1
|
Coniac S, Costache-Outas MC, Antone-Iordache IL, Barbu AM, Bardan VT, Zamfir A, Ionescu AI, Badiu C. Real-World Evaluation of Immune-Related Endocrinopathies in Metastatic NSCLC Patients Treated with ICIs in Romania. Cancers (Basel) 2025; 17:1198. [PMID: 40227797 PMCID: PMC11987770 DOI: 10.3390/cancers17071198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/28/2025] [Accepted: 03/28/2025] [Indexed: 04/15/2025] Open
Abstract
(1) Background: Exploring real-world data (RWD) regarding immune-related adverse events (irAEs) is crucial to better understand the efficacy and safety of immunotherapy in cancer patient populations excluded from clinical trials. An analysis was conducted to evaluate the presumptive predictive causality between endocrine irAEs and the efficacy of immune check-point inhibitors (ICIs) in metastatic non-small-cell lung cancer (mNSCLC) patients treated in daily practice in Romania. (2) Methods: This was a retrospective cohort study of mNSCLC patients treated with ICIs in a tertiary level hospital in Romania for a period of almost seven years, from November 2017 till July 2024. Endocrine irAEs were well defined as any occurring autoimmune endocrinopathy during ICIs and related to immunotherapy. The hospital endocrinologist (M.C.C.O) diagnosed, treated, and followed these endocrine irAEs in a multidisciplinary approach. We investigated multiple medical variables to assess their impact on ICI effectiveness. Descriptive and statistical analyses were performed. (3) Results: Of 487 cancer patients treated with ICIs, we identified 215 mNSCLC patients who were evaluated for endocrine irAEs and co-medications during ICI therapy. Forty-seven (21.8%) patients experienced endocrine irAEs, thyroiditis being the most frequent and prevalent autoimmune endocrinopathy in 60% of cases. Endocrine irAEs were statistically significant, correlated with ICI efficacy (p = 0.002) for survival analysis. Steroids and proton-pump inhibitors used as co-medication during ICIs had a negative impact on response to therapy. (4) Conclusions: Endocrine irAEs might be considered predictive biomarkers for successful immunotherapy in mNSCLC patients. Co-medication during ICIs had a major influence on the effectiveness of these cutting-edge therapies. RWD plays an important role for oncology daily practice whenever clinical trial evidence is not available to guide decision.
Collapse
Affiliation(s)
- Simona Coniac
- Department of Medical Oncology, Hospice Hope Bucharest, 023642 Bucharest, Romania;
- Department of Endocrinology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.-M.B.); (V.T.B.); (A.Z.); (C.B.)
| | | | | | - Ana-Maria Barbu
- Department of Endocrinology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.-M.B.); (V.T.B.); (A.Z.); (C.B.)
| | - Victor Teodor Bardan
- Department of Endocrinology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.-M.B.); (V.T.B.); (A.Z.); (C.B.)
| | - Andreea Zamfir
- Department of Endocrinology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.-M.B.); (V.T.B.); (A.Z.); (C.B.)
| | - Andreea-Iuliana Ionescu
- Department of Endocrinology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.-M.B.); (V.T.B.); (A.Z.); (C.B.)
- Department of Radiotherapy, Coltea Clinical Hospital, 030167 Bucharest, Romania;
- Department of Medical Oncology, Colțea Clinical Hospital, 030167 Bucharest, Romania
| | - Corin Badiu
- Department of Endocrinology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.-M.B.); (V.T.B.); (A.Z.); (C.B.)
