County Emergency Clinical Hospital, 540136 Târgu Mureș, Romania; (B.B.M.); (I.B.); (E.B.); (Z.P.); (T.M.); (T.B.)
- Department of Cardiology, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania
| | - Nóra Raț
- Clinic of Cardiology, Mureș County Emergency Clinical Hospital, 540136 Târgu Mureș, Romania; (B.B.M.); (I.B.); (E.B.); (Z.P.); (T.M.); (T.B.)
- Department of Cardiology, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania
| | - Emanuel Blîndu
- Clinic of Cardiology, Mureș County Emergency Clinical Hospital, 540136 Târgu Mureș, Romania; (B.B.M.); (I.B.); (E.B.); (Z.P.); (T.M.); (T.B.)
- Doctoral School of Medicine and Pharmacy, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania
| | - Zsolt Parajkó
- Clinic of Cardiology, Mureș County Emergency Clinical Hospital, 540136 Târgu Mureș, Romania; (B.B.M.); (I.B.); (E.B.); (Z.P.); (T.M.); (T.B.)
- Doctoral School of Medicine and Pharmacy, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania
| | - Theofana Mihăilă
- Clinic of Cardiology, Mureș County Emergency Clinical Hospital, 540136 Târgu Mureș, Romania; (B.B.M.); (I.B.); (E.B.); (Z.P.); (T.M.); (T.B.)
- Doctoral School of Medicine and Pharmacy, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania
| | - Theodora Benedek
- Clinic of Cardiology, Mureș County Emergency Clinical Hospital, 540136 Târgu Mureș, Romania; (B.B.M.); (I.B.); (E.B.); (Z.P.); (T.M.); (T.B.)
- Department of Cardiology, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania
| |
Collapse
|
32
|
Chen Q, Zhou F, Xie G, Tang CX, Gao X, Zhang Y, Yin X, Xu H, Zhang LJ. Advances in Artificial Intelligence-Assisted Coronary Computed Tomographic Angiography for Atherosclerotic Plaque Characterization. Rev Cardiovasc Med 2024; 25:27. [PMID: 39077649 PMCID: PMC11262402 DOI: 10.31083/j.rcm2501027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/01/2023] [Accepted: 09/13/2023] [Indexed: 07/31/2024] Open
Abstract
Coronary artery disease is a leading cause of death worldwide. Major adverse cardiac events are associated not only with coronary luminal stenosis but also with atherosclerotic plaque components. Coronary computed tomography angiography (CCTA) enables non-invasive evaluation of atherosclerotic plaque along the entire coronary tree. However, precise and efficient assessment of plaque features on CCTA is still a challenge for physicians in daily practice. Artificial intelligence (AI) refers to algorithms that can simulate intelligent human behavior to improve clinical work efficiency. Recently, cardiovascular imaging has seen remarkable advancements with the use of AI. AI-assisted CCTA has the potential to facilitate the clinical workflow, offer objective and repeatable quantitative results, accelerate the interpretation of reports, and guide subsequent treatment. Several AI algorithms have been developed to provide a comprehensive assessment of atherosclerotic plaques. This review serves to highlight the cutting-edge applications of AI-assisted CCTA in atherosclerosis plaque characterization, including detecting obstructive plaques, assessing plaque volumes and vulnerability, monitoring plaque progression, and providing risk assessment. Finally, this paper discusses the current problems and future directions for implementing AI in real-world clinical settings.
Collapse
Affiliation(s)
- Qian Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, 210006 Nanjing, Jiangsu, China
- Department of Radiology, Jinling Hospital, Medical School of Nanjing University, 210002 Nanjing, Jiangsu, China
| | - Fan Zhou
- Department of Radiology, Jinling Hospital, Medical School of Nanjing University, 210002 Nanjing, Jiangsu, China
| | - Guanghui Xie
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, 210006 Nanjing, Jiangsu, China
| | - Chun Xiang Tang
- Department of Radiology, Jinling Hospital, Medical School of Nanjing University, 210002 Nanjing, Jiangsu, China
| | - Xiaofei Gao
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, 210006 Nanjing, Jiangsu, China
| | - Yamei Zhang
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, 210006 Nanjing, Jiangsu, China
| | - Xindao Yin
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, 210006 Nanjing, Jiangsu, China
| | - Hui Xu
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, 210006 Nanjing, Jiangsu, China
| | - Long Jiang Zhang
- Department of Radiology, Jinling Hospital, Medical School of Nanjing University, 210002 Nanjing, Jiangsu, China
| |
Collapse
|
33
|
Foldyna B, Mayrhofer T, Zanni MV, Lyass A, Barve R, Karady J, McCallum S, Burdo TH, Fitch KV, Paradis K, Fulda ES, Diggs MR, Bloomfield GS, Malvestutto CD, Fichtenbaum CJ, Aberg JA, Currier JS, Ribaudo HJ, Hoffmann U, Lu MT, Douglas PS, Grinspoon SK. Pericoronary Adipose Tissue Density, Inflammation, and Subclinical Coronary Artery Disease Among People With HIV in the REPRIEVE Cohort. Clin Infect Dis 2023; 77:1676-1686. [PMID: 37439633 PMCID: PMC10724469 DOI: 10.1093/cid/ciad419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/30/2023] [Accepted: 07/10/2023] [Indexed: 07/14/2023] Open
Abstract
BACKGROUND Pericoronary adipose tissue (PCAT) may influence plaque development through inflammatory mechanisms. We assessed PCAT density, as a measure of pericoronary inflammation, in relationship to coronary plaque among people with human immunodeficiency virus (HIV [PWH]) and to a matched control population. METHODS In this baseline analysis of 727 participants of the Randomized Trial to Prevent Vascular Events in HIV (REPRIEVE) Mechanistic Substudy, we related computed tomography-derived PCAT density to presence and extent (Leaman score) of coronary artery disease (CAD), noncalcified plaque, coronary artery calcium (CAC), and vulnerable plaque features using multivariable logistic regression analyses. We further compared the PCAT density between PWH and age, sex, body mass index, CAC score, and statin use-matched controls from the community-based Framingham Heart Study (N = 464), adjusting for relevant clinical covariates. RESULTS Among 727 REPRIEVE participants (age 50.8 ± 5.8 years; 83.6% [608/727] male), PCAT density was higher in those with (vs without) coronary plaque, noncalcified plaque, CAC >0, vulnerable plaque, and high CAD burden (Leaman score >5) (P < .001 for each comparison). PCAT density related to prevalent coronary plaque (adjusted odds ratio [per 10 HU]: 1.44; 95% confidence interval, 1.22-1.70; P < .001), adjusted for clinical cardiovascular risk factors, body mass index, and systemic immune/inflammatory biomarkers. Similarly, PCAT density related to CAC >0, noncalcified plaque, vulnerable plaque, and Leaman score >5 (all P ≤ .002). PCAT density was greater among REPRIEVE participants versus Framingham Heart Study (-88.2 ± 0.5 HU versus -90.6 ± 0.4 HU; P < .001). CONCLUSIONS Among PWH in REPRIEVE, a large primary cardiovascular disease prevention cohort, increased PCAT density independently associated with prevalence and severity of coronary plaque, linking increased coronary inflammation to CAD in PWH.
