1
|
Zhan Y, Zhang N, Wang K, Li J, Jin M, Shah NP, Wei H, Zhang Z. Synergistic action of non-digestible xylooligosaccharide and Lactiplantibacillus plantarum ZDY2013 against high fat diet and streptozocin-induced type 2 diabetes mellitus in rats. Microbiol Res 2025; 297:128174. [PMID: 40215563 DOI: 10.1016/j.micres.2025.128174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/29/2025] [Accepted: 04/05/2025] [Indexed: 05/03/2025]
Abstract
Patients with type 2 diabetes mellitus (T2DM) often exhibit reduced Lactobacillus abundance, dysregulated immune responses, disrupted intestinal barrier integrity, and increased insulin resistance. Consumption of non-digestible oligosaccharides has been shown to support the persistence of Lactobacillus in the gut and improve gut homeostasis. Lactiplantibacillus plantarum ZDY2013, a probiotic capable of metabolizing various oligosaccharides, serves as a potent regulator of intestinal mucosal immunity. In this study, we investigated the potential ameliorative effects of xylooligosaccharides combined with L. plantarum ZDY2013 (synbiotic) on T2DM-induced intestinal injury and explored the underlying mechanisms. Our results showed that synbiotic improved glucose metabolism, reduced lipid accumulation, and alleviated insulin resistance in T2DM rats. Moreover, synbiotic outperformed L. plantarum ZDY2013 alone in restoring intestinal barrier integrity by suppressing oxidative stress and intestinal inflammation, while significantly enhancing the colonization of L. plantarum ZDY2013 and altering the abundance of key bacterial genera. Interestingly, synbiotic treatment also increased the production of short-chain fatty acids (SCFAs), which were strongly associated with specific bacterial taxa. Furthermore, gut microbiota-derived SCFAs were confirmed to ameliorate insulin resistance by promoting glucose uptake and glycogen synthesis in IR-HepG2 cells. Collectively, these findings suggest the potential use of synbiotics as a clinical intervention to ameliorate T2DM. This study provides a rationale for exploring dietary approaches as a mitigating strategy for managing long-standing diabetes.
Collapse
Affiliation(s)
- Ying Zhan
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China; Sino-German Joint Research Institute, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Na Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Kaiming Wang
- Department of Physiology, CEGIIR, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Jinmei Li
- Sino-German Joint Research Institute, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Mingliang Jin
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Nagendra P Shah
- Food and Nutritional Science, School of Biological Science, The University of Hong Kong, Pokfulam Road, Hong Kong
| | - Hua Wei
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China.
| | - Zhihong Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China; Sino-German Joint Research Institute, Nanchang University, Nanchang, Jiangxi 330047, China.
| |
Collapse
|
2
|
Sharma T, Ranawat P, Garg A, Rastogi P, Kaushal N. Short-chain fatty acids as a novel intervention for high-fat diet-induced metabolic syndrome. Mol Cell Biochem 2025; 480:3169-3184. [PMID: 39709317 DOI: 10.1007/s11010-024-05185-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/07/2024] [Indexed: 12/23/2024]
Abstract
Metabolic syndrome (MetS) is driven by a complex interplay of genetic, lifestyle, and dietary factors, leading to weight gain, insulin resistance, dyslipidemia, and chronic inflammation. Gut microbiota dysbiosis has been recently recognized as a key contributor to MetS, leading to advancements in gut microbiome-based interventions to improve health outcomes. Considering the unique challenges associated with the use of pre/probiotics, short-chain fatty acids (SCFA), also known as postbiotics, have emerged as promising therapeutic agents due to their role in modulating host metabolism and physiology. Considering this, the aim of the current study was to explore the therapeutic potential of SCFA (butyrate, propionate, and acetate) supplementation against a high-fat diet (HFD)-induced experimental model of MetS in male Wistar rats. Alterations in body weight, lipid profile, histopathology, and adipose tissue accumulation were assessed to establish SCFA-mediated amelioration of experimental MetS. Further, the enzymatic (GPx, Catalase, GR, and GST) and non-enzymatic (LPO, total ROS, and Redox ratio were evaluated. The results indicated that SCFA supplementation could effectively mitigate key features of MetS. A significant reduction in body weight gain and fasting blood glucose levels, along with markedly lowered triglycerides, total cholesterol, and LDL levels, with partial restoration of HDL levels was observed following SCFA supplementation. SCFA administration also attenuated MetS-associated hepatic damage as studied by histopathological investigation and analysis of liver function marker enzyme activities. Such ameliorative effects of SCFA against HFD-induced MetS were owed to potential redox modulation studied using enzymatic and non-enzymatic oxidative stress markers. In conclusion, the study's outcomes show that SCFA supplementation could potentially be used against managing MetS. It underscores the therapeutic potential of SCFA by placing them as a novel gut microbiome-based dietary approach to improve metabolic health and reduce the risk of MetS-associated complications. However, more detailed mechanistic explorations are warranted in the future, leading to their beneficial role in MetS contributing to holistic health outcomes.
Collapse
Affiliation(s)
- Tanvi Sharma
- Department of Biophysics, Panjab University, Chandigarh, 160014, India
| | - Pavitra Ranawat
- Department of Biophysics, Panjab University, Chandigarh, 160014, India
| | - Ayushi Garg
- Department of Biophysics, Panjab University, Chandigarh, 160014, India
| | - Pulkit Rastogi
- Department of Hematology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Naveen Kaushal
- Department of Biophysics, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
3
|
Liang J, Zhao Y, Yue T. Sulfhydryl-loaded bacterial cellulose nanoparticles alleviated intestinal damage caused by mycotoxin patulin in apple juice. Toxicon 2025; 258:108310. [PMID: 40054779 DOI: 10.1016/j.toxicon.2025.108310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/23/2025] [Accepted: 03/05/2025] [Indexed: 03/22/2025]
Abstract
Patulin (PAT), a toxic fungal metabolite, can directly damage the intestinal barrier and gut homeostasis via altering microbiota composition. Although there are several attempts for the control of PAT in vitro, there are currently few studies on the improvement of intestinal damage caused by patulin using in vivo assay. In this study, a nanoparticle formulation of spherical bacterial cellulose was obtained by dynamic fermentation of Acetobacter xylinum to prepare bacterial cellulose nanoparticles (BCNs) and then modified with 3-mercaptotetraethoxysilane to produce BCN(SH), to increase PAT adsorption in vitro. Meanwhile, results revealed that BCN(SH)s protected the small intestinal microbial barrier and can be used by microorganisms, such as Bacteroides, Firmicutes, and Actinomycetes, to produce short-chain fatty acids (SCFAs). BCN(SH)s appears as a promising edible material that can be used to alleviate intestinal damage from patulin, and has yet to be tested in other gut intoxication models.
Collapse
Affiliation(s)
- Jingyimei Liang
- College of Food Science and Technology, Northwest University, Xi'an, 710069, China; Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Sciences, 32004, Ourense, Spain
| | - Yuxuan Zhao
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Sciences, 32004, Ourense, Spain
| | - Tianli Yue
- College of Food Science and Technology, Northwest University, Xi'an, 710069, China.
| |
Collapse
|
4
|
Yan F, Wang X, Du Y, Zhao Z, Shi L, Cao T, Shen Y, Sun L, Liu X. Pumpkin Soluble Dietary Fiber instead of Insoluble One Ameliorates Hyperglycemia via the Gut Microbiota-Gut-Liver Axis in db/db Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:1293-1307. [PMID: 39811930 DOI: 10.1021/acs.jafc.4c08986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Pumpkin extract has been shown to alleviate hyperglycemic symptoms by improving glucose metabolism disorders. However, the specific active components responsible for its hypoglycemic effects and the underlying molecular mechanisms remain unclear. In this study, db/db mice underwent a 4-week dietary intervention with two pumpkin flours (PF1 and PF2), total dietary fiber (TDF), soluble dietary fiber (SDF), and insoluble dietary fiber (IDF), with acarbose serving as a positive control. Our results revealed that pumpkin components significantly altered the gut microbiota, characterized by a reduction in diabetes-related bacteria and an increase in short-chain fatty acid (SCFA)-producing bacteria, including Bacteroides, Akkermansia, and Lachnospiraceae_NK4A136 group. Additionally, pumpkin components significantly increased fecal SCFA levels and upregulated the expression of SCFA receptor GPR43, potentially promoting GLP-1 secretion. Notably, pumpkin components significantly reduced fasting blood glucose and serum insulin levels and inhibited gluconeogenesis. This effect may be ascribed to the inhibition of the cAMP/PKA/CREB signaling pathway coupled with the activation of the PI3K/AKT signaling pathway. Our research indicated that pumpkin flour and dietary fiber alleviated hyperglycemia through the gut-liver axis, with SDF contributing the most to the hypoglycemic effect. These findings suggest that pumpkin components may serve as an adjunct nutritional intervention to ameliorate hyperglycemia.
Collapse
Affiliation(s)
- Fanghua Yan
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Xinze Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Yue Du
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Zhongna Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Libing Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Tengzheng Cao
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Yajun Shen
- Yulin Keshangying Food Co., Ltd, Yulin, 719000 Shaanxi, China
| | - Lijun Sun
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100 Shaanxi, China
| |
Collapse
|
5
|
Wu J, Wang K, Qi X, Zhou S, Zhao S, Lu M, Nie Q, Li M, Han M, Luo X, Yun C, Wang P, Li R, Zhong C, Yu X, Yin WB, Jiang C, Qiao J, Pang Y. The intestinal fungus Aspergillus tubingensis promotes polycystic ovary syndrome through a secondary metabolite. Cell Host Microbe 2025; 33:119-136.e11. [PMID: 39788092 DOI: 10.1016/j.chom.2024.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/25/2024] [Accepted: 12/06/2024] [Indexed: 01/12/2025]
Abstract
Polycystic ovary syndrome (PCOS) affects 6%-10% of women of reproductive age and is known to be associated with disruptions in the gut bacteria. However, the role of the gut mycobiota in PCOS pathology remains unclear. Using culture-dependent and internal transcribed spacer 2 (ITS2)-sequencing methods, we discovered an enrichment of the gut-colonizable fungus Aspergillus tubingensis in 226 individuals, with or without PCOS, from 3 different geographical areas within China. Colonization of mice with A. tubingensis led to a PCOS-like phenotype due to inhibition of Aryl hydrocarbon receptor (AhR) signaling and reduced interleukin (IL)-22 secretion in intestinal group 3 innate lymphoid cells (ILC3s). By developing a strain-diversity-based-activity metabolite screening workflow, we identified secondary metabolite AT-C1 as an endogenous AhR antagonist and a key mediator of PCOS. Our findings demonstrate that an intestinal fungus and its secondary metabolite play a critical role in PCOS pathogenesis, offering a therapeutic strategy for improving the management of the disease.
