1
|
Shaaker M, Darabi M, Dehghan G, Feizi MAH, Mehdizadeh A. The Effect of Chemotherapeutic Agents Used in Breast Cancer Treatment on the Hepatic Lipotoxicity. Appl Biochem Biotechnol 2025:10.1007/s12010-025-05237-w. [PMID: 40293588 DOI: 10.1007/s12010-025-05237-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2025] [Indexed: 04/30/2025]
Abstract
Breast cancer (BC) is the most common type of cancer in women. Researchers have studied various types of inhibitors of the MAPK/ERK signaling pathway, which plays an important role in the growth of BC cells. PD98059 is a potent and selective inhibitor of MEK, which may have potential application in the combined treatment of BC along with doxorubicin and Taxotere. The aim of this study was to provide a new insight into hepatotoxicity caused by doxorubicin, Taxotere, and PD98059 mono/combination therapy in a hepatoma in vitro model. HepG2 cells were treated with appropriate doses of used drugs. The expression of FASN and SCD1 lipogenic genes was measured by real-time PCR. The fatty acid composition PL and triglyceride fractions were analyzed using gas-liquid chromatography. The indicators of oxidative stress and antioxidant defense systems were measured by the calorimetric method. Doxorubicin and Taxotere significantly decreased FASN expression and increased SCD1 expression. Additionally, the combination of PD98059 alone, in combination with doxorubicin, or doxorubicin and Taxotere significantly increased the expression of SCD1. However, the combination of PD98059 and Taxotere significantly decreased this expression. PD98059 alone also dramatically increased the expression of FASN. In the PL fraction, doxorubicin, Taxotere, or PD98059 increased the percentage of saturated fatty acids and decreased the relative amount of unsaturated fatty acids alone. The doxorubicin + PD98059 combination also enhanced the effect of doxorubicin on PL SFAs and UFAs. Taxotere also reduced the SFAs and increased UFAs in the triglyceride fraction, which was also neutralized by PD98059 addition. Based on these findings, increased expression of SCD1 and elevated levels of SFAs in lipid fractions may indicate the possibility of hepatic lipotoxicity in BC patients, which necessitates the narrow monitoring of steatohepatitis in these patients.
Collapse
Affiliation(s)
- Maghsoud Shaaker
- Research Laboratory of Biochemistry and Molecular Biology, Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoud Darabi
- Division of Experimental Oncology, Department of Hematology and Oncology, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Gholamreza Dehghan
- Research Laboratory of Biochemistry and Molecular Biology, Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Mohammad Ali Hosseinpour Feizi
- Research Laboratory of Biochemistry and Molecular Biology, Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Amir Mehdizadeh
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Flower CT, Liu C, Chuang HY, Ye X, Cheng H, Heath JR, Wei W, White FM. Signaling and transcriptional dynamics underlying early adaptation to oncogenic BRAF inhibition. Cell Syst 2025; 16:101239. [PMID: 40118060 PMCID: PMC12045616 DOI: 10.1016/j.cels.2025.101239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 07/19/2024] [Accepted: 02/21/2025] [Indexed: 03/23/2025]
Abstract
A major contributor to poor sensitivity to anti-cancer kinase inhibitor therapy is drug-induced cellular adaptation, whereby remodeling of signaling and gene regulatory networks permits a drug-tolerant phenotype. Here, we resolve the scale and kinetics of critical subcellular events following oncogenic kinase inhibition and preceding cell cycle re-entry, using mass spectrometry-based phosphoproteomics and RNA sequencing (RNA-seq) to monitor the dynamics of thousands of growth- and survival-related signals over the first minutes, hours, and days of oncogenic BRAF inhibition in human melanoma cells. We observed sustained inhibition of the BRAF-ERK axis, gradual downregulation of cell cycle signaling, and three distinct, reversible phase transitions toward quiescence. Statistical inference of kinetically defined regulatory modules revealed a dominant compensatory induction of SRC family kinase (SFK) signaling, promoted in part by excess reactive oxygen species, rendering cells sensitive to co-treatment with an SFK inhibitor in vitro and in vivo, underscoring the translational potential for assessing early drug-induced adaptive signaling. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Cameron T Flower
- Center for Precision Cancer Medicine, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; Program in Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Chunmei Liu
- Institute for Systems Biology, Seattle, WA, USA
| | | | - Xiaoyang Ye
- Institute for Systems Biology, Seattle, WA, USA
| | | | | | - Wei Wei
- Institute for Systems Biology, Seattle, WA, USA.
| | - Forest M White
- Center for Precision Cancer Medicine, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; Program in Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
3
|
Xu Q, Wang X, Hu J, Wang Y, Lu S, Xiong J, Li H, Xiong N, Huang Y, Wang Y, Wang Z. Overexpression of hnRNPK and inhibition of cytoplasmic translocation ameliorate lipid disorder in doxorubicin-induced cardiomyopathy via PINK1/Parkin-mediated mitophagy. Free Radic Biol Med 2025; 231:94-108. [PMID: 39984063 DOI: 10.1016/j.freeradbiomed.2025.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 02/08/2025] [Accepted: 02/14/2025] [Indexed: 02/23/2025]
Abstract
Lipid metabolism has been identified as a potential target for the treatment of doxorubicin-induced cardiomyopathy (DIC). Mitochondria, as a central regulator of energy production and utilization, plays a crucial role in this process, and enhancing mitophagy holds promise in mitigating myocardial damage in DIC. However, the relationship between mitophagy and lipid metabolism remains unclear, and the key molecules mediating this connection remain to be elucidated. Among these candidates, heterogeneous nuclear ribonucleoprotein K (hnRNPK) emerges as a potential regulator of mitophagy and metabolism. However, its specific role in DIC remains unclear. In this study, we established chronic DIC models both in vivo and in vitro to assess the relationship between hnRNPK levels, mitophagy, and lipid metabolism, as well as to evaluate the impact of hnRNPK on cardiac function. Our findings revealed that hnRNPK expression is significantly reduced in the hearts of doxorubicin (DOX)-treated mice. Notably, hnRNPK overexpression improves cardiac function and effectively reduces lipid accumulation by enhancing mitophagy. Mechanistically, hnRNPK expression was found to be downregulated in DIC, accompanied by its translocation from the nucleus to the cytoplasm, thereby reducing the transcriptional regulation of PINK1. Overexpression of hnRNPK and inhibition of its cytoplasmic translocation alleviates DOX-induced lipid accumulation by regulating the PINK1/Parkin pathway. These findings underscore a previously unrecognized role of hnRNPK in inhibiting lipid accumulation to prevent DIC.
Collapse
Affiliation(s)
- Qian Xu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China; Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Xuehua Wang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China; Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Jing Hu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Ya Wang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China; Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Shuai Lu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jingjie Xiong
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China; Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Han Li
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China; Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Ni Xiong
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China; Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - YanLing Huang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China; Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Yan Wang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China; Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
| | - Zhaohui Wang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China; Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
| |
Collapse
|
4
|
Jiao P, Lu H, Hao L, Degen AA, Cheng J, Yin Z, Mao S, Xue Y. Nutrigenetic and Epigenetic Mechanisms of Maternal Nutrition-Induced Glucolipid Metabolism Changes in the Offspring. Nutr Rev 2025; 83:728-748. [PMID: 38781288 DOI: 10.1093/nutrit/nuae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024] Open
Abstract
Maternal nutrition during pregnancy regulates the offspring's metabolic homeostasis, including insulin sensitivity and the metabolism of glucose and lipids. The fetus undergoes a crucial period of plasticity in the uterus; metabolic changes in the fetus during pregnancy caused by maternal nutrition not only influence fetal growth and development but also have a long-term or even life-long impact for the offspring. Epigenetic modifications, such as DNA methylation, histone modification, and non-coding RNAs, play important roles in intergenerational and transgenerational effects. In this context, this narrative review comprehensively summarizes and analyzes the molecular mechanisms underlying how maternal nutrition, including a high-fat diet, polyunsaturated fatty acid diet, methyl donor nutrient supplementation, feed restriction, and protein restriction during pregnancy, impacts the genes involved in glucolipid metabolism in the liver, adipose tissue, hypothalamus, muscle, and oocytes of the offspring in terms of the epigenetic modifications. This will provide a foundation for the further exploration of nutrigenetic and epigenetic mechanisms for integrative mother-child nutrition and promotion of the offspring's health through the regulation of maternal nutrition during pregnancy. Note: This paper is part of the Nutrition Reviews Special Collection on Precision Nutrition.
Collapse
Affiliation(s)
- Peng Jiao
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Huizhen Lu
- Biotechnology Center, Anhui Agricultural University, Hefei, China
| | - Lizhuang Hao
- Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Qinghai Plateau Yak Research Center, Qinghai Academy of Science and Veterinary Medicine of Qinghai University, Xining, China
| | - A Allan Degen
- Desert Animal Adaptations and Husbandry, Wyler Department of Dryland Agriculture, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Jianbo Cheng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Zongjun Yin
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Shengyong Mao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yanfeng Xue
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| |
Collapse
|
5
|
Moolsup F, Suttithumsatid W, Woonnoi W, Chonpathompikunlert P, Tanasawet S, Sukketsiri W. Passion Fruit Seed Extract Attenuates Hepatic Steatosis in Oleic Acid-Treated HepG2 Cells through Modulation of ERK1/2 and Akt Signaling Pathways. Cell Biochem Biophys 2025:10.1007/s12013-025-01706-5. [PMID: 40025286 DOI: 10.1007/s12013-025-01706-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2025] [Indexed: 03/04/2025]
Abstract
Hepatic steatosis, commonly referred to as fatty liver disease, is defined by the abnormal buildup of fat within liver cells. Currently, primary treatments mainly focus on lifestyle changes, underscoring a lack of direct pharmacological options. Passion fruit seed extract (PFSE) has been reported to decrease hepatosteatosis; however, the mechanism underlying this effect has not been clarified. Therefore, the objective of this research was to investigate the effects and mechanisms of action of PFSE against oleic acid (OA)-induced hepatosteatosis in HepG2 cells. OA-induced HepG2 cells were analyzed by using various cell-based experiments, including assessments of cytotoxicity, reactive oxygen species (ROS) production, apoptosis, and protein and gene expression. LC-MS-MS analysis showed that PFSE contains a variety of phytochemical compounds such as alkaloids, flavonoids, stilbenoids, coumarins, terpenoids, lipids, and fatty acid derivatives, which have the potential to exhibit various pharmacological activities. In this study, PFSE demonstrated antioxidant, anti-inflammatory, and lipid metabolism-regulating activities. It also influenced key genes related to lipid metabolism, including SREBP-1c, ACC, FASN, PPARα, CPT-1A, LPL, SCD1, and LDLR. The positive effects of PFSE on OA-induced hepatic steatosis in HepG2 cells were modulated through the Akt and ERK signaling pathways, suggesting that PFSE may offer a comprehensive approach to managing hepatic steatosis.
