1
|
Lu Y, Man XY. Diversity and function of regulatory T cells in health and autoimmune diseases. J Autoimmun 2025; 151:103357. [PMID: 39805189 DOI: 10.1016/j.jaut.2025.103357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/31/2024] [Accepted: 01/04/2025] [Indexed: 01/16/2025]
Abstract
Regulatory T cell (Treg) play a pivotal role in immune regulation and maintaining host immune homeostasis. Treg heterogeneity, characterized by diverse gene expression profiles and functional states, is complex in both health and disease. Research reveals that Tregs are not a uniform population but exhibit diversity based on their origin, location, and functional status. This heterogeneity is crucial for understanding Treg roles in various pathological conditions. Dysfunctional Tregs are closely linked to the pathogenesis of autoimmune diseases, although the precise mechanisms remain unclear. The phenotypic and functional heterogeneity of Tregs is particularly significant in diseases such as systemic lupus erythematosus, multiple sclerosis, rheumatoid arthritis, inflammatory bowel disease, type 1 diabetes, psoriasis and autoimmune liver diseases. This review explores Treg origins, classifications, and heterogeneity in these conditions, aiming to provide new perspectives and strategies for diagnosis and treatment. Understanding Treg heterogeneity and plasticity promises to reveal novel therapeutic targets and advance precision immunotherapy development.
Collapse
Affiliation(s)
- Yi Lu
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Xiao-Yong Man
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China.
| |
Collapse
|
2
|
Huang X, Lin R, Liu H, Dai M, Guo J, Hui W, Liu W, Haerken M, Zheng R, Yushanjiang T, Gao F. Resatorvid (TAK-242) Ameliorates Ulcerative Colitis by Modulating Macrophage Polarization and T Helper Cell Balance via TLR4/JAK2/STAT3 Signaling Pathway. Inflammation 2024; 47:2108-2128. [PMID: 38760646 DOI: 10.1007/s10753-024-02028-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 05/19/2024]
Abstract
Resatorvid (TAK-242), a specific inhibitor of Toll-like receptor-4 (TLR4), has attracted attention for its anti-inflammatory properties. Despite this, few studies have evaluated its effects on ulcerative colitis (UC). This study aimed to investigate the effects of TAK-242 on macrophage polarization and T helper cell balance and the mechanism by which it alleviates UC. Our findings indicated that TLR4 expression was elevated in patients with UC, a mouse model of UC, and HT29 cells undergoing an inflammatory response. TAK‑242 treatment reduced apoptosis in TNF-α and LPS-stimulated HT29 cells and alleviated symptoms of dextran sulfate sodium (DSS)‑induced colitis in vivo. TAK‑242 downregulated TLR4 expression and decreased the secretion of pro-inflammatory cytokines TNF-α, IL-6, and IL-1β while enhancing IL-10 production. TAK-242 also reduced M1 macrophage polarization and diminished Th1 and Th17 cell infiltration while increasing Th2 cell infiltration and M2 macrophage polarization both in vitro and in vivo. Mechanistically, TAK-242 inhibited the JAK2/STAT3 signaling pathway, an important regulator of macrophage polarization and T helper cell balance. Furthermore, the in vivo and in vitro effects of TAK-242 were partially negated by the administration of the JAK2/STAT3 antagonist AG490, suggesting that TAK-242 inhibits the JAK2/STAT3 pathway to exert its biological activities. Taken together, this study underscores TAK-242 as a promising anti-UC agent, functioning by modulating macrophage polarization and T helper cell balance via the TLR4/JAK2/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Xiaoling Huang
- Department of Gastroenterology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830001, Xinjiang Uygur Autonomous Region, China
- Department of Gastroenterology, Xinjiang Clinical Research Center for Digestive Diseases, 830001, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Rong Lin
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Huan Liu
- Department of Gastroenterology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830001, Xinjiang Uygur Autonomous Region, China
- Department of Gastroenterology, Xinjiang Clinical Research Center for Digestive Diseases, 830001, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Mengying Dai
- Department of Gastroenterology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830001, Xinjiang Uygur Autonomous Region, China
- Department of Gastroenterology, Xinjiang Clinical Research Center for Digestive Diseases, 830001, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Jiejie Guo
- Department of Gastroenterology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830001, Xinjiang Uygur Autonomous Region, China
- Department of Gastroenterology, Xinjiang Clinical Research Center for Digestive Diseases, 830001, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Wenjia Hui
- Department of Gastroenterology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830001, Xinjiang Uygur Autonomous Region, China
- Department of Gastroenterology, Xinjiang Clinical Research Center for Digestive Diseases, 830001, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Weidong Liu
- Department of Gastroenterology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830001, Xinjiang Uygur Autonomous Region, China
- Department of Gastroenterology, Xinjiang Clinical Research Center for Digestive Diseases, 830001, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Milamuguli Haerken
- Department of Gastroenterology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830001, Xinjiang Uygur Autonomous Region, China
- Department of Gastroenterology, Xinjiang Clinical Research Center for Digestive Diseases, 830001, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Ruixue Zheng
- Department of Gastroenterology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830001, Xinjiang Uygur Autonomous Region, China
- Department of Gastroenterology, Xinjiang Clinical Research Center for Digestive Diseases, 830001, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Tangnuer Yushanjiang
- Department of Gastroenterology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830001, Xinjiang Uygur Autonomous Region, China
- Department of Gastroenterology, Xinjiang Clinical Research Center for Digestive Diseases, 830001, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Feng Gao
- Department of Gastroenterology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830001, Xinjiang Uygur Autonomous Region, China.
- Department of Gastroenterology, Xinjiang Clinical Research Center for Digestive Diseases, 830001, Urumqi, Xinjiang Uygur Autonomous Region, China.
| |
Collapse
|
3
|
Zhou Z, Xu J, Liu S, Lv Y, Zhang R, Zhou X, Zhang Y, Weng S, Xu H, Ba Y, Zuo A, Han X, Liu Z. Infiltrating treg reprogramming in the tumor immune microenvironment and its optimization for immunotherapy. Biomark Res 2024; 12:97. [PMID: 39227959 PMCID: PMC11373505 DOI: 10.1186/s40364-024-00630-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/31/2024] [Indexed: 09/05/2024] Open
Abstract
Immunotherapy has shown promising anti-tumor effects across various tumors, yet it encounters challenges from the inhibitory tumor immune microenvironment (TIME). Infiltrating regulatory T cells (Tregs) are important contributors to immunosuppressive TIME, limiting tumor immunosurveillance and blocking effective anti-tumor immune responses. Although depletion or inhibition of systemic Tregs enhances the anti-tumor immunity, autoimmune sequelae have diminished expectations for the approach. Herein, we summarize emerging strategies, specifically targeting tumor-infiltrating (TI)-Tregs, that elevate the capacity of organisms to resist tumors by reprogramming their phenotype. The regulatory mechanisms of Treg reprogramming are also discussed as well as how this knowledge could be utilized to develop novel and effective cancer immunotherapies.
Collapse
Affiliation(s)
- Zhaokai Zhou
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Henan, 450052, China
| | - Jiaxin Xu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
- Department of Human Anatomy, School of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Shutong Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yingying Lv
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Ruiqi Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Xing Zhou
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yuyuan Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Siyuan Weng
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Hui Xu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yuhao Ba
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Anning Zuo
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
- Interventional Institute of Zhengzhou University, Zhengzhou, Henan, 450052, China.
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan, 450052, China.
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
- Interventional Institute of Zhengzhou University, Zhengzhou, Henan, 450052, China.
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan, 450052, China.
