1
|
Felicianna, Lo EKK, Chen C, Ismaiah MJ, Zhang F, Leung HKM, El-Nezami H. Alpha-aminobutyric acid ameliorates diet-induced metabolic dysfunction-associated steatotic liver disease (MASLD) progression in mice via enhancing AMPK/SIRT1 pathway and modulating the gut-liver axis. J Nutr Biochem 2025; 140:109885. [PMID: 40015656 DOI: 10.1016/j.jnutbio.2025.109885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/12/2024] [Accepted: 02/21/2025] [Indexed: 03/01/2025]
Abstract
Alpha-aminobutyric acid (ABA) is a nonproteinogenic amino acid, a metabolite which could be generated from the metabolism of methionine, threonine, serine and glycine or as a gut-microbiome-derived metabolite. Changes in ABA levels have been embroiled in metabolic dysfunction-associated steatotic liver disease (MASLD) intervention studies, but their relation to MASLD pathogenesis remains unclear. Hence, this present study aimed to investigate the effect of oral ABA supplementation on the progression of a high fat/high cholesterol diet (HFD) induced MASLD mice model. ABA was found to remodel the gut microbiome composition and ameliorate MASLD parameters in HFD-fed mice. ABA mitigated HFD-induced gain in liver weight, hepatic steatosis, insulin resistance, serum and hepatic triglyceride levels, and liver cholesterol levels. Modulation of lipid metabolism was observed in the liver, in which expression of proteins and/or genes involved in de novo lipogenesis were suppressed, while those involved in fatty acid oxidation and autophagy were upregulated together with cellular antioxidant capacity, in addition to the enhancement of the AMPK/SIRT1 pathway. ABA reshaped the gut composition by enriching nine bacterial species, including Helicobacter hepaticus, Desulfovibrio sp. G11, Parabacteroides distasonis, and Bacteroides fragilis, while diminishing the abundance of 16 species, which included four Helicobacter species. KEGG pathway analysis of microbial functions found that ABA impeded secondary bile acid biosynthesis - which was reflected in the faecal BA composition analysis. Notably, ABA also inhibited ileal FXR-Fgf15 signaling, allowing for increased hepatic Cyp7a1 expression to eliminate cholesterol buildup in the liver. Overall, our findings indicate that ABA could be used as a promising therapeutic approach for the intervention of MASLD.
Collapse
Affiliation(s)
- Felicianna
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Emily Kwun Kwan Lo
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Congjia Chen
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China
| | | | - Fangfei Zhang
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China
| | | | - Hani El-Nezami
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China; Institute of Public Health and Clinical Nutrition, School of Medicine, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
2
|
Liu Q, Tang X, Yang B, Hao T, Han S, Xu X, Zhao Z, Lai W, Li Y, Du J, Mai K, Ai Q. Autophagy and endoplasmic reticulum stress-related protein homeostasis links palmitic acid to hepatic lipotoxicity in zebrafish (Danio rerio), counteracted by linoleic acid. Free Radic Biol Med 2025; 233:148-161. [PMID: 40089081 DOI: 10.1016/j.freeradbiomed.2025.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/24/2025] [Accepted: 03/12/2025] [Indexed: 03/17/2025]
Abstract
Saturated fatty acids (SFAs) are the primary contributors to hepatic lipotoxic injuries accompanied by the accumulation of hepatic insoluble protein inclusions that are composed of ubiquitinated proteins and p62, but the role of these inclusions in the SFA-induced hepatic lipotoxic injuries and their regulatory mechanisms are incompletely understood. In this study, we demonstrated that palmitic acid (PA), a dietary SFA, induced aberrant accumulation of hepatic insoluble protein inclusions, leading to hepatic lipotoxic injuries in zebrafish. Mechanistically, the accumulation of hepatic insoluble protein inclusions and the subsequent lipotoxic injuries induced by PA were attributed to reduced autophagy activity and increased endoplasmic reticulum (ER) stress. In addition, the upregulation of p62 by the ER stress response factor XBP1s and ATF4 further exacerbated PA-induced accumulation of hepatic insoluble protein inclusions and subsequent lipotoxic injuries. Importantly, the ω-6 PUFA linoleic acid (LA) attenuated PA-induced accumulation of hepatic insoluble protein inclusions and subsequent lipotoxic injuries by improving defective autophagy and reducing ER stress induced by PA. Overall, the present study provides new mechanisms by which SFAs and ω-6 PUFA influence hepatic lipotoxic injuries. These findings not only advance the understanding of hepatic lipotoxic injuries induced by SFAs, but also provide new insights for optimizing the rational substitution of fish oil by vegetable oils in aquaculture and the balance of fatty acid intake in human diets.
Collapse
Affiliation(s)
- Qiangde Liu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, People's Republic of China
| | - Xiao Tang
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Bingyuan Yang
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, People's Republic of China
| | - Tingting Hao
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, People's Republic of China
| | - Shangzhe Han
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, People's Republic of China
| | - Xiang Xu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, People's Republic of China
| | - Zengqi Zhao
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, People's Republic of China
| | - Wencong Lai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, People's Republic of China
| | - Yueru Li
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, People's Republic of China
| | - Jianlong Du
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, People's Republic of China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, People's Republic of China
| | - Qinghui Ai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, People's Republic of China.
| |
Collapse
|
3
|
Lolescu BM, Furdui-Lința AV, Ilie CA, Sturza A, Zară F, Muntean DM, Blidișel A, Crețu OM. Adipose tissue as target of environmental toxicants: focus on mitochondrial dysfunction and oxidative inflammation in metabolic dysfunction-associated steatotic liver disease. Mol Cell Biochem 2025; 480:2863-2879. [PMID: 39704874 PMCID: PMC12048461 DOI: 10.1007/s11010-024-05165-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 11/10/2024] [Indexed: 12/21/2024]
Abstract
Obesity, diabetes, and their cardiovascular and hepatic comorbidities are alarming public health issues of the twenty-first century, which share mitochondrial dysfunction, oxidative stress, and chronic inflammation as common pathophysiological mechanisms. An increasing body of evidence links the combined exposure to multiple environmental toxicants with the occurrence and severity of metabolic diseases. Endocrine disruptors (EDs) are ubiquitous chemicals or mixtures with persistent deleterious effects on the living organisms beyond the endocrine system impairment; in particular, those known as metabolism-disrupting chemicals (MDCs), increase the risk of the metabolic pathologies in adult organism or its progeny. Being largely lipophilic, MDCs mainly target the adipose tissue and elicit mitochondrial dysfunction by interfering with mitochondrial bioenergetics, biogenesis, dynamics and/or other functions. Plastics, when broken down into micro- and nano-plastics (MNPs), have been detected in several human tissues, including the liver. The harmful interplay between inflammatory and redox processes, which mutually interact in a positive feed-back loop, hence the term oxidative inflammation ("OxInflammation"), occurs both at systemic and organ level. In both liver and adipose tissue, oxinflammation contributes to the progression of the metabolic dysfunction-associated steatotic liver disease (MASLD). Moreover, it has been reported that individuals with MASLD may be more susceptible to the harmful effects of toxicants (mainly, those related to mitochondria) and that chronic exposure to EDs/MDCs or MNPs may play a role in the development of the disease. While liver has been systematically investigated as major target organ for ambient chemicals, surprisingly, less information is available in the literature with respect to the adipose tissue. In this narrative review, we delve into the current literature on the most studied environmental toxicants (bisphenols, polychlorinated biphenyls, phthalates, tolylfluanid and tributyltin, per-fluoroalkyl and polyfluoroalkyl substances, heavy metals and MNPs), summarize their deleterious effects on adipose tissue, and address the role of dysregulated mitochondria and oxinflammation, particularly in the setting of MASLD.
Collapse
Affiliation(s)
- Bogdan M Lolescu
- Doctoral School Medicine, Center for Translational Research and Systems Medicine, "Victor Babeș" University of Medicine and Pharmacy of Timișoara, Timișoara, Romania
- Center for Translational Research and Systems Medicine, "Victor Babeș" University of Medicine and Pharmacy of Timișoara, Timișoara, Romania
| | - Adina V Furdui-Lința
- Doctoral School Medicine, Center for Translational Research and Systems Medicine, "Victor Babeș" University of Medicine and Pharmacy of Timișoara, Timișoara, Romania
- Center for Translational Research and Systems Medicine, "Victor Babeș" University of Medicine and Pharmacy of Timișoara, Timișoara, Romania
- Department III Functional Sciences-Chair of Pathophysiology, "Victor Babeș" University of Medicine and Pharmacy of Timișoara, Timișoara, Romania
| | - Cosmin A Ilie
- Center for Translational Research and Systems Medicine, "Victor Babeș" University of Medicine and Pharmacy of Timișoara, Timișoara, Romania
- Department III Functional Sciences-Chair of Public Health & Sanitary Management, "Victor Babeș" University of Medicine and Pharmacy of Timișoara, Timișoara, Romania
| | - Adrian Sturza
- Center for Translational Research and Systems Medicine, "Victor Babeș" University of Medicine and Pharmacy of Timișoara, Timișoara, Romania
- Department III Functional Sciences-Chair of Pathophysiology, "Victor Babeș" University of Medicine and Pharmacy of Timișoara, Timișoara, Romania
| | - Flavia Zară
- Department II Microscopic Morphology-Chair of Histology, "Victor Babeș" University of Medicine and Pharmacy of Timișoara, Timișoara, Romania
- Department of Pathology, Timisoara Municipal Emergency Clinical Hospital, Timișoara, Romania
| | - Danina M Muntean
- Center for Translational Research and Systems Medicine, "Victor Babeș" University of Medicine and Pharmacy of Timișoara, Timișoara, Romania
- Department III Functional Sciences-Chair of Pathophysiology, "Victor Babeș" University of Medicine and Pharmacy of Timișoara, Timișoara, Romania
| | - Alexandru Blidișel
- Department of Surgery I-Clinic of Surgical Semiotics & Thoracic Surgery, Center for Hepato-Biliary and Pancreatic Surgery, "Victor Babeș" University of Medicine and Pharmacy of Timișoara, Eftimie Murgu Sq., No.2, 300041, Timișoara, Romania.
| | - Octavian M Crețu
- Department of Surgery I-Clinic of Surgical Semiotics & Thoracic Surgery, Center for Hepato-Biliary and Pancreatic Surgery, "Victor Babeș" University of Medicine and Pharmacy of Timișoara, Eftimie Murgu Sq., No.2, 300041, Timișoara, Romania
| |
Collapse
|
4
|
Jiang H, Liu J, Wang Y, Liao Z, Xiao X, Ding Z, Huang X, Li W, Wang Z, Liang J, Xu J, Hu X, Mao H, Liu S, Chen B. The landscape of RNA 5-methylcytosine modification during chicken embryonic myogenesis. Poult Sci 2025; 104:105109. [PMID: 40188621 PMCID: PMC12002773 DOI: 10.1016/j.psj.2025.105109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/09/2025] [Accepted: 03/30/2025] [Indexed: 04/08/2025] Open
Abstract
Skeletal muscle is a vital protein source for human diets, making its development a significant focus in poultry research. This study examines the effects of RNA 5-methylcytosine (m5C) modifications on chicken skeletal muscle development at two critical embryonic stages: before myoblast differentiation (E10) and after differentiation (E19). By employing MeRIP-seq, we analyzed the dynamic distribution of m5C modifications within the leg muscle transcriptome, uncovering notable differences in modification states between these two stages. Our results indicate that m5C modifications are widespread in chicken skeletal muscle transcriptome and present a unique distribution pattern. Unlike N6-methyladenosine modifications, which typically show a negative correlation with RNA expression, m5C modifications exhibited a weak positive correlation in our findings. Additionally, we identified multiple m5C peaks on important epigenetic regulators, including DNMT3A, DNMT3B, DNMT1, TET3, and METTL3. This observation suggests that RNA m5C may interact with these genes to jointly influence chicken skeletal muscle development. Furthermore, we identified key genes linked to m5C peaks that are enriched in pathways associated with cell cycle regulation, muscle growth, and lipid metabolism. This study provides valuable insights into the role of m5C modifications in the development of chicken skeletal muscle and highlights their potential for coordinating myogenesis and lipid metabolic processes.