Collapse
Affiliation(s)
- Borek Foldyna
- Department of Radiology, Cardiovascular Imaging Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Thomas Mayrhofer
- Department of Radiology, Cardiovascular Imaging Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Health Economics, School of Business Studies, Stralsund University of Applied Sciences, Stralsund, Germany
| | - Markella V Zanni
- Metabolism Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Asya Lyass
- Department of Mathematics and Statistics, Boston University, Boston, Massachusetts, USA
| | - Radhika Barve
- Department of Radiology, Cardiovascular Imaging Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Julia Karady
- Department of Radiology, Cardiovascular Imaging Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Sara McCallum
- Metabolism Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Tricia H Burdo
- Department of Microbiology, Immunology, and Inflammation and Center for NeuroVirology and Gene Editing, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Kathleen V Fitch
- Metabolism Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Kayla Paradis
- Department of Radiology, Cardiovascular Imaging Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Evelynne S Fulda
- Metabolism Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Marissa R Diggs
- Metabolism Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Gerald S Bloomfield
- Department of Medicine, Duke Global Health Institute and Duke Clinical Research Institute, Duke University, Durham, North Carolina, USA
| | - Carlos D Malvestutto
- Division of Infectious Diseases, Ohio State University Medical Center, Columbus, Ohio, USA
| | - Carl J Fichtenbaum
- Division of Infectious Diseases, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Judith A Aberg
- Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Judith S Currier
- Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Heather J Ribaudo
- Center for Biostatistics in AIDS Research, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Udo Hoffmann
- Innovative Imaging Consulting LLC, Waltham, Massachusetts, USA
| | - Michael T Lu
- Department of Radiology, Cardiovascular Imaging Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Pamela S Douglas
- Department of Medicine (Cardiology), Duke Clinical Research Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Steven K Grinspoon
- Metabolism Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
34
|
Kwiecinski J, Tzolos E, Williams MC, Dey D, Berman D, Slomka P, Newby DE, Dweck MR. Noninvasive Coronary Atherosclerotic Plaque Imaging. JACC Cardiovasc Imaging 2023; 16:1608-1622. [PMID: 38056987 DOI: 10.1016/j.jcmg.2023.08.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/06/2023] [Accepted: 08/16/2023] [Indexed: 12/08/2023]
Abstract
Coronary artery disease is the leading cause of morbidity and mortality worldwide. Despite remarkable advances in the management of coronary artery disease, the prediction of adverse coronary events remains challenging. Over the preceding decades, considerable effort has been made to improve risk stratification using noninvasive imaging. Recently, these efforts have increasingly focused on the direct imaging of coronary atherosclerotic plaque. Modern imaging now allows imaging of coronary plaque burden, plaque type, atherosclerotic plaque activity, and plaque thrombosis, which have major potential to refine patient risk stratification, aid decision making, and advance future clinical practice.
Collapse
Affiliation(s)
- Jacek Kwiecinski
- Department of Interventional Cardiology and Angiology, Institute of Cardiology, Warsaw, Poland
| | - Evangelos Tzolos
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Michelle C Williams
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Damini Dey
- Division of Artificial Intelligence, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA; Department of Imaging, Cedars-Sinai Medical Center, Los Angeles, California, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Daniel Berman
- Division of Artificial Intelligence, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA; Department of Imaging, Cedars-Sinai Medical Center, Los Angeles, California, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Piotr Slomka
- Division of Artificial Intelligence, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA; Department of Imaging, Cedars-Sinai Medical Center, Los Angeles, California, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - David E Newby
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Marc R Dweck
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
35
|
Pontone G, Rossi A, Gimelli A, Neglia D. Should we choose CT angiography first instead of SPECT/PET first for the diagnosis and management of coronary artery disease? Atherosclerosis 2023; 385:117315. [PMID: 37890440 DOI: 10.1016/j.atherosclerosis.2023.117315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/04/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023]
Abstract
In patients presenting with chest pain, current guidelines recommend the use of coronary computed tomography angiography and single-photon emission tomography/positron emission tomography, both with equal class 1 indication and level of evidence A. There is no clear recommendation on which test should be used as a first-line test. The choice of the test should be based on individualized clinical risk assessment, patient characteristics, local expertise/availability, and patient preferences. In this context, it is fair to ask which non-invasive imaging test to choose. The debate reproduced in this article answers this question by summarizing the considerations in selecting present state-of-the-art criteria of the right test for the right patient to ensure efficient resource utilization, minimize unnecessary testing, and maximize diagnostic accuracy and therapeutic efficacy.
Collapse
Affiliation(s)
- Gianluca Pontone
- Department of Periooperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino IRCCS, Milan, Italy; Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy.
| | - Alexia Rossi
- Department of Nuclear Medicine, University Hospital, Zurich, Switzerland
| | - Alessia Gimelli
- Imaging Department, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Danilo Neglia
- Cardiovascular and Imaging Departments, Fondazione Toscana Gabriele Monasterio, Pisa, Italy; Sant'Anna School of Advanced Studies, Pisa, Italy
| |
Collapse
|
36
|
Nishii T, Kobayashi T, Saito T, Kotoku A, Ohta Y, Kitahara S, Umehara K, Ota J, Horinouchi H, Morita Y, Noguchi T, Ishida T, Fukuda T. Deep Learning-based Post Hoc CT Denoising for the Coronary Perivascular Fat Attenuation Index. Acad Radiol 2023; 30:2505-2513. [PMID: 36868878 DOI: 10.1016/j.acra.2023.01.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/06/2023] [Accepted: 01/17/2023] [Indexed: 03/05/2023]
Abstract
RATIONALE AND OBJECTIVES Coronary inflammation related to high-risk hemorrhagic plaques can be captured by the perivascular fat attenuation index (FAI) using coronary computed tomography angiography (CCTA). Since the FAI is susceptible to image noise, we believe deep learning (DL)-based post hoc noise reduction can improve diagnostic capability. We aimed to assess the diagnostic performance of the FAI in DL-based denoised high-fidelity CCTA images compared with coronary plaque magnetic resonance imaging (MRI) delivered high-intensity hemorrhagic plaques (HIPs). MATERIALS AND METHODS We retrospectively reviewed 43 patients who underwent CCTA and coronary plaque MRI. We generated high-fidelity CCTA images by denoising the standard CCTA images using a residual dense network that supervised the denoising task by averaging three cardiac phases with nonrigid registration. We measured the FAIs as the mean CT value of all voxels (range of -190 to -30 HU) located within a radial distance from the outer proximal right coronary artery wall. The diagnostic reference standard was defined as HIPs (high-risk hemorrhagic plaques) using MRI. The diagnostic performance of the FAI in the original and denoised images was assessed using receiver operating characteristic curves. RESULTS Of 43 patients, 13 had HIPs. The denoised CCTA improved the area under the curve (0.89 [95% confidence interval (CI) 0.78-0.99]) of the FAI compared with that in the original image (0.77 [95% CI, 0.62-0.91], p = 0.008). The optimal cutoff value for predicting HIPs in denoised CCTA was -69 HU with 0.85 (11/13) sensitivity, 0.79 (25/30) specificity, and 0.80 (36/43) accuracy. CONCLUSION DL-based denoised high-fidelity CCTA improved the AUC and specificity of the FAI for predicting HIPs.
Collapse
Affiliation(s)
- Tatsuya Nishii
- Department of Radiology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan.
| | - Takuma Kobayashi
- Department of Radiology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan; Department of Medical Physics and Engineering, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Tatsuya Saito
- Department of Radiology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Akiyuki Kotoku
- Department of Radiology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Yasutoshi Ohta
- Department of Radiology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Satoshi Kitahara
- Department of Cardiology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Kensuke Umehara
- Department of Medical Physics and Engineering, Graduate School of Medicine, Osaka University, Suita, Japan; Medical Informatics Section, QST Hospital, National Institutes for Quantum Science and Technology, Inage-ku, Chiba, Japan; Applied MRI Research, Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Inage-ku, Chiba, Japan
| | - Junko Ota
- Department of Medical Physics and Engineering, Graduate School of Medicine, Osaka University, Suita, Japan; Medical Informatics Section, QST Hospital, National Institutes for Quantum Science and Technology, Inage-ku, Chiba, Japan; Applied MRI Research, Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Inage-ku, Chiba, Japan
| | - Hiroki Horinouchi
- Department of Radiology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Yoshiaki Morita
- Department of Radiology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Teruo Noguchi
- Department of Cardiology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Takayuki Ishida
- Department of Medical Physics and Engineering, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Tetsuya Fukuda
- Department of Radiology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| |
Collapse
|
37
|
Antonopoulos AS, Simantiris S. Preventative Imaging with Coronary Computed Tomography Angiography. Curr Cardiol Rep 2023; 25:1623-1632. [PMID: 37897677 DOI: 10.1007/s11886-023-01982-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/04/2023] [Indexed: 10/30/2023]
Abstract
PURPOSE OF REVIEW Coronary computed tomography angiography (CCTA) is the diagnostic modality of choice for patients with stable chest pain. In this review, we scrutinize the evidence on the use of CCTA for the screening of asymptomatic patients. RECENT FINDINGS Clinical evidence suggests that CCTA imaging enhances cardiovascular risk stratification and prompts the timely initiation of preventive treatment leading to reduced risk of major adverse coronary events. Visualization of coronary plaques by CCTA also helps patients to comply with preventive medications. The presence of non-obstructive plaques and total plaque burden are prognostic for cardiovascular events. High-risk plaque features and pericoronary fat attenuation index, enrich the prognostic output of CCTA on top of anatomical information by capturing information on plaque vulnerability and coronary inflammatory burden. Timely detection of atherosclerotic disease or coronary inflammation by CCTA can assist in the deployment of targeted preventive strategies and novel therapeutics to prevent cardiovascular disease.