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
4
|
Sardoiwala MN, Biswal L, Choudhury SR. Immunomodulator-Derived Nanoparticles Induce Neuroprotection and Regulatory T Cell Action to Alleviate Parkinsonism. ACS APPLIED MATERIALS & INTERFACES 2024; 16:38880-38892. [PMID: 39016239 DOI: 10.1021/acsami.3c18226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Post-translational modification, mitochondrial abruptions, neuroinflammation, and α-synuclein (α-Syn) aggregation are considered as major causes of Parkinson's disease (PD) pathogenesis. The recent literature highlights neuroimmune cross talk and the negative role of immune effector T (Teff) and positive regulation by regulatory T (Treg) cells in PD treatment. Herein, a strategy to endow Treg action paves the path for development of PD treatment. Thus, we explored the neuroprotective efficiency of the immunomodulator and PP2A (protein phosphatase 2) activator, FTY720 nanoparticles in in vivo experimental PD models. Repurposing of FTY720 for PD is known due to its protective effect by reducing PD and its camouflaged role in endowing EZH2-mediated epigenetic regulation of PD. EZH2-FOXP3 interaction is necessary for the neuroprotective Treg cell activity. Therefore, we synthesized FTY720 nanoparticles to improve FTY720 protective efficacy in an in vivo PD model to explore the PP2A mediated signaling. We confirmed the formation of FTY720NPs, and the results of the behavioral and protein expression study showed the significant neuroprotective efficiency of our nanoformulations. In the exploration of neuroprotective mechanism, several lines of evidence confirmed FTY720NPs mediated induction of PP2A/EZH2/FOXP3 signaling in the induction of Treg cells effect in in vivo PD treatment. In summary, our nanoformulations have novel potential to alleviate PD by inducing PP2A-induced epigenetic regulation-mediated neuroimmunomodulation at the clinical setup.
Collapse
Affiliation(s)
- Mohammed Nadim Sardoiwala
- Epigenetics Research Laboratory, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India
| | - Liku Biswal
- Epigenetics Research Laboratory, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India
| | - Subhasree Roy Choudhury
- Epigenetics Research Laboratory, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India
| |
Collapse
|
5
|
Yue Y, Ren Y, Lu C, Li P, Zhang G. Epigenetic regulation of human FOXP3+ Tregs: from homeostasis maintenance to pathogen defense. Front Immunol 2024; 15:1444533. [PMID: 39144146 PMCID: PMC11323565 DOI: 10.3389/fimmu.2024.1444533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/15/2024] [Indexed: 08/16/2024] Open
Abstract
Regulatory T cells (Tregs), characterized by the expression of Forkhead Box P3 (FOXP3), constitute a distinct subset of T cells crucial for immune regulation. Tregs can exert direct and indirect control over immune homeostasis by releasing inhibitory factors or differentiating into Th-like Treg (Th-Treg), thereby actively contributing to the prevention and treatment of autoimmune diseases. The epigenetic regulation of FOXP3, encompassing DNA methylation, histone modifications, and post-translational modifications, governs the development and optimal suppressive function of Tregs. In addition, Tregs can also possess the ability to maintain homeostasis in diverse microenvironments through non-suppressive mechanisms. In this review, we primarily focus on elucidating the epigenetic regulation of Tregs as well as their multifaceted roles within diverse physiological contexts while looking forward to potential strategies involving augmentation or suppression of Tregs activity for disease management, particularly in light of the ongoing global COVID-19 pandemic.
Collapse
Affiliation(s)
| | | | | | | | - Guojun Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
6
|
Sumida TS, Cheru NT, Hafler DA. The regulation and differentiation of regulatory T cells and their dysfunction in autoimmune diseases. Nat Rev Immunol 2024; 24:503-517. [PMID: 38374298 PMCID: PMC11216899 DOI: 10.1038/s41577-024-00994-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2024] [Indexed: 02/21/2024]
Abstract
The discovery of FOXP3+ regulatory T (Treg) cells as a distinct cell lineage with a central role in regulating immune responses provided a deeper understanding of self-tolerance. The transcription factor FOXP3 serves a key role in Treg cell lineage determination and maintenance, but is not sufficient to enable the full potential of Treg cell suppression, indicating that other factors orchestrate the fine-tuning of Treg cell function. Moreover, FOXP3-independent mechanisms have recently been shown to contribute to Treg cell dysfunction. FOXP3 mutations in humans cause lethal fulminant systemic autoinflammation (IPEX syndrome). However, it remains unclear to what degree Treg cell dysfunction is contributing to the pathophysiology of common autoimmune diseases. In this Review, we discuss the origins of Treg cells in the periphery and the multilayered mechanisms by which Treg cells are induced, as well as the FOXP3-dependent and FOXP3-independent cellular programmes that maintain the suppressive function of Treg cells in humans and mice. Further, we examine evidence for Treg cell dysfunction in the context of common autoimmune diseases such as multiple sclerosis, inflammatory bowel disease, systemic lupus erythematosus and rheumatoid arthritis.
Collapse
Affiliation(s)
- Tomokazu S Sumida
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA.
| | - Nardos T Cheru
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - David A Hafler
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA.
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
7
|
Phuengmaung P, Khiewkamrop P, Makjaroen J, Issara-Amphorn J, Boonmee A, Benjaskulluecha S, Ritprajak P, Nita-Lazar A, Palaga T, Hirankarn N, Leelahavanichkul A. Less Severe Sepsis in Cecal Ligation and Puncture Models with and without Lipopolysaccharide in Mice with Conditional Ezh2-Deleted Macrophages (LysM-Cre System). Int J Mol Sci 2023; 24:ijms24108517. [PMID: 37239864 DOI: 10.3390/ijms24108517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/02/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
Despite a previous report on less inflammatory responses in mice with an absence of the enhancer of zeste homologue 2 (Ezh2), a histone lysine methyltransferase of epigenetic regulation, using a lipopolysaccharide (LPS) injection model, proteomic analysis and cecal ligation and puncture (CLP), a sepsis model that more resembles human conditions was devised. As such, analysis of cellular and secreted protein (proteome and secretome) after a single LPS activation and LPS tolerance in macrophages from Ezh2 null (Ezh2flox/flox; LysM-Crecre/-) mice (Ezh2 null) and the littermate control mice (Ezh2fl/fl; LysM-Cre-/-) (Ezh2 control) compared with the unstimulated cells from each group indicated fewer activities in Ezh2 null macrophages, especially by the volcano plot analysis. Indeed, supernatant IL-1β and expression of genes in pro-inflammatory M1 macrophage polarization (IL-1β and iNOS), TNF-α, and NF-κB (a transcription factor) were lower in Ezh2 null macrophages compared with the control. In LPS tolerance, downregulated NF-κB compared with the control was also demonstrated in Ezh2 null cells. In CLP sepsis mice, those with CLP alone and CLP at 2 days after twice receiving LPS injection, representing sepsis and sepsis after endotoxemia, respectively, symptoms were less severe in Ezh2 null mice, as indicated by survival analysis and other biomarkers. However, the Ezh2 inhibitor improved survival only in CLP, but not LPS with CLP. In conclusion, an absence of Ezh2 in macrophages resulted in less severe sepsis, and the use of an Ezh2 inhibitor might be beneficial in sepsis.