Collapse
Affiliation(s)
- Jiayu Wu
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China; Department of Immunology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China; NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Kai Wang
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China; Department of Immunology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China; NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Xinyu Qi
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China; Institute of Advanced Clinical Medicine, Peking University, National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Shuang Zhou
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China; Department of Immunology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China; NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Shuyun Zhao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Meisong Lu
- The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Qixing Nie
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Meng Li
- Department of Physiology and Pathophysiology, Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Mengwei Han
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing Key Laboratory of Tumor Systems Biology, Beijing, China
| | - Xi Luo
- Department of Physiology and Pathophysiology, Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Chuyu Yun
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China; Institute of Advanced Clinical Medicine, Peking University, National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Pengcheng Wang
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
| | - Rong Li
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China; Institute of Advanced Clinical Medicine, Peking University, National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Chao Zhong
- Department of Immunology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Xiaofei Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Wen-Bing Yin
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Changtao Jiang
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China; Department of Immunology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Jie Qiao
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China; Institute of Advanced Clinical Medicine, Peking University, National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China.
| | - Yanli Pang
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China; Institute of Advanced Clinical Medicine, Peking University, National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China.
| |
Collapse
|
6
|
Girdhar K, Mine K, DaCosta JM, Atkinson MA, Ludvigsson J, Altindis E. Sex-specific cytokine, chemokine, and growth factor signatures in T1D patients and progressors. FASEB J 2024; 38:e70270. [PMID: 39704278 DOI: 10.1096/fj.202402354r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/26/2024] [Accepted: 12/11/2024] [Indexed: 12/21/2024]
Abstract
Numerous studies have reported altered cytokine levels in type 1 diabetes (T1D) patients, yet findings remain inconsistent. In this pilot study, we tested the hypothesis that circulating immune markers exhibit sex-based differences in T1D, both prior to and after disease onset. We analyzed 47-48 cytokine, chemokine, and growth factor levels in two cohorts. To assess post-disease differences, we analyzed serum samples from 25 controls and 25 T1D patients. To examine pre-disease progression, we utilized samples from 21 control children and 16 T1D progressors, collected at age 5 years before disease onset. Across all T1D patients and controls, only macrophage colony-stimulating factor and interleukin (IL)-6 showed significant differences. However, we identified notable alterations when comparing sex-age-matched controls and T1D samples. Female T1D patients exhibited lower levels of inflammatory cytokines (tumor necrosis factor-α, IL-6, IL-1a), Th2 cytokines (IL-4, IL-13), and chemokines (macrophage inflammatory protein (MIP)-1α, regulated upon activation, normal T cell expressed and secreted, MIP-3) compared to female controls, differences that were not observed in males. Notably, IL-22 was lower in female T1D patients compared to female controls, whereas it was higher in male T1D patients compared to male controls. Male T1D patients showed elevated levels of growth factors (epidermal growth factor, platelet-derived growth factor-AB/BB) compared to male controls. In T1D progressors, growth-regulated alpha was lower compared to controls in both sexes. Multiple regression analysis further revealed associations between cytokine levels and factors such as age, BMI, and breastfeeding duration. Overall, our findings serve as a proof of concept, highlighting the importance of sex-specific differences in T1D pathogenesis. However, follow-up studies with larger sample sizes are needed to validate and generalize these results.
Collapse
Affiliation(s)
- Khyati Girdhar
- Biology Department, Boston College, Chestnut Hill, Massachusetts, USA
| | - Keiichiro Mine
- Biology Department, Boston College, Chestnut Hill, Massachusetts, USA
| | - Jeffrey M DaCosta
- Biology Department, Boston College, Chestnut Hill, Massachusetts, USA
| | - Mark A Atkinson
- Department of Pathology, Immunology and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Pediatrics, Diabetes Institute, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Johnny Ludvigsson
- Division of Pediatrics, Department of Biomedical and Clinical Sciences, Crown Princess Victoria Children's Hospital, Linköping University, Linköping, Sweden
| | - Emrah Altindis
- Biology Department, Boston College, Chestnut Hill, Massachusetts, USA
| |
Collapse
|
7
|
Gallina NLF, Irizarry Tardi N, Li X, Cai A, Horn MJ, Applegate BM, Reddivari L, Bhunia AK. Assessment of Biofilm Formation and Anti-Inflammatory Response of a Probiotic Blend in a Cultured Canine Cell Model. Microorganisms 2024; 12:2284. [PMID: 39597673 PMCID: PMC11596120 DOI: 10.3390/microorganisms12112284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/31/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
Gut dysbiosis and an inflamed bowel are growing concerns in mammals, including dogs. Probiotic supplements have been used to restore the natural microbial community and improve gastrointestinal health. Biofilm formation, antimicrobial activities, and immunological responses of probiotics are crucial to improving gut health. Thus, we tested a commercial probiotic blend (LabMAX-3), a canine kibble additive comprising Lactobacillus acidophilus, Lacticaseibacillus casei, and Enterococcus faecium for their ability to inactivate common enteric pathogens; their ability to form biofilms; epithelial cell adhesion; and their anti-inflammatory response in the Madin-Darby Canine Kidney (MDCK) cell line. Probiotic LabMAX-3 blend or individual isolates showed a strong inhibitory effect against Salmonella enterica, Listeria monocytogenes, enterotoxigenic Escherichia coli, and Campylobacter jejuni. LabMAX-3 formed biofilms comparable to Staphylococcus aureus. LabMAX-3 adhesion to the MDCK cell line (with or without lipopolysaccharide (LPS) pretreatment) showed comparable adhesion and biofilm formation (p < 0.05) to L. casei ATCC 334 used as a control. LabMAX-3 had no cytotoxic effects on the MDCK cell line during 1 h exposure. The interleukin-10 (IL-10) and tumor necrosis factor alpha (TNFα) ratio of LabMAX-3, compared to the L. casei control, showed a significant increase (p < 0.05), indicating a more pronounced anti-inflammatory response. The data show that LabMAX-3, a canine kibble supplement, can improve gastrointestinal health.
Collapse
Affiliation(s)
- Nicholas L. F. Gallina
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN 47907, USA; (N.L.F.G.); (N.I.T.); (X.L.); (A.C.)
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA; (B.M.A.); (L.R.)
| | - Nicole Irizarry Tardi
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN 47907, USA; (N.L.F.G.); (N.I.T.); (X.L.); (A.C.)
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA; (B.M.A.); (L.R.)
| | - Xilin Li
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN 47907, USA; (N.L.F.G.); (N.I.T.); (X.L.); (A.C.)
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA; (B.M.A.); (L.R.)
| | - Alvin Cai
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN 47907, USA; (N.L.F.G.); (N.I.T.); (X.L.); (A.C.)
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA; (B.M.A.); (L.R.)
| | - Mandy J. Horn
- CH2 Animal Solutions, 21 Bear Creek Estates Dr., Ottumwa, IA 52501, USA;
| | - Bruce M. Applegate
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA; (B.M.A.); (L.R.)
- Purdue University Interdisciplinary Life Sciences Program, Purdue University, West Lafayette, IN 47907, USA
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
| | - Lavanya Reddivari
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA; (B.M.A.); (L.R.)
- Purdue University Interdisciplinary Life Sciences Program, Purdue University, West Lafayette, IN 47907, USA
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
| | - Arun K. Bhunia
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN 47907, USA; (N.L.F.G.); (N.I.T.); (X.L.); (A.C.)
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA; (B.M.A.); (L.R.)
- Purdue University Interdisciplinary Life Sciences Program, Purdue University, West Lafayette, IN 47907, USA
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
- Department of Comparative Pathology, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
8
|
Ni D, Huang Z, Zhang S, Yang Y, Liu X, Xu W, Zhang W, Mu W. Improving the activity of an inulosucrase by rational engineering for the efficient biosynthesis of low-molecular-weight inulin. Arch Microbiol 2024; 206:424. [PMID: 39361031 DOI: 10.1007/s00203-024-04153-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/23/2024] [Accepted: 09/29/2024] [Indexed: 10/05/2024]
Abstract
Inulin, a widely recognized prebiotic, has diverse applications across various industrial sectors. Although inulin is primarily produced through plant extraction, there is growing interest in enzymatic synthesis as an alternative. The enzymatic production of inulin from sucrose, which yields polymers with degrees of polymerization similar to those of plant-derived inulin, shows potential as a viable replacement for traditional extraction methods. In this study, an inulosucrase from Neobacillus bataviensis was identified, demonstrating a non-processive mechanism specifically tailored for synthesizing inulin with polymerization degrees ranging from 3 to approximately 40. The enzyme exhibited optimal activity at pH 6.5 and 55 °C, efficiently producing inulin with a yield of 50.6%. Ca2+ can improve the activity and thermostability of this enzyme. To enhance catalytic total activity, site-directed and truncated mutagenesis techniques were applied, resulting in the identification of a mutant, T149S, displaying a significant 57% increase in catalytic total activity. Molecular dynamics simulations unveiled that the heightened flexibility observed in three surface regions positively influenced enzymatic activity. This study not only contributes to the theoretical foundation for inulosucrase engineering but also presents a potential avenue for the production of inulin.
Collapse
Affiliation(s)
- Dawei Ni
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Shandong Haizhibao Ocean Technology Co., Ltd, Weihai, 264333, Shandong, China
| | - Zhaolin Huang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Shuqi Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Yang Yang
- Department of Food and Bioengineering, Beijing Vocational College of Agriculture, Beijing, 102442, China
| | - Xiaoyong Liu
- Shandong Haizhibao Ocean Technology Co., Ltd, Weihai, 264333, Shandong, China
| | - Wei Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, Jiangsu, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| |
Collapse
|
9
|
Jangid AK, Noh KM, Kim S, Kim K. Engineered inulin-based hybrid biomaterials for augmented immunomodulatory responses. Carbohydr Polym 2024; 340:122311. [PMID: 38858027 DOI: 10.1016/j.carbpol.2024.122311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/12/2024]
Abstract
Modified biopolymers that are based on prebiotics have been found to significantly contribute to immunomodulatory events. In recent years, there has been a growing use of modified biomaterials and polymer-functionalized nanomaterials in the treatment of various tumors by activating immune cells. However, the effectiveness of immune cells against tumors is hindered by several biological barriers, which highlights the importance of harnessing prebiotic-based biopolymers to enhance host defenses against cancer, thus advancing cancer prevention strategies. Inulin, in particular, plays a crucial role in activating immune cells and promoting the secretion of cytokines. Therefore, this mini-review aims to emphasize the importance of inulin in immunomodulatory responses, the development of inulin-based hybrid biopolymers, and the role of inulin in enhancing immunity and modifying cell surfaces. Furthermore, we discuss the various approaches of chemical modification for inulin and their potential use in cancer treatment, particularly in the field of cancer immunotherapy.