Collapse
Affiliation(s)
- Furoida Moolsup
- Laboratory Animal Service Center, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
| | - Wiwit Suttithumsatid
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla, Thailand
- Phytomedicine and Pharmaceutical Biotechnology Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai, Thailand
| | - Wanwipha Woonnoi
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Pennapa Chonpathompikunlert
- Research and Development Group for Bio-Industries, Thailand Institute of Scientific and Technological Research (TISTR), Pathumthani, Thailand
| | - Supita Tanasawet
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Wanida Sukketsiri
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand.
| |
Collapse
|
6
|
Tian J, Wu Y, Zhao W, Zhang G, Zhang H, Xue L, Yang L, Zhang T, Gu Y, Zhang J. Transcriptomic and metabolomic-based revelation of the effect of fresh corn extract on meat quality of Jingyuan chicken. Poult Sci 2025; 104:104814. [PMID: 39848207 PMCID: PMC11795593 DOI: 10.1016/j.psj.2025.104814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/07/2025] [Accepted: 01/11/2025] [Indexed: 01/25/2025] Open
Abstract
To investigate the effect of fresh corn extract (FCE) on chicken meat quality, 135-day-old Jingyuan chicken hens were fed diets containing different doses of FCE (CON, 0.3% FCE, 0.6% FCE and 0.9% FCE) until 180 day-old in this study. Meat performance measurements showed that the 0.6% FCE group of Jingyuan chickens had higher intramuscular fat (IMF), pressing loss (PL), amino acid and fatty acid contents (P < 0.05). Their breasts were collected for transcriptomic and metabolomic analyses (n=8), and 210 Differentially expressed genes (DEGs) and 29 Differentially expressed genes (DEMs) were obtained. Gene Ontology (GO) analyses of DEGs indicate multiple entries involved in IMF synthesis such as skeletal system development and cellular response to amino acid stimulation. Kyoto Encyclopedia of Genes and Genomes (GSEA-KEGG) analysis identified sphingolipid_metabolism and multiple genes affecting IMF deposition including SPHK1, CERS1, CERS6, GLB1L, SGMS2, UGT8, and UGCG. KEGG and metabolite correlation analyses of DEMs identified Aspartate, PI 38:5; PI(18:1/20:4), PI 36:3; PI(18:1/18:2), PI 36:2; PI(18:0/18:2), and PI 34:1; PI(16:0/18:1) as the likely major influences on IMF deposition in the DEMs. Correlation analysis revealed that shear force (SF) was significantly and positively correlated with Aspartate and CERS6; PL was significantly and positively correlated with SPHK1 and UGCG (P < 0.05). IMF was significantly and positively correlated with PI 34:1; PI (16:0/18:1), SPHK1 and UGCG; and flesh colour yellowness b* was significantly and positively correlated with SGMS2 (P < 0.05). The above results indicate that feeding a basal diet containing 0.6% FCE can improve the meat quality of Jingyuan chicken, which provides a theoretical basis for improving the meat quality of Jingyuan chicken.
Collapse
Affiliation(s)
- Jinli Tian
- Ningxia Key Laboratory of Ruminant MolecuLar and CelluLar Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China
| | - Yanxu Wu
- Grain and oil product quality testing center, Ningxia Hui Autonomous Region, Yinchuan, 750000, China
| | - Wei Zhao
- Ningxia Key Laboratory of Ruminant MolecuLar and CelluLar Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China
| | - Guojun Zhang
- Pengyang County animal disease prevention and control center, Ningxia Hui Autonomous Region, Guyuan, 756500, China
| | - Hu Zhang
- Pengyang County animal disease prevention and control center, Ningxia Hui Autonomous Region, Guyuan, 756500, China
| | - Lin Xue
- Ningxia Key Laboratory of Ruminant MolecuLar and CelluLar Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China
| | - Lijuan Yang
- Ningxia Key Laboratory of Ruminant MolecuLar and CelluLar Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China
| | - Tong Zhang
- Ningxia Key Laboratory of Ruminant MolecuLar and CelluLar Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China
| | - Yaling Gu
- Ningxia Key Laboratory of Ruminant MolecuLar and CelluLar Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China
| | - Juan Zhang
- Ningxia Key Laboratory of Ruminant MolecuLar and CelluLar Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China.
| |
Collapse
|
7
|
Mooli RGR, Mukhi D, Watt M, Nagati V, Reed SM, Gandhi NK, Oertel M, Ramakrishnan SK. Hypoxia-Inducible Factor-2α Promotes Liver Fibrosis by Inducing Hepatocellular Death. Int J Mol Sci 2024; 25:13114. [PMID: 39684823 DOI: 10.3390/ijms252313114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
The activation of hypoxia-inducible factors (HIF)-1α and 2α in the liver is closely linked to the progression of fatty liver diseases. Prior studies indicated that disrupting hepatocyte HIF-2α attenuates diet-induced hepatic steatosis, subsequently decreasing fibrosis. However, the direct role of hepatocyte HIF-2α in liver fibrosis has not been addressed. Hepatic HIF-2α expression was examined in mouse model of carbon tetrachloride (CCl4)-induced liver fibrosis. Conditional hepatocyte Hif-2α knockout mice were employed to investigate the role of hepatocyte HIF-2α in fibrosis. Markers of apoptosis, proliferation, inflammation, and fibrosis were assessed through biochemical, molecular, and histological analyses. We found an induction of HIF-2α in CCL4-injected liver injury and fibrosis mouse models. Hepatocyte-specific deletion of HIF-2α attenuated stellate cell activation and fibrosis, with no significant difference in inflammation. Disrupting hepatocyte HIF-2α led to reduced injury-mediated hepatocellular apoptosis. Surviving hepatocytes exhibited hypertrophy, which was strongly associated with the activation of c-JUN signaling. Our study demonstrates a direct role of hepatocyte HIF-2α in liver fibrosis by promoting hepatocyte apoptosis. The reduction in apoptosis and induction of hepatocyte hypertrophy following HIF-2α disruption is closely linked to enhanced c-JUN signaling, a survival mechanism in response to liver injury. These findings highlight HIF-2α as a potential therapeutic target for liver fibrosis.
Collapse
Affiliation(s)
- Raja Gopal Reddy Mooli
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Dhanunjay Mukhi
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Mikayla Watt
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Veerababu Nagati
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Sara M Reed
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Nikita K Gandhi
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Michael Oertel
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Sadeesh K Ramakrishnan
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
8
|
Zhou C, Zhang Y, Ye Z, Zhang Y, He P, Liu M, Yang S, Gan X, Xiang H, Huang Y, Qin X. Inverse association between lung function and nonalcoholic fatty liver disease: An observational and mendelian randomization study. Nutr Metab Cardiovasc Dis 2024; 34:2705-2712. [PMID: 39168802 DOI: 10.1016/j.numecd.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/04/2024] [Accepted: 07/10/2024] [Indexed: 08/23/2024]
Abstract
BACKGROUND AND AIM The association between lung function with non-alcoholic fatty liver disease (NAFLD) in the general population remains unknown. We aimed to examine the association between lung function and NAFLD among the general population in an observational and Mendelian randomization (MR) study. METHODS AND RESULTS 340, 253 participants without prior liver diseases were included from the UK Biobank. Of these, 30,397 participants had liver proton density fat fraction (PDFF) measurements by magnetic resonance image (MRI). Lung function parameters included forced expiratory volume in 1 s (FEV1) and forced vital capacity (FVC). The primary outcome was the presence of NAFLD, defined as a PDFF greater than 5.5%. The secondary outcome included incident severe NAFLD and severe liver diseases (including liver cirrhosis, liver failure, hepatocellular carcinoma and liver-related death), defined by the International Classification of Disease codes with different data sources. During a media follow-up duration of 9.3 years, 7335 (24.1%) the presence of NAFLD cases were documented. There was an inverse association of FEV1 (% predicted) (Per SD increment, adjusted OR = 0.91, 95%CI: 0.88-0.94) and FVC (% predicted) (Per SD increment, adjusted OR = 0.90, 95%CI: 0.87-0.92) with the presence of NAFLD. Similar results were found for incident severe NAFLD, severe liver disease, liver cirrhosis, liver failure and liver-related death. MR analyses showed that the genetically predicted FEV1 (adjusted OR = 0.63, 95%CI: 0.46-0.87) and FVC (adjusted OR = 0.69, 95%CI: 0.51-0.95) were both inversely associated with the presence of NAFLD. CONCLUSIONS There was an inverse causal relationship between lung function and NAFLD in the general population.
Collapse
Affiliation(s)
- Chun Zhou
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou 510515, China
| | - Yanjun Zhang
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou 510515, China
| | - Ziliang Ye
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou 510515, China
| | - Yuanyuan Zhang
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou 510515, China
| | - Panpan He
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou 510515, China
| | - Mengyi Liu
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou 510515, China
| | - Sisi Yang
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou 510515, China
| | - Xiaoqin Gan
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou 510515, China
| | - Hao Xiang
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou 510515, China
| | - Yu Huang
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou 510515, China
| | - Xianhui Qin
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou 510515, China.
| |
Collapse
|
9
|
Reid MV, Fredickson G, Mashek DG. Mechanisms coupling lipid droplets to MASLD pathophysiology. Hepatology 2024:01515467-990000000-01067. [PMID: 39475114 DOI: 10.1097/hep.0000000000001141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/17/2024] [Indexed: 01/03/2025]
Abstract
Hepatic steatosis, the buildup of neutral lipids in lipid droplets (LDs), is commonly referred to as metabolic dysfunction-associated steatotic liver disease when alcohol or viral infections are not involved. Metabolic dysfunction-associated steatotic liver disease encompasses simple steatosis and the more severe metabolic dysfunction-associated steatohepatitis, characterized by inflammation, hepatocyte injury, and fibrosis. Previously viewed as inert markers of disease, LDs are now understood to play active roles in disease etiology and have significant nonpathological and pathological functions in cell signaling and function. These dynamic properties of LDs are tightly regulated by hundreds of proteins that coat the LD surface, controlling lipid metabolism, trafficking, and signaling. The following review highlights various facets of LD biology with the primary goal of discussing key mechanisms through which LDs promote the development of advanced liver diseases, including metabolic dysfunction-associated steatohepatitis.