Collapse
Affiliation(s)
- Pornpimol Phuengmaung
- Center of Excellence in Translational Research in Inflammation and Immunology (CETRII), Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Phuriwat Khiewkamrop
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Medical Microbiology, Interdisciplinary and International Program, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
| | - Jiradej Makjaroen
- Center of Excellence in Systems Biology, Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Jiraphorn Issara-Amphorn
- Functional Cellular Networks Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Atsadang Boonmee
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Salisa Benjaskulluecha
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Patcharee Ritprajak
- Research Unit in Integrative Immuno-Microbial Biochemistry and Bioresponsive Nanomaterials, Department of Microbiology, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Aleksandra Nita-Lazar
- Functional Cellular Networks Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tanapat Palaga
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nattiya Hirankarn
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok 10330, Thailand
| | - Asada Leelahavanichkul
- Center of Excellence in Translational Research in Inflammation and Immunology (CETRII), Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
8
|
The Regulatory Roles of Ezh2 in Response to Lipopolysaccharide (LPS) in Macrophages and Mice with Conditional Ezh2 Deletion with LysM-Cre System. Int J Mol Sci 2023; 24:ijms24065363. [PMID: 36982437 PMCID: PMC10049283 DOI: 10.3390/ijms24065363] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
The responses of macrophages to lipopolysaccharide (LPS) might determine the direction of clinical manifestations of sepsis, which is the immune response against severe infection. Meanwhile, the enhancer of zeste homologue 2 (Ezh2), a histone lysine methyltransferase of epigenetic regulation, might interfere with LPS response. Transcriptomic analysis on LPS-activated wild-type macrophages demonstrated an alteration of several epigenetic enzymes. Although the Ezh2-silencing macrophages (RAW264.7), using small interfering RNA (siRNA), indicated a non-different response to the control cells after a single LPS stimulation, the Ezh2-reducing cells demonstrated a less severe LPS tolerance, after two LPS stimulations, as determined by the higher supernatant TNF-α. With a single LPS stimulation, Ezh2 null (Ezh2flox/flox; LysM-Crecre/−) macrophages demonstrated lower supernatant TNF-α than Ezh2 control (Ezh2fl/fl; LysM-Cre−/−), perhaps due to an upregulation of Socs3, which is a suppressor of cytokine signaling 3, due to the loss of the Ezh2 gene. In LPS tolerance, Ezh2 null macrophages indicated higher supernatant TNF-α and IL-6 than the control, supporting an impact of the loss of the Ezh2 inhibitory gene. In parallel, Ezh2 null mice demonstrated lower serum TNF-α and IL-6 than the control mice after an LPS injection, indicating a less severe LPS-induced hyper-inflammation in Ezh2 null mice. On the other hand, there were similar serum cytokines after LPS tolerance and the non-reduction of serum cytokines after the second dose of LPS, indicating less severe LPS tolerance in Ezh2 null mice compared with control mice. In conclusion, an absence of Ezh2 in macrophages resulted in less severe LPS-induced inflammation, as indicated by low serum cytokines, with less severe LPS tolerance, as demonstrated by higher cytokine production, partly through the upregulated Socs3.
Collapse
|
9
|
Immunoepigenetic Regulation of Inflammatory Bowel Disease: Current Insights into Novel Epigenetic Modulations of the Systemic Immune Response. Genes (Basel) 2023; 14:genes14030554. [PMID: 36980826 PMCID: PMC10047925 DOI: 10.3390/genes14030554] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/18/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
The immune system and environmental factors are involved in various diseases, such as inflammatory bowel disease (IBD), through their effect on genetics, which modulates immune cells. IBD encompasses two main phenotypes, Crohn’s disease, and ulcerative colitis, which are manifested as chronic and systemic relapse-remitting gastrointestinal tract disorders with rising global incidence and prevalence. The pathophysiology of IBD is complex and not fully understood. Epigenetic research has resulted in valuable information for unraveling the etiology of this immune-mediated disease. Thus, the main objective of the present review is to summarize the current findings on the role of epigenetic mechanisms in IBD to shed light on their potential clinical relevance. This review focuses on the latest evidence regarding peripheral blood mononuclear cells and epigenetic changes in histone modification, DNA methylation, and telomere shortening in IBD. The various identified epigenetic DNA profiles with clinical value in IBD could be used as biomarkers for more accurately predicting disease development, treatment response, and therapy-related adverse events. Ultimately, the information presented here could be of potential relevance for future clinical practice in developing more efficient and precise medicine to improve the quality of life for patients with IBD.
Collapse
|
10
|
Ramos GP, Bamidele AO, Klatt EE, Sagstetter MR, Kurdi AT, Hamdan FH, Kosinsky RL, Gaballa JM, Nair A, Sun Z, Dasari S, Lanza IR, Rozeveld CN, Schott MB, Urrutia G, Westphal MS, Clarkson BD, Howe CL, Marietta EV, Luckey DH, Murray JA, Gonzalez M, Braga Neto MB, Gibbons HR, Smyrk TC, Johnsen S, Lomberk G, Faubion WA. G9a Modulates Lipid Metabolism in CD4 T Cells to Regulate Intestinal Inflammation. Gastroenterology 2023; 164:256-271.e10. [PMID: 36272457 PMCID: PMC9892272 DOI: 10.1053/j.gastro.2022.10.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 09/27/2022] [Accepted: 10/06/2022] [Indexed: 02/04/2023]
Abstract
BACKGROUND & AIMS Although T-cell intrinsic expression of G9a has been associated with murine intestinal inflammation, mechanistic insight into the role of this methyltransferase in human T-cell differentiation is ill defined, and manipulation of G9a function for therapeutic use against inflammatory disorders is unexplored. METHODS Human naive T cells were isolated from peripheral blood and differentiated in vitro in the presence of a G9a inhibitor (UNC0642) before being characterized via the transcriptome (RNA sequencing), chromatin accessibility (assay for transposase-accessible chromatin by sequencing), protein expression (cytometry by time of flight, flow cytometry), metabolism (mitochondrial stress test, ultrahigh performance liquid chromatography-tandem mas spectroscopy) and function (T-cell suppression assay). The in vivo role of G9a was assessed using 3 murine models. RESULTS We discovered that pharmacologic inhibition of G9a enzymatic function in human CD4 T cells led to spontaneous generation of FOXP3+ T cells (G9a-inibitors-T regulatory cells [Tregs]) in vitro that faithfully reproduce human Tregs, functionally and phenotypically. Mechanistically, G9a inhibition altered the transcriptional regulation of genes involved in lipid biosynthesis in T cells, resulting in increased intracellular cholesterol. Metabolomic profiling of G9a-inibitors-Tregs confirmed elevated lipid pathways that support Treg development through oxidative phosphorylation and enhanced lipid membrane composition. Pharmacologic G9a inhibition promoted Treg expansion in vivo upon antigen (gliadin) stimulation and ameliorated acute trinitrobenzene sulfonic acid-induced colitis secondary to tissue-specific Treg development. Finally, Tregs lacking G9a expression (G9a-knockout Tregs) remain functional chronically and can rescue T-cell transfer-induced colitis. CONCLUSION G9a inhibition promotes cholesterol metabolism in T cells, favoring a metabolic profile that facilitates Treg development in vitro and in vivo. Our data support the potential use of G9a inhibitors in the treatment of immune-mediated conditions including inflammatory bowel disease.