Collapse
Affiliation(s)
- Ashok Kumar Jangid
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Kyung Mu Noh
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Sungjun Kim
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Kyobum Kim
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul 04620, Republic of Korea.
| |
Collapse
|
10
|
Villageliu DN, Cunningham KC, Smith DR, Knoell DL, Mandolfo M, Wyatt TA, Samuelson DR. Natural killer cell effector function is critical for host defense against alcohol-associated bacterial pneumonia. NPJ Biofilms Microbiomes 2024; 10:79. [PMID: 39227647 PMCID: PMC11372167 DOI: 10.1038/s41522-024-00558-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 08/25/2024] [Indexed: 09/05/2024] Open
Abstract
Alcohol use is an independent risk factor for the development of bacterial pneumonia due, in part, to impaired mucus-facilitated clearance, macrophage phagocytosis, and recruitment of neutrophils. Alcohol consumption is also known to reduce peripheral natural killer (NK) cell numbers and compromise NK cell cytolytic activity, especially NK cells with a mature phenotype. However, the role of innate lymphocytes, such as NK cells during host defense against alcohol-associated bacterial pneumonia is essentially unknown. We have previously shown that indole supplementation mitigates increases in pulmonary bacterial burden and improves pulmonary NK cell recruitment in alcohol-fed mice, which were dependent on aryl hydrocarbon receptor (AhR) signaling. Employing a binge-on-chronic alcohol-feeding model we sought to define the role and interaction of indole and NK cells during pulmonary host defense against alcohol-associated pneumonia. We demonstrate that alcohol dysregulates NK cell effector function and pulmonary recruitment via alterations in two key signaling pathways. We found that alcohol increases transforming growth factor beta (TGF-β) signaling while suppressing AhR signaling. We further demonstrated that NK cells isolated from alcohol-fed mice have a reduced ability to kill Klebsiella pneumoniae. NK cell migratory capacity to chemokines was also significantly altered by alcohol, as NK cells isolated from alcohol-fed mice exhibited preferential migration in response to CXCR3 chemokines but exhibited reduced migration in response to CCR2, CXCR4, and CX3CR1 chemokines. Together this data suggests that alcohol disrupts NK cell-specific TGF-β and AhR signaling pathways leading to decreased pulmonary recruitment and cytolytic activity thereby increasing susceptibility to alcohol-associated bacterial pneumonia.
Collapse
Affiliation(s)
- Daniel N Villageliu
- Department of Internal Medicine, Division of Pulmonary, Critical Care, & Sleep, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kelly C Cunningham
- Department of Internal Medicine, Division of Pulmonary, Critical Care, & Sleep, University of Nebraska Medical Center, Omaha, NE, USA
| | - Deandra R Smith
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Daren L Knoell
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Mason Mandolfo
- Department of Internal Medicine, Division of Pulmonary, Critical Care, & Sleep, University of Nebraska Medical Center, Omaha, NE, USA
| | - Todd A Wyatt
- Department of Internal Medicine, Division of Pulmonary, Critical Care, & Sleep, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Environmental, Agricultural and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Veterans Affairs Nebraska, University of Nebraska Medical Center, Western Iowa Health Care System, Omaha, NE, USA
| | - Derrick R Samuelson
- Department of Internal Medicine, Division of Pulmonary, Critical Care, & Sleep, University of Nebraska Medical Center, Omaha, NE, USA.
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, USA.
| |
Collapse
|
11
|
Sajiir H, Wong KY, Müller A, Keshvari S, Burr L, Aiello E, Mezza T, Giaccari A, Sebastiani G, Dotta F, Ramm GA, Macdonald GA, McGuckin MA, Prins JB, Hasnain SZ. Pancreatic beta-cell IL-22 receptor deficiency induces age-dependent dysregulation of insulin biosynthesis and systemic glucose homeostasis. Nat Commun 2024; 15:4527. [PMID: 38811550 PMCID: PMC11137127 DOI: 10.1038/s41467-024-48320-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/26/2024] [Indexed: 05/31/2024] Open
Abstract
The IL-22RA1 receptor is highly expressed in the pancreas, and exogenous IL-22 has been shown to reduce endoplasmic reticulum and oxidative stress in human pancreatic islets and promote secretion of high-quality insulin from beta-cells. However, the endogenous role of IL-22RA1 signaling on these cells remains unclear. Here, we show that antibody neutralisation of IL-22RA1 in cultured human islets leads to impaired insulin quality and increased cellular stress. Through the generation of mice lacking IL-22ra1 specifically on pancreatic alpha- or beta-cells, we demonstrate that ablation of murine beta-cell IL-22ra1 leads to similar decreases in insulin secretion, quality and islet regeneration, whilst increasing islet cellular stress, inflammation and MHC II expression. These changes in insulin secretion led to impaired glucose tolerance, a finding more pronounced in female animals compared to males. Our findings attribute a regulatory role for endogenous pancreatic beta-cell IL-22ra1 in insulin secretion, islet regeneration, inflammation/cellular stress and appropriate systemic metabolic regulation.
Collapse
Affiliation(s)
- Haressh Sajiir
- Immunopathology Group, Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Kuan Yau Wong
- Immunopathology Group, Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Alexandra Müller
- Immunopathology Group, Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Sahar Keshvari
- Immunopathology Group, Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Lucy Burr
- Immunopathology Group, Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Department of Respiratory and Sleep Medicine, Mater Health, South Brisbane, QLD, Australia
| | - Elena Aiello
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Teresa Mezza
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Roma, Italy
- Pancreas Unit, CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Roma, Italy
| | - Andrea Giaccari
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Roma, Italy
- Endocrinology and Diabetology Unit, Fondazione Policlinico Universitario Gemelli IRCCS, Roma, Italy
| | - Guido Sebastiani
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Francesco Dotta
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Tuscany Centre for Precision Medicine (CReMeP), Siena, Italy
| | - Grant A Ramm
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Graeme A Macdonald
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Department of Gastroenterology and Hepatology, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Michael A McGuckin
- School of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Johannes B Prins
- Health Translation Queensland, Royal Brisbane and Women's Hospital, Herston, QLD, Australia
| | - Sumaira Z Hasnain
- Immunopathology Group, Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia.
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia.
- Australian Infectious Disease Research Centre, University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
12
|
Misiakiewicz-Has K, Maciejewska-Markiewicz D, Szypulska-Koziarska D, Kolasa A, Wiszniewska B. The Influence of Soy Isoflavones and Soy Isoflavones with Inulin on Kidney Morphology, Fatty Acids, and Associated Parameters in Rats with and without Induced Diabetes Type 2. Int J Mol Sci 2024; 25:5418. [PMID: 38791455 PMCID: PMC11121859 DOI: 10.3390/ijms25105418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Diabetes mellitus resulting from hyperglycemia stands as the primary cause of diabetic kidney disease. Emerging evidence suggests that plasma concentrations of soy isoflavones, substances with well-established antidiabetic properties, rise following supplemental inulin administration. The investigation encompassed 36 male Sprague-Dawley (SD) rats segregated into two cohorts: non-diabetic and diabetic, induced with type 2 diabetes (high-fat diet + two intraperitoneal streptozotocin injections). Each cohort was further divided into three subgroups (n = 6): control, isoflavone-treated, and isoflavone plus inulin-treated rats. Tail blood glucose and ketone levels were gauged. Upon termination, blood samples were drawn directly from the heart for urea, creatinine, and HbA1c/HbF analyses. One kidney per rat underwent histological (H-E) and immunohistochemical assessments (anti-AQP1, anti-AQP2, anti-AVPR2, anti-SLC22A2, anti-ACC-alpha, anti-SREBP-1). The remaining kidney underwent fatty acid methyl ester analysis. Results unveiled notable alterations in water intake, body and kidney mass, kidney morphology, fatty acids, AQP2, AVPR2, AcetylCoA, SREBP-1, blood urea, creatinine, and glucose levels in control rats with induced type 2 diabetes. Isoflavone supplementation exhibited favorable effects on plasma urea, plasma urea/creatinine ratio, glycemia, water intake, and kidney mass, morphology, and function in type 2 diabetic rats. Additional inulin supplementation frequently modulated the action of soy isoflavones.
Collapse
Affiliation(s)
- Kamila Misiakiewicz-Has
- Department of Histology and Embryology, Pomeranian Medical University, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland; (D.S.-K.); (A.K.); (B.W.)
| | | | - Dagmara Szypulska-Koziarska
- Department of Histology and Embryology, Pomeranian Medical University, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland; (D.S.-K.); (A.K.); (B.W.)
| | - Agnieszka Kolasa
- Department of Histology and Embryology, Pomeranian Medical University, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland; (D.S.-K.); (A.K.); (B.W.)
| | - Barbara Wiszniewska
- Department of Histology and Embryology, Pomeranian Medical University, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland; (D.S.-K.); (A.K.); (B.W.)
| |
Collapse
|
13
|
Yang K, Zhang Y, Ding J, Li Z, Zhang H, Zou F. Autoimmune CD8+ T cells in type 1 diabetes: from single-cell RNA sequencing to T-cell receptor redirection. Front Endocrinol (Lausanne) 2024; 15:1377322. [PMID: 38800484 PMCID: PMC11116783 DOI: 10.3389/fendo.2024.1377322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 04/18/2024] [Indexed: 05/29/2024] Open
Abstract
Type 1 diabetes (T1D) is an organ-specific autoimmune disease caused by pancreatic β cell destruction and mediated primarily by autoreactive CD8+ T cells. It has been shown that only a small number of stem cell-like β cell-specific CD8+ T cells are needed to convert normal mice into T1D mice; thus, it is likely that T1D can be cured or significantly improved by modulating or altering self-reactive CD8+ T cells. However, stem cell-type, effector and exhausted CD8+ T cells play intricate and important roles in T1D. The highly diverse T-cell receptors (TCRs) also make precise and stable targeted therapy more difficult. Therefore, this review will investigate the mechanisms of autoimmune CD8+ T cells and TCRs in T1D, as well as the related single-cell RNA sequencing (ScRNA-Seq), CRISPR/Cas9, chimeric antigen receptor T-cell (CAR-T) and T-cell receptor-gene engineered T cells (TCR-T), for a detailed and clear overview. This review highlights that targeting CD8+ T cells and their TCRs may be a potential strategy for predicting or treating T1D.