Collapse
Affiliation(s)
- Alexios S Antonopoulos
- Biomedical Research Foundation of the Academy of Athens (BRFAA), 4 Soranou Efesiou Street, Athens, Greece.
- 1st Cardiology Department, Hippokration Hospital, National and Kapodistrian University of Athens, Athens, Greece.
| | - Spyridon Simantiris
- 1st Cardiology Department, Hippokration Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
38
|
Antoniades C, Tousoulis D, Vavlukis M, Fleming I, Duncker DJ, Eringa E, Manfrini O, Antonopoulos AS, Oikonomou E, Padró T, Trifunovic-Zamaklar D, De Luca G, Guzik T, Cenko E, Djordjevic-Dikic A, Crea F. Perivascular adipose tissue as a source of therapeutic targets and clinical biomarkers. Eur Heart J 2023; 44:3827-3844. [PMID: 37599464 PMCID: PMC10568001 DOI: 10.1093/eurheartj/ehad484] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 05/03/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
Obesity is a modifiable cardiovascular risk factor, but adipose tissue (AT) depots in humans are anatomically, histologically, and functionally heterogeneous. For example, visceral AT is a pro-atherogenic secretory AT depot, while subcutaneous AT represents a more classical energy storage depot. Perivascular adipose tissue (PVAT) regulates vascular biology via paracrine cross-talk signals. In this position paper, the state-of-the-art knowledge of various AT depots is reviewed providing a consensus definition of PVAT around the coronary arteries, as the AT surrounding the artery up to a distance from its outer wall equal to the luminal diameter of the artery. Special focus is given to the interactions between PVAT and the vascular wall that render PVAT a potential therapeutic target in cardiovascular diseases. This Clinical Consensus Statement also discusses the role of PVAT as a clinically relevant source of diagnostic and prognostic biomarkers of vascular function, which may guide precision medicine in atherosclerosis, hypertension, heart failure, and other cardiovascular diseases. In this article, its role as a 'biosensor' of vascular inflammation is highlighted with description of recent imaging technologies that visualize PVAT in clinical practice, allowing non-invasive quantification of coronary inflammation and the related residual cardiovascular inflammatory risk, guiding deployment of therapeutic interventions. Finally, the current and future clinical applicability of artificial intelligence and machine learning technologies is reviewed that integrate PVAT information into prognostic models to provide clinically meaningful information in primary and secondary prevention.
Collapse
Affiliation(s)
- Charalambos Antoniades
- Acute Multidisciplinary Imaging and Interventional Centre, RDM Division of Cardiovascular Medicine, University of Oxford, Headley Way, Headington, Oxford OX39DU, UK
| | - Dimitris Tousoulis
- 1st Cardiology Department, National and Kapodistrian University of Athens, Greece
| | - Marija Vavlukis
- Medical Faculty, University Clinic for Cardiology, University Ss’ Cyril and Methodius in Skopje, Skopje, North Macedonia
| | - Ingrid Fleming
- Institute for Vascular Signalling, Centre of Molecular Medicine, Goethe University, Frankfurt, Germany
| | - Dirk J Duncker
- Department of Cardiology, Thorax Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Etto Eringa
- Cardiovascular-Program ICCC, Research Institute—Hospital Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain
| | - Olivia Manfrini
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Alexios S Antonopoulos
- Acute Multidisciplinary Imaging and Interventional Centre, RDM Division of Cardiovascular Medicine, University of Oxford, Headley Way, Headington, Oxford OX39DU, UK
- 1st Cardiology Department, National and Kapodistrian University of Athens, Greece
| | - Evangelos Oikonomou
- 1st Cardiology Department, National and Kapodistrian University of Athens, Greece
| | - Teresa Padró
- Cardiovascular Program-ICCC, Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
- CiberCV, Institute Carlos III, Madrid, Spain
| | | | - Giuseppe De Luca
- Division of Cardiology, AOU Policlinico G. Martino, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
- Cardiologia Ospedaliera, Nuovo Galeazzi-Sant’Ambrogio, Milan, Italy
| | - Tomasz Guzik
- Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, UK
- Department of Medicine, Jagiellonian University, Collegium Medicum, Krakow, Poland
| | - Edina Cenko
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Ana Djordjevic-Dikic
- Medical Faculty, Cardiology Clinic, University Clinical Center, University of Belgrade, Serbia
| | - Filippo Crea
- Department of Cardiology and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy
| |
Collapse
|
39
|
Tanisawa H, Matsumoto H, Cadet S, Higuchi S, Ohya H, Isodono K, Irie D, Kaneko K, Sumida A, Hirano T, Otaki Y, Kitamura R, Slomka PJ, Dey D, Shinke T. Quantification of Low-Attenuation Plaque Burden from Coronary CT Angiography: A Head-to-Head Comparison with Near-Infrared Spectroscopy Intravascular US. Radiol Cardiothorac Imaging 2023; 5:e230090. [PMID: 37908555 PMCID: PMC10613924 DOI: 10.1148/ryct.230090] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/09/2023] [Accepted: 08/24/2023] [Indexed: 11/02/2023]
Abstract
Purpose To determine the association between low-attenuation plaque (LAP) burden at coronary CT angiography (CCTA) and plaque morphology determined with near-infrared spectroscopy intravascular US (NIRS-IVUS) and to compare the discriminative ability for NIRS-IVUS-verified high-risk plaques (HRPs) between LAP burden and visual assessment of LAP. Materials and Methods This Health Insurance Portability and Accountability Act-compliant retrospective study included consecutive patients who underwent CCTA before NIRS-IVUS between October 2019 and October 2022 at two facilities. LAPs were visually identified as having a central focal area of less than 30 HU using the pixel lens technique. LAP burden was calculated as the volume of voxels with less than 30 HU divided by vessel volume. HRPs were defined as plaques with one of the following NIRS-IVUS-derived high-risk features: maximum 4-mm lipid core burden index greater than 400 (lipid-rich plaque), an echolucent zone (intraplaque hemorrhage), or echo attenuation (cholesterol clefts). Multivariable analysis was performed to evaluate NIRS-IVUS-derived parameters associated with LAP burden. The discriminative ability for NIRS-IVUS-verified HRPs was compared using receiver operating characteristic analysis. Results In total, 273 plaques in 141 patients (median age, 72 years; IQR, 63-78 years; 106 males) were analyzed. All the NIRS-IVUS-derived high-risk features were independently linked to LAP burden (P < .01 for all). LAP burden increased with the number of high-risk features (P < .001) and had better discriminative ability for HRPs than plaque attenuation by visual assessment (area under the receiver operating characteristic curve, 0.93 vs 0.89; P = .02). Conclusion Quantification of LAP burden improved HRP assessment compared with visual assessment. LAP burden was associated with the accumulation of HRP morphology.Keywords: Coronary CT Angiography, Intraplaque Hemorrhage, Lipid-Rich Plaque, Low Attenuation Plaque, Near-Infrared Spectroscopy Intravascular Ultrasound Supplemental material is available for this article. See also the commentary by Ferencik in this issue.© RSNA, 2023.