Collapse
Affiliation(s)
- Guilherme Piovezani Ramos
- Epigenetics and Chromatin Dynamics Laboratory, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Adebowale O Bamidele
- Epigenetics and Chromatin Dynamics Laboratory, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Emily E Klatt
- Epigenetics and Chromatin Dynamics Laboratory, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota; Department of Immunology, Mayo Clinic, Rochester, Minnesota
| | - Mary R Sagstetter
- Epigenetics and Chromatin Dynamics Laboratory, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Ahmed T Kurdi
- Epigenetics and Chromatin Dynamics Laboratory, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Feda H Hamdan
- Epigenetics and Chromatin Dynamics Laboratory, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Robyn Laura Kosinsky
- Epigenetics and Chromatin Dynamics Laboratory, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Joseph M Gaballa
- Epigenetics and Chromatin Dynamics Laboratory, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Asha Nair
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota
| | - Zhifu Sun
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota
| | | | - Ian R Lanza
- Metabolomics Core, Mayo Clinic, Rochester, Minnesota
| | - Cody N Rozeveld
- Department of Biology, Northwestern College, Orange City, Iowa
| | - Micah B Schott
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Guillermo Urrutia
- Genomic Sciences and Precision Medicine Center, Milwaukee, Wisconsin; Division of Research Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Maria S Westphal
- Epigenetics and Chromatin Dynamics Laboratory, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | | | - Charles L Howe
- Department of Immunology, Mayo Clinic, Rochester, Minnesota; Department of Neurology, Mayo Clinic, Rochester, Minnesota
| | - Eric V Marietta
- Epigenetics and Chromatin Dynamics Laboratory, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota; Department of Immunology, Mayo Clinic, Rochester, Minnesota
| | - David H Luckey
- Department of Immunology, Mayo Clinic, Rochester, Minnesota
| | - Joseph A Murray
- Epigenetics and Chromatin Dynamics Laboratory, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Michelle Gonzalez
- Epigenetics and Chromatin Dynamics Laboratory, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Manuel B Braga Neto
- Epigenetics and Chromatin Dynamics Laboratory, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Hunter R Gibbons
- Epigenetics and Chromatin Dynamics Laboratory, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Thomas C Smyrk
- Epigenetics and Chromatin Dynamics Laboratory, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Steven Johnsen
- Robert Bosch Center for Tumor Diseases, Stuttgart, Germany
| | - Gwen Lomberk
- Genomic Sciences and Precision Medicine Center, Milwaukee, Wisconsin; Division of Research Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - William A Faubion
- Epigenetics and Chromatin Dynamics Laboratory, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota; Department of Immunology, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
11
|
Li T. The functions of polycomb group proteins in T cells. CELL INSIGHT 2022; 1:100048. [PMID: 37193554 PMCID: PMC10120301 DOI: 10.1016/j.cellin.2022.100048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 05/18/2023]
Abstract
T cells are involved in many aspects of adaptive immunity, including autoimmunity, anti-tumor activity, and responses to allergenic substances and pathogens. T cells undergo comprehensive epigenome remodeling in response to signals. Polycomb group (PcG) proteins are a well-studied complex of chromatin regulators, conserved in animals, and function in various biological processes. PcG proteins are divided into two distinct complexes: PRC1 (Polycomb repressive complex 1) and PRC2. PcG is correlated with the regulation of T cell development, phenotypic transformation, and function. In contrast, PcG dysregulation is correlated with pathogenesis of immune-mediated diseases and compromised anti-tumor responses. This review discusses recent findings on the involvement of PcG proteins in T cell maturation, differentiation, and activation. In addition, we explore implications in the development of the immune system diseases and cancer immunity, which offers promising targets for various treatment protocols.
Collapse
Affiliation(s)
- Ting Li
- Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, 22 Qixiangtai Road, Tianjin, 300070, China
| |
Collapse
|
12
|
Christensen LM, Hancock WW. Nuclear Coregulatory Complexes in Tregs as Targets to Promote Anticancer Immune Responses. Front Immunol 2022; 13:909816. [PMID: 35795673 PMCID: PMC9251111 DOI: 10.3389/fimmu.2022.909816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/18/2022] [Indexed: 12/17/2022] Open
Abstract
T-regulatory (Treg) cells display considerable heterogeneity in their responses to various cancers. The functional differences among this cell type are heavily influenced by multiprotein nuclear complexes that control their gene expression. Many such complexes act mechanistically by altering epigenetic profiles of genes important to Treg function, including the forkhead P3 (Foxp3) transcription factor. Complexes that form with certain members of the histone/protein deacetylase (HDAC) class of enzymes, like HDACs 1, 2, and 3, along with histone methyltransferase complexes, are important in the induction and stabilization of Foxp3 and Treg identity. The functional behavior of both circulating and intratumoral Tregs greatly impacts the antitumor immune response and can be predictive of patient outcome. Thus, targeting these regulatory complexes within Tregs may have therapeutic potential, especially in personalized immunotherapies.
Collapse
Affiliation(s)
- Lanette M. Christensen
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Wayne W. Hancock
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, United States
- *Correspondence: Wayne W. Hancock,
| |
Collapse
|
13
|
Nair VS, Heredia M, Samsom J, Huehn J. Impact of gut microenvironment on epigenetic signatures of intestinal T helper cell subsets. Immunol Lett 2022; 246:27-36. [DOI: 10.1016/j.imlet.2022.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/10/2022] [Accepted: 04/26/2022] [Indexed: 11/30/2022]
|
14
|
Melo GA, Calôba C, Brum G, Passos TO, Martinez GJ, Pereira RM. Epigenetic regulation of T cells by Polycomb group proteins. J Leukoc Biol 2022; 111:1253-1267. [DOI: 10.1002/jlb.2ri0122-039r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/10/2022] [Accepted: 04/01/2022] [Indexed: 11/12/2022] Open
Affiliation(s)
- Guilherme A. Melo
- Instituto de Microbiologia Paulo de Góes, Departamento de Imunologia Universidade Federal do Rio de Janeiro Rio de Janeiro RJ Brazil
| | - Carolina Calôba
- Instituto de Microbiologia Paulo de Góes, Departamento de Imunologia Universidade Federal do Rio de Janeiro Rio de Janeiro RJ Brazil
| | - Gabrielle Brum
- Instituto de Microbiologia Paulo de Góes, Departamento de Imunologia Universidade Federal do Rio de Janeiro Rio de Janeiro RJ Brazil
| | - Thaís O. Passos
- Instituto de Microbiologia Paulo de Góes, Departamento de Imunologia Universidade Federal do Rio de Janeiro Rio de Janeiro RJ Brazil
| | - Gustavo J. Martinez
- Center for Cancer Cell Biology, Immunology and Infection, Discipline of Microbiology and Immunology Rosalind Franklin University of Medicine and Science Chicago Illinois USA
| | - Renata M. Pereira
- Instituto de Microbiologia Paulo de Góes, Departamento de Imunologia Universidade Federal do Rio de Janeiro Rio de Janeiro RJ Brazil
| |
Collapse
|
15
|
Joudi AM, Reyes Flores CP, Singer BD. Epigenetic Control of Regulatory T Cell Stability and Function: Implications for Translation. Front Immunol 2022; 13:861607. [PMID: 35309306 PMCID: PMC8924620 DOI: 10.3389/fimmu.2022.861607] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 02/14/2022] [Indexed: 12/13/2022] Open
Abstract
FoxP3+ regulatory T (Treg) cells maintain immune homeostasis, promote self-tolerance, and have an emerging role in resolving acute inflammation, providing tissue protection, and repairing tissue damage. Some data suggest that FoxP3+ T cells are plastic, exhibiting susceptibility to losing their function in inflammatory cytokine-rich microenvironments and paradoxically contributing to inflammatory pathology. As a result, plasticity may represent a barrier to Treg cell immunotherapy. Here, we discuss controversies surrounding Treg cell plasticity and explore determinants of Treg cell stability in inflammatory microenvironments, focusing on epigenetic mechanisms that clinical protocols could leverage to enhance efficacy and limit toxicity of Treg cell-based therapeutics.