- C.I. Parhon National Institute of Endocrinology, 011863 Bucharest, Romania
| |
Collapse
|
2
|
Lan F, Wang X, Zhou Q, Li X, Jin J, Zhang W, Wen C, Wu G, Li G, Yan Y, Yang N, Sun C. Deciphering the coordinated roles of the host genome, duodenal mucosal genes, and microbiota in regulating complex traits in chickens. MICROBIOME 2025; 13:62. [PMID: 40025569 PMCID: PMC11871680 DOI: 10.1186/s40168-025-02054-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 02/01/2025] [Indexed: 03/04/2025]
Abstract
BACKGROUND The complex interactions between host genetics and the gut microbiome are well documented. However, the specific impacts of gene expression patterns and microbial composition on each other remain to be further explored. RESULTS Here, we investigated this complex interplay in a sizable population of 705 hens, employing integrative analyses to examine the relationships among the host genome, mucosal gene expression, and gut microbiota. Specific microbial taxa, such as the cecal family Christensenellaceae, which showed a heritability of 0.365, were strongly correlated with host genomic variants. We proposed a novel concept of regulatability ( r b 2 ), which was derived from h2, to quantify the cumulative effects of gene expression on the given phenotypes. The duodenal mucosal transcriptome emerged as a potent influencer of duodenal microbial taxa, with much higher r b 2 values (0.17 ± 0.01, mean ± SE) than h2 values (0.02 ± 0.00). A comparative analysis of chickens and humans revealed similar average microbiability values of genes (0.18 vs. 0.20) and significant differences in average r b 2 values of microbes (0.17 vs. 0.04). Besides, cis ( h cis 2 ) and trans heritability ( h trans 2 ) were estimated to assess the effects of genetic variations inside and outside the cis window of the gene on its expression. Higher h trans 2 values than h cis 2 values and a greater prevalence of trans-regulated genes than cis-regulated genes underscored the significant role of loci outside the cis window in shaping gene expression levels. Furthermore, our exploration of the regulatory effects of duodenal mucosal genes and the microbiota on 18 complex traits enhanced our understanding of the regulatory mechanisms, in which the CHST14 gene and its regulatory relationships with Lactobacillus salivarius jointly facilitated the deposition of abdominal fat by modulating the concentration of bile salt hydrolase, and further triglycerides, total cholesterol, and free fatty acids absorption and metabolism. CONCLUSIONS Our findings highlighted a novel concept of r b 2 to quantify the phenotypic variance attributed to gene expression and emphasize the superior role of intestinal mucosal gene expressions over host genomic variations in elucidating host‒microbe interactions for complex traits. This understanding could assist in devising strategies to modulate host-microbe interactions, ultimately improving economic traits in chickens.
Collapse
Affiliation(s)
- Fangren Lan
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center of Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xiqiong Wang
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center of Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Qianqian Zhou
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center of Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xiaochang Li
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center of Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jiaming Jin
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center of Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Wenxin Zhang
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center of Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Chaoliang Wen
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center of Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Guiqin Wu
- Beijing Engineering Research Centre of Layer, Beijing, 101206, China
| | - Guangqi Li
- Beijing Engineering Research Centre of Layer, Beijing, 101206, China
| | - Yiyuan Yan
- Beijing Engineering Research Centre of Layer, Beijing, 101206, China
| | - Ning Yang
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center of Molecular Design Breeding, China Agricultural University, Beijing, 100193, China.
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China.
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| | - Congjiao Sun
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center of Molecular Design Breeding, China Agricultural University, Beijing, 100193, China.
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China.
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
3
|
Han J, Zhang H, Li X, Tang Y, Du Y, Zhang H, Liao D. Relationship between dietary consumption of live microbes with mortality in adults with chronic kidney disease. J Nephrol 2025:10.1007/s40620-025-02212-w. [PMID: 39939503 DOI: 10.1007/s40620-025-02212-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 01/02/2025] [Indexed: 02/14/2025]
Abstract
BACKGROUND The connection between gut dysbiosis and chronic kidney disease (CKD) has been recognized, but, the effect of dietary intake of live microbes on the prognosis of CKD is still unclear. This analysis examined the relationship of dietary live microbe intake with mortality among adults with CKD. METHODS For this study, information was gathered from the National Health and Nutrition Examination Survey 1999-2018, which included 8725 adult participants with CKD. MedHi refers to the live microbial content of food beyond 104 CFU/g. To elucidate the link between MedHi dietary live microbe intake and mortality from all-cause and cardiovascular disease (CVD), we implemented a weighted multivariate Cox regression analysis. RESULTS In contrast to survivors, non-survivors had a lower intake of dietary live microbes. The findings from the multivariable model indicated a negative and linear relationship between an increment of 100 g in MedHi foods and reduced mortality from all-causes and CVD. Likewise, participants in the highest MedHi food group exhibited a 20% and 26% decreased risk of all-cause and CVD mortality, respectively, compared to those in the lowest MedHi food group. Stratified analyses conducted on various subgroups yielded consistent findings. CONCLUSION A significant inverse linear relationship was found between high dietary live microbe consumption and reduced all-cause and CVD mortality.
Collapse
Affiliation(s)
- Jianxin Han
- Department of Nephrology, The People's Hospital of Renshou County, The Second People's Hospital of Meishan City, Meishan, China
| | - Huan Zhang
- North Sichuan Medical College, Nanchong, China
| | - Xinchun Li
- North Sichuan Medical College, Nanchong, China
| | - Yumei Tang
- Department of Nephrology, The People's Hospital of Renshou County, The Second People's Hospital of Meishan City, Meishan, China
| | - Yunfei Du
- Chengdu Medical College, Chengdu, China
| | - Haiyan Zhang
- Pingshan County Hospital of Chinese Medicine, Yibin, Sichuan, China
| | - Dan Liao
- Department of Nephrology, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China.