Collapse
Affiliation(s)
- Kangping Yang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yihan Zhang
- The Second Clinical Medicine School, Nanchang University, Nanchang, China
| | - Jiatong Ding
- The Second Clinical Medicine School, Nanchang University, Nanchang, China
| | - Zelin Li
- The First Clinical Medicine School, Nanchang University, Nanchang, China
| | - Hejin Zhang
- The Second Clinical Medicine School, Nanchang University, Nanchang, China
| | - Fang Zou
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
14
|
Colucci Cante R, Nigro F, Passannanti F, Lentini G, Gallo M, Nigro R, Budelli AL. Gut health benefits and associated systemic effects provided by functional components from the fermentation of natural matrices. Compr Rev Food Sci Food Saf 2024; 23:e13356. [PMID: 38767859 DOI: 10.1111/1541-4337.13356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/26/2024] [Accepted: 04/06/2024] [Indexed: 05/22/2024]
Abstract
Recently, the role of the gut microbiota in metabolic health, immunity, behavioral balance, longevity, and intestine comfort has been the object of several studies from scientific communities. They were encouraged by a growing interest from food industries and consumers toward novel fermented ingredients and formulations with powerful biological effects, such as pre, pro, and postbiotic products. Depending on the selected strains, the operating conditions, the addition of suitable reagents or enzymes, the equipment, and the reactor configurations, functional compounds with high bioactivity, such as short-chain fatty acids, gamma-aminobutyric acid, bioactive peptides, and serotonin, can be enhanced and/or produced through fermentation of several vegetable matrices. Otherwise, their formation can also be promoted directly in the gut after the dietary intake of fermented foods: In this case, fermentation will aim to increase the content of precursor substances, such as indigestible fibers, polyphenols, some amino acids, and resistant starch, which can be potentially metabolized by endogenous gut microorganisms and converted in healthy molecules. This review provides an overview of the main functional components currently investigated in literature and the associated gut health benefits. The current state of the art about fermentation technology as a promising functionalization tool to promote the direct or indirect formation of gut-health-enhancing components was deepened, highlighting the importance of optimizing microorganism selection, system setups, and process conditions according to the target compound of interest. The collected data suggested the possibility of gaining novel functional food ingredients or products rich in functional molecules through fermentation without performing additional extraction and purification stages, which are needed when conventional culture broths are used.
Collapse
Affiliation(s)
- Rosa Colucci Cante
- Department of Chemical Engineering, Materials, and Industrial Production, University of Naples Federico II, Naples, Italy
- Department of Industrial Engineering, University of Niccolò Cusano, Rome, Italy
| | - Federica Nigro
- I. T. P. Innovation and Technology Provider S.r.l., Naples, Italy
| | - Francesca Passannanti
- Department of Chemical Engineering, Materials, and Industrial Production, University of Naples Federico II, Naples, Italy
- I. T. P. Innovation and Technology Provider S.r.l., Naples, Italy
| | - Giulia Lentini
- Department of Chemical Engineering, Materials, and Industrial Production, University of Naples Federico II, Naples, Italy
| | - Marianna Gallo
- Department of Chemical Engineering, Materials, and Industrial Production, University of Naples Federico II, Naples, Italy
- Department of Industrial Engineering, University of Niccolò Cusano, Rome, Italy
- I. T. P. Innovation and Technology Provider S.r.l., Naples, Italy
| | - Roberto Nigro
- Department of Chemical Engineering, Materials, and Industrial Production, University of Naples Federico II, Naples, Italy
| | | |
Collapse
|
15
|
Ni D, Zhang S, Liu X, Zhu Y, Xu W, Zhang W, Mu W. Production, effects, and applications of fructans with various molecular weights. Food Chem 2024; 437:137895. [PMID: 37924765 DOI: 10.1016/j.foodchem.2023.137895] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 10/26/2023] [Accepted: 10/26/2023] [Indexed: 11/06/2023]
Abstract
Fructan, a widespread functional polysaccharide, has been used in the food, pharmaceutical, cosmetic, and material production fields because of its versatile physicochemical properties and biological activities. Inulin from plants and levan from microorganisms are two of the most extensively studied fructans. Fructans from different plants or microorganisms have inconsistent molecular weights, and the molecular weight of fructan affects its properties, functions, and applications. Recently, increasing attention has been paid to the production and application of fructans having various molecular weights, and biotechnological processes have been explored to produce tailor-made fructans from sucrose. This review encompasses the introduction of extraction, enzymatic transformation, and fermentation production processes for fructans with diverse molecular weights. Notably, it highlights the enzymes involved in fructan biosynthesis and underscores their physiological effects, with a special emphasis on their prebiotic properties. Moreover, the applications of fructans with varying molecular weights are also emphasized.
Collapse
Affiliation(s)
- Dawei Ni
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Shuqi Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiaoyong Liu
- Shandong Haizhibao Ocean Technology Co., Ltd, Weihai, Shandong 264333, China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Wenli Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
16
|
Guimarães JB, Rodrigues VF, Pereira ÍS, Manso GMDC, Elias-Oliveira J, Leite JA, Waldetario MCGM, de Oliveira S, Gomes ABDSP, Faria AMC, Ramos SG, Bonato VLD, Silva JS, Vinolo MAR, Sampaio UM, Clerici MTPS, Carlos D. Inulin prebiotic ameliorates type 1 diabetes dictating regulatory T cell homing via CCR4 to pancreatic islets and butyrogenic gut microbiota in murine model. J Leukoc Biol 2024; 115:483-496. [PMID: 37947010 DOI: 10.1093/jleuko/qiad132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 09/04/2023] [Accepted: 10/14/2023] [Indexed: 11/12/2023] Open
Abstract
Gut dysbiosis is linked to type 1 diabetes mellitus (T1D). Inulin (INU), a prebiotic, modulates the gut microbiota, promoting beneficial bacteria that produce essential short-chain fatty acids for immune regulation. However, how INU affects T1D remains uncertain. Using a streptozotocin-induced (STZ) mouse model, we studied INU's protective effects. Remarkably, STZ + INU mice resisted T1D, with none developing the disease. They had lower blood glucose, reduced pancreatic inflammation, and normalized serum insulin compared with STZ + SD mice. STZ + INU mice also had enhanced mucus production, abundant Bifidobacterium, Clostridium cluster IV, Akkermansia muciniphila, and increased fecal butyrate. In cecal lymph nodes, we observed fewer CD4+Foxp3+ regulatory T cells expressing CCR4 and more Foxp3+CCR4+ cells in pancreatic islets, with higher CCL17 expression. This phenotype was absent in CCR4-deficient mice on INU. INU supplementation effectively protects against experimental T1D by recruiting CCR4+ regulatory T cells via CCL17 into the pancreas and altering the butyrate-producing microbiota.
Collapse
Affiliation(s)
- Jhefferson Barbosa Guimarães
- Laboratory of Imunorregulation of Metabolic Diseases, Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ave. Bandeirantes, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Vanessa Fernandes Rodrigues
- Laboratory of Imunorregulation of Metabolic Diseases, Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ave. Bandeirantes, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Ítalo Sousa Pereira
- Laboratory of Imunorregulation of Metabolic Diseases, Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ave. Bandeirantes, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Gabriel Martins da Costa Manso
- Laboratory of Imunorregulation of Metabolic Diseases, Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ave. Bandeirantes, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Jefferson Elias-Oliveira
- Laboratory of Imunorregulation of Metabolic Diseases, Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ave. Bandeirantes, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Jefferson Antônio Leite
- Laboratory of Imunorregulation of Metabolic Diseases, Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ave. Bandeirantes, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | | | - Sarah de Oliveira
- Laboratory of Immunoinflammation, Department of Genetics and Evolution, Microbiology and Immunology, Institute of Biology, State University of Campinas, Campinas, São Paulo, Brazil
| | - Arilson Bernardo Dos Santos Pereira Gomes
- Laboratory of Immunoinflammation, Department of Genetics and Evolution, Microbiology and Immunology, Institute of Biology, State University of Campinas, Campinas, São Paulo, Brazil
| | - Ana Maria Caetano Faria
- Department of Biochemistry and Immunology, Institute of Biological Sciences, University of Minas Gerais, Belo Horizonte, Minas Gerais,31270-901, Brazil
| | - Simone Gusmão Ramos
- Laboratory of Pathology, Department of Pathology, Ribeirão Preto Medical School, University of São Paulo, Ave. Bandeirantes, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Vânia L D Bonato
- Laboratory of Immunology and Pulmonary Inflammation, Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Ave. Bandeirantes, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - João Santana Silva
- Fiocruz-Bi-Institutional Translational Medicine Plataform, University of São Paulo, Ave. Bandeirantes, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Marco Aurélio Ramirez Vinolo
- Laboratory of Immunoinflammation, Department of Genetics and Evolution, Microbiology and Immunology, Institute of Biology, State University of Campinas, Campinas, São Paulo, Brazil
| | - Ulliana Marques Sampaio
- Department of Food Science and Nutrition, School of Food Engineering, State University of Campinas, Campinas, São Paulo, 13083-970, Brazil
| | - Maria Teresa Pedrosa Silva Clerici
- Department of Food Science and Nutrition, School of Food Engineering, State University of Campinas, Campinas, São Paulo, 13083-970, Brazil
| | - Daniela Carlos
- Laboratory of Imunorregulation of Metabolic Diseases, Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ave. Bandeirantes, Ribeirão Preto, São Paulo, 14049-900, Brazil
| |
Collapse
|
17
|
Cheng J, Li J, Xiong RG, Wu SX, Xu XY, Tang GY, Huang SY, Zhou DD, Li HB, Feng Y, Gan RY. Effects and mechanisms of anti-diabetic dietary natural products: an updated review. Food Funct 2024; 15:1758-1778. [PMID: 38240135 DOI: 10.1039/d3fo04505f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Diabetes is a global public health issue, characterized by an abnormal level of blood glucose. It can be classified into type 1, type 2, gestational, and other rare diabetes. Recent studies have reported that many dietary natural products exhibit anti-diabetic activity. In this narrative review, the effects and underlying mechanisms of dietary natural products on diabetes are summarized based on the results from epidemiological, experimental, and clinical studies. Some fruits (e.g., grape, blueberry, and cherry), vegetables (e.g., bitter melon and Lycium barbarum leaves), grains (e.g., oat, rye, and brown rice), legumes (e.g., soybean and black bean), spices (e.g., cinnamon and turmeric) and medicinal herbs (e.g., Aloe vera leaf and Nigella sativa), and vitamin C and carotenoids could play important roles in the prevention and management of diabetes. Their underlying mechanisms include exerting antioxidant, anti-inflammatory, and anti-glycation effects, inhibiting carbohydrate-hydrolyzing enzymes, enhancing insulin action, alleviating insulin resistance, modulating the gut microbiota, and so on. This review can provide people with a comprehensive knowledge of anti-diabetic dietary natural products, and support their further development into functional food to prevent and manage diabetes.