Collapse
Affiliation(s)
- Hiroki Tanisawa
- From the Division of Cardiology, Showa University School of Medicine, 1-5-8 Hatanodai Shinagawa-ku, Tokyo 142-8555, Japan (H.T., H.M., S.H., K.K., A.S., T.S.); Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, Calif (S.C., P.J.S., D.D.); Department of Cardiology, Ijinkai Takeda General Hospital, Kyoto, Japan (H.O., K.I., D.I., R.K.); Department of Radiological Technology, Showa University Hospital, Tokyo, Japan (T.H.); and Department of Radiology, Sakakibara Heart Institute, Tokyo, Japan (Y.O.)
| | - Hidenari Matsumoto
- From the Division of Cardiology, Showa University School of Medicine, 1-5-8 Hatanodai Shinagawa-ku, Tokyo 142-8555, Japan (H.T., H.M., S.H., K.K., A.S., T.S.); Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, Calif (S.C., P.J.S., D.D.); Department of Cardiology, Ijinkai Takeda General Hospital, Kyoto, Japan (H.O., K.I., D.I., R.K.); Department of Radiological Technology, Showa University Hospital, Tokyo, Japan (T.H.); and Department of Radiology, Sakakibara Heart Institute, Tokyo, Japan (Y.O.)
| | - Sebastien Cadet
- From the Division of Cardiology, Showa University School of Medicine, 1-5-8 Hatanodai Shinagawa-ku, Tokyo 142-8555, Japan (H.T., H.M., S.H., K.K., A.S., T.S.); Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, Calif (S.C., P.J.S., D.D.); Department of Cardiology, Ijinkai Takeda General Hospital, Kyoto, Japan (H.O., K.I., D.I., R.K.); Department of Radiological Technology, Showa University Hospital, Tokyo, Japan (T.H.); and Department of Radiology, Sakakibara Heart Institute, Tokyo, Japan (Y.O.)
| | - Satoshi Higuchi
- From the Division of Cardiology, Showa University School of Medicine, 1-5-8 Hatanodai Shinagawa-ku, Tokyo 142-8555, Japan (H.T., H.M., S.H., K.K., A.S., T.S.); Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, Calif (S.C., P.J.S., D.D.); Department of Cardiology, Ijinkai Takeda General Hospital, Kyoto, Japan (H.O., K.I., D.I., R.K.); Department of Radiological Technology, Showa University Hospital, Tokyo, Japan (T.H.); and Department of Radiology, Sakakibara Heart Institute, Tokyo, Japan (Y.O.)
| | - Hidefumi Ohya
- From the Division of Cardiology, Showa University School of Medicine, 1-5-8 Hatanodai Shinagawa-ku, Tokyo 142-8555, Japan (H.T., H.M., S.H., K.K., A.S., T.S.); Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, Calif (S.C., P.J.S., D.D.); Department of Cardiology, Ijinkai Takeda General Hospital, Kyoto, Japan (H.O., K.I., D.I., R.K.); Department of Radiological Technology, Showa University Hospital, Tokyo, Japan (T.H.); and Department of Radiology, Sakakibara Heart Institute, Tokyo, Japan (Y.O.)
| | - Koji Isodono
- From the Division of Cardiology, Showa University School of Medicine, 1-5-8 Hatanodai Shinagawa-ku, Tokyo 142-8555, Japan (H.T., H.M., S.H., K.K., A.S., T.S.); Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, Calif (S.C., P.J.S., D.D.); Department of Cardiology, Ijinkai Takeda General Hospital, Kyoto, Japan (H.O., K.I., D.I., R.K.); Department of Radiological Technology, Showa University Hospital, Tokyo, Japan (T.H.); and Department of Radiology, Sakakibara Heart Institute, Tokyo, Japan (Y.O.)
| | - Daisuke Irie
- From the Division of Cardiology, Showa University School of Medicine, 1-5-8 Hatanodai Shinagawa-ku, Tokyo 142-8555, Japan (H.T., H.M., S.H., K.K., A.S., T.S.); Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, Calif (S.C., P.J.S., D.D.); Department of Cardiology, Ijinkai Takeda General Hospital, Kyoto, Japan (H.O., K.I., D.I., R.K.); Department of Radiological Technology, Showa University Hospital, Tokyo, Japan (T.H.); and Department of Radiology, Sakakibara Heart Institute, Tokyo, Japan (Y.O.)
| | - Kyoichi Kaneko
- From the Division of Cardiology, Showa University School of Medicine, 1-5-8 Hatanodai Shinagawa-ku, Tokyo 142-8555, Japan (H.T., H.M., S.H., K.K., A.S., T.S.); Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, Calif (S.C., P.J.S., D.D.); Department of Cardiology, Ijinkai Takeda General Hospital, Kyoto, Japan (H.O., K.I., D.I., R.K.); Department of Radiological Technology, Showa University Hospital, Tokyo, Japan (T.H.); and Department of Radiology, Sakakibara Heart Institute, Tokyo, Japan (Y.O.)
| | - Arihiro Sumida
- From the Division of Cardiology, Showa University School of Medicine, 1-5-8 Hatanodai Shinagawa-ku, Tokyo 142-8555, Japan (H.T., H.M., S.H., K.K., A.S., T.S.); Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, Calif (S.C., P.J.S., D.D.); Department of Cardiology, Ijinkai Takeda General Hospital, Kyoto, Japan (H.O., K.I., D.I., R.K.); Department of Radiological Technology, Showa University Hospital, Tokyo, Japan (T.H.); and Department of Radiology, Sakakibara Heart Institute, Tokyo, Japan (Y.O.)
| | - Takaho Hirano
- From the Division of Cardiology, Showa University School of Medicine, 1-5-8 Hatanodai Shinagawa-ku, Tokyo 142-8555, Japan (H.T., H.M., S.H., K.K., A.S., T.S.); Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, Calif (S.C., P.J.S., D.D.); Department of Cardiology, Ijinkai Takeda General Hospital, Kyoto, Japan (H.O., K.I., D.I., R.K.); Department of Radiological Technology, Showa University Hospital, Tokyo, Japan (T.H.); and Department of Radiology, Sakakibara Heart Institute, Tokyo, Japan (Y.O.)
| | - Yuka Otaki
- From the Division of Cardiology, Showa University School of Medicine, 1-5-8 Hatanodai Shinagawa-ku, Tokyo 142-8555, Japan (H.T., H.M., S.H., K.K., A.S., T.S.); Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, Calif (S.C., P.J.S., D.D.); Department of Cardiology, Ijinkai Takeda General Hospital, Kyoto, Japan (H.O., K.I., D.I., R.K.); Department of Radiological Technology, Showa University Hospital, Tokyo, Japan (T.H.); and Department of Radiology, Sakakibara Heart Institute, Tokyo, Japan (Y.O.)
| | - Ryoji Kitamura
- From the Division of Cardiology, Showa University School of Medicine, 1-5-8 Hatanodai Shinagawa-ku, Tokyo 142-8555, Japan (H.T., H.M., S.H., K.K., A.S., T.S.); Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, Calif (S.C., P.J.S., D.D.); Department of Cardiology, Ijinkai Takeda General Hospital, Kyoto, Japan (H.O., K.I., D.I., R.K.); Department of Radiological Technology, Showa University Hospital, Tokyo, Japan (T.H.); and Department of Radiology, Sakakibara Heart Institute, Tokyo, Japan (Y.O.)
| | - Piotr J Slomka
- From the Division of Cardiology, Showa University School of Medicine, 1-5-8 Hatanodai Shinagawa-ku, Tokyo 142-8555, Japan (H.T., H.M., S.H., K.K., A.S., T.S.); Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, Calif (S.C., P.J.S., D.D.); Department of Cardiology, Ijinkai Takeda General Hospital, Kyoto, Japan (H.O., K.I., D.I., R.K.); Department of Radiological Technology, Showa University Hospital, Tokyo, Japan (T.H.); and Department of Radiology, Sakakibara Heart Institute, Tokyo, Japan (Y.O.)
| | - Damini Dey
- From the Division of Cardiology, Showa University School of Medicine, 1-5-8 Hatanodai Shinagawa-ku, Tokyo 142-8555, Japan (H.T., H.M., S.H., K.K., A.S., T.S.); Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, Calif (S.C., P.J.S., D.D.); Department of Cardiology, Ijinkai Takeda General Hospital, Kyoto, Japan (H.O., K.I., D.I., R.K.); Department of Radiological Technology, Showa University Hospital, Tokyo, Japan (T.H.); and Department of Radiology, Sakakibara Heart Institute, Tokyo, Japan (Y.O.)