| |
Collapse
|
4
|
Leao L, Miri S, Hammami R. Gut feeling: Exploring the intertwined trilateral nexus of gut microbiota, sex hormones, and mental health. Front Neuroendocrinol 2025; 76:101173. [PMID: 39710079 DOI: 10.1016/j.yfrne.2024.101173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 11/25/2024] [Accepted: 12/18/2024] [Indexed: 12/24/2024]
Abstract
The complex interplay between the gut microbiota, sex hormones, and mental health is emerging as a pivotal factor in understanding and managing psychiatric disorders. Beyond their traditional roles, sex hormones exert profound effects on various physiological systems including the gut microbiota. Fluctuations in sex hormone levels, notably during the menstrual cycle, influence gut physiology and barrier function, shaping gut microbiota composition and immune responses. Conversely, the gut microbiota actively modulates sex hormone levels via enzymatic processes. This bidirectional relationship underscores the significance of the gut-brain axis in maintaining mental well-being. This review explores the multifaceted interactions between sex hormones, the gut microbiota, and mental health outcomes. We highlight the potential of personalized interventions in treating psychiatric disorders, particularly in vulnerable populations such as premenopausal women and individuals with depressive disorders. By elucidating these complex interactions, we aim to provide insights for future research into targeted interventions, enhancing mental health outcomes.
Collapse
Affiliation(s)
- Luana Leao
- NuGut Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Saba Miri
- NuGut Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Riadh Hammami
- NuGut Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
5
|
Wang X, Li H, Yang Y, Wu Z, Wang Z, Li D, Xia W, Zou S, Liu Y, Wang F. Geographic and environmental impacts on gut microbiome in Himalayan langurs ( Semnopithecus schistaceus) and Xizang macaques ( Macaca mulatta vestita). Front Microbiol 2024; 15:1452101. [PMID: 39296299 PMCID: PMC11408304 DOI: 10.3389/fmicb.2024.1452101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/20/2024] [Indexed: 09/21/2024] Open
Abstract
Introduction Gut microbiome plays a crucial role in the health of wild animals. Their structural and functional properties not only reflect the host's dietary habits and habitat conditions but also provide essential support for ecological adaptation in various environments. Methods This study investigated the gut microbiome of Himalayan langurs (Semnopithecus schistaceus) and Xizang macaques (Macaca mulatta vestita) across different geographic regions using 16S rRNA gene and metagenomic sequencing. Results Results showed distinct clustering patterns in gut microbiota based on geographic location. Soil had an insignificant impact on host gut microbiome. Himalayan langurs from mid-altitude regions exhibited higher levels of antibiotic resistance genes associated with multidrug resistance, while Xizang macaques from high-altitude regions showed a broader range of resistance genes. Variations in carbohydrate-active enzymes and KEGG pathways indicated unique metabolic adaptations to different environments. Discussion These findings provide valuable insights into the health and conservation of these primates and the broader implications of microbial ecology and functional adaptations in extreme conditions.
Collapse
Affiliation(s)
- Xueyu Wang
- Key Laboratory of Conservation Biology of Rhinopithecus roxellana (Department of Education of Sichuan Province), China West Normal University, Nanchong, China
| | - Hong Li
- Key Laboratory of Conservation Biology of Rhinopithecus roxellana (Department of Education of Sichuan Province), China West Normal University, Nanchong, China
| | - Yumin Yang
- Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Zhijiu Wu
- Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Zhixiang Wang
- Key Laboratory of Conservation Biology of Rhinopithecus roxellana (Department of Education of Sichuan Province), China West Normal University, Nanchong, China
| | - Dayong Li
- Key Laboratory of Conservation Biology of Rhinopithecus roxellana (Department of Education of Sichuan Province), China West Normal University, Nanchong, China
| | - Wancai Xia
- Key Laboratory of Conservation Biology of Rhinopithecus roxellana (Department of Education of Sichuan Province), China West Normal University, Nanchong, China
| | - Shuzhen Zou
- Key Laboratory of Conservation Biology of Rhinopithecus roxellana (Department of Education of Sichuan Province), China West Normal University, Nanchong, China
| | - Yujia Liu
- Key Laboratory of Conservation Biology of Rhinopithecus roxellana (Department of Education of Sichuan Province), China West Normal University, Nanchong, China
| | - Fan Wang
- Key Laboratory of Conservation Biology of Rhinopithecus roxellana (Department of Education of Sichuan Province), China West Normal University, Nanchong, China
| |
Collapse
|
6
|
Jan T, Negi R, Sharma B, Kumar S, Singh S, Rai AK, Shreaz S, Rustagi S, Chaudhary N, Kaur T, Kour D, Sheikh MA, Kumar K, Yadav AN, Ahmed N. Next generation probiotics for human health: An emerging perspective. Heliyon 2024; 10:e35980. [PMID: 39229543 PMCID: PMC11369468 DOI: 10.1016/j.heliyon.2024.e35980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 09/05/2024] Open
Abstract
Over recent years, the scientific community has acknowledged the crucial role of certain microbial strains inhabiting the intestinal ecosystem in promoting human health, and participating in various beneficial functions for the host. These microorganisms are now referred to as next-generation probiotics and are currently considered as biotherapeutic products and food or nutraceutical supplements. However, the majority of next-generation probiotic candidates pose nutritional demands and exhibit high sensitivity towards aerobic conditions, leading to numerous technological hurdles in large-scale production. This underscores the need for the development of suitable delivery systems capable of enhancing the viability and functionality of these probiotic strains. Currently, potential candidates for next generation probiotics (NGP) are being sought among gut bacteria linked to health, which include strains from the genera Bacteroids, Faecalibacterium, Akkermansia and Clostridium. In contrast to Lactobacillus spp. and Bifidobacterium spp., NGP, particularly Bacteroids spp. and Clostridium spp., appear to exhibit greater ambiguity regarding their potential to induce infectious diseases. The present review provides a comprehensive overview of NGPs in terms of their health beneficial effects, regulation framework and risk assessment targeting relevant criteria for commercialization in food and pharmaceutical markets.