Collapse
Affiliation(s)
- Anthony M. Joudi
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Canning Thoracic Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Carla P. Reyes Flores
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Canning Thoracic Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Benjamin D. Singer
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Canning Thoracic Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
16
|
Jung SM, Kim S. In vitro Models of the Small Intestine for Studying Intestinal Diseases. Front Microbiol 2022; 12:767038. [PMID: 35058894 PMCID: PMC8765704 DOI: 10.3389/fmicb.2021.767038] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 12/07/2021] [Indexed: 11/13/2022] Open
Abstract
The small intestine is a digestive organ that has a complex and dynamic ecosystem, which is vulnerable to the risk of pathogen infections and disorders or imbalances. Many studies have focused attention on intestinal mechanisms, such as host–microbiome interactions and pathways, which are associated with its healthy and diseased conditions. This review highlights the intestine models currently used for simulating such normal and diseased states. We introduce the typical models used to simulate the intestine along with its cell composition, structure, cellular functions, and external environment and review the current state of the art for in vitro cell-based models of the small intestine system to replace animal models, including ex vivo, 2D culture, organoid, lab-on-a-chip, and 3D culture models. These models are described in terms of their structure, composition, and co-culture availability with microbiomes. Furthermore, we discuss the potential application for the aforementioned techniques to these in vitro models. The review concludes with a summary of intestine models from the viewpoint of current techniques as well as their main features, highlighting potential future developments and applications.
Collapse
Affiliation(s)
- Sang-Myung Jung
- Jeonbuk Branch Institute, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, South Korea
| | - Seonghun Kim
- Jeonbuk Branch Institute, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, South Korea.,Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, South Korea
| |
Collapse
|
17
|
Kitchen GB, Hopwood T, Gali Ramamoorthy T, Downton P, Begley N, Hussell T, Dockrell DH, Gibbs JE, Ray DW, Loudon ASI. The histone methyltransferase Ezh2 restrains macrophage inflammatory responses. FASEB J 2021; 35:e21843. [PMID: 34464475 PMCID: PMC8573545 DOI: 10.1096/fj.202100044rrr] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 07/06/2021] [Accepted: 07/23/2021] [Indexed: 01/02/2023]
Abstract
Robust inflammatory responses are critical to survival following respiratory infection, with current attention focused on the clinical consequences of the Coronavirus pandemic. Epigenetic factors are increasingly recognized as important determinants of immune responses, and EZH2 is a prominent target due to the availability of highly specific and efficacious antagonists. However, very little is known about the role of EZH2 in the myeloid lineage. Here, we show EZH2 acts in macrophages to limit inflammatory responses to activation, and in neutrophils for chemotaxis. Selective genetic deletion in macrophages results in a remarkable gain in protection from infection with the prevalent lung pathogen, pneumococcus. In contrast, neutrophils lacking EZH2 showed impaired mobility in response to chemotactic signals, and resulted in increased susceptibility to pneumococcus. In summary, EZH2 shows complex, and divergent roles in different myeloid lineages, likely contributing to the earlier conflicting reports. Compounds targeting EZH2 are likely to impair mucosal immunity; however, they may prove useful for conditions driven by pulmonary neutrophil influx, such as adult respiratory distress syndrome.
Collapse
Affiliation(s)
- Gareth B. Kitchen
- Faculty of Biology, Medicine and HealthUniversity of Manchester, Manchester Academic Health Sciences CentreManchesterUK
- Manchester University NHS Foundation Trust, Manchester Academic Health Science CentreManchesterUK
| | - Thomas Hopwood
- Faculty of Biology, Medicine and HealthUniversity of Manchester, Manchester Academic Health Sciences CentreManchesterUK
| | - Thanuja Gali Ramamoorthy
- Faculty of Biology, Medicine and HealthUniversity of Manchester, Manchester Academic Health Sciences CentreManchesterUK
| | - Polly Downton
- Faculty of Biology, Medicine and HealthUniversity of Manchester, Manchester Academic Health Sciences CentreManchesterUK
| | - Nicola Begley
- Faculty of Biology, Medicine and HealthUniversity of Manchester, Manchester Academic Health Sciences CentreManchesterUK
| | - Tracy Hussell
- Faculty of Biology, Medicine and HealthUniversity of Manchester, Manchester Academic Health Sciences CentreManchesterUK
| | - David H. Dockrell
- Department of Infection Medicine and MRC Centre for Inflammation ResearchUniversity of EdinburghEdinburghUK
| | - Julie E. Gibbs
- Faculty of Biology, Medicine and HealthUniversity of Manchester, Manchester Academic Health Sciences CentreManchesterUK
| | - David W. Ray
- NIHR Oxford Biomedical Research Centre, John Radcliffe HospitalOxfordUK
- Oxford Centre for Diabetes, Endocrinology and MetabolismUniversity of OxfordOxfordUK
| | - Andrew S. I. Loudon
- Faculty of Biology, Medicine and HealthUniversity of Manchester, Manchester Academic Health Sciences CentreManchesterUK
| |
Collapse
|
18
|
Gonzalez MM, Bamidele AO, Svingen PA, Sagstetter MR, Smyrk TC, Gaballa JM, Hamdan FH, Kosinsky RL, Gibbons HR, Sun Z, Ye Z, Nair A, Ramos GP, Braga Neto MB, Wixom AQ, Mathison AJ, Johnsen SA, Urrutia R, Faubion WA. BMI1 maintains the Treg epigenomic landscape to prevent inflammatory bowel disease. J Clin Invest 2021; 131:e140755. [PMID: 34128475 DOI: 10.1172/jci140755] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 04/15/2021] [Indexed: 12/13/2022] Open
Abstract
FOXP3+ Tregs are expanded within the inflamed intestine of human Crohn's disease, yet FOXP3-mediated gene repression within these cells is lost. The polycomb repressive complexes play a role in FOXP3 target gene regulation, but deeper mechanistic insight is incomplete. We have now specifically identified the polycomb-repressive complex 1 (PRC1) family member, BMI1 in the regulation of a proinflammatory enhancer network in both human and murine Tregs. Using human Tregs and lamina propria T cells, we inferred PRC1 to regulate Crohn's associated gene networks through assays of chromatin accessibility. Conditional deletion of BMI1 in murine FOXP3+ cells led to systemic inflammation. BMI1-deficient Tregs beared a TH1/TH17-like phenotype as assessed by assays of genome wide transcription, chromatin accessibility and proteomic techniques. Finally, BMI1 mutant FOXP3+ cells did not suppress colitis in the adoptive transfer model of human inflammatory bowel disease. We propose that BMI1 plays an important role in enforcing Treg identity in vitro and in vivo. Loss of Treg identity via genetic or transient BMI1 depletion perturbs the epigenome and converts Tregs into Th1/Th17-like proinflammatory cells, a transition relevant to human Crohn's disease associated CD4+ T cells.