| | - Toshiro Shinke
- From the Division of Cardiology, Showa University School of Medicine, 1-5-8 Hatanodai Shinagawa-ku, Tokyo 142-8555, Japan (H.T., H.M., S.H., K.K., A.S., T.S.); Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, Calif (S.C., P.J.S., D.D.); Department of Cardiology, Ijinkai Takeda General Hospital, Kyoto, Japan (H.O., K.I., D.I., R.K.); Department of Radiological Technology, Showa University Hospital, Tokyo, Japan (T.H.); and Department of Radiology, Sakakibara Heart Institute, Tokyo, Japan (Y.O.)
| |
Collapse
|
40
|
Hou J, Zheng G, Han L, Shu Z, Wang H, Yuan Z, Peng J, Gong X. Coronary computed tomography angiography imaging features combined with computed tomography-fractional flow reserve, pericoronary fat attenuation index, and radiomics for the prediction of myocardial ischemia. J Nucl Cardiol 2023; 30:1838-1850. [PMID: 36859595 DOI: 10.1007/s12350-023-03221-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 01/19/2023] [Indexed: 03/03/2023]
Abstract
BACKGROUND This study aimed to predict myocardial ischemia (MIS) by constructing models with imaging features, CT-fractional flow reserve (CT-FFR), pericoronary fat attenuation index (pFAI), and radiomics based on coronary computed tomography angiography (CCTA). METHODS AND RESULTS This study included 96 patients who underwent CCTA and single photon emission computed tomography-myocardial perfusion imaging (SPECT-MPI). According to SPECT-MPI results, there were 72 vessels with MIS in corresponding supply area and 105 vessels with no-MIS. The conventional model [lesion length (LL), MDS (maximum stenosis diameter × 100% / reference vessel diameter), MAS (maximum stenosis area × 100% / reference vessel area) and CT value], radiomics model (radiomics features), and multi-faceted model (all features) were constructed using support vector machine. Conventional and radiomics models showed similar predictive efficacy [AUC: 0.76, CI 0.62-0.90 vs. 0.74, CI 0.61-0.88; p > 0.05]. Adding pFAI to the conventional model showed better predictive efficacy than adding CT-FFR (AUC: 0.88, CI 0.79-0.97 vs. 0.80, CI 0.68-0.92; p < 0.05). Compared with conventional and radiomics model, the multi-faceted model showed the highest predictive efficacy (AUC: 0.92, CI 0.82-0.98, p < 0.05). CONCLUSION pFAI is more effective for predicting MIS than CT-FFR. A multi-faceted model combining imaging features, CT-FFR, pFAI, and radiomics is a potential diagnostic tool for MIS.
Collapse
Affiliation(s)
- Jie Hou
- Jinzhou Medical University, Jinzhou, Liaoning Province, China
- Heart Center, Department of Radiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Address: No. 158 Shangtang Road, Hanghzou City, 310014, Zhejiang Province, China
| | - Guangying Zheng
- Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Lu Han
- Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Zhenyu Shu
- Heart Center, Department of Radiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Address: No. 158 Shangtang Road, Hanghzou City, 310014, Zhejiang Province, China
| | - Haochu Wang
- Heart Center, Department of Radiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Address: No. 158 Shangtang Road, Hanghzou City, 310014, Zhejiang Province, China
| | - Zhongyu Yuan
- Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Jiaxuan Peng
- Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Xiangyang Gong
- Heart Center, Department of Radiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Address: No. 158 Shangtang Road, Hanghzou City, 310014, Zhejiang Province, China.
| |
Collapse
|
41
|
Kitahara S, Kataoka Y, Miura H, Nishii T, Nishimura K, Murai K, Iwai T, Matama H, Honda S, Fujino M, Yoneda S, Takagi K, Otsuka F, Asaumi Y, Fujino Y, Tsujita K, Puri R, Nicholls SJ, Noguchi T. Characterization of plaque phenotypes exhibiting an elevated pericoronary adipose tissue attenuation: insights from the REASSURE-NIRS registry. Int J Cardiovasc Imaging 2023; 39:1943-1952. [PMID: 37380905 PMCID: PMC10589176 DOI: 10.1007/s10554-023-02907-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 06/19/2023] [Indexed: 06/30/2023]
Abstract
Inflammation has been considered to promote atheroma instability. Coronary computed tomography angiography (CCTA) visualizes pericoronary adipose tissue (PCAT) attenuation, which reflects coronary artery inflammation. While PCAT attenuation has been reported to predict future coronary events, plaque phenotypes exhibiting high PCAT attenuation remains to be fully elucidated. The current study aims to characterize coronary atheroma with a greater vascular inflammation. We retrospectively analyzed culprit lesions in 69 CAD patients receiving PCI from the REASSURE-NIRS registry (NCT04864171). Culprit lesions were evaluated by both CCTA and near-infrared spectroscopy/intravascular ultrasound (NIRS/IVUS) imaging prior to PCI. PCAT attenuation at proximal RCA (PCATRCA) and NIRS/IVUS-derived plaque measures were compared in patients with PCATRCA attenuation ≥ and < -78.3 HU (median). Lesions with PCATRCA attenuation ≥ -78.3 HU exhibited a greater frequency of maxLCBI4mm ≥ 400 (66% vs. 26%, p < 0.01), plaque burden ≥ 70% (94% vs. 74%, p = 0.02) and spotty calcification (49% vs. 6%, p < 0.01). Whereas positive remodeling (63% vs. 41%, p = 0.07) did not differ between two groups. On multivariable analysis, maxLCBI4mm ≥ 400 (OR = 4.07; 95%CI 1.12-14.74, p = 0.03), plaque burden ≥ 70% (OR = 7.87; 95%CI 1.01-61.26, p = 0.04), and spotty calcification (OR = 14.33; 95%CI 2.37-86.73, p < 0.01) independently predicted high PCATRCA attenuation. Of note, while the presence of only one plaque feature did not necessarily elevate PCATRCA attenuation (p = 0.22), lesions harboring two or more features were significantly associated with higher PCATRCA attenuation. More vulnerable plaque phenotypes were observed in patients with high PCATRCA attenuation. Our findings suggest PCATRCA attenuation as the presence of profound disease substrate, which potentially benefits from anti-inflammatory agents.
Collapse
Affiliation(s)
- Satoshi Kitahara
- Department of Cardiology, Kashiwa Kousei General Hospital, 617 Shikoda, Kashiwa, Chiba, 277-0862, Japan
- Department of Advanced Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Chuo-Ku, Honjo, Kumamoto, 860-8556, Japan
- Department of Cardiovascular Medicine, National Cerebral & Cardiovascular Center, 6-1 Kishibe-Shimmachi, Suita, Osaka, 564-8565, Japan
| | - Yu Kataoka
- Department of Cardiovascular Medicine, National Cerebral & Cardiovascular Center, 6-1 Kishibe-Shimmachi, Suita, Osaka, 564-8565, Japan.