Collapse
Affiliation(s)
- Tawseefa Jan
- Department of Food Technology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmaur, Himachal Pradesh, India
| | - Rajeshwari Negi
- Department of Genetics, Plant Breeding and Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmaur, Himachal Pradesh, India
| | - Babita Sharma
- Department of Microbiology, Akal College of Basic Science, Eternal University, Baru Sahib, Sirmaur, Himachal Pradesh, India
| | - Sanjeev Kumar
- Faculty of Agricultural Sciences, GLA University, Mathura, Uttar Pradesh, India
| | - Sangram Singh
- Department of Biochemistry, Dr. Ram Manohar Lohia Avadh University, Ayodhya, Uttar Pradesh, India
| | - Ashutosh Kumar Rai
- Department of Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia
| | - Sheikh Shreaz
- Desert Agriculture and Ecosystem Department, Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Safat, Kuwait
| | - Sarvesh Rustagi
- Depratment of Food Technology, School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Nisha Chaudhary
- Depratment of Food Science and Technology, Agriculture University, Jodhpur, Rajasthan, India
| | - Tanvir Kaur
- Department of Genetics, Plant Breeding and Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmaur, Himachal Pradesh, India
| | - Divjot Kour
- Department of Microbiology, Akal College of Basic Science, Eternal University, Baru Sahib, Sirmaur, Himachal Pradesh, India
| | - Mohd Aaqib Sheikh
- Department of Food Technology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmaur, Himachal Pradesh, India
| | - Krishan Kumar
- Department of Food Technology, Rajiv Gandhi University, Doimukh, Arunachal Pradesh, India
| | - Ajar Nath Yadav
- Department of Genetics, Plant Breeding and Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmaur, Himachal Pradesh, India
- Centre of Research Impact and Outcome, Chitkara University, Rajpura, Punjab, India
- Chitkara Center for Research and Development, Chitkara University, Himachal Pradesh, India
| | - Naseer Ahmed
- Department of Food Technology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmaur, Himachal Pradesh, India
| |
Collapse
|
7
|
Martínez A, Velázquez L, Díaz R, Huaiquipán R, Pérez I, Muñoz A, Valdés M, Sepúlveda N, Paz E, Quiñones J. Impact of Novel Foods on the Human Gut Microbiome: Current Status. Microorganisms 2024; 12:1750. [PMID: 39338424 PMCID: PMC11433882 DOI: 10.3390/microorganisms12091750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
The microbiome is a complex ecosystem of microorganisms that inhabit a specific environment. It plays a significant role in human health, from food digestion to immune system strengthening. The "Novel Foods" refer to foods or ingredients that have not been consumed by humans in the European Union before 1997. Currently, there is growing interest in understanding how "Novel Foods" affect the microbiome and human health. The aim of this review was to assess the effects of "Novel Foods" on the human gut microbiome. Research was conducted using scientific databases, focusing on the literature published since 2000, with an emphasis on the past decade. In general, the benefits derived from this type of diet are due to the interaction between polyphenols, oligosaccharides, prebiotics, probiotics, fibre content, and the gut microbiome, which selectively promotes specific microbial species and increases microbial diversity. More research is being conducted on the consumption of novel foods to demonstrate how they affect the microbiome and, thus, human health. Consumption of novel foods with health-promoting properties should be further explored to maintain the diversity and functionality of the gut microbiome as a potential tool to prevent the onset and progression of chronic diseases.