Collapse
Affiliation(s)
- Jin Cheng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Jiahui Li
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China.
| | - Ruo-Gu Xiong
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Si-Xia Wu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Xiao-Yu Xu
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China.
| | - Guo-Yi Tang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China.
| | - Si-Yu Huang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Dan-Dan Zhou
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China.
| | - Ren-You Gan
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Singapore 138669, Singapore.
| |
Collapse
|
18
|
El-Nashar HAS, Taleb M, El-Shazly M, Zhao C, Farag MA. Polysaccharides (pectin, mucilage, and fructan inulin) and their fermented products: A critical analysis of their biochemical, gut interactions, and biological functions as antidiabetic agents. Phytother Res 2024; 38:662-693. [PMID: 37966040 DOI: 10.1002/ptr.8067] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/29/2023] [Accepted: 10/25/2023] [Indexed: 11/16/2023]
Abstract
Diabetes mellitus is a globally metabolic endocrine syndrome marked by a deficiency of insulin secretion (type-1 DM) or glucose intolerance arising from insulin response impairment (type-2 DM) leading to abnormal glucose metabolism. With an increasing interest in natural dietary components for diabetes management, the identification of novel agents witnessed major discoveries. Plant-derived mucilage, pectin, and inulin are important non-starch polysaccharides that exhibit effective antidiabetic properties often termed soluble dietary fiber (SDF). SDF affects sugar metabolism through multiple mechanisms affecting glucose absorption and diffusion, modulation of carbohydrate metabolizing enzymes (α-amylase and α-glucosidase), ameliorating β-pancreatic cell dysfunction, and improving insulin release or sensitivity. Certain SDFs inhibit dipeptidyl peptidase-4 and influence the expression levels of genes related to glucose metabolism. This review is designed to discuss holistically and critically the antidiabetic effects of major SDF and their underlying mechanisms of action. This review should aid drug discovery approaches in developing novel natural antidiabetic drugs from SDF.
Collapse
Affiliation(s)
- Heba A S El-Nashar
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mohamed Taleb
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University-Gaza, Gaza, Palestine
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Chao Zhao
- College of Marine Sciences, Fujian Agricultural and Forestry University, Fuzhou, China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
19
|
Delaroque C, Chassaing B. Dietary emulsifier consumption accelerates type 1 diabetes development in NOD mice. NPJ Biofilms Microbiomes 2024; 10:1. [PMID: 38182615 PMCID: PMC10770373 DOI: 10.1038/s41522-023-00475-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 12/15/2023] [Indexed: 01/07/2024] Open
Abstract
The rapidly increasing prevalence of type 1 diabetes (T1D) underscores the role of environmental (i.e. non-genetic) determinants of T1D development. Such factors include industrialized diets as well as the intestinal microbiota with which they interact. One component of industrialized diets that deleteriously impact gut microbiota is dietary emulsifiers, which perturb intestinal microbiota to encroach upon their host promoting chronic low-grade intestinal inflammation and metabolic syndrome. Hence, we investigated whether 2 dietary emulsifiers, carboxymethylcellulose (CMC) and polysorbate-80 (P80), might influence the development of T1D in NOD mice, which spontaneously develop this disorder. We observed that chronic emulsifier exposure accelerated T1D development in NOD mice, which was associated with increased insulin autoantibody levels. Such accelerated T1D development was accompanied by compositional and functional alterations of the intestinal microbiota as well as low-grade intestinal inflammation. Moreover, machine learning found that the severity of emulsifier-induced microbiota disruption had partial power to predict subsequent disease development, suggesting that complex interactions occur between the host, dietary factors, and the intestinal microbiota. Thus, perturbation of host-microbiota homeostasis by dietary emulsifiers may have contributed to the post-mid-20th-century increase in T1D.
Collapse
Affiliation(s)
- Clara Delaroque
- INSERM U1016, team "Mucosal microbiota in chronic inflammatory diseases", CNRS UMR 8104, Université Paris Cité, Paris, France
| | - Benoit Chassaing
- INSERM U1016, team "Mucosal microbiota in chronic inflammatory diseases", CNRS UMR 8104, Université Paris Cité, Paris, France.
| |
Collapse
|
20
|
Ghavidel F, Amiri H, Tabrizi MH, Alidadi S, Hosseini H, Sahebkar A. The Combinational Effect of Inulin and Resveratrol on the Oxidative Stress and Inflammation Level in a Rat Model of Diabetic Nephropathy. Curr Dev Nutr 2024; 8:102059. [PMID: 38292928 PMCID: PMC10826146 DOI: 10.1016/j.cdnut.2023.102059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/09/2023] [Accepted: 12/04/2023] [Indexed: 02/01/2024] Open
Abstract
Background Using inulin can enhance resveratrol's effects by improving the intestinal microbiome and the stability of resveratrol. Objectives We aimed to investigate the effect of therapeutic intervention with combined inulin and resveratrol on kidney function in diabetic rats. Methods Diabetic model was induced by intraperitoneal injection of streptozotocin. Afterward, rats were divided into 6 groups: control, diabetic without treatment, diabetic treated with insulin, diabetic treated with resveratrol, diabetic treated with inulin, and diabetic treated with a combination of inulin and resveratrol. After 10 wk, the creatinine, urea, insulin, urinary proteins, and inflammatory and oxidative stress markers were evaluated. Pathologic changes were examined in kidney tissues. Results Renal dysfunction, accompanied by increased inflammation and oxidative stress, was observed. Our results showed that treatment with resveratrol and inulin had antidiabetic effects and was associated with reduced renal dysfunction, oxidative stress, and kidney inflammation. In addition, it was observed that combined treatment with inulin and resveratrol outperformed monotherapies in improving kidney function and reducing oxidative stress and inflammation. Conclusions Treatment with resveratrol and inulin can have renoprotective effects by improving oxidative stress and inflammation in kidney tissues. Therefore, employing these 2 compounds is suggested as an inexpensive and available method for diabetic nephropathy.
Collapse
Affiliation(s)
- Farideh Ghavidel
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamed Amiri
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Soodeh Alidadi
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hossein Hosseini
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
21
|
Sun X, Xi Y, Yan M, Sun C, Tang J, Dong X, Yang Z, Wu L. Lactiplantibacillus plantarum NKK20 Increases Intestinal Butyrate Production and Inhibits Type 2 Diabetic Kidney Injury through PI3K/Akt Pathway. J Diabetes Res 2023; 2023:8810106. [PMID: 38162631 PMCID: PMC10757665 DOI: 10.1155/2023/8810106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 11/30/2023] [Accepted: 12/09/2023] [Indexed: 01/03/2024] Open
Abstract
Nephropathy injury is a prevalent complication observed in individuals with diabetes, serving as a prominent contributor to end-stage renal disease, and the advanced glycation products (AGEs) are important factors that induce kidney injury in patients with diabetes. Addressing this condition remains a challenging aspect in clinical practice. The aim of this study was to explore the effects of Lactiplantibacillus plantarum NKK20 strain (NKK20) which protects against diabetic kidney disease (DKD) based on animal and cell models. The results showed that the NKK20 can significantly reduce renal inflammatory response, serum oxidative stress response, and AGE concentration in diabetic mice. After treatment with NKK20, the kidney damage of diabetic mice was significantly improved, and more importantly, the concentration of butyrate, a specific anti-inflammatory metabolite of intestinal flora in the stool of diabetic mice, was significantly increased. In addition, nontargeted metabolomics analysis showed a significant difference between the metabolites in the mouse serum contents of the NKK20 administration group and those in the nephropathy injury group, in which a total of 24 different metabolites that were significantly affected by NKK20 were observed, and these metabolites were mainly involved in glycerophospholipid metabolism and arachidonic acid metabolism. Also, the administration of butyrate to human kidney- (HK-) 2 cells that were stimulated by AGEs resulted in a significant upregulation of ZO-1, Occludin, and E-cadherin gene expressions and downregulation of α-SMA gene expression. This means that butyrate can maintain the tight junction structure of HK-2 cells and inhibit fibrosis. Butyrate also significantly inhibited the activation of PI3K/Akt pathway. These results indicate that NKK20 can treat kidney injury in diabetic mice by reducing blood glucose and AGE concentration and increasing butyrate production in the intestine. By inhibiting PI3K pathway activation in HK-2 cells, butyrate maintains a tight junction structure of renal tubule epithelial cells and inhibits renal tissue fibrosis. These results suggest that NKK20 is helpful to prevent and treat the occurrence and aggravation of diabetic kidney injury.
Collapse
Affiliation(s)
- Xiaohong Sun
- Department of Clinical Laboratory, Yizheng Hospital, Nanjing Drum Tower Hospital Group, Yizheng 210008, China
| | - Yue Xi
- Medical Laboratory Department, Huai'an Second People's Hospital, Huai'an 223022, China
| | - Man Yan
- Department of Clinical Laboratory, Zhenjiang City Central Blood Station, Zhenjiang 212399, China
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Chang Sun
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Jianjun Tang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Xueyun Dong
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Zhengnan Yang
- Department of Clinical Laboratory, Yizheng Hospital, Nanjing Drum Tower Hospital Group, Yizheng 210008, China
| | - Liang Wu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
22
|
Samuelson D, Villageliu D, Cunningham K, Smith D, Knoell D, Mandolfo M, Wyatt T. Regulation of Natural Killer Cell TGF-β and AhR Signaling Pathways Via the Intestinal Microbiota is Critical for Host Defense Against Alcohol-Associated Bacterial Pneumonia. RESEARCH SQUARE 2023:rs.3.rs-3328953. [PMID: 37886455 PMCID: PMC10602187 DOI: 10.21203/rs.3.rs-3328953/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Alcohol use is an independent risk factor for the development of bacterial pneumonia due, in part, to impaired mucus-facilitated clearance, macrophage phagocytosis, and recruitment of neutrophils. Alcohol consumption is also known to reduce peripheral natural killer (NK) cell numbers and compromises NK cell cytolytic activity, especially NK cells with a mature phenotype. However, the role of innate lymphocytes, such as NK cells during host defense against alcohol-associated bacterial pneumonia is essentially unknown. We have previously shown that indole supplementation mitigates increases in pulmonary bacterial burden and improves pulmonary NK cell recruitment in alcohol-fed mice, which were dependent of aryl hydrocarbon receptor (AhR) signaling. Employing a binge-on-chronic alcohol-feeding model we sought to define the role and interaction of indole and NK cells during pulmonary host defense against alcohol-associated pneumonia. We demonstrate that alcohol dysregulates NK cell effector function and pulmonary recruitment via alterations in two key signaling pathways. We found that alcohol increases transforming growth factor beta (TGF-β) signaling, while suppressing AhR signaling. We further demonstrated that NK cells isolated from alcohol-fed mice have a reduced ability to kill Klebsiella pneumoniae. NK cell migratory capacity to chemokines was also significantly altered by alcohol, as NK cells isolated from alcohol-fed mice exhibited preferential migration in response to CXCR3 chemokines but exhibited reduced migration in response to CCR2, CXCR4, and CX3CR1 chemokines. Together this data suggests that alcohol disrupts NK cell specific TGF-β and AhR signaling pathways leading to decreased pulmonary recruitment and cytolytic activity thereby increasing susceptibility to alcohol-associated bacterial pneumonia.