Collapse
Affiliation(s)
- Mari V Reid
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Gavin Fredickson
- Department of Integrated Biology and Physiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Douglas G Mashek
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, University of Minnesota, Minneapolis, Minnesota, USA
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
10
|
Li SS, Liu QJ, Bao JX, Lu MT, Deng BQ, Li WW, Cao CC. Counteracting TGM2 by a Fibroin peptide ameliorated Adriamycin-induced nephropathy via regulation of lipid metabolism through PANX1-PPAR α/PANK1 pathway. Transl Res 2024; 271:26-39. [PMID: 38734063 DOI: 10.1016/j.trsl.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 04/28/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
Peptide drug discovery for the treatment of chronic kidney disease (CKD) has attracted much attention in recent years due to the urge to find novel drugs and mechanisms to delay the progression of the disease. In this study, we identified a novel short peptide (named YR-7, primary sequence 'YEVEDYR') from the natural Fibroin protein, and demonstrated that it significantly alleviated pathological renal changes in ADR-induced nephropathy. PANX1 was identified as the most notably upregulated component by RNA-sequencing. Further analysis showed that YR-7 alleviated the accumulation of lipid droplets via regulation of the lipid metabolism-related proteins PPAR α and PANK1. Using chemical proteomics, fluorescence polarization, microscale thermophoresis, surface plasmon resonance, and molecular docking, YR-7 was proven to directly bind to β-barrel domains of TGM2 protein to inhibit lipid accumulation. TGM2 knockdown in vivo increased the protein levels of PPAR α and PANK1 while decreased the levels of fibrotic-related proteins to alleviate nephropathy. In vitro, overexpression TGM2 reversed the protective effects of YR-7. Co-immunoprecipitation indicated that TGM2 interacted with PANX1 to promote lipid deposition, and pharmacological inhibition or knockdown of PANX1 decreased the levels of PPAR α and PANK1 induced by ADR. Taken together, our findings revealed that TGM2-PANX1 interaction in promoting lipid deposition may be a new signaling in promoting ADR-induced nephropathy. And a novel natural peptide could ameliorate renal fibrosis through TGM2-PANX1-PPAR α/PANK1 pathway, which highlight the potential of it in the treatment of CKD.
Collapse
Affiliation(s)
- Shan-Shan Li
- Department of Nephrology, Sir Run Run hospital, Nanjing Medical University, Nanjing, China
| | - Qiao-Juan Liu
- Department of Nephrology, Sir Run Run hospital, Nanjing Medical University, Nanjing, China
| | - Jia-Xin Bao
- Department of Nephrology, Sir Run Run hospital, Nanjing Medical University, Nanjing, China
| | - Meng-Ting Lu
- Department of Nephrology, Sir Run Run hospital, Nanjing Medical University, Nanjing, China
| | - Bing-Quan Deng
- Department of Nephrology, Sir Run Run hospital, Nanjing Medical University, Nanjing, China
| | - Wen-Wen Li
- Department of Nephrology, Sir Run Run hospital, Nanjing Medical University, Nanjing, China
| | - Chang-Chun Cao
- Department of Nephrology, Sir Run Run hospital, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
11
|
Bano S, Copeland MA, Stoops JW, Orr A, Jain S, Paranjpe S, Mooli RGR, Ramakrishnan SK, Locker J, Mars WM, Michalopoulos GK, Bhushan B. Hepatocyte-specific Epidermal Growth Factor Receptor Deletion Promotes Fibrosis but has no Effect on Steatosis in Fast-food Diet Model of Metabolic Dysfunction-associated Steatotic Liver Disease. Cell Mol Gastroenterol Hepatol 2024; 18:101380. [PMID: 39038606 PMCID: PMC11387264 DOI: 10.1016/j.jcmgh.2024.101380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/24/2024]
Abstract
BACKGROUND & AIMS Metabolic dysfunction-associated steatotic liver disease (MASLD) has become the most prevalent chronic liver disorder, with no approved treatment. Our previous work demonstrated the efficacy of a pan-ErbB inhibitor, Canertinib, in reducing steatosis and fibrosis in a murine fast-food diet (FFD) model of MASLD. The current study explores the effects of hepatocyte-specific ErbB1 (ie, epidermal growth factor receptor [EGFR]) deletion in the FFD model. METHODS EGFRflox/flox mice, treated with AAV8-TBG-CRE to delete EGFR specifically in hepatocytes (EGFR-KO), were fed either a chow-diet or FFD for 2 or 5 months. RESULTS Hepatocyte-specific EGFR deletion reduced serum triglyceride levels but did not prevent steatosis. Surprisingly, hepatic fibrosis was increased in EGFR-KO mice in the long-term study, which correlated with activation of transforming growth factor-β/fibrosis signaling pathways. Further, nuclear levels of some of the major MASLD regulating transcription factors (SREBP1, PPARγ, PPARα, and HNF4α) were altered in FFD-fed EGFR-KO mice. Transcriptomic analysis revealed significant alteration of lipid metabolism pathways in EGFR-KO mice with changes in several relevant genes, including downregulation of fatty-acid synthase and induction of lipolysis gene, Pnpla2, without impacting overall steatosis. Interestingly, EGFR downstream signaling mediators, including AKT, remain activated in EGFR-KO mice, which correlated with increased activity pattern of other receptor tyrosine kinases, including ErbB3/MET, in transcriptomic analysis. Lastly, Canertinib treatment in EGFR-KO mice, which inhibits all ErbB receptors, successfully reduced steatosis, suggesting the compensatory roles of other ErbB receptors in supporting MASLD without EGFR. CONCLUSIONS Hepatocyte-specific EGFR-KO did not impact steatosis, but enhanced fibrosis in the FFD model of MASLD. Gene networks associated with lipid metabolism were greatly altered in EGFR-KO, but phenotypic effects might be compensated by alternate signaling pathways.
Collapse
Affiliation(s)
- Shehnaz Bano
- Department of Pathology and Pittsburgh Liver Research Center, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Matthew A Copeland
- Department of Pathology and Pittsburgh Liver Research Center, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - John W Stoops
- Department of Pathology and Pittsburgh Liver Research Center, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Anne Orr
- Department of Pathology and Pittsburgh Liver Research Center, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Siddhi Jain
- Department of Pathology and Pittsburgh Liver Research Center, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Shirish Paranjpe
- Department of Pathology and Pittsburgh Liver Research Center, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Raja Gopal Reddy Mooli
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Sadeesh K Ramakrishnan
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Joseph Locker
- Department of Pathology and Pittsburgh Liver Research Center, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Wendy M Mars
- Department of Pathology and Pittsburgh Liver Research Center, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - George K Michalopoulos
- Department of Pathology and Pittsburgh Liver Research Center, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Bharat Bhushan
- Department of Pathology and Pittsburgh Liver Research Center, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
12
|
Yan L, Yan Y, Yang K, Chang Q, Zhang L. Metabolomics reveals dysregulated all-trans retinoic acid and polyunsaturated fatty acid metabolism contribute to PXR-induced hepatic steatosis in mice. Toxicol Lett 2024; 398:150-160. [PMID: 38971454 DOI: 10.1016/j.toxlet.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 06/05/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024]
Abstract
Activation of pregnane X receptor (PXR) by xenobiotics has been associated with metabolic diseases. This study aimed to reveal the impact of PXR activation on hepatic metabolome and explore novel mechanisms underlying PXR-mediated lipid metabolism disorder in the liver. Wild-type and PXR-deficient male C57BL/6 mice were used as in vivo models, and hepatic steatosis was induced by pregnenolone-16α-carbonitrile, a typical rodent PXR agonist. Metabolomic analysis of liver tissues showed that PXR activation led to significant changes in metabolites involved in multiple metabolic pathways previously reported, including lipid metabolism, energy homeostasis, and amino acid metabolism. Moreover, the level of hepatic all-trans retinoic acid (ATRA), the main active metabolite of vitamin A, was significantly increased by PXR activation, and genes involved in ATRA metabolism exhibited differential expression following PXR activation or deficiency. Consistent with previous research, the expression of downstream target genes of peroxisome proliferator-activated receptor α (PPARα) was decreased. Analysis of fatty acids by Gas Chromatography-Mass Spectrometer further revealed changes in polyunsaturated fatty acid metabolism upon PXR activation, suggesting inhibition of PPARα activity. Taken together, our findings reveal a novel metabolomic signature of hepatic steatosis induced by PXR activation in mice.