| | - Hiroyuki Miura
- Department of Cardiovascular Medicine, National Cerebral & Cardiovascular Center, 6-1 Kishibe-Shimmachi, Suita, Osaka, 564-8565, Japan
| | - Tatsuya Nishii
- Department of Radiology, National Cerebral & Cardiovascular Center, 6-1 Kishibe-Shimmachi, Suita, Osaka, 564-8565, Japan
| | - Kunihiro Nishimura
- Department of Preventive Medicine and Epidemiology, National Cerebral & Cardiovascular Center, 6-1 Kishibe-Shimmachi, Suita, Osaka, 564-8565, Japan
| | - Kota Murai
- Department of Advanced Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Chuo-Ku, Honjo, Kumamoto, 860-8556, Japan
- Department of Cardiovascular Medicine, National Cerebral & Cardiovascular Center, 6-1 Kishibe-Shimmachi, Suita, Osaka, 564-8565, Japan
| | - Takamasa Iwai
- Department of Cardiovascular Medicine, National Cerebral & Cardiovascular Center, 6-1 Kishibe-Shimmachi, Suita, Osaka, 564-8565, Japan
| | - Hideo Matama
- Department of Advanced Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Chuo-Ku, Honjo, Kumamoto, 860-8556, Japan
- Department of Cardiovascular Medicine, National Cerebral & Cardiovascular Center, 6-1 Kishibe-Shimmachi, Suita, Osaka, 564-8565, Japan
| | - Satoshi Honda
- Department of Cardiovascular Medicine, National Cerebral & Cardiovascular Center, 6-1 Kishibe-Shimmachi, Suita, Osaka, 564-8565, Japan
| | - Masashi Fujino
- Department of Cardiovascular Medicine, National Cerebral & Cardiovascular Center, 6-1 Kishibe-Shimmachi, Suita, Osaka, 564-8565, Japan
| | - Shuichi Yoneda
- Department of Cardiovascular Medicine, National Cerebral & Cardiovascular Center, 6-1 Kishibe-Shimmachi, Suita, Osaka, 564-8565, Japan
| | - Kensuke Takagi
- Department of Cardiovascular Medicine, National Cerebral & Cardiovascular Center, 6-1 Kishibe-Shimmachi, Suita, Osaka, 564-8565, Japan
| | - Fumiyuki Otsuka
- Department of Cardiovascular Medicine, National Cerebral & Cardiovascular Center, 6-1 Kishibe-Shimmachi, Suita, Osaka, 564-8565, Japan
| | - Yasuhide Asaumi
- Department of Cardiovascular Medicine, National Cerebral & Cardiovascular Center, 6-1 Kishibe-Shimmachi, Suita, Osaka, 564-8565, Japan
| | - Yusuke Fujino
- Department of Cardiology, Kashiwa Kousei General Hospital, 617 Shikoda, Kashiwa, Chiba, 277-0862, Japan
| | - Kenichi Tsujita
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Rishi Puri
- Department of Cardiovascular Medicine, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Stephen J Nicholls
- Victorian Heart Institute, Monash University, 631 Blackburn Rd, Clayton, VIC, 3168, Australia
| | - Teruo Noguchi
- Department of Advanced Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Chuo-Ku, Honjo, Kumamoto, 860-8556, Japan
- Department of Cardiovascular Medicine, National Cerebral & Cardiovascular Center, 6-1 Kishibe-Shimmachi, Suita, Osaka, 564-8565, Japan
| |
Collapse
|
42
|
Sergienko VB, Ansheles AA. [Positron emission tomography in cardiological practice]. TERAPEVT ARKH 2023; 95:531-536. [PMID: 38159001 DOI: 10.26442/00403660.2023.07.202278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 09/28/2023] [Indexed: 01/03/2024]
Abstract
The utility of positron emission tomography in cardiology currently goes beyond the ischemic heart disease and covers an increasingly wider range of non-coronary pathology, which requires timely expert diagnostics, including chronic heart disease of any etiology, valvular and electrophysiology disorders, cardiooncology. Authors emphasize the importance of the development of positron emission tomography technologies in the Russian Federation. This includes the development and implementation of new radiopharmaceuticals for the diagnosis of pathological processes of the cardiovascular system, systemic and local inflammation, including atherosclerosis, impaired perfusion and myocardial metabolism, and also for solving specific diagnostic tasks in comorbid pathology.
Collapse
Affiliation(s)
- V B Sergienko
- Chazov National Medical Research Center of Cardiology
| | - A A Ansheles
- Chazov National Medical Research Center of Cardiology
| |
Collapse
|
43
|
Wolny RR, Kwieciński J, Zalewska J, Michałowska I, Kruk M, Kepka C, Prejbisz A, Pręgowski J, Chwała A, Skowroński J, Kobierska A, Ciesielski R, Januszewicz A, Witkowski A, Adlam D, Dey D, Kądziela J. Pericoronary adipose tissue density is increased in patients with recent spontaneous coronary dissection. Heart 2023; 109:1443-1449. [PMID: 37316164 DOI: 10.1136/heartjnl-2023-322482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/14/2023] [Indexed: 06/16/2023] Open
Abstract
OBJECTIVE Inflammatory activity is one of the potential mechanisms of spontaneous coronary artery dissection (SCAD). Recently, the pericoronary adipose tissue attenuation (PCAT) derived from CT angiography (CTA) has been established as a method for measuring vascular inflammation. We aimed to characterise the pancoronary and vessel-specific PCAT in patients with and without recent SCAD. METHODS The study comprised patients with SCAD referred to a tertiary centre between 2017 and 2022 who underwent CTA and were compared with individuals with no prior SCAD. PCAT was analysed on end-diastolic CTA reconstructions along proximal 40 mm of all major coronary vessels as well as the SCAD-related vessel. We analysed 48 patients with recent SCAD (median 6.1 (IQR 3.5-14.9) months since SCAD, 95.8% female) and 48 patients in the group without SCAD. RESULTS Pancoronary PCAT was higher in patients with SCAD compared with those without SCAD (-80.6±7.9 vs -85.3 HU±6.1, p=0.002). Vessel-specific PCAT in patients with SCAD compared with patients without SCAD was higher for both the RCA (-80.9±9.5 vs -87.1±6.9 HU, p=0.001) and the LCA (-80.3±7.8 vs -83.4±7.2 HU, p=0.04). In patients with SCAD, PCAT of the SCAD-related vessel was not significantly different from averaged PCAT of unaffected vessels (-81.2±9.2 vs -80.6±7.6, p=0.74). There was no association between PCAT and the interval from SCAD to CTA. CONCLUSIONS Patients with recent SCAD have higher PCAT compared with patients without SCAD, suggesting an increased perivascular inflammatory activity. This association is not restricted to the dissected vessel.
Collapse
Affiliation(s)
- Rafał R Wolny
- Department of Interventional Cardiology and Angiology, National Institute of Cardiology, Warsaw, Poland
| | - Jacek Kwieciński
- Department of Interventional Cardiology and Angiology, National Institute of Cardiology, Warsaw, Poland
| | - Joanna Zalewska
- Department of Interventional Cardiology and Angiology, National Institute of Cardiology, Warsaw, Poland
| | - Ilona Michałowska
- Department of Radiology, National Institute of Cardiology, Warsaw, Poland
| | - Mariusz Kruk
- Department of Coronary and Structural Heart Diseases, National Institute of Cardiology, Warsaw, Poland
| | - Cezary Kepka
- Department of Coronary and Structural Heart Diseases, National Institute of Cardiology, Warsaw, Poland
| | - Aleksander Prejbisz
- Department of Epidemiology, Cardiovascular Disease Prevention and Health Promotion, National Institute of Cardiology, Warsaw, Poland
| | - Jerzy Pręgowski
- Department of Interventional Cardiology and Angiology, National Institute of Cardiology, Warsaw, Poland
| | - Alicja Chwała
- Department of Interventional Cardiology and Angiology, National Institute of Cardiology, Warsaw, Poland
| | - Jarosław Skowroński
- Department of Interventional Cardiology and Angiology, National Institute of Cardiology, Warsaw, Poland
| | | | | | - Andrzej Januszewicz
- Department of Hypertension, National Institute of Cardiology, Warsaw, Poland
| | - Adam Witkowski
- Department of Interventional Cardiology and Angiology, National Institute of Cardiology, Warsaw, Poland
| | - David Adlam
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Damini Dey
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Jacek Kądziela
- Department of Interventional Cardiology and Angiology, National Institute of Cardiology, Warsaw, Poland
| |
Collapse
|
44
|
Yin R, Huang KX, Huang LA, Ji M, Zhao H, Li K, Gao A, Chen J, Li Z, Liu T, Shively JE, Kandeel F, Li J. Indole-Based and Cyclopentenylindole-Based Analogues Containing Fluorine Group as Potential 18F-Labeled Positron Emission Tomography (PET) G-Protein Coupled Receptor 44 (GPR44) Tracers. Pharmaceuticals (Basel) 2023; 16:1203. [PMID: 37765011 PMCID: PMC10534865 DOI: 10.3390/ph16091203] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/07/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
Recently, growing evidence of the relationship between G-protein coupled receptor 44 (GPR44) and the inflammation-cancer system has garnered tremendous interest, while the exact role of GPR44 has not been fully elucidated. Currently, there is a strong and urgent need for the development of non-invasive in vivo GPR44 positron emission tomography (PET) radiotracers that can be used to aid the exploration of the relationship between inflammation and tumor biologic behavior. Accordingly, the choosing and radiolabeling of existing GPR44 antagonists containing a fluorine group could serve as a viable method to accelerate PET tracers development for in vivo imaging to this purpose. The present study aims to evaluate published (2000-present) indole-based and cyclopentenyl-indole-based analogues of the GPR44 antagonist to guide the development of fluorine-18 labeled PET tracers that can accurately detect inflammatory processes. The selected analogues contained a crucial fluorine nuclide and were characterized for various properties including binding affinity, selectivity, and pharmacokinetic and metabolic profile. Overall, 26 compounds with favorable to strong binding properties were identified. This review highlights the potential of GPR44 analogues for the development of PET tracers to study inflammation and cancer development and ultimately guide the development of targeted clinical therapies.