Collapse
|
23
|
Wang L, Wang Z, Lan Y, Tuo Y, Ma S, Liu X. Inulin Attenuates Blood-Brain Barrier Permeability and Alleviates Behavioral Disorders by Modulating the TLR4/MyD88/NF-κB Pathway in Mice with Chronic Stress. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13325-13337. [PMID: 37642581 DOI: 10.1021/acs.jafc.3c03568] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Depression and vulnerability to chronic stress are associated with inflammatory responses and the loss of blood-brain barrier (BBB) integrity. Dietary fiber and its short-chain fatty acid (SCFAs) metabolites have been reported to affect neuropsychiatric disorders. Here, a 9-week treatment course of inulin (0.037 g of inulin/kcal) exhibited in chronic unpredictable mild stress (CUMS) mice led to antidepressant and anxiolytic effects, as well as improved neurogenesis and synaptic plasticity by enhancing CREB/BDNF signaling. Importantly, inulin inhibited CUMS-induced decreased BBB permeability, reduced lipopolysaccharide (LPS) brain penetration, and modulated TLR4/MyD88/NF-κB signaling to alleviate neuroinflammatory responses. Furthermore, inulin protected the gut barrier integrity and led to the increased formation of SCFAs. Enhanced SCFAs formation was strongly positively correlated with behavioral improvements, BBB integrity, and neuroinflammatory responses. We speculate that dietary fiber may be a promising nutritional intervention to reverse the effects of chronic stress by regulating metabolites and protecting the BBB integrity.
Collapse
Affiliation(s)
- Lei Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Zhuo Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Yongli Lan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xi'ning 810016, China
| | - Yanliang Tuo
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Shaobo Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
24
|
Najjar RS, Gewirtz AT. Plant-Based Diets: A Path to Ending CVD as We Know It? Nutrients 2023; 15:3608. [PMID: 37630797 PMCID: PMC10458614 DOI: 10.3390/nu15163608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death in the United States, with roughly 700,000 CVD deaths every year [1]. [...].
Collapse
Affiliation(s)
- Rami Salim Najjar
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA;
| | | |
Collapse
|
25
|
Sheng W, Ji G, Zhang L. Immunomodulatory effects of inulin and its intestinal metabolites. Front Immunol 2023; 14:1224092. [PMID: 37638034 PMCID: PMC10449545 DOI: 10.3389/fimmu.2023.1224092] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023] Open
Abstract
"Dietary fiber" (DF) refers to a type of carbohydrate that cannot be digested fully. DF is not an essential nutrient, but it plays an important part in enhancing digestive capacity and maintaining intestinal health. Therefore, DF supplementation in the daily diet is highly recommended. Inulin is a soluble DF, and commonly added to foods. Recently, several studies have found that dietary supplementation of inulin can improve metabolic function and regulate intestinal immunity. Inulin is fermented in the colon by the gut microbiota and a series of metabolites is generated. Among these metabolites, short-chain fatty acids provide energy to intestinal epithelial cells and participate in regulating the differentiation of immune cells. Inulin and its intestinal metabolites contribute to host immunity. This review summarizes the effect of inulin and its metabolites on intestinal immunity, and the underlying mechanisms of inulin in preventing diseases such as type 2 diabetes mellitus, inflammatory bowel disease, chronic kidney disease, and certain cancer types.
Collapse
Affiliation(s)
| | | | - Li Zhang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
26
|
Stolfi C, Pacifico T, Monteleone G, Laudisi F. Impact of Western Diet and Ultra-Processed Food on the Intestinal Mucus Barrier. Biomedicines 2023; 11:2015. [PMID: 37509654 PMCID: PMC10377275 DOI: 10.3390/biomedicines11072015] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/19/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
The intestinal epithelial barrier plays a key role in the absorption of nutrients and water, in the regulation of the interactions between luminal contents and the underlying immune cells, and in the defense against enteric pathogens. Additionally, the intestinal mucus layer provides further protection due to mucin secretion and maturation by goblet cells, thus representing a crucial player in maintaining intestinal homeostasis. However, environmental factors, such as dietary products, can disrupt this equilibrium, leading to the development of inflammatory intestinal disorders. In particular, ultra-processed food, which is broadly present in the Western diet and includes dietary components containing food additives and/or undergoing multiple industrial processes (such as dry heating cooking), was shown to negatively impact intestinal health. In this review, we summarize and discuss current knowledge on the impact of a Western diet and, in particular, ultra-processed food on the mucus barrier and goblet cell function, as well as potential therapeutic approaches to maintain and restore the mucus layer under pathological conditions.
Collapse
Affiliation(s)
- Carmine Stolfi
- Department of Systems Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Teresa Pacifico
- Department of Systems Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Giovanni Monteleone
- Department of Systems Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy
- Gastroenterology Unit, Policlinico Universitario Tor Vergata, 00133 Rome, Italy
| | - Federica Laudisi
- Department of Systems Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy
| |
Collapse
|
27
|
Corrêa RO, Castro PR, Fachi JL, Nirello VD, El-Sahhar S, Imada S, Pereira GV, Pral LP, Araújo NVP, Fernandes MF, Matheus VA, de Souza Felipe J, Dos Santos Pereira Gomes AB, de Oliveira S, de Rezende Rodovalho V, de Oliveira SRM, de Assis HC, Oliveira SC, Dos Santos Martins F, Martens E, Colonna M, Varga-Weisz P, Vinolo MAR. Inulin diet uncovers complex diet-microbiota-immune cell interactions remodeling the gut epithelium. MICROBIOME 2023; 11:90. [PMID: 37101209 PMCID: PMC10131329 DOI: 10.1186/s40168-023-01520-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 03/16/2023] [Indexed: 05/12/2023]
Abstract
BACKGROUND The continuous proliferation of intestinal stem cells followed by their tightly regulated differentiation to epithelial cells is essential for the maintenance of the gut epithelial barrier and its functions. How these processes are tuned by diet and gut microbiome is an important, but poorly understood question. Dietary soluble fibers, such as inulin, are known for their ability to impact the gut bacterial community and gut epithelium, and their consumption has been usually associated with health improvement in mice and humans. In this study, we tested the hypothesis that inulin consumption modifies the composition of colonic bacteria and this impacts intestinal stem cells functions, thus affecting the epithelial structure. METHODS Mice were fed with a diet containing 5% of the insoluble fiber cellulose or the same diet enriched with an additional 10% of inulin. Using a combination of histochemistry, host cell transcriptomics, 16S microbiome analysis, germ-free, gnotobiotic, and genetically modified mouse models, we analyzed the impact of inulin intake on the colonic epithelium, intestinal bacteria, and the local immune compartment. RESULTS We show that the consumption of inulin diet alters the colon epithelium by increasing the proliferation of intestinal stem cells, leading to deeper crypts and longer colons. This effect was dependent on the inulin-altered gut microbiota, as no modulations were observed in animals deprived of microbiota, nor in mice fed cellulose-enriched diets. We also describe the pivotal role of γδ T lymphocytes and IL-22 in this microenvironment, as the inulin diet failed to induce epithelium remodeling in mice lacking this T cell population or cytokine, highlighting their importance in the diet-microbiota-epithelium-immune system crosstalk. CONCLUSION This study indicates that the intake of inulin affects the activity of intestinal stem cells and drives a homeostatic remodeling of the colon epithelium, an effect that requires the gut microbiota, γδ T cells, and the presence of IL-22. Our study indicates complex cross kingdom and cross cell type interactions involved in the adaptation of the colon epithelium to the luminal environment in steady state. Video Abstract.
Collapse
Affiliation(s)
- Renan Oliveira Corrêa
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, SP, 13083-862, Brazil.
- Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA, 02139, USA.
| | - Pollyana Ribeiro Castro
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, SP, 13083-862, Brazil
| | - José Luís Fachi
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, SP, 13083-862, Brazil
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Vinícius Dias Nirello
- International Laboratory for Microbiome Host Epigenetics, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, SP, 13083-862, Brazil
| | - Salma El-Sahhar
- School of Life Sciences, University of Essex, Colchester, CO4 3SQ, UK
| | - Shinya Imada
- Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA, 02139, USA
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-8551, Japan
| | - Gabriel Vasconcelos Pereira
- International Laboratory for Microbiome Host Epigenetics, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, SP, 13083-862, Brazil
- University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Laís Passariello Pral
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, SP, 13083-862, Brazil
| | - Nathália Vitoria Pereira Araújo
- International Laboratory for Microbiome Host Epigenetics, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, SP, 13083-862, Brazil
| | - Mariane Font Fernandes
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, SP, 13083-862, Brazil
| | - Valquíria Aparecida Matheus
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, SP, 13083-862, Brazil
| | - Jaqueline de Souza Felipe
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, SP, 13083-862, Brazil
| | - Arilson Bernardo Dos Santos Pereira Gomes
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, SP, 13083-862, Brazil
| | - Sarah de Oliveira
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, SP, 13083-862, Brazil
| | - Vinícius de Rezende Rodovalho
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, SP, 13083-862, Brazil
| | - Samantha Roberta Machado de Oliveira
- Laboratory of Biotherapeutics Agents, Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Helder Carvalho de Assis
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, SP, 13083-862, Brazil
| | - Sergio Costa Oliveira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Flaviano Dos Santos Martins
- Laboratory of Biotherapeutics Agents, Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Eric Martens
- University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Patrick Varga-Weisz
- International Laboratory for Microbiome Host Epigenetics, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, SP, 13083-862, Brazil
- School of Life Sciences, University of Essex, Colchester, CO4 3SQ, UK
- São Paulo Excellence Chair, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, SP, 13083-862, Brazil
| | - Marco Aurélio Ramirez Vinolo
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, SP, 13083-862, Brazil.
- International Laboratory for Microbiome Host Epigenetics, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, SP, 13083-862, Brazil.
- Experimental Medicine Research Cluster, Campinas, SP, 13083-862, Brazil.
- Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas, SP, 13083-864, Brazil.
| |
Collapse
|
28
|
Golpour F, Abbasi-Alaei M, Babaei F, Mirzababaei M, Parvardeh S, Mohammadi G, Nassiri-Asl M. Short chain fatty acids, a possible treatment option for autoimmune diseases. Biomed Pharmacother 2023; 163:114763. [PMID: 37105078 DOI: 10.1016/j.biopha.2023.114763] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/09/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023] Open
Abstract
Gut microbiota can interact with the immune system through its metabolites. Short-chain fatty acids (SCFAs), as one of the most abundant metabolites of the resident gut microbiota play an important role in this crosstalk. SCFAs (acetate, propionate, and butyrate) regulate nearly every type of immune cell in the gut's immune cell repertoire regarding their development and function. SCFAs work through several pathways to impose protection towards colonic health and against local or systemic inflammation. Additionally, SCFAs play a role in the regulation of immune or non-immune pathways that can slow the development of autoimmunity either systematically or in situ. The present study aims to summarize the current knowledge on the immunomodulatory roles of SCFAs and the association between the SCFAs and autoimmune disorders such as celiac disease (CD), inflammatory bowel disease (IBD), rheumatoid arthritis (RA), multiple sclerosis (MS), systemic lupus erythematosus (SLE), type 1 diabetes (T1D) and other immune-mediated diseases, uncovering a brand-new therapeutic possibility to prevent or treat autoimmunity.