Collapse
Affiliation(s)
- Hongxia Jiang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, China; Poultry Institute, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jing Liu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, China; Poultry Institute, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yuxiang Wang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, China; Poultry Institute, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Zurong Liao
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, China; Poultry Institute, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xiaoyun Xiao
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, China; Poultry Institute, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Zhenxvan Ding
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, China; Poultry Institute, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xvwen Huang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, China; Poultry Institute, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Wenwei Li
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, China; Poultry Institute, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Zikun Wang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jingzhan Liang
- Jiangxi Wangbeitu Taihe Silk Chicken Development Co., LTD, Ji'an, 343700, China
| | - Jiguo Xu
- Jiangxi Provincial Key Laboratory of Poultry Genetic Improvement, Nanchang, 330032, China
| | - Xiaolong Hu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, China; Poultry Institute, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Huirong Mao
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, China; Poultry Institute, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Sanfeng Liu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, China; Poultry Institute, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Biao Chen
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, China; Poultry Institute, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
5
|
Zhang J, Guo Y, Ji M, Lin S, Liu D, Chen Q. A comprehensive analysis of microRNA alteration in an ApoE(-/-) mice model of white adipose tissue injury induced by chronic intermittent hypoxia. Front Genet 2025; 16:1474223. [PMID: 40206502 PMCID: PMC11979184 DOI: 10.3389/fgene.2025.1474223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 02/26/2025] [Indexed: 04/11/2025] Open
Abstract
Background MicroRNAs (miRNAs) represent a class of noncoding small RNAs and are implicated in many diseases. However, the role of miRNA in obstructive sleep apnea (OSA)-induced white adipose tissue (WAT) dysfunction remains to be fully elucidated. Using miRNA sequencing (miRNA-seq), we uncovered the miRNA expression profiles in chronic intermittent hypoxia (CIH)-induced WAT dysfunction mice. Methods We established an apolipoprotein-deficient (ApoE-/-) CIH mouse model and identified differentially expressed miRNAs (DEmiRs) using miRNA-seq technology. With the help of Gene Ontology (GO) functional enrichment and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses, we determined the biological functions of these DEmiRs. In addition, RT-qPCR was performed for further evaluation of the sequencing data. Finally, we constructed a conserved negative correlation (CNC) network to expound the relationship between miRNA and target genes. Results Overall, 13 miRNAs were found to be upregulated and 18 miRNAs downregulated in the CIH-induced mouse model of WAT dysfunction. KEGG pathway analysis results indicated that the lysosome pathway participated in CIH-induced WAT dysfunction. Then, eight miRNAs were shortlisted for RT-qPCR validation. Based on the data, we chose these DEmiRs to construct a miRNA-mRNA regulatory network. Conclusion Overall, we identified 31 DEmiRs in the ApoE-/- CIH mouse model. Our findings may play a major role in explaining the pathophysiological mechanisms of WAT dysfunction induced by obstructive sleep apnea.
Collapse
Affiliation(s)
- Jinjie Zhang
- The Second Clinical Medical College, Fujian Medical University, Quanzhou, China
- The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Yaopeng Guo
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Meilin Ji
- The Second Clinical Medical College, Fujian Medical University, Quanzhou, China
- The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Shu Lin
- The Second Clinical Medical College, Fujian Medical University, Quanzhou, China
- The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Dexin Liu
- Department of Interventional Radiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Qingshi Chen
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| |
Collapse
|
6
|
Ji L, Jiang W, Huang J, Xu Y, Zhou L, Zhao Z, Jiang C. Association of Metabolic Score for Visceral Fat (METS-VF) with Gout Risk in Patients with Hypertension and Hyperuricemia: A Multicenter Study Based on the Chinese Population. Diabetes Metab Syndr Obes 2025; 18:761-779. [PMID: 40092053 PMCID: PMC11910919 DOI: 10.2147/dmso.s502675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 02/22/2025] [Indexed: 03/19/2025] Open
Abstract
Background Gout, a rheumatic disease precipitated by hyperuricemia, has become a global health concern due to its increasing prevalence, especially in China. Hyperuricemia and hypertension are significant risk factors for gout, and their coexistence amplifies this risk. Visceral adipose tissue (VAT) plays a crucial role in cardiometabolic diseases, and the metabolic score for visceral fat (METS-VF) is a non-invasive tool for estimating VAT and predicting cardiometabolic risk. Methods We conducted a multicenter cross-sectional study involving 8877 patients with hypertension and hyperuricemia from three Chinese medical centers between March 2021 and September 2024. We calculated the METS-VF and other obesity indices and analyzed their associations with gout risk using logistic regression models. The predictive performance of these indices was evaluated using receiver operating characteristic (ROC) curve analysis and clinical decision curve analysis (DCA). Results The METS-VF demonstrated a significant positive association with gout risk, independent of traditional risk factors. Each 1-standard deviation increase in the METS-VF was associated with an 82% higher odds of gout (OR=1.82, 95% CI: 1.62 to 2.03). The METS-VF outperformed other obesity indices in predicting gout risk, with a higher area under the ROC curve (AUC) value. DCA indicated that the METS-VF provided a significant net benefit across a wide range of threshold probabilities for predicting gout risk in both genders. Conclusion The METS-VF's robust association with gout risk in our multicenter study, independent of conventional risk factors, positions it as a potent predictor for gout. Further investigation is warranted to clarify the underlying mechanisms and the long-term predictive validity of the METS-VF across diverse populations.
Collapse
Affiliation(s)
- Liwei Ji
- Department of Anesthesiology, West China Hospital, Sichuan University & The Research Units of West China (2018RU012), Chinese Academy of Medical Sciences, Chengdu, People's Republic of China
| | - Wencai Jiang
- Department of Cardiology, Suining Central Hospital, Suining, People's Republic of China
| | - Jinglin Huang
- Department of Cardiology, People's Hospital of Leshan, Leshan, People's Republic of China
| | - Yan Xu
- Department of Anesthesiology, West China Hospital, Sichuan University & The Research Units of West China (2018RU012), Chinese Academy of Medical Sciences, Chengdu, People's Republic of China
| | - Li Zhou
- Department of Anesthesiology, West China Hospital, Sichuan University & The Research Units of West China (2018RU012), Chinese Academy of Medical Sciences, Chengdu, People's Republic of China
| | - Zeng Zhao
- Department of Cardiology, Jintang County First People's Hospital, Chengdu, People's Republic of China
| | - Chunling Jiang
- Department of Anesthesiology, West China Hospital, Sichuan University & The Research Units of West China (2018RU012), Chinese Academy of Medical Sciences, Chengdu, People's Republic of China
| |
Collapse
|
7
|
Wang S, Yin J, Liu Z, Liu X, Tian G, Xin X, Qin Y, Feng X. Metabolic disorders, inter-organ crosstalk, and inflammation in the progression of metabolic dysfunction-associated steatotic liver disease. Life Sci 2024; 359:123211. [PMID: 39491769 DOI: 10.1016/j.lfs.2024.123211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/20/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) represents a global health concern, affecting over 30 % of adults. It is a principal driver in the development of cirrhosis and hepatocellular carcinoma. The complex pathogenesis of MASLD involves an excessive accumulation of lipids, subsequently disrupting lipid metabolism and prompting inflammation within the liver. This review synthesizes the recent research progress in understanding the mechanisms contributing to MASLD progression, with particular emphasis on metabolic disorders and interorgan crosstalk. We highlight the molecular mechanisms linked to these factors and explore their potential as novel targets for pharmacological intervention. The insights gleaned from this article have important implications for both the prevention and therapeutic management of MASLD.
Collapse
Affiliation(s)
- Shendong Wang
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Junhao Yin
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Zhaojun Liu
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Xin Liu
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Ge Tian
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong 271000, China
| | - Xijian Xin
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Yiming Qin
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Xiujing Feng
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China.
| |
Collapse
|
8
|
Lee K, Kim HJ, Kim JY, Shim JJ, Lee JH. Synergistic Effect of Lactobacillus Mixtures and Lagerstroemia speciosa Leaf Extract in Reducing Obesity in High-Fat Diet-Fed Mice. BIOLOGY 2024; 13:1047. [PMID: 39765714 PMCID: PMC11673097 DOI: 10.3390/biology13121047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/06/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025]
Abstract
In this study, we describe the anti-obesity effects of a novel combination of Lactobacillus mixture (Lactobacillus curvatus HY7601 and Lactobacillus plantarum KY1032) and leaf extract of Lagerstroemia speciosa (L. speciosa) in mice. The administration of the probiotic mixture of HY7601 and KY1032 in combination with the leaf extract of L. speciosa significantly attenuated fat tissue formation and body weight gain in mice fed a high-fat diet. The white adipose fat mass, comprising the inguinal and epididymal fat pads, was most effectively reduced when the probiotic mixture and L. speciosa leaf extract was orally administered to the mice in combination. This combination also reduced the mRNA expression of adipogenic genes (those encoding CCAAT/enhancer-binding protein alpha, peroxisome proliferator-activated receptor gamma, and fatty acid-binding protein 4) in inguinal and epididymal white adipose tissue depots and the liver. Finally, the combination of reduced blood glucose concentrations regulated the insulin resistance of high-fat diet-fed obese mice. These findings provide insight into the mechanisms underlying the effect of this combination and suggest that using Lactobacillus mixture (HY7601 and KY1032) is as safe as microbial monotherapy, but more effective at preventing obesity.
Collapse
Affiliation(s)
| | | | - Joo Yun Kim
- R&BD Center, hy Co., Ltd., 22 Giheungdanji-ro 24 Beon-gil, Giheung-gu, Yongin-si 17086, Republic of Korea; (K.L.); (H.-J.K.); (J.J.S.)
| | | | - Jae Hwan Lee
- R&BD Center, hy Co., Ltd., 22 Giheungdanji-ro 24 Beon-gil, Giheung-gu, Yongin-si 17086, Republic of Korea; (K.L.); (H.-J.K.); (J.J.S.)
| |
Collapse
|
9
|
Felicianna, Lo EKK, Chen C, Ismaiah MJ, Zhang F, Leung HKM, El-Nezami H. Low-dose valine attenuates diet-induced metabolic dysfunction-associated steatotic liver disease (MASLD) in mice by enhancing leptin sensitivity and modulating the gut microbiome. Mol Metab 2024; 90:102059. [PMID: 39489290 PMCID: PMC11616088 DOI: 10.1016/j.molmet.2024.102059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/10/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024] Open
Abstract
OBJECTIVES Elevated circulating branched-chain amino acids (BCAAs) have been associated with obesity, insulin resistance, and MASLD. Nonetheless, BCAA supplementation has been shown to provide protective outcomes towards the intervention of MASLD. Currently, there is a lack of study towards the contribution of the BCAA: valine on MASLD. Herein, the effect of low-dose valine supplementation was investigated for its role in the progression of MASLD. METHODS C57BL/6J mice were fed a high-fat/high-cholesterol diet (HFD) to induce MASLD. Upon the establishment of MASLD, valine was supplemented via voluntary oral administration. Clinical and biochemical parameters associated with MASLD were measured, and molecular mechanism and gut microbiota modulation from the effect of valine were investigated. RESULTS Low-dose valine was found to attenuate the progression of MASLD, significantly reducing the gain in body weight, liver weight, and epididymal white adipose tissue (eWAT) weight, while also attenuating hyperglycemia and hyperleptinemia, and improving serum lipid profiles. Mechanistically, in the liver, genes related to hepatic lipogenesis and cholesterol biosynthesis were downregulated, while those associated with fatty acid oxidation, autophagy, and antioxidant capacity were upregulated, and AMPK pathway activity was enhanced. Liver and hypothalamic leptin resistance and inflammation were also attenuated, allowing better appetite control in mice fed a HFD and leading to reduced food intake. Additionally, metabolic flexibility in the eWAT was improved, and the gut microbiome was modulated by low-dose valine supplementation. CONCLUSION Low-dose valine supplementation attenuates MASLD by enhancing systemic leptin sensitivity and modulating the gut microbiome.