Collapse
Affiliation(s)
- Ailín Martínez
- Doctoral Program in Science Major in Applied Cellular and Molecular Biology, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4800000, Chile;
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
| | - Lidiana Velázquez
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
- Faculty of Agricultural and Environmental Sciences, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4780000, Chile;
| | - Rommy Díaz
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
- Faculty of Agricultural and Environmental Sciences, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4780000, Chile;
| | - Rodrigo Huaiquipán
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
- Doctoral Program in Agrifood and Environment Sciences, Universidad de La Frontera, Temuco 4780000, Chile
| | - Isabela Pérez
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
- Doctoral Program in Agrifood and Environment Sciences, Universidad de La Frontera, Temuco 4780000, Chile
| | - Alex Muñoz
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
- Doctoral Program in Agrifood and Environment Sciences, Universidad de La Frontera, Temuco 4780000, Chile
| | - Marcos Valdés
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
- Doctoral Program in Agrifood and Environment Sciences, Universidad de La Frontera, Temuco 4780000, Chile
| | - Néstor Sepúlveda
- Faculty of Agricultural and Environmental Sciences, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4780000, Chile;
- Doctoral Program in Agrifood and Environment Sciences, Universidad de La Frontera, Temuco 4780000, Chile
| | - Erwin Paz
- UWA Institute of Agriculture, The University of Western Australia, Perth 6009, Australia;
| | - John Quiñones
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
- Faculty of Agricultural and Environmental Sciences, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4780000, Chile;
| |
Collapse
|
8
|
Yuan F. Association of dietary live microbe intake with prevalence of osteoporosis in US postmenopausal women: a cross-sectional study. Arch Osteoporos 2024; 19:69. [PMID: 39096323 DOI: 10.1007/s11657-024-01429-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/22/2024] [Indexed: 08/05/2024]
Abstract
The association between live microbe intake and osteoporosis in postmenopausal women remains unknown. The research findings indicated that an increased intake of live microbes through dietary sources was associated with a low prevalence of osteoporosis among postmenopausal women. PURPOSE To investigate the relationship between the consumption of live microbes in the diet and osteoporosis in postmenopausal women. METHODS A cross-sectional investigation using data obtained from the National Health and Nutrition Examination Survey was conducted. Participants were classified into three groups by using the dietary live microbe classification system developed by Sanders. Dual x-ray absorptiometry was used to measure body mineral density, and osteoporosis was diagnosed according to the World Health Organization criteria. We conducted a crude and adjusted multivariate logistic regression analysis, and utilized the restricted cubic splines model to assess the correlation between the consumption of live microbes in the diet and osteoporosis in postmenopausal women. RESULTS A total of 1378 women who had undergone menopause were enrolled in the study. After controlling for potential covariates, individuals with a high consumption of live microbes in their diet exhibited a notably low prevalence of osteoporosis in comparison to those with a low intake of dietary live microbes (odd ratio: 0.46, 95% confidence interval: 0.23, 0.93, P = 0.03). Subgroup analysis showed the stability of the results, and restricted cubic splines showed an approximate L-shape curve. CONCLUSIONS In this research, a higher consumption of live microbes in the diet was linked to a low prevalence of osteoporosis in postmenopausal women.
Collapse
Affiliation(s)
- Feng Yuan
- Department of Endocrinology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, 22 Guangrong Road, Gulou District, Fuzhou City, Fujian, China.
| |
Collapse
|
9
|
Kuru-Yaşar R, Üstün-Aytekin Ö. The Crucial Roles of Diet, Microbiota, and Postbiotics in Colorectal Cancer. Curr Nutr Rep 2024; 13:126-151. [PMID: 38483752 PMCID: PMC11133122 DOI: 10.1007/s13668-024-00525-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2024] [Indexed: 05/30/2024]
Abstract
PURPOSE OF REVIEW Colorectal cancer is the second deadliest cancer in the world, and its prevalence has been increasing alarmingly in recent years. After researchers discovered the existence of dysbiosis in colorectal cancer, they considered the use of probiotics in the treatment of colorectal cancer. However, for various reasons, including the low safety profile of probiotics in susceptible and immunocompromised patient5s, and the risk of developing antibiotic resistance, researchers have shifted their focus to non-living cells, their components, and metabolites. This review aims to comprehensively evaluate the literature on the effects of diet, microbiota, and postbiotics on colorectal cancer and the future of postbiotics. RECENT FINDINGS The link between diet, gut microbiota, and colorectal cancer has been established primarily as a relationship rather than a cause-effect relationship. The gut microbiota can convert gastrointestinal tract and dietary factors into either onco-metabolites or tumor suppressor metabolites. There is serious dysbiosis in the microbiota in colorectal cancer. Postbiotics appear to be promising agents in the prevention and treatment of colorectal cancer. It has been shown that various postbiotics can selectively induce apoptosis in CRC, inhibit cell proliferation, growth, invasion, and migration, modulate the immune system, suppress carcinogenic signaling pathways, maintain intestinal epithelial integrity, and have a synergistic effect with chemotherapy drugs. However, it is also reported that some postbiotics are ineffective and may be risky in terms of safety profile in some patients. Many issues need to be researched about postbiotics. Large-scale, randomized, double-blind clinical studies are needed.