Collapse
Affiliation(s)
- Liang Yan
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou Univerisity, Zhengzhou 450052, China.
| | - Yachun Yan
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou Univerisity, Zhengzhou 450052, China
| | - Kun Yang
- Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou 450052, China
| | - Qi Chang
- Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou 450052, China
| | - Lirong Zhang
- Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
13
|
Mooli RGR, Zhu B, Khan SR, Nagati V, Michealraj KA, Jurczak MJ, Ramakrishnan SK. Epigenetically active chromatin in neonatal iWAT reveals GABPα as a potential regulator of beige adipogenesis. Front Endocrinol (Lausanne) 2024; 15:1385811. [PMID: 38765953 PMCID: PMC11099907 DOI: 10.3389/fendo.2024.1385811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/12/2024] [Indexed: 05/22/2024] Open
Abstract
Background Thermogenic beige adipocytes, which dissipate energy as heat, are found in neonates and adults. Recent studies show that neonatal beige adipocytes are highly plastic and contribute to >50% of beige adipocytes in adults. Neonatal beige adipocytes are distinct from recruited beige adipocytes in that they develop independently of temperature and sympathetic innervation through poorly defined mechanisms. Methods We characterized the neonatal beige adipocytes in the inguinal white adipose tissue (iWAT) of C57BL6 postnatal day 3 and 20 mice (P3 and P20) by imaging, genome-wide RNA-seq analysis, ChIP-seq analysis, qRT-PCR validation, and biochemical assays. Results We found an increase in acetylated histone 3 lysine 27 (H3K27ac) on the promoter and enhancer regions of beige-specific gene UCP1 in iWAT of P20 mice. Furthermore, H3K27ac ChIP-seq analysis in the iWAT of P3 and P20 mice revealed strong H3K27ac signals at beige adipocyte-associated genes in the iWAT of P20 mice. The integration of H3K27ac ChIP-seq and RNA-seq analysis in the iWAT of P20 mice reveal epigenetically active signatures of beige adipocytes, including oxidative phosphorylation and mitochondrial metabolism. We identify the enrichment of GA-binding protein alpha (GABPα) binding regions in the epigenetically active chromatin regions of the P20 iWAT, particularly on beige genes, and demonstrate that GABPα is required for beige adipocyte differentiation. Moreover, transcriptomic analysis and glucose oxidation assays revealed increased glycolytic activity in the neonatal iWAT from P20. Conclusions Our findings demonstrate that epigenetic mechanisms regulate the development of peri-weaning beige adipocytes via GABPα. Further studies to better understand the upstream mechanisms that regulate epigenetic activation of GABPα and characterization of the metabolic identity of neonatal beige adipocytes will help us harness their therapeutic potential in metabolic diseases.
Collapse
Affiliation(s)
- Raja Gopal Reddy Mooli
- Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, PA, United States
| | - Bokai Zhu
- Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, PA, United States
- Pittsburgh Liver Research Centre, University of Pittsburgh, Pittsburgh, PA, United States
- Aging Institute of University of Pittsburgh Medical Center (UPMC), University of Pittsburgh, Pittsburgh, PA, United States
| | - Saifur R. Khan
- Division of Cardiology, University of Pittsburgh, Pittsburgh, PA, United States
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, United States
- Pittsburgh VA Medical Centre, Pittsburgh, PA, United States
- Center for Immunometabolism, University of Pittsburgh, Pittsburgh, PA, United States
| | - Veerababu Nagati
- Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, PA, United States
| | | | - Michael J. Jurczak
- Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, PA, United States
| | - Sadeesh K. Ramakrishnan
- Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, PA, United States
- Pittsburgh Liver Research Centre, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
14
|
Huang C, Yong Q, Lu Y, Wang L, Zheng Y, Zhao L, Li P, Peng C, Jia W, Liu F. Gentiopicroside improves non-alcoholic steatohepatitis by activating PPARα and suppressing HIF1. Front Pharmacol 2024; 15:1335814. [PMID: 38515850 PMCID: PMC10956515 DOI: 10.3389/fphar.2024.1335814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/01/2024] [Indexed: 03/23/2024] Open
Abstract
Gentiopicroside (GPS) is a highly water-soluble small-molecule drug and the main bioactive secoiridoid glycoside of Gentiana scabra that has been shown to have hepatoprotective effects against non-alcoholic steatohepatitis (NASH), a form of non-alcoholic fatty liver disease (NAFLD) that can progress to cirrhosis and hepatocellular carcinoma. However, the effects of GPS on NASH and the underlying mechanisms remain obscure. Firstly, a high-fat, high-cholesterol (HFHC) diet and a high-sugar solution containing d-fructose and d-glucose were used to establish a non-alcoholic steatohepatitis (NASH) mice model. Secondly, we confirmed GPS supplementation improve metabolic abnormalities and reduce inflammation in NASH mice induced by HFHC and high-sugar solution. Then we used metabolomics to investigate the mechanisms of GPS in NASH mice. Metabolomics analysis showed GPS may work through the Peroxisome Proliferator-Activated Receptor (PPAR) signaling pathway and glycine, serine, and threonine metabolism. Functional metabolites restored by GPS included serine, glycine, eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA). Western blot and qRT-PCR analysis confirmed GPS improve NASH by regulating PPARα and Hypoxia-Inducible Factor-1α (HIF-1α) signaling pathways. In vitro, studies further demonstrated EPA and DHA enhance fatty acid oxidation through the PPARα pathway, while serine and glycine inhibit oxidative stress through the HIF-1α pathway in palmitic acid-stimulated HepG2 cells. Our results suggest GPS's anti-inflammatory and anti-steatosis effects in NASH progression are related to the suppression of HIF-1α through the restoration of L-serine and glycine and the activation of PPARα through increased EPA and DHA.
Collapse
Affiliation(s)
- Chaoyuan Huang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qiuhong Yong
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yihui Lu
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lu Wang
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Yiyuan Zheng
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lina Zhao
- Department of Hepatobiliary of The First Affiliated Hospital of Guangzhou University of Chinese Medicine, State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou, China
| | - Peiwu Li
- Department of Hepatobiliary of The First Affiliated Hospital of Guangzhou University of Chinese Medicine, State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou, China
| | - Chong Peng
- Department of Hepatobiliary of The First Affiliated Hospital of Guangzhou University of Chinese Medicine, State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou, China
| | - Wei Jia
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
- Shanghai Key Laboratory of Diabetes Mellitus and Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Fengbin Liu
- Baiyun Hospital of The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Institute of Spleen and Stomach Diseases, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
15
|
Flower CT, Liu C, Chuang HY, Ye X, Cheng H, Heath JR, Wei W, White FM. Signaling and transcriptional dynamics underlying early adaptation to oncogenic BRAF inhibition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.19.581004. [PMID: 39071317 PMCID: PMC11275845 DOI: 10.1101/2024.02.19.581004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
A major contributor to poor sensitivity to anti-cancer kinase inhibitor therapy is drug-induced cellular adaptation, whereby remodeling of signaling and gene regulatory networks permits a drug-tolerant phenotype. Here, we resolve the scale and kinetics of critical subcellular events following oncogenic kinase inhibition and preceding cell cycle re-entry, using mass spectrometry-based phosphoproteomics and RNA sequencing to capture molecular snapshots within the first minutes, hours, and days of BRAF kinase inhibitor exposure in a human BRAF -mutant melanoma model of adaptive therapy resistance. By enriching specific phospho-motifs associated with mitogenic kinase activity, we monitored the dynamics of thousands of growth- and survival-related protein phosphorylation events under oncogenic BRAF inhibition and drug removal. We observed early and sustained inhibition of the BRAF-ERK axis, gradual downregulation of canonical cell cycle-dependent signals, and three distinct and reversible phase transitions toward quiescence. Statistical inference of kinetically-defined signaling and transcriptional modules revealed a concerted response to oncogenic BRAF inhibition and a dominant compensatory induction of SRC family kinase (SFK) signaling, which we found to be at least partially driven by accumulation of reactive oxygen species via impaired redox homeostasis. This induction sensitized cells to co-treatment with an SFK inhibitor across a panel of patient-derived melanoma cell lines and in an orthotopic mouse xenograft model, underscoring the translational potential for measuring the early temporal dynamics of signaling and transcriptional networks under therapeutic challenge.
Collapse
|
16
|
Solanki S, Shah YM. Hypoxia-Induced Signaling in Gut and Liver Pathobiology. ANNUAL REVIEW OF PATHOLOGY 2024; 19:291-317. [PMID: 37832943 DOI: 10.1146/annurev-pathmechdis-051122-094743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Oxygen (O2) is essential for cellular metabolism and biochemical reactions. When the demand for O2 exceeds the supply, hypoxia occurs. Hypoxia-inducible factors (HIFs) are essential to activate adaptive and survival responses following hypoxic stress. In the gut (intestines) and liver, the presence of oxygen gradients or physiologic hypoxia is necessary to maintain normal homeostasis. While physiologic hypoxia is beneficial and aids in normal functions, pathological hypoxia is harmful as it exacerbates inflammatory responses and tissue dysfunction and is a hallmark of many cancers. In this review, we discuss the role of gut and liver hypoxia-induced signaling, primarily focusing on HIFs, in the physiology and pathobiology of gut and liver diseases. Additionally, we examine the function of HIFs in various cell types during gut and liver diseases, beyond intestinal epithelial and hepatocyte HIFs. This review highlights the importance of understanding hypoxia-induced signaling in the pathogenesis of gut and liver diseases and emphasizes the potential of HIFs as therapeutic targets.
Collapse
Affiliation(s)
- Sumeet Solanki
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA;
| | - Yatrik M Shah
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA;
- University of Michigan Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
17
|
Nie T, Wang X, Li A, Shan A, Ma J. The promotion of fatty acid β-oxidation by hesperidin via activating SIRT1/PGC1α to improve NAFLD induced by a high-fat diet. Food Funct 2024; 15:372-386. [PMID: 38099440 DOI: 10.1039/d3fo04348g] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Reducing fat deposits in hepatocytes is a direct treatment for nonalcoholic fatty liver disease (NAFLD) and the fatty acid metabolic processes mediated by fatty acid β-oxidation are important for the prevention of NAFLD. In this study, we established high-fat-diet models in vitro and in vivo to investigate the mechanism by which hesperidin (HDN) prevents NAFLD by modulating fatty acid β oxidation. Based on LC-MS screening of differential metabolites, many metabolites involved in phospholipid and lipid metabolism were found to be significantly altered and closely associated with fatty acid β-oxidation. The results from COIP experiments indicated that HDN increased the deacetylation of PGC1α by SIRT1. In addition, the results of CETSA and molecular docking experiments suggest that HDN targeting of SIRT1 plays an important role in their stable binding. Meanwhile, it was found that HDN reduced fatty acid uptake and synthesis and promoted the expression of SIRT1/PGC1α and fatty acid β-oxidation, and the latter process was inhibited after transfection to knockdown SIRT1. The results suggest that HDN improves NAFLD by promoting fatty acid β-oxidation through activating SIRT1/PGC1α. Thus, the findings indicate that HDN may be a potential drug for the treatment of NAFLD.
Collapse
Affiliation(s)
- Tong Nie
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China.
| | - Xin Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China.
| | - Aqun Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China.
| | - Anshan Shan
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, P. R. China
| | - Jun Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China.
- Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Harbin, 150030, P.R. China
| |
Collapse
|
18
|
Bian C, Ji S, Zeng C, Sun J, Kaneko G, Ji H. Docosahexaenoic acid (DHA) alleviates hepatic lipid accumulation by regulating mitochondrial quality control through ERK signaling pathway in grass carp (Ctenopharyngodon idellus). AQUACULTURE 2024; 579:740209. [DOI: 10.1016/j.aquaculture.2023.740209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
19
|
You T, Li Y, Li B, Wu S, Jiang X, Fu D, Xin J, Huang Y, Jin L, Hu C. Caveolin-1 protects against liver damage exacerbated by acetaminophen in non-alcoholic fatty liver disease by inhibiting the ERK/HIF-1α pathway. Mol Immunol 2023; 163:104-115. [PMID: 37769575 DOI: 10.1016/j.molimm.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/15/2023] [Accepted: 09/05/2023] [Indexed: 10/03/2023]
Abstract
Acetaminophen (APAP) is a common antipyretic and analgesic drug that can cause long-term liver damage after an overdose. Non-alcoholic fatty liver disease (NAFLD) increases susceptibility to APAP. In NAFLD, excessive accumulation of lipids leads to an abnormal increase in hypoxia-inducible factor-1α (HIF-1α). Caveolin-1 (CAV1) may protect against NAFLD by inhibiting HIF-1α. This research aimed to determine whether CAV1 could attenuate APAP-exacerbated liver injury in NAFLD by inhibiting oxidative stress involving HIF-1α. In this study, 7-week-old C57BL/6 mice were fed a high-fat diet (HFD) for eight weeks, followed by the instillation of APAP. Levels of oxidative stress and liver lipid deposition were determined, and p-ERK1/2 and HIF-1α protein expression were measured by the Western blot (WB) method. In the APAP-treated group, the level of CAV1 was decreased, while the levels of HIF-1α and reactive oxygen species (ROS) were significantly increased. AML12 cells were treated with a mixture of palmitic acid (PA) and oleic acid (OA) (1:2 mix) for 48 h, and APAP was added for the last 24 h. Overexpression of CAV1 in AML12 cells significantly inhibited the expression of ROS and HIF-1α. And the results of immunofluorescence after treatment with CAV1-SiRNA showed that the HIF-1α levels were significantly increased in mitochondria. In conclusion, our experimental results suggest that CAV1 has a protective function in the fatty liver based on preventing oxidative stress, which involves HIF-1α. Thus, upregulation of CAV1 may attenuate APAP-exacerbated liver injury in NAFLD.
Collapse
Affiliation(s)
- Tingyu You
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, China; Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China
| | - Yu Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, China; Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China
| | - Bowen Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, China; Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China
| | - Shuai Wu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, China; Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China
| | - Xiangfu Jiang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, China; Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China
| | - Dongdong Fu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, China; Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China
| | - Jiao Xin
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, China; Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China
| | - Yan Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, China; Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China
| | - Lei Jin
- Department of Infectious diseases, The Second Affiliated Hospital of Anhui Medical University, China.
| | - Chengmu Hu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, China; Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China.
| |
Collapse
|
20
|
Li J, Dang P, Li Z, Zhao T, Cheng D, Pan D, Yuan Y, Song W. Peroxisomal ERK mediates Akh/glucagon action and glycemic control. Cell Rep 2023; 42:113200. [PMID: 37796662 DOI: 10.1016/j.celrep.2023.113200] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/18/2023] [Accepted: 09/15/2023] [Indexed: 10/07/2023] Open
Abstract
The enhanced response of glucagon and its Drosophila homolog, adipokinetic hormone (Akh), leads to high-caloric-diet-induced hyperglycemia across species. While previous studies have characterized regulatory components transducing linear Akh signaling promoting carbohydrate production, the spatial elucidation of Akh action at the organelle level still remains largely unclear. In this study, we find that Akh phosphorylates extracellular signal-regulated kinase (ERK) and translocates it to peroxisome via calcium/calmodulin-dependent protein kinase II (CaMKII) cascade to increase carbohydrate production in the fat body, leading to hyperglycemia. The mechanisms include that ERK mediates fat body peroxisomal conversion of amino acids into carbohydrates for gluconeogenesis in response to Akh. Importantly, Akh receptor (AkhR) or ERK deficiency, importin-associated ERK retention from peroxisome, or peroxisome inactivation in the fat body sufficiently alleviates high-sugar-diet-induced hyperglycemia. We also observe mammalian glucagon-induced hepatic ERK peroxisomal translocation in diabetic subjects. Therefore, our results conclude that the Akh/glucagon-peroxisomal-ERK axis is a key spatial regulator of glycemic control.
Collapse
Affiliation(s)
- Jiaying Li
- Department of Hepatobiliary and Pancreatic Surgery, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430071, China; TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei 430071, China
| | - Peixuan Dang
- Department of Hepatobiliary and Pancreatic Surgery, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430071, China; TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei 430071, China
| | - Zhen Li
- Department of Hepatobiliary and Pancreatic Surgery, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430071, China
| | - Tujing Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Daojun Cheng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Dingyu Pan
- Department of Hepatobiliary and Pancreatic Surgery, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430071, China.
| | - Yufeng Yuan
- Department of Hepatobiliary and Pancreatic Surgery, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430071, China; TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei 430071, China.
| | - Wei Song
- Department of Hepatobiliary and Pancreatic Surgery, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430071, China; TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei 430071, China.
| |
Collapse
|
21
|
Ramakrishnan S, Mooli RGR, Han Y, Fiorenza E, Kumar S, Bello F, Nallanagulagari A, Karra S, Teng L, Jurczak M. Hepatic ketogenesis regulates lipid homeostasis via ACSL1-mediated fatty acid partitioning. RESEARCH SQUARE 2023:rs.3.rs-3147009. [PMID: 37503004 PMCID: PMC10371136 DOI: 10.21203/rs.3.rs-3147009/v1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Liver-derived ketone bodies play a crucial role in fasting energy homeostasis by fueling the brain and peripheral tissues. Ketogenesis also acts as a conduit to remove excess acetyl-CoA generated from fatty acid oxidation and protects against diet-induced hepatic steatosis. Surprisingly, no study has examined the role of ketogenesis in fasting-associated hepatocellular lipid metabolism. Ketogenesis is driven by the rate-limiting mitochondrial enzyme 3-hydroxymethylglutaryl CoA synthase (HMGCS2) abundantly expressed in the liver. Here, we show that ketogenic insufficiency via disruption of hepatic HMGCS2 exacerbates liver steatosis in fasted chow and high-fat-fed mice. We found that the hepatic steatosis is driven by increased fatty acid partitioning to the endoplasmic reticulum (ER) for re-esterification via acyl-CoA synthetase long-chain family member 1 (ACSL1). Mechanistically, acetyl-CoA accumulation from impaired hepatic ketogenesis is responsible for the elevated translocation of ACSL1 to the ER. Moreover, we show increased ER-localized ACSL1 and re-esterification of lipids in human NASH displaying impaired hepatic ketogenesis. Finally, we show that L-carnitine, which buffers excess acetyl-CoA, decreases the ER-associated ACSL1 and alleviates hepatic steatosis. Thus, ketogenesis via controlling hepatocellular acetyl-CoA homeostasis regulates lipid partitioning and protects against hepatic steatosis.
Collapse
|
22
|
Li X, Luo J, Mou K, Peng L, Zhou H, Lei Y, Wang H, Zhao Z, Wang J, Wu J, Wan R, Lin S, Xiang L, Luo Y. SDPR Inhibits TGF-β Induced Cancer Metastasis Through Fatty Acid Oxidation Regulation in Gastric Cancer. Int J Biol Sci 2023; 19:2999-3014. [PMID: 37416765 PMCID: PMC10321275 DOI: 10.7150/ijbs.83012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 05/17/2023] [Indexed: 07/08/2023] Open
Abstract
Our previous studies have confirmed that transforming growth factor-β (TGF-β) plays an important role in tumor metastasis, and the serum deprivation protein response (SDPR) is a potential downstream target of TGF-β. However, the role and mechanism of SDPR in gastric cancer are still unclear. We performed gene microarray, bioinformation analysis, combined with in vivo and in vitro experimental verification, we identified that SDPR is significantly downregulated in gastric cancer, and participates in TGF-β-mediated tumour metastasis. Mechanically, SDPR interacts with extracellular signal-regulated kinase (ERK) and inhibits fatty acid metabolism key gene Carnitine palmitoyl transferase 1A (CPT1A) at transcriptional level by supressing ERK/PPAR pathway. Our findings suggest that the TGF-β/SDPR/CPT1A axis play an important role in the fatty acid oxidation of gastric cancer, and provides a new insight into the crosstalk of tumour microenvironments and metabolism reprogramming and suggest that strategies to intervene the fatty acid metabolism may therapy gastric cancer metastasis.
Collapse
Affiliation(s)
- Xiaoyue Li
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Sichuan, Luzhou, 644000, China
| | - Jing Luo
- Department of Cardiovascular Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan, Luzhou, China
| | - Kelin Mou
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Sichuan, Luzhou, 644000, China
| | - Lin Peng
- Department of Bone and Joint, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Huan Zhou
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Sichuan, Luzhou, 644000, China
| | - Yulin Lei
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Sichuan, Luzhou, 644000, China
| | - Huan Wang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Sichuan, Luzhou, 644000, China
| | - Zhengfei Zhao
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Southwest Medical University, Sichuan, Luzhou, China
| | - Jianmei Wang
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jianhua Wu
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510000, China
| | - Runlan Wan
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Sichuan, Luzhou, 644000, China
| | - Sheng Lin
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Sichuan, Luzhou, 644000, China
| | - Li Xiang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Sichuan, Luzhou, 644000, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China
| | - Yuhao Luo
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Sichuan, Luzhou, 644000, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China
| |
Collapse
|
23
|
Song Z, Chen J, Ji Y, Yang Q, Chen Y, Wang F, Wu Z. Amuc attenuates high-fat diet-induced metabolic disorders linked to the regulation of fatty acid metabolism, bile acid metabolism, and the gut microbiota in mice. Int J Biol Macromol 2023; 242:124650. [PMID: 37119914 DOI: 10.1016/j.ijbiomac.2023.124650] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/01/2023]
Abstract
Amuc_1100 (hereafter called Amuc) is a highly abundant pili-like protein on the outer membrane of Akkermansia muciniphila and has been found to be effective for in anti-obesity, which is probably through the activation of TLR2. However, the precise mechanisms underlying the contributions of TLR2 to obesity resistance remain unknown. Here, TLR2 knockout mice were used to decipher the anti-obesity mechanism of Amuc. Mice exposed to a high-fat diet (HFD) were treated with Amuc (60 μg) every other day for 8 weeks. The results showed that Amuc supplementation decreased mouse body weight and lipid deposition by regulating fatty acid metabolism and reducing bile acid synthesis by activating TGR5 and FXR and strengthening the intestinal barrier function. The ablation of TLR2 partially reversed the positive effect of Amuc on obesity. Furthermore, we revealed that Amuc altered the gut microbiota composition by increasing the relative abundance of Peptostreptococcaceae, Faecalibaculum, Butyricicoccus, and Mucispirillum_schaedleri_ASF457, and decreasing Desulfovibrionaceae, which may serve as a contributor for Amuc to reinforce the intestinal barrier in HFD-induced mice. Therefore, the anti-obesity effect of Amuc was accompanied by the mitigation of gut microbes. These findings provide support for the use of Amuc as a therapy targeting obesity-associated metabolic syndrome.