Collapse
Affiliation(s)
- Felicianna
- School of Biological Sciences, University of Hong Kong, Pokfulam 999077, Hong Kong, China
| | - Emily K K Lo
- School of Biological Sciences, University of Hong Kong, Pokfulam 999077, Hong Kong, China
| | - Congjia Chen
- School of Biological Sciences, University of Hong Kong, Pokfulam 999077, Hong Kong, China
| | - Marsena J Ismaiah
- School of Biological Sciences, University of Hong Kong, Pokfulam 999077, Hong Kong, China
| | - Fangfei Zhang
- School of Biological Sciences, University of Hong Kong, Pokfulam 999077, Hong Kong, China
| | - Hoi Kit Matthew Leung
- School of Biological Sciences, University of Hong Kong, Pokfulam 999077, Hong Kong, China
| | - Hani El-Nezami
- School of Biological Sciences, University of Hong Kong, Pokfulam 999077, Hong Kong, China; Institute of Public Health and Clinical Nutrition, School of Medicine, University of Eastern Finland, FI-70211 Kuopio, Finland.
| |
Collapse
|
10
|
Seifishahpar M, Kim JH, Parkman JK, Rhode A, Menikdiwela K, Zu Y, Scoggin S, Freeman L, Kalupahana NS, Moustaid-Moussa N. Mechanisms Mediating Tart Cherry and Fish Oil Metabolic Effects in Diet-Induced (C57BL/6J) and Genetically (TALYHO/Jng) Obese Mice. Nutrients 2024; 16:4179. [PMID: 39683572 DOI: 10.3390/nu16234179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/23/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND/OBJECTIVES Obesity is a major public health concern that increases the risk of chronic diseases. In obesity, adipose tissue undergoes remodeling, which is associated with chronic low-grade inflammation and disruption of its homeostatic mechanisms including endoplasmic reticulum (ER) function and autophagy. Fish oil (FO) and tart cherry (TC) have known anti-inflammatory properties. We hypothesized that while TC and FO individually decrease inflammation, their combined effects will be greater and will be either synergistic or additive in regulating inflammation and other adipose tissue functions. METHODS Here, we conducted gene expression analyses, using qRT-PCR, on gonadal white adipose tissues from a previous study where male and female C57BL/6J (B6) and TALLYHO/Jng (TH) mice were fed low fat (LF), high fat (HF), or HF diets supplemented with TC, FO, or TC + FO for 14 weeks from weaning. Data was statistically analyzed by one or two-way ANOVA, using GraphPad Prism. RESULTS HF diet increased adiposity and upregulated markers of inflammation, ER stress, and autophagy compared to the LF diet in both mouse models. While both TC and FO supplementation individually reduced the expression of inflammatory, ER stress, and autophagy markers on HF diet, their combination showed no consistent additive or synergistic effects. CONCLUSIONS Overall, our findings suggest that although TC and FO effectively mitigate inflammation in white adipose tissue, their combined use did not result in synergistic or additive effects of the two interventions.
Collapse
Affiliation(s)
- Maryam Seifishahpar
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA
- Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA
| | - Jung Han Kim
- Department of Biomedical Sciences, School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Jacaline K Parkman
- Department of Biomedical Sciences, School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Ana Rhode
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA
- Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA
| | - Kalhara Menikdiwela
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA
- Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA
| | - Yujiao Zu
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA
- Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA
| | - Shane Scoggin
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA
- Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA
| | - Logan Freeman
- Department of Biomedical Sciences, School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Nishan Sudheera Kalupahana
- Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Naima Moustaid-Moussa
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA
- Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA
- Institute for One Health Innovation, Texas Tech University, Lubbock, TX 79409, USA
- Texas Tech Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
11
|
Wang HD, Lv CL, Feng L, Guo JX, Zhao SY, Jiang P. The role of autophagy in brain health and disease: Insights into exosome and autophagy interactions. Heliyon 2024; 10:e38959. [PMID: 39524893 PMCID: PMC11546156 DOI: 10.1016/j.heliyon.2024.e38959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 09/27/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024] Open
Abstract
Effective management of cellular components is essential for maintaining brain health, and studies have identified several crucial biological processes in the brain. Among these, autophagy and the role of exosomes in cellular communication are critical for brain health and disease. The interaction between autophagy and exosomes in the nervous system, as well as their contributions to brain damage, have garnered significant attention. This review summarizes that exosomes and their cargoes have been implicated in the autophagy process in the pathophysiology of nervous system diseases. Furthermore, the onset and progression of neurological disorders may be affected by autophagy regulation of the secretion and release of exosomes. These findings may provide new insights into the potential mechanism by which autophagy mediates different exosome secretion and release, as well as the valuable biomedical applications of exosomes in the prevention and treatment of various brain diseases by targeting autophagy.
Collapse
Affiliation(s)
- Hai-Dong Wang
- Department of Pharmacy, The Affiliated Lianyungang Hospital of Xuzhou Medical University/Nanjing Medical University Kangda College First Affiliated Hospital/The First People's Hospital of Lianyungang, Lianyungang, 222000, China
| | - Chao-Liang Lv
- Department of Spine Surgery, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, China
| | - Lei Feng
- Department of Neurosurgery, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, China
| | - Jin-Xiu Guo
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, China
- Institute of Translational Pharmacy, Jining Medical Research Academy, Jining, 272000, China
| | - Shi-Yuan Zhao
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, China
- Institute of Translational Pharmacy, Jining Medical Research Academy, Jining, 272000, China
| | - Pei Jiang
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, China
- Institute of Translational Pharmacy, Jining Medical Research Academy, Jining, 272000, China
| |
Collapse
|
12
|
Mitra A, Das A, Ghosh S, Sarkar S, Bandyopadhyay D, Gangopadhyay S, Chattopadhyay S. Metformin instigates cellular autophagy to ameliorate high-fat diet-induced pancreatic inflammation and fibrosis/EMT in mice. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167313. [PMID: 38901652 DOI: 10.1016/j.bbadis.2024.167313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/09/2024] [Accepted: 06/13/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND Chronic pancreatic dysfunction is frequently observed as a consequence of prolonged high-fat diet consumption and is a serious public health concern. This pro-diabetic insult aggravates inflammation-influenced fibrotic lesions and is associated with deregulated autophagy. Metformin, a conventional anti-hyperglycemic drug, might be beneficial for pancreatic health, but the complex molecular regulations are not clarified. Considering the worldwide prevalence of chronic pancreatic dysfunction in obese individuals, we aimed to unwind the molecular intricacies explaining the involvement of oxidative stress, inflammation and fibrosis and to approbate metformin as a plausible intervention in this crossroad. MAIN METHODS Age-matched Swiss Albino mice were exposed to high-fat diet (60 kcal%) against control diet (10 kcal%) to establish diet-induced stress model. Metformin treatment was introduced after 4 weeks to metformin-control and HFD-exposed metformin groups. After 8 weeks, metabolic and molecular outcomes were assessed to establish the impact of metformin on chronic consequences of HFD-mediated injury. KEY FINDINGS High-fat diet administration to healthy mice primes oxidative stress-mediated chronic inflammation through Nrf2/Keap1/NF-κB interplay. Besides, pro-inflammatory cytokine bias leading to fibrotic (increased TGF-β, α-SMA, and MMP9) and pro-EMT (Twist1, Slug, Vimentin, E-cadherin) repercussions in pancreatic lobules were evident. Metformin distinctly rescues high-fat diet-induced remodeling of pancreatic pro-diabetic alterations and cellular survival/death switch. Further, metformin abrogates the p62-Twist1 crosstalk in an autophagy-dependent manner (elevated beclin1, LC3-II/I, Lamp2) to restore pancreatic homeostasis. CONCLUSION Our research validates the therapeutic potential of metformin in the inflammation-fibrosis nexus to ameliorate high-fat diet-induced pancreatic dysfunction and related metabolic alterations.
Collapse
Affiliation(s)
- Ankan Mitra
- Department of Physiology, University College of Science, Technology and Agriculture, University of Calcutta, 92, APC Road, Kolkata 700009, West Bengal, India
| | - Ankur Das
- Department of Physiology, University College of Science, Technology and Agriculture, University of Calcutta, 92, APC Road, Kolkata 700009, West Bengal, India
| | - Sourav Ghosh
- Department of Physiology, University College of Science, Technology and Agriculture, University of Calcutta, 92, APC Road, Kolkata 700009, West Bengal, India
| | - Swaimanti Sarkar
- Department of Physiology, University College of Science, Technology and Agriculture, University of Calcutta, 92, APC Road, Kolkata 700009, West Bengal, India
| | - Debasish Bandyopadhyay
- Department of Physiology, University College of Science, Technology and Agriculture, University of Calcutta, 92, APC Road, Kolkata 700009, West Bengal, India
| | - Somnath Gangopadhyay
- Department of Physiology, University College of Science, Technology and Agriculture, University of Calcutta, 92, APC Road, Kolkata 700009, West Bengal, India
| | - Sreya Chattopadhyay
- Department of Physiology, University College of Science, Technology and Agriculture, University of Calcutta, 92, APC Road, Kolkata 700009, West Bengal, India; Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, Kolkata 700098, West Bengal, India.
| |
Collapse
|
13
|
Zou D, Liao J, Xiao M, Liu L, Dai D, Xu M. Impaired SUMOylation of FoxA1 promotes nonalcoholic fatty liver disease through down-regulation of Sirt6. Cell Death Dis 2024; 15:674. [PMID: 39277582 PMCID: PMC11401847 DOI: 10.1038/s41419-024-07054-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 09/03/2024] [Accepted: 09/03/2024] [Indexed: 09/17/2024]
Abstract
Abnormal SUMOylation is implicated in non-alcoholic fatty liver disease (NAFLD) progression. Forkhead box protein A1 (FoxA1) has been shown to protect liver from steatosis, which was down-regulated in NAFLD. This study elucidated the role of FoxA1 deSUMOylation in NAFLD. NAFLD models were established in high-fat diet (HFD)-induced mice and palmitate acid (PAL)-treated hepatocytes. Hepatic steatosis was evaluated by biochemical and histological methods. Lipid droplet formation was determined by BODIPY and Oil red O staining. Target molecule levels were analyzed by RT-qPCR, Western blotting, and immunohistochemistry staining. SUMOylation of FoxA1 was determined by Ni-NTA pull-down assay and SUMOylation assay Ultra Kit. Protein interaction and ubiquitination were detected by Co-IP. Gene transcription was assessed by ChIP and dual luciferase reporter assays. Liver FoxA1 knockout mice developed severe liver steatosis, which could be ameliorated by sirtuin 6 (Sirt6) overexpression. Nutritional stresses reduced Sumo2/3-mediated FoxA1 SUMOylation at lysine residue K6, which promoted lipid droplet formation by repressing fatty acid β-oxidation. Moreover, Sirt6 was a target gene of FoxA1, and Sirt6 transcription activity was restrained by deSUMOylation of FoxA1 at site K6. Furthermore, nutritional stresses-induced deSUMOylation of FoxA1 promoted the ubiquitination and degradation of FoxA1 with assistance of murine double minute 2 (Mdm2). Finally, activating FoxA1 SUMOylation delayed the progression of NAFLD in mice. DeSUMOylation of FoxA1 at K6 promotes FoxA1 degradation and then inhibits Sirt6 transcription, thereby suppressing fatty acid β-oxidation and facilitating NAFLD development. Our findings suggest that FoxA1 SUMOylation activation might be a promising therapeutic strategy for NAFLD.
Collapse
Affiliation(s)
- Dongmei Zou
- The Department of Pediatric, Shenzhen Children's Hospital, China Medical University, Shenzhen, 518038, Guangdong Province, China
| | - Jinwen Liao
- The Department of Pediatric, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City, (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, 518172, Guangdong Province, China
| | - Min Xiao
- The Department of Pediatric, Shenzhen Children's Hospital, China Medical University, Shenzhen, 518038, Guangdong Province, China
| | - Liang Liu
- The Department of Pediatric, Shenzhen Children's Hospital, China Medical University, Shenzhen, 518038, Guangdong Province, China
| | - Dongling Dai
- The Department of Pediatric, Shenzhen Children's Hospital, China Medical University, Shenzhen, 518038, Guangdong Province, China
| | - Mingguo Xu
- The Department of Pediatric, Shenzhen Children's Hospital, China Medical University, Shenzhen, 518038, Guangdong Province, China.
- The Department of Pediatric, The Third People's Hospital of Longgang District Shenzhen, Shenzhen, 518112, Guangdong Province, China.
| |
Collapse
|
14
|
Raza S, Rajak S, Yen PM, Sinha RA. Autophagy and hepatic lipid metabolism: mechanistic insight and therapeutic potential for MASLD. NPJ METABOLIC HEALTH AND DISEASE 2024; 2:19. [PMID: 39100919 PMCID: PMC11296953 DOI: 10.1038/s44324-024-00022-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 07/04/2024] [Indexed: 08/06/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) originates from a homeostatic imbalance in hepatic lipid metabolism. Increased fat deposition in the liver of people suffering from MASLD predisposes them to develop further metabolic derangements, including diabetes mellitus, metabolic dysfunction-associated steatohepatitis (MASH), and other end-stage liver diseases. Unfortunately, only limited pharmacological therapies exist for MASLD to date. Autophagy, a cellular catabolic process, has emerged as a primary mechanism of lipid metabolism in mammalian hepatocytes. Furthermore, preclinical studies with autophagy modulators have shown promising results in resolving MASLD and mitigating its progress into deleterious liver pathologies. In this review, we discuss our current understanding of autophagy-mediated hepatic lipid metabolism, its therapeutic modulation for MASLD treatment, and current limitations and scope for clinical translation.