Collapse
Affiliation(s)
- Michelle M Gonzalez
- Epigenetics and Chromatin Dynamics Laboratory, Division of Gastroenterology and Hepatology and Translational Epigenomic Program, Center for Individualized Medicine (CIM)
| | - Adebowale O Bamidele
- Epigenetics and Chromatin Dynamics Laboratory, Division of Gastroenterology and Hepatology and Translational Epigenomic Program, Center for Individualized Medicine (CIM)
| | - Phyllis A Svingen
- Epigenetics and Chromatin Dynamics Laboratory, Division of Gastroenterology and Hepatology and Translational Epigenomic Program, Center for Individualized Medicine (CIM)
| | - Mary R Sagstetter
- Epigenetics and Chromatin Dynamics Laboratory, Division of Gastroenterology and Hepatology and Translational Epigenomic Program, Center for Individualized Medicine (CIM)
| | | | - Joseph M Gaballa
- Epigenetics and Chromatin Dynamics Laboratory, Division of Gastroenterology and Hepatology and Translational Epigenomic Program, Center for Individualized Medicine (CIM)
| | - Feda H Hamdan
- Epigenetics and Chromatin Dynamics Laboratory, Division of Gastroenterology and Hepatology and Translational Epigenomic Program, Center for Individualized Medicine (CIM)
| | - Robyn Laura Kosinsky
- Epigenetics and Chromatin Dynamics Laboratory, Division of Gastroenterology and Hepatology and Translational Epigenomic Program, Center for Individualized Medicine (CIM)
| | - Hunter R Gibbons
- Epigenetics and Chromatin Dynamics Laboratory, Division of Gastroenterology and Hepatology and Translational Epigenomic Program, Center for Individualized Medicine (CIM)
| | - Zhifu Sun
- Department of Genetics and Bioinformatics, Mayo Clinic, Rochester, Minnesota, USA
| | - Zhenqing Ye
- Department of Genetics and Bioinformatics, Mayo Clinic, Rochester, Minnesota, USA
| | - Asha Nair
- Department of Genetics and Bioinformatics, Mayo Clinic, Rochester, Minnesota, USA
| | - Guilherme P Ramos
- Epigenetics and Chromatin Dynamics Laboratory, Division of Gastroenterology and Hepatology and Translational Epigenomic Program, Center for Individualized Medicine (CIM)
| | - Manuel B Braga Neto
- Epigenetics and Chromatin Dynamics Laboratory, Division of Gastroenterology and Hepatology and Translational Epigenomic Program, Center for Individualized Medicine (CIM)
| | - Alexander Q Wixom
- Epigenetics and Chromatin Dynamics Laboratory, Division of Gastroenterology and Hepatology and Translational Epigenomic Program, Center for Individualized Medicine (CIM)
| | - Angela J Mathison
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Steven A Johnsen
- Epigenetics and Chromatin Dynamics Laboratory, Division of Gastroenterology and Hepatology and Translational Epigenomic Program, Center for Individualized Medicine (CIM)
| | - Raul Urrutia
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - William A Faubion
- Epigenetics and Chromatin Dynamics Laboratory, Division of Gastroenterology and Hepatology and Translational Epigenomic Program, Center for Individualized Medicine (CIM)
| |
Collapse
|
19
|
Brunty S, Ray Wright K, Mitchell B, Santanam N. Peritoneal Modulators of EZH2-miR-155 Cross-Talk in Endometriosis. Int J Mol Sci 2021; 22:ijms22073492. [PMID: 33800594 PMCID: PMC8038067 DOI: 10.3390/ijms22073492] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/22/2021] [Accepted: 03/26/2021] [Indexed: 12/12/2022] Open
Abstract
Activation of trimethylation of histone 3 lysine 27 (H3K27me3) by EZH2, a component of the Polycomb repressive complex 2 (PRC2), is suggested to play a role in endometriosis. However, the mechanism by which this complex is dysregulated in endometriosis is not completely understood. Here, using eutopic and ectopic tissues, as well as peritoneal fluid (PF) from IRB-approved and consented patients with and without endometriosis, the expression of PRC2 complex components, JARID2, miR-155 (known regulators of EZH2), and a key inflammatory modulator, FOXP3, was measured. A higher expression of EZH2, H3K27me3, JARID2, and FOXP3 as well as miR-155 was noted in both the patient tissues and in endometrial PF treated cells. Gain-or-loss of function of miR-155 showed an effect on the PRC2 complex but had little effect on JARID2 expression, suggesting alternate pathways. Chromatin immunoprecipitation followed by qPCR showed differential expression of PRC2 complex proteins and its associated binding partners in JARID2 vs. EZH2 pull down assays. In particular, endometriotic PF treatment increased the expression of PHF19 (p = 0.0474), a gene silencer and co-factor that promotes PRC2 interaction with its targets. Thus, these studies have identified the potential novel crosstalk between miR-155-PRC2 complex-JARID2 and PHF19 in endometriosis, providing an opportunity to test other epigenetic targets in endometriosis.
Collapse
Affiliation(s)
- Sarah Brunty
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA; (S.B.); (K.R.W.)
| | - Kristeena Ray Wright
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA; (S.B.); (K.R.W.)
| | - Brenda Mitchell
- Department of Obstetrics and Gynecology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA;
| | - Nalini Santanam
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA; (S.B.); (K.R.W.)
- Correspondence:
| |
Collapse
|
20
|
Li T, Yu C, Zhuang S. Histone Methyltransferase EZH2: A Potential Therapeutic Target for Kidney Diseases. Front Physiol 2021; 12:640700. [PMID: 33679454 PMCID: PMC7930071 DOI: 10.3389/fphys.2021.640700] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 01/11/2021] [Indexed: 12/19/2022] Open
Abstract
Enhancer of zeste homolog 2 (EZH2) is a histone-lysine N-methyltransferase enzyme that catalyzes the addition of methyl groups to histone H3 at lysine 27, leading to gene silencing. Mutation or over-expression of EZH2 has been linked to many cancers including renal carcinoma. Recent studies have shown that EZH2 expression and activity are also increased in several animal models of kidney injury, such as acute kidney injury (AKI), renal fibrosis, diabetic nephropathy, lupus nephritis (LN), and renal transplantation rejection. The pharmacological and/or genetic inhibition of EZH2 can alleviate AKI, renal fibrosis, and LN, but potentiate podocyte injury in animal models, suggesting that the functional role of EZH2 varies with renal cell type and disease model. In this article, we summarize the role of EZH2 in the pathology of renal injury and relevant mechanisms and highlight EZH2 as a potential therapeutic target for kidney diseases.
Collapse
Affiliation(s)
- Tingting Li
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chao Yu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Medicine, Alpert Medical School and Rhode Island Hospital, Brown University, Providence, RI, United States
| |
Collapse
|
21
|
Aseem SO, Jalan-Sakrikar N, Chi C, Navarro-Corcuera A, De Assuncao TM, Hamdan FH, Chowdhury S, Banales JM, Johnsen SA, Shah VH, Huebert RC. Epigenomic Evaluation of Cholangiocyte Transforming Growth Factor-β Signaling Identifies a Selective Role for Histone 3 Lysine 9 Acetylation in Biliary Fibrosis. Gastroenterology 2021; 160:889-905.e10. [PMID: 33058867 PMCID: PMC7878301 DOI: 10.1053/j.gastro.2020.10.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 09/14/2020] [Accepted: 10/02/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Transforming growth factor β (TGFβ) upregulates cholangiocyte-derived signals that activate myofibroblasts and promote fibrosis. Using epigenomic and transcriptomic approaches, we sought to distinguish the epigenetic activation mechanisms downstream of TGFβ that mediate transcription of fibrogenic signals. METHODS Chromatin immunoprecipitation (ChIP)-seq and RNA-seq were performed to assess histone modifications and transcriptional changes following TGFβ stimulation. Histone modifications and acetyltransferase occupancy were confirmed using ChIP assays. Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq) was used to investigate changes in chromatin accessibility. Cholangiocyte cell lines and primary cholangiocytes were used for in vitro studies. Mdr2-/- and 3,5-diethoxycarboncyl-1,4-dihydrocollidine (DDC)-fed mice were used as animal models. RESULTS TGFβ stimulation caused widespread changes in histone 3 lysine 27 acetylation (H3K27ac), and was associated with global TGFβ-mediated transcription. In contrast, H3K9ac was gained in a smaller group of chromatin sites and was associated with fibrosis pathways. These pathways included overexpression of hepatic stellate cell (HSC) activators such as fibronectin 1 (FN1) and SERPINE1. The promoters of these genes showed H3K9ac enrichment following TGFβ. Of the acetyltransferases responsible for H3K9ac, cholangiocytes predominantly express Lysine Acetyltransferases 2A (KAT2A). Small interfering RNA knockdown of KAT2A or H3K9ac inhibition prevented the TGFβ-mediated increase in FN1 and SERPINE1. SMAD3 ChIP-seq and ATAC-seq suggested that TGFβ-mediated H3K9ac occurs through SMAD signaling, which was confirmed using colocalization and genetic knockdown studies. Pharmacologic inhibition or cholangiocyte-selective deletion of Kat2a was protective in mouse models of biliary fibrosis. CONCLUSIONS Cholangiocyte expression of HSC-activating signals occurs through SMAD-dependent, KAT2A-mediated, H3K9ac, and can be targeted to prevent biliary fibrosis.