Collapse
Affiliation(s)
- Zhuan Song
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
| | - Jingqing Chen
- Laboratory Animal Center of the Academy of Military Medical Sciences, Beijing 100193, China
| | - Yun Ji
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
| | - Qing Yang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
| | - Yinfeng Chen
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
| | - Fengchao Wang
- National Institute of Biological Sciences (NIBS), Beijing 102206, China
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
24
|
Luo M, Li T, Sang H. The role of hypoxia-inducible factor 1α in hepatic lipid metabolism. J Mol Med (Berl) 2023; 101:487-500. [PMID: 36973503 DOI: 10.1007/s00109-023-02308-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 02/06/2023] [Accepted: 03/06/2023] [Indexed: 03/29/2023]
Abstract
Chronic liver disease is a major public health problem with a high and increasing prevalence worldwide. In the progression of chronic liver disease, steatosis drives the progression of the disease to cirrhosis or even liver cancer. Hypoxia-inducible factor 1α (HIF-1α) is central to the regulation of hepatic lipid metabolism. HIF-1α upregulates the expression of genes related to lipid uptake and synthesis in the liver and downregulates the expression of lipid oxidation genes. Thus, it promotes intrahepatic lipid deposition. In addition, HIF-1α is expressed in white adipose tissue, where lipolysis releases free fatty acids (FFAs) into the blood. These circulating FFAs are taken up by the liver and accumulate in the liver. The expression of HIF-1α in the liver condenses bile and makes it easier to form gallstones. Contrary to the role of hepatic HIF-1α, intestinal HIF-1α expression can maintain a healthy microbiota and intestinal barrier. Thus, it plays a protective role against hepatic steatosis. This article aims to provide an overview of the current understanding of the role of HIF-1α in hepatic steatosis and to encourage the development of therapeutic agents associated with HIF-1α pathways. KEY MESSAGES: • Hepatic HIF-1α expression promotes lipid uptake and synthesis and reduces lipid oxidation leading to hepatic steatosis. • The expression of HIF-1α in the liver condenses bile and makes it easier to form gallstones. • Intestinal HIF-1α expression can maintain a healthy microbiota and intestinal barrier.
Collapse
Affiliation(s)
- Mingxiao Luo
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Tingting Li
- Department of Clinical Genetics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Haiquan Sang
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
25
|
He Q, Yang C, Xiang Z, Huang G, Wu H, Chen T, Dou R, Song J, Han L, Song T, Wang S, Xiong B. LINC00924-induced fatty acid metabolic reprogramming facilitates gastric cancer peritoneal metastasis via hnRNPC-regulated alternative splicing of Mnk2. Cell Death Dis 2022; 13:987. [PMID: 36418856 PMCID: PMC9684446 DOI: 10.1038/s41419-022-05436-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/25/2022]
Abstract
The molecular mechanism underlying gastric cancer (GC) peritoneal metastasis (PM) remains unclear. Here, we identified LINC00924 as a GC PM-related lncRNA through Microarray sequencing. LINC00924 was highly expressed in GC, and its high expression is associated with a broad range of PM. Via RNA sequencing, RNA pulldown assay, mass spectrometry, Seahorse, Lipidomics, spheroid formation and cell viability assays, we found that LINC00924 promoted fatty acid (FA) oxidation (FAO) and FA uptake, which was essential for matrix-detached GC cell survival and spheroid formation. Regarding the mechanism, LINC00924 regulated the alternative splicing (AS) of Mnk2 pre-mRNA by binding to hnRNPC. Specifically, LINC00924 enhanced the binding of hnRNPC to Mnk2 pre-mRNA at e14a, thus downregulating Mnk2a splicing and regulating the p38 MAPK/PPARα signaling pathway. Collectively, our results demonstrate that LINC00924 plays a role in promoting GC PM and could serve as a drug target.
Collapse
Affiliation(s)
- Qiuming He
- grid.413247.70000 0004 1808 0969Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071 China ,grid.413247.70000 0004 1808 0969Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071 China ,Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, 430071 China ,Hubei Cancer Clinical Study Center, Wuhan, 430071 China
| | - Chaogang Yang
- grid.413247.70000 0004 1808 0969Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071 China ,grid.413247.70000 0004 1808 0969Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071 China ,Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, 430071 China ,Hubei Cancer Clinical Study Center, Wuhan, 430071 China
| | - Zhenxian Xiang
- grid.413247.70000 0004 1808 0969Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071 China ,grid.413247.70000 0004 1808 0969Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071 China ,Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, 430071 China ,Hubei Cancer Clinical Study Center, Wuhan, 430071 China
| | - Guoquan Huang
- grid.413247.70000 0004 1808 0969Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071 China ,grid.413247.70000 0004 1808 0969Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071 China ,Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, 430071 China ,Hubei Cancer Clinical Study Center, Wuhan, 430071 China
| | - Haitao Wu
- grid.413247.70000 0004 1808 0969Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071 China ,grid.413247.70000 0004 1808 0969Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071 China ,Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, 430071 China ,Hubei Cancer Clinical Study Center, Wuhan, 430071 China
| | - Tingna Chen
- grid.413247.70000 0004 1808 0969Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071 China ,grid.413247.70000 0004 1808 0969Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071 China ,Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, 430071 China ,Hubei Cancer Clinical Study Center, Wuhan, 430071 China
| | - Rongzhang Dou
- grid.413247.70000 0004 1808 0969Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071 China ,grid.413247.70000 0004 1808 0969Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071 China ,Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, 430071 China ,Hubei Cancer Clinical Study Center, Wuhan, 430071 China
| | - Jialing Song
- grid.413247.70000 0004 1808 0969Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071 China ,grid.413247.70000 0004 1808 0969Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071 China ,Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, 430071 China ,Hubei Cancer Clinical Study Center, Wuhan, 430071 China
| | - Lei Han
- grid.413247.70000 0004 1808 0969Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071 China ,grid.413247.70000 0004 1808 0969Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071 China ,Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, 430071 China ,Hubei Cancer Clinical Study Center, Wuhan, 430071 China
| | - TianTian Song
- grid.413247.70000 0004 1808 0969Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071 China ,grid.413247.70000 0004 1808 0969Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071 China ,Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, 430071 China ,Hubei Cancer Clinical Study Center, Wuhan, 430071 China
| | - Shuyi Wang
- grid.413247.70000 0004 1808 0969Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071 China ,grid.413247.70000 0004 1808 0969Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071 China ,Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, 430071 China ,Hubei Cancer Clinical Study Center, Wuhan, 430071 China
| | - Bin Xiong
- grid.413247.70000 0004 1808 0969Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071 China ,grid.413247.70000 0004 1808 0969Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071 China ,Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, 430071 China ,Hubei Cancer Clinical Study Center, Wuhan, 430071 China
| |
Collapse
|
26
|
Dai W, Xiang W, Han L, Yuan Z, Wang R, Ma Y, Yang Y, Cai S, Xu Y, Mo S, Li Q, Cai G. PTPRO represses colorectal cancer tumorigenesis and progression by reprogramming fatty acid metabolism. Cancer Commun (Lond) 2022; 42:848-867. [PMID: 35904817 PMCID: PMC9456702 DOI: 10.1002/cac2.12341] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 03/22/2022] [Accepted: 07/11/2022] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Abnormal expression of protein tyrosine phosphatases (PTPs) has been reported to be a crucial cause of cancer. As a member of PTPs, protein tyrosine phosphatase receptor type O (PTPRO) has been revealed to play tumor suppressive roles in several cancers, while its roles in colorectal cancer (CRC) remains to be elucidated. Hence, we aimed to explore the roles and mechanisms of PTPRO in CRC initiation and progression. METHODS The influences of PTPRO on the growth and liver metastasis of CRC cells and the expression patterns of different lipid metabolism enzymes were evaluated in vitro and in vivo. Molecular and biological experiments were conducted to uncover the underpinning mechanisms of dysregulated de novo lipogenesis and fatty acid β-oxidation. RESULTS PTPRO expression was notably downregulated in CRC liver metastasis compared to the primary cancer, and such a downregulation was associated with poor prognosis of patients with CRC. PTPRO silencing significantly promoted cell growth and liver metastasis. Compared with PTPRO wild-type mice, PTPRO-knockout mice developed more tumors and harbored larger tumor loads under treatment with azoxymethane and dextran sulfate sodium. Gene set enrichment analysis revealed that PTPRO downregulation was significantly associated with the fatty acid metabolism pathways. Blockage of fatty acid synthesis abrogated the effects of PTPRO silencing on cell growth and liver metastasis. Further experiments indicated that PTPRO silencing induced the activation of the AKT serine/threonine kinase (AKT)/mammalian target of rapamycin (mTOR) signaling axis, thus promoting de novo lipogenesis by enhancing the expression of sterol regulatory element-binding protein 1 (SREBP1) and its target lipogenic enzyme acetyl-CoA carboxylase alpha (ACC1) by activating the AKT/mTOR signaling pathway. Furthermore, PTPRO attenuation decreased the fatty acid oxidation rate by repressing the expression of peroxisome proliferator-activated receptor alpha (PPARα) and its downstream enzyme peroxisomal acyl-coenzyme A oxidase 1 (ACOX1) via activating the p38/extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK) signaling pathway. CONCLUSIONS PTPRO could suppress CRC development and metastasis via modulating the AKT/mTOR/SREBP1/ACC1 and MAPK/PPARα/ACOX1 pathways and reprogramming lipid metabolism.