Collapse
Affiliation(s)
- Sana Raza
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226014 India
| | - Sangam Rajak
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226014 India
| | - Paul M. Yen
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore, 169857 Singapore
| | - Rohit A. Sinha
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226014 India
| |
Collapse
|
15
|
Hong C, Li X, Zhang K, Huang Q, Li B, Xin H, Hu B, Meng F, Zhu X, Tang D, Hu C, Tao C, Li J, Cao Y, Wang H, Deng B, Wang S. Novel perspectives on autophagy-oxidative stress-inflammation axis in the orchestration of adipogenesis. Front Endocrinol (Lausanne) 2024; 15:1404697. [PMID: 38982993 PMCID: PMC11232368 DOI: 10.3389/fendo.2024.1404697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/30/2024] [Indexed: 07/11/2024] Open
Abstract
Adipose tissue, an indispensable organ, fulfils the pivotal role of energy storage and metabolism and is instrumental in maintaining the dynamic equilibrium of energy and health of the organism. Adipocyte hypertrophy and adipocyte hyperplasia (adipogenesis) are the two primary mechanisms of fat deposition. Mature adipocytes are obtained by differentiating mesenchymal stem cells into preadipocytes and redifferentiation. However, the mechanisms orchestrating adipogenesis remain unclear. Autophagy, an alternative cell death pathway that sustains intracellular energy homeostasis through the degradation of cellular components, is implicated in regulating adipogenesis. Furthermore, adipose tissue functions as an endocrine organ, producing various cytokines, and certain inflammatory factors, in turn, modulate autophagy and adipogenesis. Additionally, autophagy influences intracellular redox homeostasis by regulating reactive oxygen species, which play pivotal roles in adipogenesis. There is a growing interest in exploring the involvement of autophagy, inflammation, and oxidative stress in adipogenesis. The present manuscript reviews the impact of autophagy, oxidative stress, and inflammation on the regulation of adipogenesis and, for the first time, discusses their interactions during adipogenesis. An integrated analysis of the role of autophagy, inflammation and oxidative stress will contribute to elucidating the mechanisms of adipogenesis and expediting the exploration of molecular targets for treating obesity-related metabolic disorders.
Collapse
Affiliation(s)
- Chun Hong
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xinming Li
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Kunli Zhang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Livestock Disease Prevention Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Qiuyan Huang
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Baohong Li
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Haiyun Xin
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Bin Hu
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Fanming Meng
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xiangxing Zhu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Sciences and Engineering, Foshan University, Foshan, China
| | - Dongsheng Tang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Sciences and Engineering, Foshan University, Foshan, China
| | - Chuanhuo Hu
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Guangxi University, Nanning, China
| | - Chenyu Tao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei, China
| | - Jianhao Li
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yang Cao
- Branch of Animal Husbandry, Jilin Academy of Agricultural Science, Gongzhuling, China
| | - Hai Wang
- Chinese Academy of Sciences (CAS) Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health- Hong Kong University (GIBH-HKU) Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Bo Deng
- Division of Nephrology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sutian Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
| |
Collapse
|
16
|
Ruswandi YAR, Lesmana R, Rosdianto AM, Gunadi JW, Goenawan H, Zulhendri F. Understanding the Roles of Selenium on Thyroid Hormone-Induced Thermogenesis in Adipose Tissue. Biol Trace Elem Res 2024; 202:2419-2441. [PMID: 37758980 DOI: 10.1007/s12011-023-03854-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023]
Abstract
Brown adipose tissue (BAT) and white adipose tissue (WAT) are known to regulate lipid metabolism. A lower amount of BAT compared to WAT, along with adipose tissue dysfunction, can result in obesity. Studies have shown that selenium supplementation protects against adipocyte dysfunction, decreases WAT triglycerides, and increases BAT triiodothyronine (T3). In this review, we discuss the relationship between selenium and lipid metabolism regulation through selenoprotein deiodinases and the role of deiodinases and thyroid hormones in the induction of adipose tissue thermogenesis. Upon 22 studies included in our review, we found that studies investigating the relationship between selenium and deiodinases demonstrated that selenium supplementation affects the iodothyronine deiodinase 2 (DIO2) protein and the expression of its associated gene, DIO2, proportionally. However, its effect on DIO1 is inconsistent while its effect on DIO3 activity is not detected. Studies have shown that the activity of deiodinases especially DIO2 protein and DIO2 gene expression is increased along with other browning markers upon white adipose tissue browning induction. Studies showed that thermogenesis is stimulated by the thyroid hormone T3 as its activity is correlated to the expression of other thermogenesis markers. A proposed mechanism of thermogenesis induction in selenium supplementation is by autophagy control. However, more studies are needed to establish the role of T3 and autophagy in adipose tissue thermogenesis, especially, since some studies have shown that thermogenesis can function even when T3 activity is lacking and studies related to autophagy in adipose tissue thermogenesis have contradictory results.
Collapse
Affiliation(s)
- Yasmin Anissa R Ruswandi
- Graduate School of Master Program in Anti-Aging and Aesthetic Medicine, Faculty of Medicine, Universitas Padjadjaran, Kabupaten Sumedang, West Java, Indonesia
| | - Ronny Lesmana
- Physiology Division, Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang, KM.21, Hegarmanah, Kec. Jatinangor, Kabupaten Sumedang, West Java, 45363, Indonesia.
| | - Aziiz Mardanarian Rosdianto
- Physiology Division, Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang, KM.21, Hegarmanah, Kec. Jatinangor, Kabupaten Sumedang, West Java, 45363, Indonesia
- Veterinary Medicine Study Program, Faculty of Medicine, Universitas Padjadjaran, Kabupaten Sumedang, West Java, Indonesia
| | - Julia Windi Gunadi
- Department of Physiology, Faculty of Medicine, Maranatha Christian University, Bandung, West Java, Indonesia
| | - Hanna Goenawan
- Physiology Division, Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang, KM.21, Hegarmanah, Kec. Jatinangor, Kabupaten Sumedang, West Java, 45363, Indonesia
| | - Felix Zulhendri
- Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Kabupaten Sumedang, West Java, Indonesia
- Kebun Efi, Kabanjahe, 22171, North Sumatra, Indonesia
| |
Collapse
|
17
|
Mao Z, Zhao J, Cui F, Li Z, Cao J, Zhou J, Hou M, Qian Z. STUB1 increases adiponectin expression by inducing ubiquitination and degradation of NR2F2, thereby reducing hepatic stellate cell activation and alleviating non-alcoholic fatty liver disease. Tissue Cell 2024; 88:102345. [PMID: 38471267 DOI: 10.1016/j.tice.2024.102345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024]
Abstract
BACKGROUND Adiponectin (APN) has exhibited ameliorating effects on non-alcoholic fatty liver disease (NAFLD). This study investigates the roles of APN and its regulatory molecules in hepatic stellate cell (HSC) activation and the progression of NAFLD. METHODS Mice were subjected to a high-fat diet (HFD) to establish NAFLD models. Liver tissue was examined for lipid metabolism, fibrosis, and inflammation. Mouse 3T3-L1 adipocytes were exposed to palmitic acid (PA) to mimic a high-fat environment. The conditioned medium (CM) from adipocytes was collected for the culture of isolated mouse HSCs. Gain- or loss-of-function studies of APN, nuclear receptor subfamily 2 group F member 2 (NR2F2), and STIP1 homology and U-box containing protein 1 (STUB1) were performed to analyze their roles in NAFLD and HSC activation in vivo and in vitro. RESULTS APN expression was poorly expressed in HFD-fed mice and PA-treated 3T3-L1 adipocytes, which was attributed to the transcription inhibition mediated by NR2F2. Silencing of NR2F2 restored the APN expression, ameliorating liver steatosis, fibrosis, and inflammatory cytokine infiltration in mouse livers and reducing HSC activation. Similarly, the NR2F2 silencing condition reduced HSC activation in vitro. However, these effects were counteracted by artificial APN silencing. STUB1 facilitated the ubiquitination and protein degradation of NR2F2, and its upregulation mitigated NAFLD-like symptoms in mice and HSC activation, effects reversed by the NR2F2 overexpression. CONCLUSION This study highlights the role of STUB1 in reducing HSC activation and alleviating NAFLD by attenuating NR2F2-mediated transcriptional repression of APN.
Collapse
Affiliation(s)
- Zheng Mao
- Department of Clinical Laboratory, Wuhu Hospital Affiliated to Anhui University of Science and Technology (The First People's Hospital of Wuhu), Wuhu, Anhui 241000, PR China
| | - Jindong Zhao
- Department of Endocrinology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230038, PR China
| | - Fan Cui
- Department of Clinical Laboratory, Wuhu Hospital Affiliated to Anhui University of Science and Technology (The First People's Hospital of Wuhu), Wuhu, Anhui 241000, PR China
| | - Zhen Li
- Department of Clinical Laboratory, Wuhu Hospital Affiliated to Anhui University of Science and Technology (The First People's Hospital of Wuhu), Wuhu, Anhui 241000, PR China
| | - Jinjin Cao
- Department of Clinical Laboratory, Wuhu Hospital Affiliated to Anhui University of Science and Technology (The First People's Hospital of Wuhu), Wuhu, Anhui 241000, PR China
| | - Jingjing Zhou
- Department of Clinical Laboratory, Wuhu Hospital Affiliated to Anhui University of Science and Technology (The First People's Hospital of Wuhu), Wuhu, Anhui 241000, PR China
| | - Mingliang Hou
- Department of Clinical Laboratory, Wuhu Hospital Affiliated to Anhui University of Science and Technology (The First People's Hospital of Wuhu), Wuhu, Anhui 241000, PR China
| | - Zengkun Qian
- Department of Clinical Laboratory, Wuhu Hospital Affiliated to Anhui University of Science and Technology (The First People's Hospital of Wuhu), Wuhu, Anhui 241000, PR China.
| |
Collapse
|
18
|
Zhu X, Zeng C, Yu B. White adipose tissue in metabolic associated fatty liver disease. Clin Res Hepatol Gastroenterol 2024; 48:102336. [PMID: 38604293 DOI: 10.1016/j.clinre.2024.102336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/28/2024] [Accepted: 04/05/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND Metabolic associated fatty liver disease (MAFLD) is a prevalent chronic liver condition globally, currently lacking universally recognized therapeutic drugs, thereby increasing the risk of cirrhosis and hepatocellular carcinoma. Research has reported an association between white adipose tissue and MAFLD. SCOPE OF REVIEW White adipose tissue (WAT) is involved in lipid metabolism and can contribute to the progression of MAFLD by mediating insulin resistance, inflammation, exosomes, autophagy, and other processes. This review aims to elucidate the mechanisms through which WAT plays a role in the development of MAFLD. MAJOR CONCLUSIONS WAT participates in the occurrence and progression of MAFLD by mediating insulin resistance, inflammation, autophagy, and exosome secretion. Fibrosis and restricted expansion of adipose tissue can lead to the release of more free fatty acids (FFA), exacerbating the progression of MAFLD. WAT-secreted TNF-α and IL-1β, through the promotion of JNK/JKK/p38MAPK expression, interfere with insulin receptor serine and tyrosine phosphorylation, worsening insulin resistance. Adiponectin, by inhibiting the TLR-4-NF-κB pathway and suppressing M2 to M1 transformation, further inhibits the secretion of IL-6, IL-1β, and TNF-α, improving insulin resistance in MAFLD patients. Various gene expressions within WAT, such as MBPAT7, Nrf2, and Ube4A, can ameliorate insulin resistance in MAFLD patients. Autophagy-related gene Atg7 promotes the expression of fibrosis-related genes, worsening MAFLD. Non-pharmacological treatments, including diabetes-related medications and exercise, can improve MAFLD.