Collapse
Affiliation(s)
- Rüya Kuru-Yaşar
- Department of Nutrition and Dietetics, Hamidiye Faculty of Health Sciences, University of Health Sciences, 34668, Istanbul, Türkiye
| | - Özlem Üstün-Aytekin
- Department of Nutrition and Dietetics, Hamidiye Faculty of Health Sciences, University of Health Sciences, 34668, Istanbul, Türkiye.
| |
Collapse
|
10
|
Wang T, Weiss A, You L. A generic approach to infer community-level fitness of microbial genes. Proc Natl Acad Sci U S A 2024; 121:e2318380121. [PMID: 38635629 PMCID: PMC11047084 DOI: 10.1073/pnas.2318380121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 03/26/2024] [Indexed: 04/20/2024] Open
Abstract
The gene content in a metagenomic pool defines the function potential of a microbial community. Natural selection, operating on the level of genomes or genes, shapes the evolution of community functions by enriching some genes while depriving the others. Despite the importance of microbiomes in the environment and health, a general metric to evaluate the community-wide fitness of microbial genes remains lacking. In this work, we adapt the classic neutral model of species and use it to predict how the abundances of different genes will be shaped by selection, regardless of at which level the selection acts. We establish a simple metric that quantitatively infers the average survival capability of each gene in a microbiome. We then experimentally validate the predictions using synthetic communities of barcoded Escherichia coli strains undergoing neutral assembly and competition. We further show that this approach can be applied to publicly available metagenomic datasets to gain insights into the environment-function interplay of natural microbiomes.
Collapse
Affiliation(s)
- Teng Wang
- Department of Biomedical Engineering, Duke University, Durham, NC27705
| | - Andrea Weiss
- Department of Biomedical Engineering, Duke University, Durham, NC27705
| | - Lingchong You
- Department of Biomedical Engineering, Duke University, Durham, NC27705
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC27710
- Center for Quantitative Biodesign, Duke University, Durham, NC27705
| |
Collapse
|
11
|
Das UN. Can essential fatty acids (EFAs) prevent and ameliorate post-COVID-19 long haul manifestations? Lipids Health Dis 2024; 23:112. [PMID: 38641607 PMCID: PMC11027247 DOI: 10.1186/s12944-024-02090-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/25/2024] [Indexed: 04/21/2024] Open
Abstract
It is hypothesized that COVID-19, post-COVID and post-mRNA COVID-19 (and other related) vaccine manifestations including "long haul syndrome" are due to deficiency of essential fatty acids (EFAs) and dysregulation of their metabolism. This proposal is based on the observation that EFAs and their metabolites can modulate the swift immunostimulatory response of SARS-CoV-2 and similar enveloped viruses, suppress inappropriate cytokine release, possess cytoprotective action, modulate serotonin and bradykinin production and other neurotransmitters, inhibit NF-kB activation, regulate cGAS-STING pathway, modulate gut microbiota, inhibit platelet activation, regulate macrophage and leukocyte function, enhance wound healing and facilitate tissue regeneration and restore homeostasis. This implies that administration of EFAs could be of benefit in the prevention and management of COVID-19 and its associated complications.
Collapse
Affiliation(s)
- Undurti N Das
- UND Life Sciences, 2221 NW 5th St, Battle ground, WA, 98604, USA.
- Department of Biotechnology, Indian Institute of Technology-Hyderabad, Sangareddy, Telangana, India.
- Department of Immunology and Rheumatology, Arete Hospitals, Gachibowli, Hyderabad, 4500032, India.