Collapse
Affiliation(s)
- Faezeh Golpour
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrsa Abbasi-Alaei
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Babaei
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Mirzababaei
- Department of Clinical Biochemistry, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Siavash Parvardeh
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghazaleh Mohammadi
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran; Department of Molecular Medicine, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran.
| | - Marjan Nassiri-Asl
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
29
|
Kim CH. Complex regulatory effects of gut microbial short-chain fatty acids on immune tolerance and autoimmunity. Cell Mol Immunol 2023; 20:341-350. [PMID: 36854801 PMCID: PMC10066346 DOI: 10.1038/s41423-023-00987-1] [Citation(s) in RCA: 109] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 02/10/2023] [Indexed: 03/02/2023] Open
Abstract
Immune tolerance deletes or suppresses autoreactive lymphocytes and is established at multiple levels during the development, activation and effector phases of T and B cells. These mechanisms are cell-intrinsically programmed and critical in preventing autoimmune diseases. We have witnessed the existence of another type of immune tolerance mechanism that is shaped by lifestyle choices, such as diet, microbiome and microbial metabolites. Short-chain fatty acids (SCFAs) are the most abundant microbial metabolites in the colonic lumen and are mainly produced by the microbial fermentation of prebiotics, such as dietary fiber. This review focuses on the preventive and immunomodulatory effects of SCFAs on autoimmunity. The tissue- and disease-specific effects of dietary fiber, SCFAs and SCFA-producing microbes on major types of autoimmune diseases, including type I diabetes, multiple sclerosis, rheumatoid arthritis and lupus, are discussed. Additionally, their key regulatory mechanisms for lymphocyte development, tissue barrier function, host metabolism, immunity, autoantibody production, and inflammatory effector and regulatory lymphocytes are discussed. The shared and differential effects of SCFAs on different types and stages of autoimmune diseases are discussed.
Collapse
Affiliation(s)
- Chang H Kim
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI, 48109, USA.
- Mary H. Weiser Food Allergy Center, Center for Gastrointestinal Research, and Rogel Center for Cancer Research, University of Michigan School of Medicine, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
30
|
Zhao X, Shen L, Zheng J, Zhu H, Li L, Shi H, Chen Z, Li Q. C1q Confers Protection Against Cryptococcal Lung Infection by Alleviating Inflammation and Reducing Cryptococcal Virulence. Open Forum Infect Dis 2023; 10:ofad151. [PMID: 37089772 PMCID: PMC10117377 DOI: 10.1093/ofid/ofad151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/20/2023] [Indexed: 04/25/2023] Open
Abstract
Background To define the role of C1qa in host defense against Cryptococcus neoformans lung infection, we investigated its susceptibility to cryptococcal lung infection in mice deficient in complement factor C1qa (C1qa-/- ). Methods We established a wild-type (WT) and C1qa-deficient murine inhalation model with C. neoformans. We compared the host survival rate, inflammatory responses, and pathogenicity of C. neoformans during the infection course between WT and C1qa-/- mice. Results The mortality rate of C1qa-deficient mice was significantly higher than that of wild-type mice. The increased formation of Titan cells in the lungs was associated with augmented inflammation in C1qa-deficient mice. The capacity of lung homogenate supernatant from C1qa-deficient mice to induce Titan formation in vitro was greater compared with that of wild-type mice. The C. neoformans isolated from the lungs of infected C1qa-deficient mice was more resistant to macrophage killing in vitro and caused significantly higher mortality after administration to mice compared with that isolated from WT mice. Conclusions These findings reveal a novel role of C1qa in host defense against C. neoformans infection by regulating host inflammation and pathogen virulence and provide new insight into the C1q-mediated lung environment underlying the transition from yeast to Titan cell.
Collapse
Affiliation(s)
| | | | | | - Haiyan Zhu
- Department of Biological Medicines & Shanghai Engineering Research Center of ImmunoTherapeutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Li Li
- Laboratory of Mycology, Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Hong Shi
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhongqing Chen
- Correspondence: Zhongqing Chen, MD, PhD, Department of Pathology, Huashan Hospital, Fudan University, 12 Wulumuqi Zhong Road, Shanghai, 200040, China (); Qian Li, Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, 12 Wulumuqi Zhong Road, Shanghai, 200040, China ()
| | - Qian Li
- Correspondence: Zhongqing Chen, MD, PhD, Department of Pathology, Huashan Hospital, Fudan University, 12 Wulumuqi Zhong Road, Shanghai, 200040, China (); Qian Li, Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, 12 Wulumuqi Zhong Road, Shanghai, 200040, China ()
| |
Collapse
|
31
|
Guo K, Li J, Li X, Huang J, Zhou Z. Emerging trends and focus on the link between gut microbiota and type 1 diabetes: A bibliometric and visualization analysis. Front Microbiol 2023; 14:1137595. [PMID: 36970681 PMCID: PMC10033956 DOI: 10.3389/fmicb.2023.1137595] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/21/2023] [Indexed: 03/11/2023] Open
Abstract
OBJECTIVE To conduct the first thorough bibliometric analysis to evaluate and quantify global research regarding to the gut microbiota and type 1 diabetes (T1D). METHODS A literature search for research studies on gut microbiota and T1D was conducted using the Web of Science Core Collection (WoSCC) database on 24 September 2022. VOSviewer software and the packages Bibliometrix R and ggplot used in RStudio were applied to perform the bibliometric and visualization analysis. RESULTS A total of 639 publications was extracted using the terms "gut microbiota" and "type 1 diabetes" (and their synonyms in MeSH). Ultimately, 324 articles were included in the bibliometric analysis. The United States and European countries are the main contributors to this field, and the top 10 most influential institutions are all based in the United States, Finland and Denmark. The three most influential researchers in this field are Li Wen, Jorma Ilonen and Mikael Knip. Historical direct citation analysis showed the evolution of the most cited papers in the field of T1D and gut microbiota. Clustering analysis defined seven clusters, covering the current main topics in both basic and clinical research on T1D and gut microbiota. The most commonly found high-frequency keywords in the period from 2018 to 2021 were "metagenomics," "neutrophils" and "machine learning." CONCLUSION The application of multi-omics and machine learning approaches will be a necessary future step for better understanding gut microbiota in T1D. Finally, the future outlook for customized therapy toward reshaping gut microbiota of T1D patients remains promising.
Collapse
Affiliation(s)
- Keyu Guo
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jiaqi Li
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xia Li
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Juan Huang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
- Section of Endocrinology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, United States
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
32
|
Qin YQ, Wang LY, Yang XY, Xu YJ, Fan G, Fan YG, Ren JN, An Q, Li X. Inulin: properties and health benefits. Food Funct 2023; 14:2948-2968. [PMID: 36876591 DOI: 10.1039/d2fo01096h] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Inulin, a soluble dietary fiber, is widely found in more than 36 000 plant species as a reserve polysaccharide. The primary sources of inulin, include Jerusalem artichoke, chicory, onion, garlic, barley, and dahlia, among which Jerusalem artichoke tubers and chicory roots are often used as raw materials for inulin production in the food industry. It is universally acknowledged that inulin as a prebiotic has an outstanding effect on the regulation of intestinal microbiota via stimulating the growth of beneficial bacteria. In addition, inulin also exhibits excellent health benefits in regulating lipid metabolism, weight loss, lowering blood sugar, inhibiting the expression of inflammatory factors, reducing the risk of colon cancer, enhancing mineral absorption, improving constipation, and relieving depression. In this review paper, we attempt to present an exhaustive overview of the function and health benefits of inulin.
Collapse
Affiliation(s)
- Yu-Qing Qin
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, 430070, China.
| | - Liu-Yan Wang
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, 430070, China.
| | - Xin-Yu Yang
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, 430070, China.
| | - Yi-Jie Xu
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, 430070, China.
| | - Gang Fan
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, 430070, China.
| | - Yan-Ge Fan
- Institute of Chemistry Co. Ltd, Henan Academy of Sciences, Zhengzhou 450002, China
| | - Jing-Nan Ren
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, 430070, China.
| | - Qi An
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, 430070, China.
| | - Xiao Li
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, 430070, China.
| |
Collapse
|
33
|
Zou J, Ngo VL, Wang Y, Wang Y, Gewirtz AT. Maternal fiber deprivation alters microbiota in offspring, resulting in low-grade inflammation and predisposition to obesity. Cell Host Microbe 2023; 31:45-57.e7. [PMID: 36493784 PMCID: PMC9850817 DOI: 10.1016/j.chom.2022.10.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/30/2022] [Accepted: 10/21/2022] [Indexed: 12/14/2022]
Abstract
Diet, especially fiber content, plays an important role in sustaining a healthy gut microbiota, which promotes intestinal and metabolic health. Another major determinant of microbiota composition is the specific microbes that are acquired early in life, especially maternally. Consequently, we hypothesized that alterations in maternal diet during lactation might lastingly impact the microbiota composition and health status of offspring. Accordingly, we observed that feeding lactating dams low-fiber diets resulted in offspring with lasting microbiota dysbiosis, including reduced taxonomic diversity and increased abundance of Proteobacteria species, despite the offspring consuming a fiber-rich diet. Such microbiota dysbiosis was associated with increased encroachment of bacteria into inner mucus layers, low-grade gut inflammation, and a dramatically exacerbated microbiota-dependent increase in adiposity following exposure to an obesogenic diet. Thus, maternal diet is a critical long-lasting determinant of offspring microbiota composition, impacting gut health and proneness to obesity and its associated disorders.
Collapse
Affiliation(s)
- Jun Zou
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA.
| | - Vu L Ngo
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Yanling Wang
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Yadong Wang
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Andrew T Gewirtz
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA.
| |
Collapse
|
34
|
Lu K, He Y, Wu C, Bao J. Moderate Hyperglycemia-Preventive Effect and Mechanism of Action of Periplaneta americana Oligosaccharides in Streptozotocin-Induced Diabetic Mice. Nutrients 2022; 14:nu14214620. [PMID: 36364880 PMCID: PMC9654025 DOI: 10.3390/nu14214620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/27/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
Periplaneta americana is a kind of medicinal and edible insect, and its oligosaccharides (PAOS) have been reported to exert anti-inflammatory effects by regulating immunity, reducing oxidative stress, and meliorating gut microbiota. We hypothesized PAOS might benefit experimental diabetes mellitus (DM), an inflammatory disease coordinated by both innate and adaptive immunity. This study aimed to evaluate the effect of PAOS on glycemia and its potential mechanisms. Mice model of diabetes was established, and then the potential effects of PAOS was tested in vivo. Here, we found that PAOS triggered a moderate hyperglycemia-preventive effect on DM mice, showing markedly alleviated symptoms of DM, reduced blood glucose, and meliorated functions of liver and pancreas β cell. Deciphering the underlying mechanism of PAOS-improving diabetes, the results revealed that PAOS downregulated the blood glucose level by activating PI3K/AKT/mTOR and Keap/Nrf2/HO-1 pathways, meanwhile inhibiting TLR4/MAPK/NF-κB, Beclin1/LC3, and NLRP3/caspase1 pathways in vivo. Furthermore, analyses of the microbial community intriguingly exhibited that PAOS promoted the communities of bacteria producing short-chain fatty acids (SCFAs), whereas attenuating lipopolysaccharides (LPS)-producing ones that favored inflammatory tolerance. Collectively, balancing the intestinal bacterial communities by PAOS, which favored anabolism but suppressed inflammatory responses, contributed substantially to the glycemia improvement of PAOS in DM mice. Accordingly, PAOS might function as complementary and alternative medicine for DM.