Collapse
Affiliation(s)
- Weixing Dai
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghai200032P. R. China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China
| | - Wenqiang Xiang
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghai200032P. R. China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China
| | - Lingyu Han
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghai200032P. R. China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China
| | - Zixu Yuan
- Department of SurgerySixth Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdong528406P. R. China
| | - Renjie Wang
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghai200032P. R. China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China
| | - Yanlei Ma
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghai200032P. R. China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China
| | - Yongzhi Yang
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghai200032P. R. China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China
| | - Sanjun Cai
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghai200032P. R. China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China
| | - Ye Xu
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghai200032P. R. China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China
| | - Shaobo Mo
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghai200032P. R. China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China
| | - Qingguo Li
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghai200032P. R. China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China
| | - Guoxiang Cai
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghai200032P. R. China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China
| |
Collapse
|
27
|
Scheffschick A, Babel J, Sperling S, Nerusch J, Herzog N, Seehofer D, Damm G. Primary-like Human Hepatocytes Genetically Engineered to Obtain Proliferation Competence as a Capable Application for Energy Metabolism Experiments in In Vitro Oncologic Liver Models. BIOLOGY 2022; 11:biology11081195. [PMID: 36009822 PMCID: PMC9405410 DOI: 10.3390/biology11081195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/21/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022]
Abstract
Simple Summary Fatty liver disease is an increasing health concern in Westernized countries. A fatty liver can lead to hepatocellular carcinoma (HCC), a type of liver cancer arising from hepatocytes, the major cells of the liver. How HCC may develop from the fatty liver is not known, and good cellular systems to investigate this are lacking. Recently, hepatocytes that can multiply continuously have been generated and suggested for hepatocyte research. In this study, we compared these continuously multiplying human hepatocytes to normal human hepatocytes and liver cancer cells, both within the state of fatty liver or not. We identified that these multiplying hepatocytes displayed many similarities to the liver cancer cells in terms of energy metabolism and concluded that these hepatocytes could be a pre-cancer model for liver cancer research and would be a valuable tool for HCC research. Abstract Non-alcoholic fatty liver disease (NAFLD), characterized by lipid accumulation in the liver, is the most common cause of liver diseases in Western countries. NAFLD is a major risk factor for developing hepatocellular carcinoma (HCC); however, in vitro evaluation of hepatic cancerogenesis fails due to a lack of liver models displaying a proliferation of hepatocytes. Originally designed to overcome primary human hepatocyte (PHH) shortages, upcyte hepatocytes were engineered to obtain continuous proliferation and, therefore, could be a suitable tool for HCC research. We generated upcyte hepatocytes, termed HepaFH3 cells, and compared their metabolic characteristics to HepG2 hepatoma cells and PHHs isolated from resected livers. For displaying NAFLD-related HCCs, we induced steatosis in all liver models. Lipid accumulation, lipotoxicity and energy metabolism were characterized using biochemical assays and Western blot analysis. We showed that proliferating HepaFH3 cells resemble HepG2, both showing a higher glucose uptake rate, lactate levels and metabolic rate compared to PHHs. Confluent HepaFH3 cells displayed some similarities to PHHs, including higher levels of the transaminases AST and ALT compared to proliferating HepaFH3 cells. We recommend proliferating HepaFH3 cells as a pre-malignant cellular model for HCC research, while confluent HepaFH3 cells could serve as PHH surrogates for energy metabolism studies.
Collapse
Affiliation(s)
- Andrea Scheffschick
- Department of Hepatobiliary Surgery and Visceral Transplantation, University Hospital, Leipzig University, 04103 Leipzig, Germany
- Saxonian Incubator for Clinical Translation (SIKT), Leipzig University, 04103 Leipzig, Germany
| | - Jonas Babel
- Department of Hepatobiliary Surgery and Visceral Transplantation, University Hospital, Leipzig University, 04103 Leipzig, Germany
| | - Sebastian Sperling
- Department of General, Visceral and Transplantation Surgery, Charité University Medicine Berlin, 13353 Berlin, Germany
| | - Julia Nerusch
- Department of Hepatobiliary Surgery and Visceral Transplantation, University Hospital, Leipzig University, 04103 Leipzig, Germany
- Saxonian Incubator for Clinical Translation (SIKT), Leipzig University, 04103 Leipzig, Germany
| | - Natalie Herzog
- Faculty of Science, Brandenburg University of Technology Cottbus-Senftenberg, 01968 Senftenberg, Germany
| | - Daniel Seehofer
- Department of Hepatobiliary Surgery and Visceral Transplantation, University Hospital, Leipzig University, 04103 Leipzig, Germany
- Department of General, Visceral and Transplantation Surgery, Charité University Medicine Berlin, 13353 Berlin, Germany
| | - Georg Damm
- Department of Hepatobiliary Surgery and Visceral Transplantation, University Hospital, Leipzig University, 04103 Leipzig, Germany
- Saxonian Incubator for Clinical Translation (SIKT), Leipzig University, 04103 Leipzig, Germany
- Department of General, Visceral and Transplantation Surgery, Charité University Medicine Berlin, 13353 Berlin, Germany
- Correspondence: ; Tel.: +49-341-97-39656
| |
Collapse
|
28
|
Luteolin Pretreatment Attenuates Hepatic Ischemia-Reperfusion Injury in Mice by Inhibiting Inflammation, Autophagy, and Apoptosis via the ERK/PPARα Pathway. PPAR Res 2022; 2022:8161946. [PMID: 35966821 PMCID: PMC9366205 DOI: 10.1155/2022/8161946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 06/25/2022] [Accepted: 07/16/2022] [Indexed: 11/18/2022] Open
Abstract
Hepatic ischemia-reperfusion (IR) injury is a clinically significant process that frequently occurs in liver transplantation, partial hepatectomy, and hemorrhagic shock. The aim of this study was to explore the effectiveness of luteolin in hepatic IR injury and the underlying mechanism. BALB/c mice were randomly divided into six groups, including normal controls (NC), luteolin (50 mg/kg), sham procedure, IR+25 mg/kg luteolin, and IR+50 mg/kg luteolin group. Serum and tissue samples were collected at 6 and 24 h after reperfusion to assay liver enzymes, inflammatory factors, expression of proteins associated with apoptosis and autophagy, and factors associated with the extracellular signal-regulated kinase/peroxisome proliferator-activated receptor alpha (ERK/PPARα) pathway. Luteolin preconditioning decreased hepatocyte injury caused by ischemia-reperfusion, downregulated inflammatory factors, and inhibited apoptosis and autophagy. Luteolin also inhibited ERK phosphorylation and activated PPARα.
Collapse
|
29
|
Mooli RGR, Ramakrishnan SK. Emerging Role of Hepatic Ketogenesis in Fatty Liver Disease. Front Physiol 2022; 13:946474. [PMID: 35860662 PMCID: PMC9289363 DOI: 10.3389/fphys.2022.946474] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/08/2022] [Indexed: 11/18/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), the most common chronic liver diseases, arise from non-alcoholic fatty liver (NAFL) characterized by excessive fat accumulation as triglycerides. Although NAFL is benign, it could progress to non-alcoholic steatohepatitis (NASH) manifested with inflammation, hepatocyte damage and fibrosis. A subset of NASH patients develops end-stage liver diseases such as cirrhosis and hepatocellular carcinoma. The pathogenesis of NAFLD is highly complex and strongly associated with perturbations in lipid and glucose metabolism. Lipid disposal pathways, in particular, impairment in condensation of acetyl-CoA derived from β-oxidation into ketogenic pathway strongly influence the hepatic lipid loads and glucose metabolism. Current evidence suggests that ketogenesis dispose up to two-thirds of the lipids entering the liver, and its dysregulation significantly contribute to the NAFLD pathogenesis. Moreover, ketone body administration in mice and humans shows a significant improvement in NAFLD. This review focuses on hepatic ketogenesis and its role in NAFLD pathogenesis. We review the possible mechanisms through which impaired hepatic ketogenesis may promote NAFLD progression. Finally, the review sheds light on the therapeutic implications of a ketogenic diet in NAFLD.
Collapse
|
30
|
MORG1—A Negative Modulator of Renal Lipid Metabolism in Murine Diabetes. Biomedicines 2021; 10:biomedicines10010030. [PMID: 35052710 PMCID: PMC8772719 DOI: 10.3390/biomedicines10010030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/17/2021] [Accepted: 12/21/2021] [Indexed: 12/19/2022] Open
Abstract
Renal fatty acid (FA) metabolism is severely altered in type 1 and 2 diabetes mellitus (T1DM and T2DM). Increasing evidence suggests that altered lipid metabolism is linked to tubulointerstitial fibrosis (TIF). Our previous work has demonstrated that mice with reduced MORG1 expression, a scaffold protein in HIF and ERK signaling, are protected against TIF in the db/db mouse model. Renal TGF-ß1 expression and EMT-like changes were reduced in mice with single-allele deficiency of MORG1. Given the well-known role of HIF and ERK signaling in metabolic regulation, here we examined whether protection was also associated with a restoration of lipid metabolism. Despite similar features of TIF in T1DM and T2DM, diabetes-associated changes in renal lipid metabolism differ between both diseases. We found that de novo synthesis of FA/cholesterol and β-oxidation were more strongly disrupted in T1DM, whereas pathological fat uptake into tubular cells mediates lipotoxicity in T2DM. Thus, diminished MORG1 expression exerts renoprotection in the diabetic nephropathy by modulating important factors of TIF and lipid dysregulation to a variable extent in T1DM and T2DM. Prospectively, targeting MORG1 appears to be a promising strategy to reduce lipid metabolic alterations in diabetic nephropathy.