| |
Collapse
|
12
|
Yamamoto M, Ogura H, Kuda T, Xia Y, Nakamura A, Takahashi H, Inoue J, Takayanagi S. Detection of typical indigenous gut bacteria related to kanpyo Lagenaria siceraria var. hispida powder in murine caecum and human faecal cultures. 3 Biotech 2024; 14:118. [PMID: 38524237 PMCID: PMC10959864 DOI: 10.1007/s13205-024-03960-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 02/16/2024] [Indexed: 03/26/2024] Open
Abstract
Kanpyo (KP) is an edible dried product produced by peeling the fruit of the gourd Lagenaria siceraria var. hispida; it is used in the traditional Japanese cuisine. The health functionality of KP due to its rich dietary fibre is expected to include a possible combined effect of KP-responsive indigenous gut bacteria (KP-RIB). However, its effect on the gut microbiota is unclear. To determine the effects of the KP on the gut microbiota and their host, Institute of Cancer Research mice were fed a high-sucrose diet containing no fibre (NF) or 5% (w/w) KP for 14 days, and their caecal microbiota was analysed by 16S rRNA (V4) amplicon sequencing. Higher faecal frequency and weight and lower spleen weight and spleen tumour necrosis factor-α levels were observed in KP-fed mice than in NF-fed mice (p < 0.05). KP increased and decreased the abundance of short-chain fatty acid producer Lachnospiraceae and obesity-inflammation related Allobaculum species, respectively. In the case of human faecal cultures, stool samples from five healthy volunteers were inoculated and incubated at 37 °C for 24 h anaerobically; 3.2% (w/v) KP suppressed putrefactive compounds (indole, phenol, and ammonia). KP increased butyrate-producer Faecalibacterium, acetate/lactate-producer Bifidobacterium, and Lachnospira. Furthermore, KP cultures showed high antioxidant and RAW264.7 macrophage cell activation capacities. These results suggest that KP-RIB and KP intake may synergistically affect host health. However, further studies are required to clarify the synergistic effects of KP and KP-RIB.
Collapse
Affiliation(s)
- Mahiro Yamamoto
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-Ku, Tokyo, 108-8477 Japan
| | - Hikaru Ogura
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-Ku, Tokyo, 108-8477 Japan
| | - Takashi Kuda
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-Ku, Tokyo, 108-8477 Japan
| | - Yumeng Xia
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-Ku, Tokyo, 108-8477 Japan
| | - Ayaka Nakamura
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-Ku, Tokyo, 108-8477 Japan
| | - Hajime Takahashi
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-Ku, Tokyo, 108-8477 Japan
| | - Junji Inoue
- AHJIKAN Co., Ltd., 7-3-9, Shoko Center, Nishiku, Hiroshima-City, Hiroshima, 733-8677 Japan
| | - Shu Takayanagi
- AHJIKAN Co., Ltd., 7-3-9, Shoko Center, Nishiku, Hiroshima-City, Hiroshima, 733-8677 Japan
| |
Collapse
|
13
|
Clemente-Suárez VJ, Redondo-Flórez L, Rubio-Zarapuz A, Martín-Rodríguez A, Tornero-Aguilera JF. Microbiota Implications in Endocrine-Related Diseases: From Development to Novel Therapeutic Approaches. Biomedicines 2024; 12:221. [PMID: 38255326 PMCID: PMC10813640 DOI: 10.3390/biomedicines12010221] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
This comprehensive review article delves into the critical role of the human microbiota in the development and management of endocrine-related diseases. We explore the complex interactions between the microbiota and the endocrine system, emphasizing the implications of microbiota dysbiosis for the onset and progression of various endocrine disorders. The review aims to synthesize current knowledge, highlighting recent advancements and the potential of novel therapeutic approaches targeting microbiota-endocrine interactions. Key topics include the impact of microbiota on hormone regulation, its role in endocrine pathologies, and the promising avenues of microbiota modulation through diet, probiotics, prebiotics, and fecal microbiota transplantation. We underscore the importance of this research in advancing personalized medicine, offering insights for more tailored and effective treatments for endocrine-related diseases.
Collapse
Affiliation(s)
- Vicente Javier Clemente-Suárez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (A.R.-Z.); (J.F.T.-A.)
- Grupo de Investigación en Cultura, Educación y Sociedad, Universidad de la Costa, Barranquilla 080002, Colombia
| | - Laura Redondo-Flórez
- Department of Health Sciences, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, C/ Tajo s/n, 28670 Villaviciosa de Odón, Spain;
| | - Alejandro Rubio-Zarapuz
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (A.R.-Z.); (J.F.T.-A.)
| | - Alexandra Martín-Rodríguez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (A.R.-Z.); (J.F.T.-A.)
| | - José Francisco Tornero-Aguilera
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (A.R.-Z.); (J.F.T.-A.)
| |
Collapse
|
14
|
Li Z, Wang Q, Huang X, Wu Y, Shan D. Microbiome's role in musculoskeletal health through the gut-bone axis insights. Gut Microbes 2024; 16:2410478. [PMID: 39387683 PMCID: PMC11469435 DOI: 10.1080/19490976.2024.2410478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/06/2024] [Accepted: 09/24/2024] [Indexed: 10/15/2024] Open
Abstract
The interplay between the human microbiome and the musculoskeletal system represents a burgeoning field of research with profound implications for understanding and treating musculoskeletal disorders. This review articulates the pivotal role of the microbiome in modulating bone health, highlighting the gut-bone axis as a critical nexus for potential therapeutic intervention. Through a meticulous analysis of recent clinical research, we underscore the microbiome's influence on osteoporosis, sarcopenia, osteoarthritis, and rheumatoid arthritis, delineating both the direct and indirect mechanisms by which microbiota could impact musculoskeletal integrity and function. Our investigation reveals novel insights into the microbiota's contribution to bone density regulation, hormone production, immune modulation, and nutrient absorption, laying the groundwork for innovative microbiome-based strategies in musculoskeletal disease management. Significantly, we identify the challenges hindering the translation of research into clinical practice, including the limitations of current microbial sequencing techniques and the need for standardized methodologies in microbiome studies. Furthermore, we highlight promising directions for future research, particularly in the realm of personalized medicine, where the microbiome's variability offers unique opportunities for tailored treatment approaches. This review sets a new agenda for leveraging gut microbiota in the diagnosis, prevention, and treatment of musculoskeletal conditions, marking a pivotal step toward integrating microbiome science into clinical musculoskeletal care.