Collapse
Affiliation(s)
- Kaimin Lu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
- Pharmacy Research Center, Binzhou Medical University, Yantai 264003, China
| | - Yufei He
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Chuanfang Wu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
- Correspondence: (C.W.); (J.B.); Tel.: +86-28-8541-5171 (J.B.)
| | - Jinku Bao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
- Correspondence: (C.W.); (J.B.); Tel.: +86-28-8541-5171 (J.B.)
| |
Collapse
|
35
|
Xiong RG, Zhou DD, Wu SX, Huang SY, Saimaiti A, Yang ZJ, Shang A, Zhao CN, Gan RY, Li HB. Health Benefits and Side Effects of Short-Chain Fatty Acids. Foods 2022; 11:2863. [PMID: 36140990 PMCID: PMC9498509 DOI: 10.3390/foods11182863] [Citation(s) in RCA: 160] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 12/12/2022] Open
Abstract
The gut microbiota and their metabolites could play an important role in health and diseases of human beings. Short-chain fatty acids (SCFAs) are mainly produced by gut microbiome fermentation of dietary fiber and could also be produced by bacteria of the skin and vagina. Acetate, propionate, and butyrate are three major SCFAs, and their bioactivities have been widely studied. The SCFAs have many health benefits, such as anti-inflammatory, immunoregulatory, anti-obesity, anti-diabetes, anticancer, cardiovascular protective, hepatoprotective, and neuroprotective activities. This paper summarizes health benefits and side effects of SCFAs with a special attention paid to the mechanisms of action. This paper provides better support for people eating dietary fiber as well as ways for dietary fiber to be developed into functional food to prevent diseases.
Collapse
Affiliation(s)
- Ruo-Gu Xiong
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Dan-Dan Zhou
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Si-Xia Wu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Si-Yu Huang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Adila Saimaiti
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Zhi-Jun Yang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Ao Shang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Cai-Ning Zhao
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Ren-You Gan
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science & Technology Center, Chengdu 610213, China
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| |
Collapse
|
36
|
Fettig NM, Robinson HG, Allanach JR, Davis KM, Simister RL, Wang EJ, Sharon AJ, Ye J, Popple SJ, Seo JH, Gibson DL, Crowe SA, Horwitz MS, Osborne LC. Inhibition of Th1 activation and differentiation by dietary guar gum ameliorates experimental autoimmune encephalomyelitis. Cell Rep 2022; 40:111328. [PMID: 36103823 DOI: 10.1016/j.celrep.2022.111328] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 06/29/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022] Open
Abstract
Dietary fibers are potent modulators of immune responses that can restrain inflammation in multiple disease contexts. However, dietary fibers encompass a biochemically diverse family of carbohydrates, and it remains unknown how individual fiber sources influence immunity. In a direct comparison of four different high-fiber diets, we demonstrate a potent ability of guar gum to delay disease and neuroinflammation in experimental autoimmune encephalomyelitis, a T cell-mediated mouse model of multiple sclerosis. Guar gum-specific alterations to the microbiota are limited, and disease protection appears to be independent of fiber-induced increases in short-chain fatty acid levels or regulatory CD4+ T cells. Instead, CD4+ T cells of guar gum-supplemented mice are less encephalitogenic due to reduced activation, proliferation, Th1 differentiation, and altered migratory potential. These findings reveal specificity in the host response to fiber sources and define a pathway of fiber-induced immunomodulation that protects against pathologic neuroinflammation.
Collapse
Affiliation(s)
- Naomi M Fettig
- Department of Microbiology & Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Hannah G Robinson
- Department of Microbiology & Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Jessica R Allanach
- Department of Microbiology & Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Katherine M Davis
- Department of Botany, University of British Columba, Vancouver, BC V6T 1Z3, Canada
| | - Rachel L Simister
- Department of Microbiology & Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Elsie J Wang
- Department of Microbiology & Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Andrew J Sharon
- Department of Microbiology & Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Jiayu Ye
- Department of Biology, University of British Columbia-Okanagan, Kelowna, BC V1V 1V7, Canada
| | - Sarah J Popple
- Department of Microbiology & Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Jung Hee Seo
- Department of Microbiology & Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Deanna L Gibson
- Department of Biology, University of British Columbia-Okanagan, Kelowna, BC V1V 1V7, Canada
| | - Sean A Crowe
- Department of Microbiology & Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Marc S Horwitz
- Department of Microbiology & Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Lisa C Osborne
- Department of Microbiology & Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
37
|
Majumdar S, Lin Y, Bettini ML. Host-microbiota interactions shaping T-cell response and tolerance in type 1 diabetes. Front Immunol 2022; 13:974178. [PMID: 36059452 PMCID: PMC9434376 DOI: 10.3389/fimmu.2022.974178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/25/2022] [Indexed: 11/29/2022] Open
Abstract
Type-1 Diabetes (T1D) is a complex polygenic autoimmune disorder involving T-cell driven beta-cell destruction leading to hyperglycemia. There is no cure for T1D and patients rely on exogenous insulin administration for disease management. T1D is associated with specific disease susceptible alleles. However, the predisposition to disease development is not solely predicted by them. This is best exemplified by the observation that a monozygotic twin has just a 35% chance of developing T1D after their twin's diagnosis. This makes a strong case for environmental triggers playing an important role in T1D incidence. Multiple studies indicate that commensal gut microbiota and environmental factors that alter their composition might exacerbate or protect against T1D onset. In this review, we discuss recent literature highlighting microbial species associated with T1D. We explore mechanistic studies which propose how some of these microbial species can modulate adaptive immune responses in T1D, with an emphasis on T-cell responses. We cover topics ranging from gut-thymus and gut-pancreas communication, microbial regulation of peripheral tolerance, to molecular mimicry of islet antigens by microbial peptides. In light of the accumulating evidence on commensal influences in neonatal thymocyte development, we also speculate on the link between molecular mimicry and thymic selection in the context of T1D pathogenesis. Finally, we explore how these observations could inform future therapeutic approaches in this disease.
Collapse
Affiliation(s)
- Shubhabrata Majumdar
- Immunology Graduate Program, Baylor College of Medicine, Houston, TX, United States
- Department of Pathology, University of Utah, Salt Lake City, UT, United States
| | - Yong Lin
- Immunology Graduate Program, Baylor College of Medicine, Houston, TX, United States
- Department of Pathology, University of Utah, Salt Lake City, UT, United States
| | - Matthew L. Bettini
- Department of Pathology, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
38
|
Oliveira B, Falkenhain K, Little JP. Sugar-Free Dark Chocolate Consumption Results in Lower Blood Glucose in Adults With Diabetes. Nutr Metab Insights 2022; 15:11786388221076962. [PMID: 35153489 PMCID: PMC8832613 DOI: 10.1177/11786388221076962] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/11/2022] [Indexed: 01/29/2023] Open
Abstract
Diabetes is characterized by an impaired ability to appropriately control blood glucose. Postprandial hyperglycemia, in particular, is associated with complications in people with type 1 diabetes (T1D) and type 2 diabetes (T2D). The objective of this study was to determine how sugar-free dark chocolate sweetened with stevia, erythritol, and inulin impacts postprandial blood glucose levels in individuals with diabetes compared to conventional dark chocolate. In a randomized crossover design, 13 participants consumed 1 bar (34 g) of sugar-free dark chocolate or 1 bar (34 g) of conventional dark chocolate with glucose levels measured before and throughout a 120-min postprandial period. The incremental area under the curve (iAUC) was lower after the consumption of sugar-free dark chocolate (−65%, P = .04) compared to conventional dark chocolate. No significant differences between chocolates were found for peak glucose value above baseline, the total area under the curve, or peak glucose values. Our results suggest that a sugar-free dark chocolate bar sweetened with stevia, erythritol and inulin led to a lower blood glucose iAUC compared to the conventional dark chocolate bar in people with diabetes, whilst longer-term effects on glucose control remain to be determined.
Collapse
Affiliation(s)
- Barbara Oliveira
- School of Health and Exercise Sciences, University of British Columbia, Kelowna, Canada
| | - Kaja Falkenhain
- School of Health and Exercise Sciences, University of British Columbia, Kelowna, Canada
| | - Jonathan P Little
- School of Health and Exercise Sciences, University of British Columbia, Kelowna, Canada
| |
Collapse
|
39
|
|
40
|
Liu Y, Huang H, Xu Z, Xue Y, Zhang D, Zhang Y, Li W, Li X. Fucoidan protects pancreas and improves glucose metabolism through inhibiting inflammation and endoplasmic reticulum stress in T2DM rats. Food Funct 2022; 13:2693-2709. [DOI: 10.1039/d1fo04164a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
It is important to maintain the normal function of pancreas in the prevention and intervention of type 2 diabetes mellitus (T2DM). This study was undertaken to explore the protective effects...
Collapse
|
41
|
Chen W, Pang Y. Metabolic Syndrome and PCOS: Pathogenesis and the Role of Metabolites. Metabolites 2021; 11:metabo11120869. [PMID: 34940628 PMCID: PMC8709086 DOI: 10.3390/metabo11120869] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/29/2021] [Accepted: 12/09/2021] [Indexed: 12/12/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is one of the most common endocrine diseases among women of reproductive age and is associated with many metabolic manifestations, such as obesity, insulin resistance (IR) and hyperandrogenism. The underlying pathogenesis of these metabolic symptoms has not yet been fully elucidated. With the application of metabolomics techniques, a variety of metabolite changes have been observed in the serum and follicular fluid (FF) of PCOS patients and animal models. Changes in metabolites result from the daily diet and occur during uncommon physiological routines. However, some of these metabolite changes may provide evidence to explain possible mechanisms and new approaches for prevention and therapy. This article reviews the pathogenesis of PCOS metabolic symptoms and the relationship between metabolites and the pathophysiology of PCOS. Furthermore, the potential clinical application of some specific metabolites will be discussed.
Collapse
Affiliation(s)
- Weixuan Chen
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China;
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
- Research Units of Comprehensive Diagnosis and Treatment of Oocyte Maturation Arrest, Chinese Academy of Medical Sciences, Beijing 100191, China
| | - Yanli Pang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China;
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
- Research Units of Comprehensive Diagnosis and Treatment of Oocyte Maturation Arrest, Chinese Academy of Medical Sciences, Beijing 100191, China
- Correspondence:
| |
Collapse
|