Collapse
Affiliation(s)
- Runkai Yin
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Kelly X. Huang
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Lina A. Huang
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Melinda Ji
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Hanyi Zhao
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Kathy Li
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Anna Gao
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Jiaqi Chen
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Zhixuan Li
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Tianxiong Liu
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - John E. Shively
- Department of Immunology & Theranostics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Fouad Kandeel
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Junfeng Li
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
45
|
Csecs I, Feher A. The fat and the flow: multiparametric imaging assessment of pericoronary adipose tissue and myocardial blood flow. J Nucl Cardiol 2023; 30:1570-1573. [PMID: 36929294 DOI: 10.1007/s12350-023-03247-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 02/22/2023] [Indexed: 03/18/2023]
Affiliation(s)
- Ibolya Csecs
- Department of Medicine, Jacobi Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Attila Feher
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, Dana 3, P.O. Box 208017, New Haven, CT, 06520, USA.
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
46
|
Kuronuma K, van Diemen PA, Han D, Lin A, Grodecki K, Kwiecinski J, Motwani M, McElhinney P, Tomasino GF, Park C, Kwan A, Tzolos E, Klein E, Shou B, Tamarappoo B, Cadet S, Danad I, Driessen RS, Berman DS, Slomka PJ, Dey D, Knaapen P. Relationship between impaired myocardial blood flow by positron emission tomography and low-attenuation plaque burden and pericoronary adipose tissue attenuation from coronary computed tomography: From the prospective PACIFIC trial. J Nucl Cardiol 2023; 30:1558-1569. [PMID: 36645580 DOI: 10.1007/s12350-022-03194-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 12/02/2022] [Indexed: 01/17/2023]
Abstract
BACKGROUND Positron emission tomography (PET) is the clinical gold standard for quantifying myocardial blood flow (MBF). Pericoronary adipose tissue (PCAT) attenuation may detect vascular inflammation indirectly. We examined the relationship between MBF by PET and plaque burden and PCAT on coronary CT angiography (CCTA). METHODS This post hoc analysis of the PACIFIC trial included 208 patients with suspected coronary artery disease (CAD) who underwent [15O]H2O PET and CCTA. Low-attenuation plaque (LAP, < 30HU), non-calcified plaque (NCP), and PCAT attenuation were measured by CCTA. RESULTS In 582 vessels, 211 (36.3%) had impaired per-vessel hyperemic MBF (≤ 2.30 mL/min/g). In multivariable analysis, LAP burden was independently and consistently associated with impaired hyperemic MBF (P = 0.016); over NCP burden (P = 0.997). Addition of LAP burden improved predictive performance for impaired hyperemic MBF from a model with CAD severity and calcified plaque burden (P < 0.001). There was no correlation between PCAT attenuation and hyperemic MBF (r = - 0.11), and PCAT attenuation was not associated with impaired hyperemic MBF in univariable or multivariable analysis of all vessels (P > 0.1). CONCLUSION In patients with stable CAD, LAP burden was independently associated with impaired hyperemic MBF and a stronger predictor of impaired hyperemic MBF than NCP burden. There was no association between PCAT attenuation and hyperemic MBF.
Collapse
Affiliation(s)
- Keiichiro Kuronuma
- Department of Imaging and Medicine and the Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Cardiology, Nihon University, Tokyo, Japan
| | | | - Donghee Han
- Department of Imaging and Medicine and the Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Andrew Lin
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, 116 N Robertson Boulevard, Los Angeles, CA, 90048, USA
| | - Kajetan Grodecki
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, 116 N Robertson Boulevard, Los Angeles, CA, 90048, USA
| | - Jacek Kwiecinski
- Department of Interventional Cardiology and Angiology, Institute of Cardiology, Warsaw, Poland
| | - Manish Motwani
- Manchester Heart Centre, Manchester University NHS Foundation Trust, Manchester, UK
| | - Priscilla McElhinney
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, 116 N Robertson Boulevard, Los Angeles, CA, 90048, USA
| | - Guadalupe Flores Tomasino
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, 116 N Robertson Boulevard, Los Angeles, CA, 90048, USA
| | - Caroline Park
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, 116 N Robertson Boulevard, Los Angeles, CA, 90048, USA
| | - Alan Kwan
- Department of Imaging and Medicine and the Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Evangelos Tzolos
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Eyal Klein
- Department of Imaging and Medicine and the Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Benjamin Shou
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, 116 N Robertson Boulevard, Los Angeles, CA, 90048, USA
| | - Balaji Tamarappoo
- Department of Imaging and Medicine and the Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Sebastien Cadet
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, 116 N Robertson Boulevard, Los Angeles, CA, 90048, USA
| | - Ibrahim Danad
- Department of Cardiology, Amsterdam UMC, VUmc, Amsterdam, The Netherlands
| | - Roel S Driessen
- Department of Cardiology, Amsterdam UMC, VUmc, Amsterdam, The Netherlands
| | - Daniel S Berman
- Department of Imaging and Medicine and the Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Piotr J Slomka
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Damini Dey
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, 116 N Robertson Boulevard, Los Angeles, CA, 90048, USA.
| | - Paul Knaapen
- Department of Cardiology, Amsterdam UMC, VUmc, Amsterdam, The Netherlands
| |
Collapse
|
47
|
Pugliese L, Ricci F, Sica G, Scaglione M, Masala S. Non-Contrast and Contrast-Enhanced Cardiac Computed Tomography Imaging in the Diagnostic and Prognostic Evaluation of Coronary Artery Disease. Diagnostics (Basel) 2023; 13:2074. [PMID: 37370969 DOI: 10.3390/diagnostics13122074] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/07/2023] [Accepted: 06/11/2023] [Indexed: 06/29/2023] Open
Abstract
In recent decades, cardiac computed tomography (CT) has emerged as a powerful non-invasive tool for risk stratification, as well as the detection and characterization of coronary artery disease (CAD), which remains the main cause of morbidity and mortality in the world. Advances in technology have favored the increasing use of cardiac CT by allowing better performance with lower radiation doses. Coronary artery calcium, as assessed by non-contrast CT, is considered to be the best marker of subclinical atherosclerosis, and its use is recommended for the refinement of risk assessment in low-to-intermediate risk individuals. In addition, coronary CT angiography (CCTA) has become a gate-keeper to invasive coronary angiography (ICA) and revascularization in patients with acute chest pain by allowing the assessment not only of the extent of lumen stenosis, but also of its hemodynamic significance if combined with the measurement of fractional flow reserve or perfusion imaging. Moreover, CCTA provides a unique incremental value over functional testing and ICA by imaging the vessel wall, thus allowing the assessment of plaque burden, composition, and instability features, in addition to perivascular adipose tissue attenuation, which is a marker of vascular inflammation. There exists the potential to identify the non-obstructive lesions at high risk of progression to plaque rupture by combining all of these measures.