Collapse
Affiliation(s)
- Xiaoqin Zhu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, No. 99 Zhang Zhidong Road, Wuhan, Hubei, 430000, PR China
| | - Chuanfei Zeng
- Department of Gastroenterology, Renmin Hospital of Wuhan University, No. 99 Zhang Zhidong Road, Wuhan, Hubei, 430000, PR China
| | - Baoping Yu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, No. 99 Zhang Zhidong Road, Wuhan, Hubei, 430000, PR China.
| |
Collapse
|
19
|
Liu J, Xiao Y, Cao L, Lu S, Zhang S, Yang R, Wang Y, Zhang N, Yu Y, Wang X, Guo W, Wang Z, Xu H, Xing C, Song X, Cao L. Insights on E1-like enzyme ATG7: functional regulation and relationships with aging-related diseases. Commun Biol 2024; 7:382. [PMID: 38553562 PMCID: PMC10980737 DOI: 10.1038/s42003-024-06080-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 03/20/2024] [Indexed: 04/02/2024] Open
Abstract
Autophagy is a dynamic self-renovation biological process that maintains cell homeostasis and is responsible for the quality control of proteins, organelles, and energy metabolism. The E1-like ubiquitin-activating enzyme autophagy-related gene 7 (ATG7) is a critical factor that initiates classic autophagy reactions by promoting the formation and extension of autophagosome membranes. Recent studies have identified the key functions of ATG7 in regulating the cell cycle, apoptosis, and metabolism associated with the occurrence and development of multiple diseases. This review summarizes how ATG7 is precisely programmed by genetic, transcriptional, and epigenetic modifications in cells and the relationship between ATG7 and aging-related diseases.
Collapse
Affiliation(s)
- Jingwei Liu
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning, China
- Department of Anus and Intestine Surgery, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yutong Xiao
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning, China
| | - Liangzi Cao
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning, China
| | - Songming Lu
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning, China
| | - Siyi Zhang
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning, China
| | - Ruohan Yang
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning, China
| | - Yubang Wang
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning, China
| | - Naijin Zhang
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China
- Department of Cardiology, First Hospital of China Medical University, Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning, China
| | - Yang Yu
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning, China
| | - Xiwen Wang
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Wendong Guo
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning, China
| | - Zhuo Wang
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning, China
| | - Hongde Xu
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China.
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning, China.
| | - Chengzhong Xing
- Department of Anus and Intestine Surgery, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Xiaoyu Song
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China.
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning, China.
| | - Liu Cao
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China.
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
20
|
Gu S, Qiao Y, Liu S, Yang S, Cong S, Wang S, Yu D, Wang W, Chai X. Frontiers and hotspots of adipose tissue and NAFLD: a bibliometric analysis from 2002 to 2022. Front Physiol 2023; 14:1278952. [PMID: 38187139 PMCID: PMC10768199 DOI: 10.3389/fphys.2023.1278952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/04/2023] [Indexed: 01/09/2024] Open
Abstract
Background: The annual incidence of non-alcoholic fatty liver disease (NAFLD) continues to rise steadily. In recent years, adipose tissue (AT) has gained recognition as a pivotal contributor to the pathogenesis of NAFLD. Employing bibliometric analysis, we examined literature concerning AT and NAFLD. Methods: Relevant literature on AT in NAFLD from 1980 to 2022 was extracted from the Web of Science Core Collection. These records were visualized using CiteSpace and VOSviewer regarding publications, countries/regions, institutions, authors, journals, references, and keywords. Results: Since 2002, a total of 3,330 papers have been included, exhibiting an annual surge in publications. Notably, the quality of publications is superior in the USA and Europe. Kenneth Cusi stands out as the author with the highest number of publications and H-index. Hepatology is the journal boasting the highest citation and H-index. The University of California System holds the highest centrality among institutions. References specifically delve into physiological processes associated with AT in NAFLD. Currently, lipid metabolism and inflammation constitute the principal research mechanisms in the AT-based regulation of NAFLD, with pertinent keywords including microRNA, T cell, hypoxia, sarcopenia, hepatokine, gut microbiota, and autophagy. The Mediterranean diet is among the most widely recommended dietary approaches for potential NAFLD treatment. Conclusion: This paper represents the inaugural bibliometric study on the effects of AT on NAFLD, offering valuable insights and directions for future research.
Collapse
Affiliation(s)
- Shuxiao Gu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yanfang Qiao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Susu Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Shuangjie Yang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Shibo Cong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Sili Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Deshuai Yu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Wei Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xinlou Chai
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
21
|
Liu J, Wu H, Zhang Y, Hu C, Zhen D, Fu P, He Y. Phycobiliprotein Peptide Extracts from Arthrospira platensis Ameliorate Nonalcoholic Fatty Liver Disease by Modulating Hepatic Lipid Profile and Strengthening Fat Mobilization. Nutrients 2023; 15:4573. [PMID: 37960226 PMCID: PMC10648092 DOI: 10.3390/nu15214573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/21/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Arthrospira platensis phycobiliprotein peptide extracts (PPEs) exhibit potential mitigative effects on hepatic steatosis. However, the precise role of PPEs in addressing high-fat-induced nonalcoholic fatty liver disease (NAFLD), as well as the underlying mechanism, remains to be elucidated. In this study, NAFLD was induced in rats through a high-fat diet (HFD), and the rats were subsequently treated with PPEs for a duration of 10 weeks. The outcomes of this investigation demonstrate that PPE supplementation leads to a reduction in body weight gain, a decrease in the accumulation of lipid droplets within the liver tissues, alterations in hepatic lipid profile, regulation of lipolysis-related gene expression within white adipose tissues and modulation of intestinal metabolites. Notably, PPE supplementation exhibits a potential to alleviate liver damage by manipulating neutral lipid metabolism and phospholipid metabolism. Additionally, PPEs appear to enhance fat mobilization by up-regulating the gene expression levels of key factors such as HSL, TGL, UCP1 and UCP2. Furthermore, PPEs impact intestinal metabolites by reducing the levels of long-chain fatty acids while concurrently increasing the levels of short-chain fatty acids. The findings from this study unveil the potential of PPE intervention in ameliorating NAFLD through the modulation of hepatic lipid profile and the reinforcement of the fat mobilization of intestinal metabolites. Thus, PPEs exhibit noteworthy therapeutic effects in the context of NAFLD.
Collapse
Affiliation(s)
- Jing Liu
- International School of Public Health and One Health, Hainan Medical University, Haikou 571199, China;
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; (H.W.); (Y.Z.)
| | - Huan Wu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; (H.W.); (Y.Z.)
| | - Yan Zhang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; (H.W.); (Y.Z.)
| | - Changbao Hu
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; (C.H.); (D.Z.)
| | - Dongyu Zhen
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; (C.H.); (D.Z.)
| | - Pengcheng Fu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; (H.W.); (Y.Z.)
| | - Yanfu He
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; (C.H.); (D.Z.)
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, Hainan University, Haikou 570228, China
| |
Collapse
|
22
|
Wang W, Kong Y, Wang X, Wang Z, Tang C, Li J, Yang Q, Chen YQ, Zhu S. Identification of novel SCD1 inhibitor alleviates nonalcoholic fatty liver disease: critical role of liver-adipose axis. Cell Commun Signal 2023; 21:268. [PMID: 37777801 PMCID: PMC10544195 DOI: 10.1186/s12964-023-01297-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/25/2023] [Indexed: 10/02/2023] Open
Abstract
Due to the complexity and incomplete understanding of the crosstalk between liver and adipose tissue, especially the processes of hepatic lipogenesis and adipogenic differentiation, there are currently no effective drugs for the treatment of nonalcoholic fatty liver disease (NAFLD). Stearoyl-coenzyme A desaturase 1 (SCD1), which is abundantly expressed in liver and adipose tissue, may mediate the cross-talk between liver and adipose tissue. Thus, it is essential to develop specific SCD1 inhibitors that target the liver-adipose axis. Herein, we identified a novel SCD1 inhibitor, E6446, through a high-throughput virtual screen. E6646 significantly inhibited adipogenic differentiation and hepatic lipogenesis via SCD1-ATF3 signaling. The SPR results showed that E6446 had a strong interaction ability with SCD1 (KD:4.61 μM). Additionally, E6646 significantly decreased hepatic steatosis, hepatic lipid droplet accumulation and insulin resistance in high-fat diet (HFD)-fed mice. Taken together, our findings not only suggest that E6446 can serve as a new, safe and highly effective anti-NAFLD agent for future clinical use but also provide a molecular basis for the future development of SCD1 inhibitors that inhibit both adipogenic differentiation and hepatic lipogenesis. Video Abstract.
Collapse
Affiliation(s)
- Wei Wang
- Jiangnan University Medical Center, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Yulin Kong
- Jiangnan University Medical Center, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Xia Wang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | - Zhe Wang
- Jiangnan University Medical Center, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Chunlei Tang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | - Jinyou Li
- Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Qin Yang
- Jiangnan University Medical Center, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Yong Q Chen
- Jiangnan University Medical Center, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Shenglong Zhu
- Jiangnan University Medical Center, Wuxi School of Medicine, Jiangnan University, Wuxi, China.
| |
Collapse
|
23
|
Piletic K, Alsaleh G, Simon AK. Autophagy orchestrates the crosstalk between cells and organs. EMBO Rep 2023; 24:e57289. [PMID: 37465980 PMCID: PMC10481659 DOI: 10.15252/embr.202357289] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/24/2023] [Accepted: 07/06/2023] [Indexed: 07/20/2023] Open
Abstract
Over the recent years, it has become apparent that a deeper understanding of cell-to-cell and organ-to-organ communication is necessary to fully comprehend both homeostatic and pathological states. Autophagy is indispensable for cellular development, function, and homeostasis. A crucial aspect is that autophagy can also mediate these processes through its secretory role. The autophagy-derived secretome relays its extracellular signals in the form of nutrients, proteins, mitochondria, and extracellular vesicles. These crosstalk mediators functionally shape cell fate decisions, tissue microenvironment and systemic physiology. The diversity of the secreted cargo elicits an equally diverse type of responses, which span over metabolic, inflammatory, and structural adaptations in disease and homeostasis. We review here the emerging role of the autophagy-derived secretome in the communication between different cell types and organs and discuss the mechanisms involved.
Collapse
Affiliation(s)
- Klara Piletic
- Kennedy Institute of RheumatologyUniversity of OxfordOxfordUK
| | - Ghada Alsaleh
- Kennedy Institute of RheumatologyUniversity of OxfordOxfordUK
- Botnar Institute for Musculoskeletal Sciences, NDORMSUniversity of OxfordOxfordUK
| | - Anna Katharina Simon
- Kennedy Institute of RheumatologyUniversity of OxfordOxfordUK
- Max Delbrück CenterBerlinGermany
| |
Collapse
|
24
|
Salete-Granado D, Carbonell C, Puertas-Miranda D, Vega-Rodríguez VJ, García-Macia M, Herrero AB, Marcos M. Autophagy, Oxidative Stress, and Alcoholic Liver Disease: A Systematic Review and Potential Clinical Applications. Antioxidants (Basel) 2023; 12:1425. [PMID: 37507963 PMCID: PMC10376811 DOI: 10.3390/antiox12071425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Ethanol consumption triggers oxidative stress by generating reactive oxygen species (ROS) through its metabolites. This process leads to steatosis and liver inflammation, which are critical for the development of alcoholic liver disease (ALD). Autophagy is a regulated dynamic process that sequesters damaged and excess cytoplasmic organelles for lysosomal degradation and may counteract the harmful effects of ROS-induced oxidative stress. These effects include hepatotoxicity, mitochondrial damage, steatosis, endoplasmic reticulum stress, inflammation, and iron overload. In liver diseases, particularly ALD, macroautophagy has been implicated as a protective mechanism in hepatocytes, although it does not appear to play the same role in stellate cells. Beyond the liver, autophagy may also mitigate the harmful effects of alcohol on other organs, thereby providing an additional layer of protection against ALD. This protective potential is further supported by studies showing that drugs that interact with autophagy, such as rapamycin, can prevent ALD development in animal models. This systematic review presents a comprehensive analysis of the literature, focusing on the role of autophagy in oxidative stress regulation, its involvement in organ-organ crosstalk relevant to ALD, and the potential of autophagy-targeting therapeutic strategies.
Collapse
Affiliation(s)
- Daniel Salete-Granado
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain; (D.S.-G.); (C.C.); (D.P.-M.); (V.-J.V.-R.); (M.G.-M.); (A.B.H.)
| | - Cristina Carbonell
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain; (D.S.-G.); (C.C.); (D.P.-M.); (V.-J.V.-R.); (M.G.-M.); (A.B.H.)
- Hospital Universitario de Salamanca, 37007 Salamanca, Spain
- Unidad de Medicina Molecular, Departamento de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain
| | - David Puertas-Miranda
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain; (D.S.-G.); (C.C.); (D.P.-M.); (V.-J.V.-R.); (M.G.-M.); (A.B.H.)