Collapse
|
31
|
Mooli RGR, Mukhi D, Pasupulati AK, Evers SS, Sipula IJ, Jurczak M, Seeley RJ, Shah YM, Ramakrishnan SK. Intestinal HIF-2α Regulates GLP-1 Secretion via Lipid Sensing in L-Cells. Cell Mol Gastroenterol Hepatol 2021; 13:1057-1072. [PMID: 34902628 PMCID: PMC8873605 DOI: 10.1016/j.jcmgh.2021.12.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Compelling evidence shows that glucagon-like peptide-1 (GLP-1) has a profound effect in restoring normoglycemia in type 2 diabetic patients by increasing pancreatic insulin secretion. Although L-cells are the primary source of circulating GLP-1, the current therapies do not target L-cells to increase GLP-1 levels. Our study aimed to determine the molecular underpinnings of GLP-1 secretion as an impetus to identify new interventions to target endogenous L-cells. METHODS We used genetic mouse models of intestine-specific overexpression of hypoxia-inducible factor (HIF)-1α and HIF-2α (VhlΔIE), conditional overexpression of intestinal HIF-2α (Hif-2αLSL;Vilin-Cre/ERT2), and intestine-specific HIF-2α knockout mice (Hif-2αΔIE) to show that HIF signaling, especially HIF-2α, regulates GLP-1 secretion. RESULTS Our data show that intestinal HIF signaling improved glucose homeostasis in a GLP-1-dependent manner. Intestinal HIF potentiated GLP-1 secretion via the lipid sensor G-protein-coupled receptor (GPR)40 enriched in L-cells. We show that HIF-2α regulates GPR40 in L-cells and potentiates fatty acid-induced GLP-1 secretion via extracellular regulated kinase (ERK). Using a genetic model of intestine-specific overexpression of HIF-2α, we show that HIF-2α is sufficient to increase GLP-1 levels and attenuate diet-induced metabolic perturbations such as visceral adiposity, glucose intolerance, and hepatic steatosis. Lastly, we show that intestinal HIF-2α signaling acts as a priming mechanism crucial for postprandial lipid-mediated GLP-1 secretion. Thus, disruption of intestinal HIF-2α decreases GLP-1 secretion. CONCLUSIONS In summary, we show that intestinal HIF signaling, particularly HIF-2α, regulates the lipid sensor GPR40, which is crucial for the lipid-mediated GLP-1 secretion, and suggest that HIF-2α is a potential target to induce endogenous GLP-1 secretion.
Collapse
Affiliation(s)
- Raja Gopal Reddy Mooli
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Dhanunjay Mukhi
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Anil K Pasupulati
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Ian J Sipula
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Michael Jurczak
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Yatrik M Shah
- Department of Molecular and Integrative Physiology, Ann Arbor, Michigan; Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Sadeesh K Ramakrishnan
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
32
|
Carotenuto M, Di Sessa A, Esposito M, Grandone A, Marzuillo P, Bitetti I, Umano GR, Precenzano F, Miraglia del Giudice E, Santoro N. Association between Hepatic Steatosis and Obstructive Sleep Apnea in Children and Adolescents with Obesity. CHILDREN (BASEL, SWITZERLAND) 2021; 8:984. [PMID: 34828697 PMCID: PMC8624374 DOI: 10.3390/children8110984] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 04/09/2023]
Abstract
BACKGROUND Owing to the increasing rate of pediatric obesity, its complications such as non-alcoholic fatty liver disease (NAFLD) and obstructive sleep apnea (OSA) have become prevalent already in childhood. We aimed to assess the relationship between these two diseases in a cohort of children with obesity. METHODS We enrolled 153 children with obesity (mean age 10.5 ± 2.66, mean BMI 30.9 ± 5.1) showing OSA. Subjects underwent a laboratory evaluation, a cardio-respiratory polysomnography (PSG), and a liver ultrasound. RESULTS All subjects had a clinical diagnosis of OSA based on the AHI > 1/h (mean AHI 8.0 ± 5.9; range 2.21-19.0). Of these, 69 showed hepatic steatosis (62.3% as mild, 20.3% as moderate, and 17.4% as severe degree). A strong association between ALT and apnea/hypopnea index (AHI) was observed (p = 0.0003). This association was not confirmed after adjusting for hepatic steatosis (p = 0.53). By subdividing our population according to the presence/absence of steatosis, this association was found only in the steatosis group (p = 0.009). As the severity of steatosis increased, the significance of its association with AHI compared to the absence of steatosis became progressively stronger (all p < 0.0001). CONCLUSIONS Hepatic steatosis seems to drive the association between OSA and ALT levels, suggesting a potential pathogenic role of OSA in NAFLD.
Collapse
Affiliation(s)
- Marco Carotenuto
- Clinic of Child and Adolescent Neuropsychiatry, Department of Mental Health, Physical and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80100 Naples, Italy; (M.C.); (M.E.); (I.B.); (F.P.)
| | - Anna Di Sessa
- Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.G.); (P.M.); (G.R.U.); (E.M.d.G.)
| | - Maria Esposito
- Clinic of Child and Adolescent Neuropsychiatry, Department of Mental Health, Physical and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80100 Naples, Italy; (M.C.); (M.E.); (I.B.); (F.P.)
| | - Anna Grandone
- Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.G.); (P.M.); (G.R.U.); (E.M.d.G.)
| | - Pierluigi Marzuillo
- Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.G.); (P.M.); (G.R.U.); (E.M.d.G.)
| | - Ilaria Bitetti
- Clinic of Child and Adolescent Neuropsychiatry, Department of Mental Health, Physical and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80100 Naples, Italy; (M.C.); (M.E.); (I.B.); (F.P.)
| | - Giuseppina Rosaria Umano
- Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.G.); (P.M.); (G.R.U.); (E.M.d.G.)
| | - Francesco Precenzano
- Clinic of Child and Adolescent Neuropsychiatry, Department of Mental Health, Physical and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80100 Naples, Italy; (M.C.); (M.E.); (I.B.); (F.P.)
| | - Emanuele Miraglia del Giudice
- Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.G.); (P.M.); (G.R.U.); (E.M.d.G.)
| | - Nicola Santoro
- Department of Pediatrics, Yale University, New Haven, CT 06510, USA;
- Department of Medicine and Health Sciences, “V.Tiberio” University of Molise, 86100 Campobasso, Italy
| |
Collapse
|
33
|
Holzner LMW, Murray AJ. Hypoxia-Inducible Factors as Key Players in the Pathogenesis of Non-alcoholic Fatty Liver Disease and Non-alcoholic Steatohepatitis. Front Med (Lausanne) 2021; 8:753268. [PMID: 34692739 PMCID: PMC8526542 DOI: 10.3389/fmed.2021.753268] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/10/2021] [Indexed: 12/20/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) and its more severe form non-alcoholic steatohepatitis (NASH) are a major public health concern with high and increasing global prevalence, and a significant disease burden owing to its progression to more severe forms of liver disease and the associated risk of cardiovascular disease. Treatment options, however, remain scarce, and a better understanding of the pathological and physiological processes involved could enable the development of new therapeutic strategies. One process implicated in the pathology of NAFLD and NASH is cellular oxygen sensing, coordinated largely by the hypoxia-inducible factor (HIF) family of transcription factors. Activation of HIFs has been demonstrated in patients and mouse models of NAFLD and NASH and studies of activation and inhibition of HIFs using pharmacological and genetic tools point toward important roles for these transcription factors in modulating central aspects of the disease. HIFs appear to act in several cell types in the liver to worsen steatosis, inflammation, and fibrosis, but may nevertheless improve insulin sensitivity. Moreover, in liver and other tissues, HIF activation alters mitochondrial respiratory function and metabolism, having an impact on energetic and redox homeostasis. This article aims to provide an overview of current understanding of the roles of HIFs in NAFLD, highlighting areas where further research is needed.
Collapse
Affiliation(s)
| | - Andrew J. Murray
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
34
|
Zhou T, Kundu D, Robles-Linares J, Meadows V, Sato K, Baiocchi L, Ekser B, Glaser S, Alpini G, Francis H, Kennedy L. Feedback Signaling between Cholangiopathies, Ductular Reaction, and Non-Alcoholic Fatty Liver Disease. Cells 2021; 10:2072. [PMID: 34440841 PMCID: PMC8391272 DOI: 10.3390/cells10082072] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 12/12/2022] Open
Abstract
Fatty liver diseases, such as non-alcoholic fatty liver disease (NAFLD), are global health disparities, particularly in the United States, as a result of cultural eating habits and lifestyle. Pathological studies on NAFLD have been mostly focused on hepatocytes and other inflammatory cell types; however, the impact of other biliary epithelial cells (i.e., cholangiocytes) in the promotion of NAFLD is growing. This review article will discuss how cholestatic injury and cholangiocyte activity/ductular reaction influence NAFLD progression. Furthermore, this review will provide informative details regarding the fundamental properties of cholangiocytes and bile acid signaling that can influence NAFLD. Lastly, studies relating to the pathogenesis of NAFLD, cholangiopathies, and ductular reaction will be analyzed to help gain insight for potential therapies.
Collapse
Affiliation(s)
- Tianhao Zhou
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (T.Z.); (D.K.); (V.M.); (K.S.); (G.A.); (H.F.)
| | - Debjyoti Kundu
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (T.Z.); (D.K.); (V.M.); (K.S.); (G.A.); (H.F.)
| | - Jonathan Robles-Linares
- Department of Graduate Studies, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Vik Meadows
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (T.Z.); (D.K.); (V.M.); (K.S.); (G.A.); (H.F.)
| | - Keisaku Sato
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (T.Z.); (D.K.); (V.M.); (K.S.); (G.A.); (H.F.)
| | - Leonardo Baiocchi
- Liver Unit, Department of Medicine, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Burcin Ekser
- Division of Transplant Surgery, Department of Surgery, Indiana University, Indianapolis, IN 46202, USA;
| | - Shannon Glaser
- Department of Medical Physiology, Texas A&M University College of Medicine Bryan, Bryan, TX 77807, USA;
| | - Gianfranco Alpini
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (T.Z.); (D.K.); (V.M.); (K.S.); (G.A.); (H.F.)
- Richard L. Roudebush VA Medical Center, Department of Research, Indianapolis, IN 46202, USA
| | - Heather Francis
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (T.Z.); (D.K.); (V.M.); (K.S.); (G.A.); (H.F.)
- Richard L. Roudebush VA Medical Center, Department of Research, Indianapolis, IN 46202, USA
| | - Lindsey Kennedy
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (T.Z.); (D.K.); (V.M.); (K.S.); (G.A.); (H.F.)
- Richard L. Roudebush VA Medical Center, Department of Research, Indianapolis, IN 46202, USA
| |
Collapse
|