Collapse
Affiliation(s)
- Sayed Obaidullah Aseem
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, Minnesota; Gastroenterology Research Unit, Mayo Clinic and Foundation, Rochester, Minnesota
| | - Nidhi Jalan-Sakrikar
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, Minnesota; Gastroenterology Research Unit, Mayo Clinic and Foundation, Rochester, Minnesota
| | - Cheng Chi
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, Minnesota; Gastroenterology Research Unit, Mayo Clinic and Foundation, Rochester, Minnesota
| | - Amaia Navarro-Corcuera
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, Minnesota; Gastroenterology Research Unit, Mayo Clinic and Foundation, Rochester, Minnesota
| | - Thiago M De Assuncao
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, Minnesota; Gastroenterology Research Unit, Mayo Clinic and Foundation, Rochester, Minnesota
| | - Feda H Hamdan
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, Minnesota; Gastroenterology Research Unit, Mayo Clinic and Foundation, Rochester, Minnesota
| | - Shiraj Chowdhury
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, Minnesota; Gastroenterology Research Unit, Mayo Clinic and Foundation, Rochester, Minnesota
| | - Jesus M Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, CIBERehd, Ikerbasque, San Sebastian, Spain
| | - Steven A Johnsen
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, Minnesota; Gastroenterology Research Unit, Mayo Clinic and Foundation, Rochester, Minnesota; Center for Cell Signaling in Gastroenterology Mayo Clinic and Foundation, Rochester, Minnesota
| | - Vijay H Shah
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, Minnesota; Gastroenterology Research Unit, Mayo Clinic and Foundation, Rochester, Minnesota; Center for Cell Signaling in Gastroenterology Mayo Clinic and Foundation, Rochester, Minnesota
| | - Robert C Huebert
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, Minnesota; Gastroenterology Research Unit, Mayo Clinic and Foundation, Rochester, Minnesota; Center for Cell Signaling in Gastroenterology Mayo Clinic and Foundation, Rochester, Minnesota.
| |
Collapse
|
22
|
Guo Y, Wang B, Wang T, Gao L, Yang ZJ, Wang FF, Shang HW, Hua R, Xu JD. Biological characteristics of IL-6 and related intestinal diseases. Int J Biol Sci 2021; 17:204-219. [PMID: 33390844 PMCID: PMC7757046 DOI: 10.7150/ijbs.51362] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 11/07/2020] [Indexed: 12/21/2022] Open
Abstract
The intestine serves as an important digestive and the largest immune organ in the body. Interleukin-6(IL-6), an important mediator of various pathways, participates in the interactions between different kinds of cells and closely correlates with intestinal physiological and pathological condition. In this review we summarize the signaling pathways of IL-6 and its functions in maintaining intestinal homeostasis. We also explored its relation with nervous system and highlight its potential role in Parkinson's disease. Based on its specialty of the double-side influences on intestinal tumors and inflammation, we summarize how they are done through distinctive process.
Collapse
Affiliation(s)
- Yuexin Guo
- Department of Oral Medicine, Basic Medical College, Capital Medical University, Beijing 100069, China
| | - Boya Wang
- Undergraduate Student of 2018 Eight Program of Clinical Medicine, Peking University Health Science Center, Beijing, 100081, China
| | - Tiantian Wang
- Department of Physiology and Pathophysiology, Basic Medical College, Capital Medical University, Beijing 100069, China
| | - Lei Gao
- Department of Bioinformatics, College of Bioengineering, Capital Medical University, Beijing 100069, China
| | - Ze-Jun Yang
- Department of Clinical Medicine, Basic Medical College, Capital Medical University, Beijing 100069, China
| | - Fei-Fei Wang
- Department of Clinical Medicine, Basic Medical College, Capital Medical University, Beijing 100069, China
| | - Hong-Wei Shang
- Experimental Center for Morphological Research Platform, Capital Medical University, Beijing 100069, China
| | - Rongxuan Hua
- Department of Clinical Medicine, Basic Medical College, Capital Medical University, Beijing 100069, China
| | - Jing-Dong Xu
- Department of Physiology and Pathophysiology, Basic Medical College, Capital Medical University, Beijing 100069, China
| |
Collapse
|
23
|
Abstract
Mucosal surfaces are distinctive sites exposed to environmental, dietary, and microbial antigens. Particularly in the gut, the host continuously actively adapts via complex interactions between the microbiota and dietary compounds and immune and other tissue cells. Regulatory T cells (Tregs) are critical for tuning the intestinal immune response to self- and non-self-antigens in the intestine. Its importance in intestinal homeostasis is illustrated by the onset of overt inflammation caused by deficiency in Treg generation, function, or stability in the gut. A substantial imbalance in Tregs has been observed in intestinal tissue during pathogenic conditions, when a tightly regulated and equilibrated system becomes dysregulated and leads to unimpeded and chronic immune responses. In this chapter, we compile and critically discuss the current knowledge on the key factors that promote Treg-mediated tolerance in the gut, such as those involved in intestinal Treg differentiation, specificity and suppressive function, and their immunophenotype during health and disease. We also discuss the current state of knowledge on Treg dysregulation in human intestine during pathological states such as inflammatory bowel disease (IBD), necrotizing enterocolitis (NEC), graft-versus-host disease (GVHD), and colorectal cancer (CRC), and how that knowledge is guiding development of Treg-targeted therapies to treat or prevent intestinal disorders.
Collapse
|
24
|
Wang H, Cai X, Ma L. Curcumin Modifies Epithelial-Mesenchymal Transition in Colorectal Cancer Through Regulation of miR-200c/EPM5. Cancer Manag Res 2020; 12:9405-9415. [PMID: 33061628 PMCID: PMC7534868 DOI: 10.2147/cmar.s260129] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 08/21/2020] [Indexed: 12/13/2022] Open
Abstract
Background The serious side effect of current conventional treatments for patients with metastatic colorectal cancer (CRC) highlights the requirement of an alternative treatment strategy. Natural compounds, such as curcumin, have been gained much attention due to its low toxicity and anti-tumor effect. Methods qPCR and Western blot were used to measure the molecular changes induced by curcumin. Wound-healing assay and transwell assay were conducted to study the effect on cell migration and invasion. RT1 PCR array was performed to identify the miRNAs involved in curcumin-repressed EMT. Three algorithms and luciferase reporter assay were used to identify EPM5 as a target of miR-200c. The bioinformatical analysis of TCGA-COAD and other CRC cohorts were used to examine the association of EPM5 with EMT signatures and clinical relevance. The ectopic expression or siRNA-mediated knockdown of EPM5 was applied to study the role of EPM5 in CRC. Results Treatment with curcumin changed the epithelial–mesenchymal transition (EMT)-related gene expression, repressed cell migration and invasion in CRC cells. Its anti-tumor capability required the upregulation of miR-200c. EPM5 was a direct target of miR-200c and enriched in the consensus molecular subtype (CMS) 4 of CRC. Ectopic expression of EPM5 alone was sufficient to induce EMT in CRC. Downregulation of EPM5 was necessary for curcumin-repressed EMT, migration, and invasion. Higher expression of EPM5 was associated with the advanced TNM stages and poor survival in CRC. Conclusion Our data provide the first evidence that the curcumin inhibits EMT in CRC by upregulation of miR-200c and downregulation of EPM5, and the use of curcumin might be able to prevent or delay CRC progression.