- Hospital Universitario de Salamanca, 37007 Salamanca, Spain
| | - Víctor-José Vega-Rodríguez
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain; (D.S.-G.); (C.C.); (D.P.-M.); (V.-J.V.-R.); (M.G.-M.); (A.B.H.)
- Hospital Universitario de Salamanca, 37007 Salamanca, Spain
| | - Marina García-Macia
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain; (D.S.-G.); (C.C.); (D.P.-M.); (V.-J.V.-R.); (M.G.-M.); (A.B.H.)
- Instituto de Biología Funcional y Genómica (IBFG), Universidad de Salamanca, 37007 Salamanca, Spain
| | - Ana Belén Herrero
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain; (D.S.-G.); (C.C.); (D.P.-M.); (V.-J.V.-R.); (M.G.-M.); (A.B.H.)
- Unidad de Medicina Molecular, Departamento de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Miguel Marcos
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain; (D.S.-G.); (C.C.); (D.P.-M.); (V.-J.V.-R.); (M.G.-M.); (A.B.H.)
- Hospital Universitario de Salamanca, 37007 Salamanca, Spain
- Unidad de Medicina Molecular, Departamento de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
25
|
Wang X, Jin X, Li H, Zhang X, Chen X, Lu K, Chu C. Effects of various interventions on non-alcoholic fatty liver disease (NAFLD): A systematic review and network meta-analysis. Front Pharmacol 2023; 14:1180016. [PMID: 37063273 PMCID: PMC10090390 DOI: 10.3389/fphar.2023.1180016] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Background: With the increasing prevalence of obesity and metabolic syndrome, the incidence of non-alcoholic fatty liver disease (NAFLD) is also increasing. In the next decade, NAFLD may become the main cause of liver transplantation. Therefore, the choice of treatment plan is particularly important. The purpose of this study was to compare several interventions in the treatment of NAFLD to provide some reference for clinicians in selecting treatment methods.Methods: We searched Public Medicine (PubMed), Medline, Excerpta Medica Database (Embase), and Cochrane Library from January 2013 to January 2023 to identify randomized controlled trials (RCTs) published in English. The network meta-analysis was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Forty-three studies accounting for a total of 2,969 patients were included, and alanine aminotransferase (ALT), total cholesterol (TC), and low-density lipoprotein cholesterol (LDL) were selected as outcome measures for analysis and comparison.Results: We evaluated the results of drug, diet, and lifestyle interventions between the intervention and control groups. Curcumin (CUN) and probiotics (PTC) were selected for medication, the Mediterranean diet (MDED) was selected for special diet (SPD), and various kinds of exercise and lifestyle advice were selected for lifestyle interventions (LFT). The SUCRA was used to rank interventions according to the effect on ALT indicators (SUCRA: PTC 80.3%, SPD 65.2%, LFT 61.4%, PLB 32.8%, CUN 10.2%), TC indicators (SUCRA: PTC 89.4%, SPD 64%, CUN 34%, LFT 36.6%, PLB 17%), and LDL indicators (SUCRA: PTC 84.2%, CUN 69.5%, LFT 51.7%, PLB 30.1%, SPD 14.5%). The pairwise meta-analysis results showed that MDED was significantly better than NT in improving ALT [SMD 1.99, 95% CI (0.38, 3.60)]. In terms of improving TC and LDL, ATS was significantly better than NT [SMD 0.19, 95% CI (0.03, 0.36)] [SMD 0.18, 95% CI (0.01, 0.35)].Conclusion: Our study showed that PTC is most likely to be the most effective treatment for improving NAFLD indicators. Professional advice on diet or exercise was more effective in treating NAFLD than no intervention.
Collapse
Affiliation(s)
- Xinchen Wang
- Department of Pharmaceutical Engineering, College of Food and Pharmaceutical Engineering, Zhaoqing University, Zhaoqing, Guangdong, China
| | - Xiaoqian Jin
- Rehabilitation Medicine Department, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, China
| | - Hancheng Li
- Department of Pharmaceutical Engineering, College of Food and Pharmaceutical Engineering, Zhaoqing University, Zhaoqing, Guangdong, China
| | - Xianyu Zhang
- Department of Pharmaceutical Engineering, College of Food and Pharmaceutical Engineering, Zhaoqing University, Zhaoqing, Guangdong, China
| | - Xi Chen
- Department of Epidemiology and Statistics, School of Public Health, Medical College, Zhejiang University, Hangzhou, Zhejiang, China
| | - Kuan Lu
- Department of Pharmaceutical Engineering, College of Food and Pharmaceutical Engineering, Zhaoqing University, Zhaoqing, Guangdong, China
| | - Chenliang Chu
- Department of Pharmaceutical Engineering, College of Food and Pharmaceutical Engineering, Zhaoqing University, Zhaoqing, Guangdong, China
- *Correspondence: Chenliang Chu,
| |
Collapse
|
26
|
Li C, Su Z, Chen Z, Cao J, Liu X, Xu F. Lactobacillus reuteri strain 8008 attenuated the aggravation of depressive-like behavior induced by CUMS in high-fat diet-fed mice through regulating the gut microbiota. Front Pharmacol 2023; 14:1149185. [PMID: 37050901 PMCID: PMC10083334 DOI: 10.3389/fphar.2023.1149185] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 03/20/2023] [Indexed: 03/28/2023] Open
Abstract
Objective: Gut microbiota play a key role in the pathogenesis of obesity and depression. Probiotics are a preventive strategy for obesity and a novel treatment for depression symptoms. However, the ameliorative or therapeutic effect of potential probiotic candidate Lactobacillus reuteri (L. reuteri) on obesity and depression comorbidity still remains unclear. We investigated the effects of chronic unpredictable mild stress (CUMS) in high-fat diet-fed mice and the effects of Lactobacillus reuteri strain 8008 on various disease indicators of obesity and depression comorbidity disease. Methods: Forty male C57BL/6 mice were randomized into 2 groups: the normal control (NC) group (n = 10) and the high-fat diet (HFD) group (n = 30), being fed with normal diet (ND) or high-fat diet (HFD) for 8 weeks, respectively. Then the obese mice fed with HFD were randomly allocated into 3 sub-groups: the HFD group (n = 10); the HFD + CUMS group (n = 10); the HFD + CUMS + L.r group (n = 10). The latter 2 subgroups underwent CUMS for 4 weeks to build the obesity and depression comorbidity mice model. During the duration of treatment, mice were gavaged with 0.5 mL PBS solution or L. reuteri (2 × 109 CFU/mL) once a day, respectively. The body weight, food intake, organ weight, behavioral indicators, histology, blood lipids, levels of inflammatory cytokines and tight junction proteins and abundance of colonic contents bacteria were measured. Results: The obesity and depression comorbidity mice model was successfully established after HFD feeding and chronic stress. The comorbid mice demonstrated inflammatory responses increase in liver and adipose tissues, worsened damage to the intestinal barrier as well as gut microbiota disorder. Gavaged with L. reuteri attenuated depressive-like behavior, improved blood lipids and insulin resistance, reduced inflammation in liver and adipose tissues, improved intestinal tight junctions as well as the microbiome dysbiosis in obesity and depression comorbidity mice. Conclusion: Lactobacillus reuteri strain 8008 could alleviate depressive-like behaviors and related indicators of obesity disorders by regulating the gut microbiota in obesity and depression comorbid mice.
Collapse
Affiliation(s)
- Canye Li
- Fengxian Hospital, Southern Medical University, Shanghai, China
| | - Zuanjun Su
- Fengxian Hospital, Southern Medical University, Shanghai, China
| | - Zhicong Chen
- Fengxian Hospital, Southern Medical University, Shanghai, China
| | - Jinming Cao
- Fengxian Hospital, Southern Medical University, Shanghai, China
| | - Xiufeng Liu
- Sixth People’s Hospital South Campus, Shanghai Jiaotong University, Shanghai, China
| | - Feng Xu
- Fengxian Hospital, Southern Medical University, Shanghai, China
- Sixth People’s Hospital South Campus, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
27
|
Berezin AA, Obradovic Z, Berezina TA, Boxhammer E, Lichtenauer M, Berezin AE. Cardiac Hepatopathy: New Perspectives on Old Problems through a Prism of Endogenous Metabolic Regulations by Hepatokines. Antioxidants (Basel) 2023; 12:516. [PMID: 36830074 PMCID: PMC9951884 DOI: 10.3390/antiox12020516] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/12/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Cardiac hepatopathy refers to acute or chronic liver damage caused by cardiac dysfunction in the absence of any other possible causative reasons of liver injury. There is a large number of evidence of the fact that cardiac hepatopathy is associated with poor clinical outcomes in patients with acute or actually decompensated heart failure (HF). However, the currently dominated pathophysiological background does not explain a role of metabolic regulative proteins secreted by hepatocytes in progression of HF, including adverse cardiac remodeling, kidney injury, skeletal muscle dysfunction, osteopenia, sarcopenia and cardiac cachexia. The aim of this narrative review was to accumulate knowledge of hepatokines (adropin; fetuin-A, selenoprotein P, fibroblast growth factor-21, and alpha-1-microglobulin) as adaptive regulators of metabolic homeostasis in patients with HF. It is suggested that hepatokines play a crucial, causative role in inter-organ interactions and mediate tissue protective effects counteracting oxidative stress, inflammation, mitochondrial dysfunction, apoptosis and necrosis. The discriminative potencies of hepatokines for HF and damage of target organs in patients with known HF is under on-going scientific discussion and requires more investigations in the future.
Collapse
Affiliation(s)
- Alexander A. Berezin
- Internal Medicine Department, Zaporozhye Medical Academy of Postgraduate Education, 69000 Zaporozhye, Ukraine
- Klinik Barmelweid, Department of Psychosomatic Medicine and Psychotherapy, 5017 Barmelweid, Switzerland
| | - Zeljko Obradovic
- Klinik Barmelweid, Department of Psychosomatic Medicine and Psychotherapy, 5017 Barmelweid, Switzerland
| | - Tetiana A. Berezina
- Department of Internal Medicine & Nephrology, VitaCenter, 69000 Zaporozhye, Ukraine
| | - Elke Boxhammer
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
| | - Michael Lichtenauer
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
| | - Alexander E. Berezin
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
- Internal Medicine Department, Zaporozhye State Medical University, 69035 Zaporozhye, Ukraine
| |
Collapse
|
28
|
Devi K, Kumar V, Kumar V, Mahajan N, Kaur J, Sharma S, Kumar A, Khan R, Bishnoi M, Kondepudi KK. Modified cereal bran (MCB) from finger millet, kodo millet, and rice bran prevents high-fat diet-induced metabolic derangements. Food Funct 2023; 14:1459-1475. [PMID: 36648164 DOI: 10.1039/d2fo02095e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cereal bran consumption improves gastrointestinal and metabolic health. Unprocessed cereal brans have a limited shelf-life and contain anti-nutrient phytochemicals. In the present study, lipids and antinutrients (flavonoids, tannin, and polyphenol) were removed from finger millet, kodo millet and rice bran using chemo-enzymatic processing. The thus-obtained modified cereal brans (MCBs) were evaluated for their potential in preventing high fat diet (HFD)-induced obesity. C57BL/6 mice were fed a HFD or a HFD supplemented with 10% w/w modified finger millet bran (mFMB), modified kodo millet bran (mKMB), modified rice bran (mRB), or a combination of the modified brans (1 : 1 : 1) for twelve weeks. The MCBs reduced HFD-induced body weight gain, improved glucose homeostasis, decreased the Firmicutes/Bacteroidetes ratio, and increased the short chain fatty acid (SCFA) levels in the cecum. Liver dyslipidemia, oxidative stress, inflammation, visceral white adipose tissue (vWAT) hypertrophy, and lipolysis were also prevented by the MCBs. Among the individual MCBs, mRB showed a greater effect in preventing HFD-induced increase in the inflammatory cytokines (IL-6, TNF-α, and LPS) than mFMB and mKMB. mFMB and mKMB supplementation more significantly restored the relative abundance of Akkermansia muciniphila and butyrate-producing genera such as Lachnospiraceae, Eubacterium, and Ruminococcus than mRB. Ex vivo gut permeability assay, immunohistochemistry of tight junction proteins, and gene expression analysis in the colon revealed that the combination of three brans was better in preventing HFD-induced leaky gut in comparison to the individual brans. Hierarchical clustering analysis showed that the combination group was clustered closest to the NPD group, suggesting an additive effect. Our study implies that a combination of mFMB, mKMB, and mRB could be used as a nutraceutical or functional food ingredient for preventing HFD-induced gut derangements and associated metabolic complications.