Collapse
Affiliation(s)
- Luca Pugliese
- Radiology Unit, Department of Medical-Surgical Sciences and Translational Medicine, Sapienza University of Rome, Sant'Andrea University Hospital, 00189 Rome, Italy
| | - Francesca Ricci
- Radiology Unit, Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy
| | - Giacomo Sica
- Radiology Unit, Monaldi Hospital, 80131 Napoli, Italy
| | - Mariano Scaglione
- Radiology Unit, Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy
| | - Salvatore Masala
- Radiology Unit, Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy
| |
Collapse
|
48
|
Yu MM, Zhao X, Chen YY, Tao XW, Ge JB, Jin H, Zeng MS. Evolocumab attenuate pericoronary adipose tissue density via reduction of lipoprotein(a) in type 2 diabetes mellitus: a serial follow-up CCTA study. Cardiovasc Diabetol 2023; 22:121. [PMID: 37217967 DOI: 10.1186/s12933-023-01857-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/12/2023] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND Pericoronary adipose tissue (PCAT) density is a biomarker of vessel inflammation, which is supposed to be increased in patients with type 2 diabetes mellitus (T2DM). However, whether the coronary inflammation revealed by this novel index could be alleviated after evolocumab treatment in T2DM remains unknown. METHODS From January 2020 to December 2022, consecutive T2DM patients with low-density lipoprotein cholesterol ≥ 70 mg/dL on maximally tolerated statin and taking evolocumab were prospectively included. In addition, patients with T2DM who were taking statin alone were recruited as control group. The eligible patients underwent baseline and follow-up coronary CT angiography with an interval of 48-week. To render patients with evolocumab as comparable to those controls, a propensity-score matching design was used to select the matched pairs with a 1:1 ratio. Obstructive lesion was defined as the extent of coronary artery stenosis ≥ 50%; the numbers inside the brackets were interquartile ranges. RESULTS A total of 170 T2DM patients with stable chest pain were included [(mean age 64 ± 10.6 [range 40-85] years; 131 men). Among those patients, 85 were in evolocumab group and 85 were in control group. During follow-up, low-density lipoprotein cholesterol (LDL-C) level (2.02 [1.26, 2.78] vs. 3.34 [2.53, 4.14], p < 0.001), and lipoprotein(a) (12.1 [5.6, 21.8] vs. 18.9 [13.2, 27.2], p = 0.002) were reduced after evolocumab treatment. The prevalence of obstructive lesions and high-risk plaque features were significantly decreased (p < 0.05 for all). Furthermore, the calcified plaque volume were significantly increased (188.3 [115.7, 361.0] vs. 129.3 [59.5, 238.3], p = 0.015), while the noncalcified plaque volume and necrotic volume were diminished (107.5 [40.6, 180.6] vs. 125.0 [65.3, 269.7], p = 0.038; 0 [0, 4.7] vs. 0 [0, 13.4], p < 0.001, respectively). In addition, PCAT density of right coronary artery was significantly attenuated in evolocumab group (- 85.0 [- 89.0, - 82.0] vs. - 79.0 [- 83.5, - 74.0], p < 0.001). The change in the calcified plaque volume inversely correlated with achieved LDL-C level (r = - 0.31, p < 0.001) and lipoprotein(a) level (r = - 0.33, p < 0.001). Both the changes of noncalcified plaque volume and necrotic volume were positively correlated with achieved LDL-C level and Lp(a) (p < 0.001 for all). However, the change of PCATRCA density only positively correlated with achieved lipoprotein(a) level (r = 0.51, p < 0.001). Causal mediation analysis revealed Lp(a) level mediated 69.8% (p < 0.001) for the relationship between evolocumab and changes of PCATRCA. CONCLUSIONS In patients with T2DM, evolocumab is an effective therapy to decrease noncalcified plaque volume necrotic volume, and increase calcified plaque volume. Furthermore, evolocumab could attenuate PCAT density, at least in part, via the reduction of lipoprotein(a).
Collapse
Affiliation(s)
- Meng-Meng Yu
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Medical Imaging, No. 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Xin Zhao
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, National Clinical Research Center for Interventional Medicine, No. 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Yin-Yin Chen
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Medical Imaging, No. 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Xin-Wei Tao
- Bayer Healthcare, No. 399, West Haiyang Road, Shanghai, 200126, China
| | - Jun-Bo Ge
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Medical Imaging, No. 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Hang Jin
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Medical Imaging, No. 180 Fenglin Road, Xuhui District, Shanghai, 200032, China.
| | - Meng-Su Zeng
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Medical Imaging, No. 180 Fenglin Road, Xuhui District, Shanghai, 200032, China.
| |
Collapse
|
49
|
Blach A, Kwiecinski J. The Role of Positron Emission Tomography in Advancing the Understanding of the Pathogenesis of Heart and Vascular Diseases. Diagnostics (Basel) 2023; 13:1791. [PMID: 37238275 PMCID: PMC10217133 DOI: 10.3390/diagnostics13101791] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Cardiovascular disease remains the leading cause of morbidity and mortality worldwide. For developing new therapies, a better understanding of the underlying pathology is required. Historically, such insights have been primarily derived from pathological studies. In the 21st century, thanks to the advent of cardiovascular positron emission tomography (PET), which depicts the presence and activity of pathophysiological processes, it is now feasible to assess disease activity in vivo. By targeting distinct biological pathways, PET elucidates the activity of the processes which drive disease progression, adverse outcomes or, on the contrary, those that can be considered as a healing response. Given the insights provided by PET, this non-invasive imaging technology lends itself to the development of new therapies, providing a hope for the emergence of strategies that could have a profound impact on patient outcomes. In this narrative review, we discuss recent advances in cardiovascular PET imaging which have greatly advanced our understanding of atherosclerosis, ischemia, infection, adverse myocardial remodeling and degenerative valvular heart disease.
Collapse
Affiliation(s)
- Anna Blach
- Department of Cardiology and Structural Heart Diseases, Medical University of Silesia, 40-055 Katowice, Poland
- Nuclear Medicine Department, Voxel Diagnostic Center, 40-514 Katowice, Poland
| | - Jacek Kwiecinski
- Department of Interventional Cardiology and Angiology, Institute of Cardiology, 04-628 Warsaw, Poland
| |
Collapse
|
50
|
Jing M, Xi H, Zhu H, Zhang B, Deng L, Han T, Zhang Y, Zhou J. Correlation of pericoronary adipose tissue CT attenuation values of plaques and periplaques with plaque characteristics. Clin Radiol 2023:S0009-9260(23)00172-1. [PMID: 37225572 DOI: 10.1016/j.crad.2023.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 04/19/2023] [Accepted: 04/22/2023] [Indexed: 05/26/2023]
Abstract
AIM To investigate the relationship between different plaque characteristics and pericoronary adipose tissue (PCAT) computed tomography (CT) attenuation values for plaques and periplaques. MATERIALS AND METHODS The data from 188 eligible patients with stable coronary heart disease (280 lesions) who underwent coronary CT angiography between March 2021 and November 2021 were collected retrospectively. All PCAT CT attenuation values of plaques and periplaques (the area within 5 and 10 mm proximal and distal to the plaque) were calculated, and multiple linear regression was used to assess their correlation with different plaque characteristics. RESULTS PCAT CT attenuation of plaques and periplaques was higher in non-calcified plaques (-73.38 ± 10.41 HU, -76.77 ± 10.86 HU, 79.33 ± 11.13 HU, -75.67 ± 11.24 HU, -78.63 ± 12.09 HU) and mixed plaques (-76.83 ± 8.11 HU, -79 [-85, -68.5] HU, -78.55 ± 11 HU, -78.76 ± 9.9 HU, -78.79 ± 11.06 HU) than in calcified plaques (-86.96 ± 10 HU, -84 [-92, -76] HU, -84.14 ± 11.08 HU, -84.91 ± 11.41 HU, -84.59 ± 11.69 HU; all p<0.05) and higher in distal segment plaques than in proximal segment plaques (all p<0.05). Plaque PCAT CT attenuation was lower in plaques with minimal stenosis than in plaques with mild or moderate stenosis (p<0.05). The significant determinants of PCAT CT attenuation values of plaques and periplaques were non-calcified plaques, mixed plaques, and plaques located in the distal segment (all p<0.05). CONCLUSIONS PCAT CT attenuation values in both plaques and periplaques were related to plaque type and location.
Collapse
Affiliation(s)
- M Jing
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, China; Second Clinical School, Lanzhou University, Lanzhou, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| | - H Xi
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, China; Second Clinical School, Lanzhou University, Lanzhou, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| | - H Zhu
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, China; Second Clinical School, Lanzhou University, Lanzhou, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| | - B Zhang
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, China; Second Clinical School, Lanzhou University, Lanzhou, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| | - L Deng
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, China; Second Clinical School, Lanzhou University, Lanzhou, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| | - T Han
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, China; Second Clinical School, Lanzhou University, Lanzhou, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| | - Y Zhang
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, China; Second Clinical School, Lanzhou University, Lanzhou, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| | - J Zhou
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, China; Second Clinical School, Lanzhou University, Lanzhou, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China.
| |
Collapse
|