Collapse
Affiliation(s)
- Hui Wang
- Department of Emergency Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi Province, People's Republic of China
| | - Xiaolong Cai
- Department of Emergency Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi Province, People's Republic of China
| | - Longyang Ma
- Department of Emergency Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi Province, People's Republic of China
| |
Collapse
|
25
|
Salas A, Hernandez-Rocha C, Duijvestein M, Faubion W, McGovern D, Vermeire S, Vetrano S, Vande Casteele N. JAK-STAT pathway targeting for the treatment of inflammatory bowel disease. Nat Rev Gastroenterol Hepatol 2020; 17:323-337. [PMID: 32203403 DOI: 10.1038/s41575-020-0273-0] [Citation(s) in RCA: 398] [Impact Index Per Article: 79.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/06/2020] [Indexed: 02/07/2023]
Abstract
Cytokines are involved in intestinal homeostasis and pathological processes associated with inflammatory bowel disease (IBD). The biological effects of cytokines, including several involved in the pathology of Crohn's disease and ulcerative colitis, occur as a result of receptor-mediated signalling through the Janus kinase (JAK) and signal transducer and activator of transcription (STAT) DNA-binding families of proteins. Although therapies targeting cytokines have revolutionized IBD therapy, they have historically targeted individual cytokines, and an unmet medical need exists for patients who do not respond to or lose response to these treatments. Several small-molecule inhibitors of JAKs that have the potential to affect multiple pro-inflammatory cytokine-dependent pathways are in clinical development for the treatment of IBD, with one agent, tofacitinib, already approved for ulcerative colitis and several other agents with demonstrated efficacy in early phase trials. This Review describes the current understanding of JAK-STAT signalling in intestinal homeostasis and disease and the rationale for targeting this pathway as a treatment for IBD. The available evidence for the efficacy, safety and pharmacokinetics of JAK inhibitors in IBD as well as the potential approaches to optimize treatment with these agents, such as localized delivery or combination therapy, are also discussed.
Collapse
Affiliation(s)
- Azucena Salas
- Department of Gastroenterology, IDIBAPS, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Cristian Hernandez-Rocha
- Zane Cohen Center for Digestive Diseases, Mount Sinai Hospital Inflammatory Bowel Disease Group, Toronto, Ontario, Canada
| | - Marjolijn Duijvestein
- Gastroenterology and Hepatology, Amsterdam Gastroenterology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - William Faubion
- Gastroenterology and Hepatology, Mayo Clinic, Rochester, MI, USA
| | - Dermot McGovern
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Severine Vermeire
- Department of Gastroenterology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Stefania Vetrano
- Department of Biomedical Sciences, Humanitas University, Milan, Italy.,IBD Center, Laboratory of Immunology in Gastroenterology, Humanitas Clinical and Research Center IRCCS, Milan, Italy
| | - Niels Vande Casteele
- Robarts Clinical Trials, London, ON, Canada. .,Department of Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
26
|
Yang YX, Shen HH, Cao F, Xie LY, Zhu GL, Sam NB, Wang DG, Pan HF. Therapeutic potential of enhancer of zeste homolog 2 in autoimmune diseases. Expert Opin Ther Targets 2019; 23:1015-1030. [PMID: 31747802 DOI: 10.1080/14728222.2019.1696309] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Introduction: Autoimmune diseases (ADs) are idiopathic and heterogeneous disorders with contentious pathophysiology. Great strides have been made in epigenetics and its involvement in ADs. Zeste homolog 2 (EZH2) has sparked extensive interest because of its pleiotropic roles in distinct pathologic contexts.Areas covered: This review summarizes the epigenetic functions and the biological significance of EZH2 in the etiology of rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), type 1 diabetes (T1D), inflammatory bowel disease (IBD), multiple sclerosis (MS), and systemic sclerosis (SSc). A brief recapitulation of the therapeutic potential of EZH2 targeting is provided.Expert opinion: There are questions marks and controversies surrounding the feasibility and safety of EZH2 targeting; it is recommended in RA and SLE, but queried in T1D, IBD, MS, and SSc. Future work should focus on contrast studies, systematic analyses and preclinical studies with optimizing methodologies. Selective research studies conducted in a stage-dependent manner are necessary because of the relapsing-remitting clinical paradigms.
Collapse
Affiliation(s)
- Yue-Xin Yang
- Department of Radiation Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Hui-Hui Shen
- Department of Clinical Medicine, The second School of Clinical Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Fan Cao
- Department of Clinical Medicine, The second School of Clinical Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Liang-Yu Xie
- Department of Clinical Medicine, The second School of Clinical Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Guang-Lin Zhu
- Department of Clinical Medicine, The second School of Clinical Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Napoleon Bellua Sam
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui, China
| | - De-Guang Wang
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui, China
| |
Collapse
|
27
|
Liu H, Chen Z, Weng X, Chen H, Du Y, Diao C, Liu X, Wang L. Enhancer of zeste homolog 2 modulates oxidative stress-mediated pyroptosis in vitro and in a mouse kidney ischemia-reperfusion injury model. FASEB J 2019; 34:835-852. [PMID: 31914694 DOI: 10.1096/fj.201901816r] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/18/2019] [Accepted: 10/23/2019] [Indexed: 12/12/2022]
Abstract
Enhancer of zeste homolog 2 (EZH2), a well-known methyltransferase, mediates histone H3 lysine 27 trimethylation (H3K27me3) and plays a crucial role in several kidney disease models. However, its role in renal ischemia/reperfusion (I/R) injury still remains unclear. In this study, we found that EZH2 was positively related to renal I/R injury and inhibition of EZH2 with DZNeP alleviated I/R injury and blocked the activation of oxidative stress and pyroptosis in vivo. Similarly, inhibition of EZH2 with either DZNeP or si-RNA also exerted an inhibitory effect on hypoxia/reoxygenation (H/R)-induced oxidative stress and pyroptosis in vitro. Moreover, further study revealed that ablation of reactive oxygen species (ROS) with N-acetyl-cysteine (NAC) suppressed pyroptosis in human renal proximal tubular epithelial cell line cells exposed to H/R stimulation. Furthermore, Nox4, which was positively related to the generation of ROS, was upregulated during H/R process, while it could be reversed by EZH2 inhibition. Consistently, Nox4-mediated ROS generation was attenuated upon inhibition of EZH2 with DZNeP or si-RNA. Additionally, the transcriptional activity of Nox4 was enhanced by the activation of ALK5/Smad2/3 signaling pathway, which was abolished by ALK5 knockdown in vitro. Finally, EZH2 inhibition blocked H/R and I/R-activated ALK5/Smad2/3 pathway and also resulted in an obvious decrease in the transcriptional activity and protein expression levels of Nox4. In conclusion, our results proved that EZH2 inhibition alleviated renal pyroptosis by blocking Nox4-dependent ROS generation through ALK5/Smad2/3 signaling pathway, indicating that EZH2 could be a potential therapeutic target for renal I/R injury.
Collapse
Affiliation(s)
- Hao Liu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, P.R. China
| | - Zhiyuan Chen
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, P.R. China
| | - Xiaodong Weng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, P.R. China
| | - Hui Chen
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, P.R. China
| | - Yang Du
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, P.R. China
| | - Changhui Diao
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, P.R. China
| | - Xiuheng Liu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, P.R. China
| | - Lei Wang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, P.R. China
| |
Collapse
|