Collapse
Affiliation(s)
- Kirti Devi
- Centre for Excellence in Functional Foods, Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, SAS Nagar, Punjab 140306, India. .,Department of Biotechnology, Panjab University, Sector-25, Chandigarh 160014, India
| | - Vibhu Kumar
- Centre for Excellence in Functional Foods, Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, SAS Nagar, Punjab 140306, India. .,University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Vijay Kumar
- Centre for Excellence in Functional Foods, Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, SAS Nagar, Punjab 140306, India. .,Department of Biotechnology, Panjab University, Sector-25, Chandigarh 160014, India
| | - Neha Mahajan
- Centre for Excellence in Functional Foods, Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, SAS Nagar, Punjab 140306, India. .,Regional Centre for Biotechnology, Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India
| | - Jasleen Kaur
- Centre for Excellence in Functional Foods, Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, SAS Nagar, Punjab 140306, India. .,University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Shikha Sharma
- Centre for Excellence in Functional Foods, Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, SAS Nagar, Punjab 140306, India. .,Department of Biotechnology, Panjab University, Sector-25, Chandigarh 160014, India
| | - Ajay Kumar
- Institute of Nanoscience and Technology (INST), Knowledge city-Sector 81, SAS Nagar, Punjab 140306, India
| | - Rehan Khan
- Institute of Nanoscience and Technology (INST), Knowledge city-Sector 81, SAS Nagar, Punjab 140306, India
| | - Mahendra Bishnoi
- Centre for Excellence in Functional Foods, Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, SAS Nagar, Punjab 140306, India. .,Department of Biotechnology, Panjab University, Sector-25, Chandigarh 160014, India.,Regional Centre for Biotechnology, Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India
| | - Kanthi Kiran Kondepudi
- Centre for Excellence in Functional Foods, Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, SAS Nagar, Punjab 140306, India. .,Department of Biotechnology, Panjab University, Sector-25, Chandigarh 160014, India.,Regional Centre for Biotechnology, Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India
| |
Collapse
|
29
|
Daneshyar S, Tavoosidana G, Bahmani M, Basir SS, Delfan M, Laher I, Saeidi A, Granacher U, Zouhal H. Combined effects of high fat diet and exercise on autophagy in white adipose tissue of mice. Life Sci 2023; 314:121335. [PMID: 36587790 DOI: 10.1016/j.lfs.2022.121335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/24/2022] [Accepted: 12/25/2022] [Indexed: 12/30/2022]
Abstract
AIM The effects of nutrition and exercise on autophagy are not well studied. This study aimed to investigate the combined effects of high-fat diets (HFD) and exercise training (ET) on autophagy in white adipose tissue of mice. MATERIALS AND METHODS Male C57BL/6 mice were assigned into four groups of 7 mice per group: (1) Control, (2) high-fat diet-induced obesity (HFD-Ob), (3) exercise training (ET), and (4) high-fat diet with exercise training (HFD-ET). The HFD-Ob group was fed a high-fat diet for 14 weeks, while the ET group continuously ran on a treadmill for five sessions per week for seven weeks, and the HFD-ET group had both HFD and exercise training. qReal-time-PCR and western blot were used to measure the mRNA and protein levels of autophagy markers in white adipose tissue. RESULTS Mice from the HFD group showed higher levels in autophagy-related gene5 (ATG5, p = 0.04), ATG7 (p = 0.002), cathepsin B (CTSB, p = 0.0004), LC3-II (p = 0.03) than control. Mice in the ET group displayed higher levels of genes for ATG7 (p = 0.0003), microtubule-associated protein1-light chain 3 (LC3, p = 0.05), lysosome-associated membrane protein 2 (LAMP2, p = 0.04) and cathepsin L (CTSL, p = 0.03) than control. Mice from the HFD-ET group had higher levels of genes for ATG7 (p = 0.05) and CTSL (p = 0.043) and lower levels of genes for CTSB (p = 0.045) compared to the HFD group and lower levels of LAMP2 (p = 0.02) compared to the ET group. CONCLUSION There were increases in autophagosome formation in the white adipose tissue from mice in the HFD and ET groups. A combination of HFD and ET enhances autophagosome formation and modulates lysosomal degradation in white adipose tissue.
Collapse
Affiliation(s)
- Saeed Daneshyar
- Department of Physical Education, Faculty of Humanities, Ayatollah Alozma Boroujerdi University, Lorestan, Iran; Department of Physical Education, Hamedan University of Technology, Hamedan, Iran.
| | - Gholamreza Tavoosidana
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Bahmani
- Department of Biochemistry, Faculty of Medicine, Hamedan University of Medical Sciences, Hamedan, Iran
| | - Saeed Shokati Basir
- Department of Exercise Physiology, Faculty of Physical Education, University of Guilan, Guilan, Iran
| | - Maryam Delfan
- Department of Exercise Physiology, Faculty of Sport Sciences, Alzahra University, Tehran, Iran
| | - Ismail Laher
- Department of Anesthesiology, Pharmacology, and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Ayoub Saeidi
- Department of Physical Education and Sport Sciences, Faculty of Humanities and Social Sciences, University of Kurdistan, Sanandaj, Kurdistan, Iran
| | - Urs Granacher
- Department of Sport and Sport Science, Exercise and Human Movement Science, University of Freiburg, Germany.
| | - Hassane Zouhal
- Univ Rennes, M2S (Laboratoire Mouvement, Sport, Santé) - EA 1274, F-35000 Rennes, France; Institut International des Sciences du Sport (2I2S), 35850 Irodouer, France.
| |
Collapse
|
30
|
Chen K, Lin T, Yao W, Chen X, Xiong X, Huang Z. Adipocytes-derived exosomal miR-122 promotes non-alcoholic fat liver disease progression via targeting Sirt1. GASTROENTEROLOGIA Y HEPATOLOGIA 2022:S0210-5705(22)00312-0. [PMID: 36584755 DOI: 10.1016/j.gastrohep.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 11/28/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022]
Abstract
AIMS Nonalcoholic fatty liver disease (NAFLD) is a chronic liver disease that affects adipose function. This study aimed to explore the function of adipocytes-derived exosomal (ADEs) miR-122 in NAFLD. METHODS A high-fat and high-fructose diet-induced rat model and a palmitic acid (PA)-induced in vitro model were established. The RNA level of miR-122 and Sirt1 was measured using qRT-PCR. The protein levels of exosome biomarkers, and lipogenesis, inflammation and fibrosis biomarkers were determined by western blotting. Cell viability and apoptosis were assessed using cell counting kit-8 and flow cytometry, respectively. Serum alanine aminotransferase, aspartate aminotransferase, total cholesterol, triglyceride levels were measured. Liver tissue damage was assessed using haematoxylin and eosin staining. The interaction between miR-122 and Sirt1 3'UTR was assessed using a luciferase reporter gene assay. RESULTS ADEs exhibited abundant level of miR-122 and promoted lipogenesis, impaired hepatocyte survival, enhanced liver damage and increased serum lipid levels in vivo and in vitro. Inhibition of miR-122 in ADEs alleviated NAFLD progression, lipid and glucose metabolism, liver inflammation and fibrosis both in vivo and in vitro. miR-122 binds directly to the 3'UTR of Sirt1 to suppress its expression. Moreover, Sirt1 overexpression reversed the increase in cell apoptosis, glucose and lipid metabolism, liver inflammation and fibrosis induced by ADEs in vivo and in vitro. CONCLUSIONS The ADEs miR-122 promotes the progression of NAFLD via modulating Sirt1 signalling in vivo and in vitro. The ADEs miR-122 may be a promising diagnostic biomarker and therapeutic target for NAFLD.
Collapse
Affiliation(s)
- Kai Chen
- Digestive Department, Longhai First Hospital Affiliated to Xiamen Medical College, Zhangzhou, Fujian, PR China
| | - Tingting Lin
- Department of Endocrinology, Longhai First Hospital Affiliated to Xiamen Medical College, Zhangzhou, Fujian, PR China
| | - Weirong Yao
- Inspection Department, Longhai First Hospital Affiliated to Xiamen Medical College, Zhangzhou, Fujian, PR China
| | - Xinqiao Chen
- Neurology Department, Longhai First Hospital Affiliated to Xiamen Medical College, Zhangzhou, Fujian, PR China
| | - Xiaoming Xiong
- Department of Endocrinology, Longhai First Hospital Affiliated to Xiamen Medical College, Zhangzhou, Fujian, PR China
| | - Zhufeng Huang
- Department of Endocrinology, Longhai First Hospital Affiliated to Xiamen Medical College, Zhangzhou, Fujian, PR China.
| |
Collapse
|
31
|
Chao X, Williams SN, Ding WX. Role of mechanistic target of rapamycin in autophagy and alcohol-associated liver disease. Am J Physiol Cell Physiol 2022; 323:C1100-C1111. [PMID: 36062877 PMCID: PMC9550572 DOI: 10.1152/ajpcell.00281.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/26/2022] [Accepted: 08/26/2022] [Indexed: 11/22/2022]
Abstract
Mechanistic target of rapamycin (mTOR) is a serine-threonine kinase and a cellular sensor for nutrient and energy status, which is critical in regulating cell metabolism and growth by governing the anabolic (protein and lipid synthesis) and catabolic process (autophagy). Alcohol-associated liver disease (ALD) is a major chronic liver disease worldwide that carries a huge financial burden. The spectrum of the pathogenesis of ALD includes steatosis, fibrosis, inflammation, ductular reaction, and eventual hepatocellular carcinoma, which is closely associated with metabolic changes that are regulated by mTOR. In this review, we summarized recent progress of alcohol consumption on the changes of mTORC1 and mTORC2 activity, the potential mechanisms and possible impact of the mTORC1 changes on autophagy in ALD. We also discussed the potential beneficial effects and limitations of targeting mTORC1 against ALD.
Collapse
Affiliation(s)
- Xiaojuan Chao
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas
| | - Sha Neisha Williams
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
32
|
Baselli GA, Jamialahmadi O, Pelusi S, Ciociola E, Malvestiti F, Saracino M, Santoro L, Cherubini A, Dongiovanni P, Maggioni M, Bianco C, Tavaglione F, Cespiati A, Mancina RM, D'Ambrosio R, Vaira V, Petta S, Miele L, Vespasiani-Gentilucci U, Federico A, Pihlajamaki J, Bugianesi E, Fracanzani AL, Reeves HL, Soardo G, Prati D, Romeo S, Valenti LV. Rare ATG7 genetic variants predispose patients to severe fatty liver disease. J Hepatol 2022; 77:596-606. [PMID: 35405176 DOI: 10.1016/j.jhep.2022.03.031] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 02/25/2022] [Accepted: 03/15/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Non-alcoholic fatty liver disease (NAFLD) is the leading cause of liver disorders and has a strong heritable component. The aim of this study was to identify new loci that contribute to severe NAFLD by examining rare variants. METHODS We performed whole-exome sequencing in individuals with NAFLD and advanced fibrosis or hepatocellular carcinoma (n = 301) and examined the enrichment of likely pathogenic rare variants vs. the general population. This was followed by validation at the gene level. RESULTS In patients with severe NAFLD, we observed an enrichment of the p.P426L variant (rs143545741 C>T; odds ratio [OR] 5.26, 95% CI 2.1-12.6; p = 0.003) of autophagy-related 7 (ATG7), which we characterized as a loss-of-function, vs. the general population, and an enrichment in rare variants affecting the catalytic domain (OR 13.9; 95% CI 1.9-612; p = 0.002). In the UK Biobank cohort, loss-of-function ATG7 variants increased the risk of cirrhosis and hepatocellular carcinoma (OR 3.30; 95% CI 1.1-7.5 and OR 12.30, 95% CI 2.6-36, respectively; p <0.001 for both). The low-frequency loss-of-function p.V471A variant (rs36117895 T>C) was also associated with severe NAFLD in the clinical cohort (OR 1.7; 95% CI 1.2-2.5; p = 0.003), predisposed to hepatocellular ballooning (p = 0.007) evolving to fibrosis in the Liver biopsy cohort (n = 2,268), and was associated with liver injury in the UK Biobank (aspartate aminotransferase levels, p <0.001), with a larger effect in severely obese individuals in whom it was linked to hepatocellular carcinoma (p = 0.009). ATG7 protein localized to periportal hepatocytes, particularly in the presence of ballooning. In the Liver Transcriptomic cohort (n = 125), ATG7 expression correlated with suppression of the TNFα pathway, which was conversely upregulated in p.V471A carriers. CONCLUSIONS We identified rare and low-frequency ATG7 loss-of-function variants that promote NAFLD progression by impairing autophagy and facilitating ballooning and inflammation. LAY SUMMARY We found that rare mutations in a gene called autophagy-related 7 (ATG7) increase the risk of developing severe liver disease in individuals with dysmetabolism. These mutations cause an alteration in protein function and impairment of self-renewal of cellular content, leading to liver damage and inflammation.
Collapse
Affiliation(s)
- Guido A Baselli
- Precision Medicine - Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Oveis Jamialahmadi
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, Wallenberg Laboratory, University of Gothenburg, Gothenburg, Sweden
| | - Serena Pelusi
- Precision Medicine - Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Ester Ciociola
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, Wallenberg Laboratory, University of Gothenburg, Gothenburg, Sweden
| | - Francesco Malvestiti
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Marco Saracino
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Luigi Santoro
- Precision Medicine - Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Alessandro Cherubini
- Precision Medicine - Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Paola Dongiovanni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Marco Maggioni
- Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Cristiana Bianco
- Precision Medicine - Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Federica Tavaglione
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, Wallenberg Laboratory, University of Gothenburg, Gothenburg, Sweden
| | - Annalisa Cespiati
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Rosellina M Mancina
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, Wallenberg Laboratory, University of Gothenburg, Gothenburg, Sweden
| | - Roberta D'Ambrosio
- Division of Gastroenterology and Hepatology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Valentina Vaira
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy; Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Salvatore Petta
- Gastroenterology and Hepatology, PROMISE, Università di Palermo, Palermo, Italy
| | - Luca Miele
- Department of Internal Medicine, Fondazione Policlinico A. Gemelli, Università Cattolica di Roma, Rome, Italy
| | - Umberto Vespasiani-Gentilucci
- Clinical Medicine and Hepatology Unit, Department of Internal Medicine and Geriatrics, Campus Bio-Medico University, Rome, Italy
| | - Alessandro Federico
- Division of Hepatogastroenterology, Department of Precision Medicine, Università della Campania "Luigi Vanvitelli", Naples, Italy
| | - Jussi Pihlajamaki
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland; Department of Medicine, Endocrinology and Clinical Nutrition, Kuopio University Hospital, Kuopio, Finland
| | - Elisabetta Bugianesi
- Department of Medical Sciences, Division of Gastro-Hepatology, A.O. Città della Salute e della Scienza di Torino, Università di Torino, Turin, Italy
| | - Anna L Fracanzani
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy; General Medicine and Metabolic Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Helen L Reeves
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK; Newcastle NIHR Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Giorgio Soardo
- Clinic of Internal Medicine - Liver Unit, Department of Medical Area (DAME), Università degli Studi di Udine, Udine, Italy; Italian Liver Foundation, Area Science Park, Basovizza Campus, Trieste, Italy
| | - Daniele Prati
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Stefano Romeo
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, Wallenberg Laboratory, University of Gothenburg, Gothenburg, Sweden; Clinical Nutrition Unit, Department of Medical and Surgical Science, University Magna Graecia, Catanzaro, Italy; Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Luca Vc Valenti
- Precision Medicine - Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
33
|
Li R, Li G, Hai Y, Li T, Bian Y, Ma T. The effect of aerobic exercise on the lipophagy of adipose tissue in obese male mice. Chem Phys Lipids 2022; 247:105225. [PMID: 35810833 DOI: 10.1016/j.chemphyslip.2022.105225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/27/2022] [Accepted: 07/06/2022] [Indexed: 01/18/2023]
Abstract
This article explores the obesity state and the changes in the level of lipophagy in adipose tissue after exercise to lose weight, so as to provide direction and basis for theoretical research on obesity prevention and control. We established a high-fat diet model of obese mice, and applied exercise intervention and intraperitoneal injection of chloroquine to inhibit autophagy. Long-term high-fat diet can cause obesity in mice, and the process of lipophagy is inhibited, which may be one of the reasons for fat accumulation. Eight weeks of aerobic exercise can effectively reduce the weight of obese mice and promote lipolysis; this process is mainly completed by lipase decomposition, in addition to require the participation of the lipophagy process.
Collapse
Affiliation(s)
- Rendong Li
- Physical Education Department, Shenyang University of Chemical Technology, Shenyang Economic and Technological Development Zone, Shenyang 110142, PR China.
| | - Guangkuan Li
- Department of Postgraduate, Shenyang Sport University, Shenyang 110102, PR China.
| | - Yan Hai
- Department of Postgraduate, Shenyang Sport University, Shenyang 110102, PR China.
| | - Tao Li
- Department of Postgraduate, Shenyang Sport University, Shenyang 110102, PR China.
| | - Yuanyuan Bian
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China.
| | - Tie Ma
- The College of Kinesiology, Shenyang Sport University, Shenyang 110102, PR China.
| |
Collapse
|
34
|
Yang Q, Zhang Y, Li L, Li J, Li Y, Han L, Wang M. D- chiro-Inositol facilitates adiponectin biosynthesis and activates the AMPKα/PPARs pathway to inhibit high-fat diet-induced obesity and liver lipid deposition. Food Funct 2022; 13:7192-7203. [PMID: 35708620 DOI: 10.1039/d2fo00869f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
D-chiro-Inositol (DCI) is a natural cyclohexanol isomer that widely exists in all living beings, which can effectively prevent glucose and lipid metabolism disorders in mammals. This study revealed the DCI elevated adiponectin levels to reduce obesity and hepatic lipid deposition in high-fat diet (HFD) fed mice. Twelve weeks of DCI supplementation (50 and 100 mg per kg body weight per day) lowered body weight and serum triglyceride, total cholesterol, insulin, and fasting glucose levels. Histopathology analysis revealed that DCI inhibited hepatic steatosis and adipocyte expansion. Remarkably, DCI significantly increased serum adiponectin levels and upgraded the expressions of adiponectin receptors (AdipoR1 and AdipoR2) in the liver. The results of western blot and qRT-PCR showed that DCI impeded the inhibitory effect of HFD on liver AMPKα and PPARs activities through activating AdipoRs and regulated downstream fatty acid metabolism. In addition, we analyzed the concentration difference of DCI in mouse liver and adipose tissue by the HRLC-MS/MS technology, indicating the preference of DCI in different tissues. Therefore, DCI relieved liver lipid deposition and hyperlipidemia potentially by promoting adiponectin synthesis in white adipose tissue and activating the AdipoR-AMPKα/PPARs pathway in the liver.
Collapse
Affiliation(s)
- Qiong Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China.
| | - Yao Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China.
| | - Luqi Li
- Life Science Research Core Services, Northwest A&F University, Shaanxi, China
| | - Jia Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China.
| | - Yunlong Li
- Institute of Functional Food of Shanxi, Shanxi Agricultural University, Taiyuan 030006, People's Republic of China
| | - Lin Han
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China.
| | - Min Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China.
| |
Collapse
|
35
|
MDM2 Aggravates Adipose Tissue Dysfunction through Ubiquitin-mediated STEAP4 Degradation. iScience 2022; 25:104544. [PMID: 35747386 PMCID: PMC9209722 DOI: 10.1016/j.isci.2022.104544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 05/13/2022] [Accepted: 06/01/2022] [Indexed: 11/21/2022] Open
Abstract
Healthy adipose tissue is crucial to maintain normal energy homeostasis. Little is known about the role of murine double minute 2 (MDM2), an E3 ubiquitin ligase and has been highlighted in oncopathology, in adipose tissue. Our results indicated that MDM2 expression was associated with nutritional status. Mdm2 adipocyte-specific knock-in (Mdm2-AKI) mice exhibited exacerbated weight gain, insulin resistance, and decreased energy expenditure. Meanwhile, chronic high-fat diet (HFD) exposure caused obvious epididymal white adipose tissue (eWAT) dysfunction, such as senescence, apoptosis, and chronic inflammation, thereby leading to hepatic steatosis in Mdm2-AKI mice. Mechanically, MDM2 could interact with six-transmembrane epithelial antigen of prostate 4 (STEAP4) and inhibit STEAP4 expression through ubiquitin-mediated STEAP4 degradation. Thereinto, the K18 and K161 sites of STEAP4 were ubiquitin-modificated by MDM2. Finally, STEAP4 restoration in eWAT of Mdm2-AKI mice on a HFD rescued MDM2-induced adipose dysfunction, insulin resistance, and hepatic steatosis. Summary, the MDM2-STEAP4 axis in eWAT plays an important role in maintaining healthy adipose tissue function and improving hepatic steatosis. Murine double minute 2 (MDM2) overexpression intensifies high-fat diet-induced adipose tissue dysfunction Adipocyte MDM2 overexpression aggravates insulin resistance and hepatosteatosis MDM2 decreases six-transmembrane epithelial antigen of prostate 4 (STEAP4) expression by ubiquitin-dependent STEAP4 degradation STEAP4 overexpression in eWAT alleviates MDM2-induced metabolic disorder
Collapse
|
36
|
Chronic Inflammation—A Link between Nonalcoholic Fatty Liver Disease (NAFLD) and Dysfunctional Adipose Tissue. Medicina (B Aires) 2022; 58:medicina58050641. [PMID: 35630058 PMCID: PMC9147364 DOI: 10.3390/medicina58050641] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a new challenge in modern medicine, due to its high prevalence in the world. The pathogenesis of NAFLD is a complex dysmetabolic process, following the “multiple-hit” hypothesis that involves hepatocytes excessive accumulation of triglycerides, insulin resistance (IR), increased oxidative stress, chronic low-grade inflammatory response and lipotoxicity. In this review, we provide an overview of the interrelation of these processes, the link between systemic and local inflammation and the role of dysfunctional adipose tissue (AT) in the NAFLD development. Multiple extrahepatic triggers of the pathophysiological mechanisms of NAFLD are described: nutritional deficiency or malnutrition, unhealthy food intake, the dysfunction of the liver–gut axis, the involvement of the mesenteric adipose tissue, the role of adipokines such as adiponectin, of food intake hormone, the leptin and leptin resistance (LR) and adipose tissue’s hormone, the resistin. In addition, a wide range of intrahepatic players are involved: oxidative stress, fatty acid oxidation, endoplasmic reticulum stress, mitochondrial dysfunction, resident macrophages (Kupffer cells), neutrophils, dendritic cells (DCs), B and T lymphocytes contributing to the potential evolution of NAFLD to nonalcoholic steatohepatitis (NASH). This interdependent approach to complex dysmetabolic imbalance in NAFLD, integrating relevant studies, could contribute to a better clarification of pathogenesis and consequently the development of new personalized treatments, targeting de novo lipogenesis, chronic inflammation and fibrosis. Further studies are needed to focus not only on treatment, but also on prevention strategy in NAFLD.
Collapse
|
37
|
Recent Advances in Adipose Tissue Dysfunction and Its Role in the Pathogenesis of Non-Alcoholic Fatty Liver Disease. Cells 2021; 10:cells10123300. [PMID: 34943809 PMCID: PMC8699427 DOI: 10.3390/cells10123300] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/09/2021] [Accepted: 11/23/2021] [Indexed: 12/12/2022] Open
Abstract
Obesity is a serious ongoing health problem that significantly increases the incidence of nonalcoholic fatty liver disease (NAFLD). During obesity, adipose tissue dysfunction is obvious and characterized by increased fat deposition (adiposity) and chronic low-grade inflammation. The latter has been implicated to critically promote the development and progression of NAFLD, whose advanced form non-alcoholic steatohepatitis (NASH) is considered one of the most common causes of terminal liver diseases. This review summarizes the current knowledge on obesity-related adipose dysfunction and its roles in the pathogenesis of hepatic steatosis and inflammation, as well as liver fibrosis. A better understanding of the crosstalk between adipose tissue and liver under obesity is essential for the development of new and improved preventive and/or therapeutic approaches for managing NAFLD.
Collapse
|
38
|
Kim J, Seki E. Crossing the Rubicon: Adipose Tissue Autophagy Breaks Out NAFLD. Cell Mol Gastroenterol Hepatol 2021; 12:1877-1878. [PMID: 34461065 PMCID: PMC8591194 DOI: 10.1016/j.jcmgh.2021.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/03/2021] [Accepted: 08/10/2021] [Indexed: 12/10/2022]
Affiliation(s)
| | - Ekihiro Seki
- Correspondence Address correspondence to: Ekihiro Seki, MD, PhD, Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, DAVIS, Suite 2099, Los Angeles, California 90048.
| |
Collapse
|