Collapse
Affiliation(s)
- Zhengrui Li
- School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qi Wang
- Jiangsu University, Zhenjiang, China
| | - Xufeng Huang
- Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - Yinteng Wu
- Department of Orthopedic and Trauma Surgery, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Dan Shan
- Faculty of Health and Medicine, Lancaster University, Lancaster, UK
- Department of Biobehavioral Sciences, Columbia University, New York, NY, USA
| |
Collapse
|
15
|
Ho SM, Tsai WH, Lai CH, Chiang MH, Lee WP, Wu HY, Bai PY, Wu T, Wu CL. Probiotic Lactobacillus spp. improves Drosophila memory by increasing lactate dehydrogenase levels in the brain mushroom body neurons. Gut Microbes 2024; 16:2316533. [PMID: 38372783 PMCID: PMC10877976 DOI: 10.1080/19490976.2024.2316533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 02/05/2024] [Indexed: 02/20/2024] Open
Abstract
Probiotics are live microorganisms that offer potential benefits to their hosts and can occasionally influence behavioral responses. However, the detailed mechanisms by which probiotics affect the behavior of their hosts and the underlying biogenic effects remain unclear. Lactic acid bacteria, specifically Lactobacillus spp. are known probiotics. Drosophila melanogaster, commonly known as the fruit fly, is a well-established model organism for investigating the interaction between the host and gut microbiota in translational research. Herein, we showed that 5-day administration of Lactobacillus acidophilus (termed GMNL-185) or Lacticaseibacillus rhamnosus (termed GMNL-680) enhances olfactory-associative memory in Drosophila. Moreover, a combined diet of GMNL-185 and GMNL-680 demonstrated synergistic effects on memory functions. Live brain imaging revealed a significant increase in calcium responses to the training odor in the mushroom body β and γ lobes of flies that underwent mixed feeding with GMNL-185 and GMNL-680. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) and whole-mount brain immunohistochemistry revealed significant upregulation of lactate dehydrogenase (LDH) expression in the fly brain following the mixed feeding. Notably, the genetic knockdown of Ldh in neurons, specifically in mushroom body, ameliorated the beneficial effects of mixed feeding with GMNL-185 and GMNL-680 on memory improvement. Altogether, our results demonstrate that supplementation with L. acidophilus and L. rhamnosus enhances memory functions in flies by increasing brain LDH levels.
Collapse
Affiliation(s)
- Shuk-Man Ho
- Department of Biochemistry, Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Wan-Hua Tsai
- Research and Development Department, GenMont Biotech Incorporation, Tainan, Taiwan
| | - Chih-Ho Lai
- Department of Biochemistry, Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Molecular Infectious Disease Research Center, Department of Pediatrics, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Medical Research, School of Medicine, China Medical University and Hospital, Taichung, Taiwan
- Department of Nursing, Asia University, Taichung, Taiwan
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan, Taiwan
| | - Meng-Hsuan Chiang
- Department of Biochemistry, Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Wang-Po Lee
- Department of Biochemistry, Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hui-Yu Wu
- Department of Biochemistry, Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Pei-Yi Bai
- Department of Biochemistry, Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Tony Wu
- Department of Neurology, New Taipei Municipal TuCheng Hospital, Chang Gung Memorial Hospital, New Taipei City, Taiwan
| | - Chia-Lin Wu
- Department of Biochemistry, Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Neurology, New Taipei Municipal TuCheng Hospital, Chang Gung Memorial Hospital, New Taipei City, Taiwan
- Brain Research Center, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
16
|
Gilbert JA, Dothard M. Guest editorial from The BMS Annual Lecture 2023. Post Reprod Health 2023; 29:187-189. [PMID: 38059588 DOI: 10.1177/20533691231217150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Affiliation(s)
- Jack A Gilbert
- Biomedical Sciences Graduate Program and Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Scripps Institution Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Marisol Dothard
- Biomedical Sciences Graduate Program and Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
17
|
Świrkosz G, Szczygieł A, Logoń K, Wrześniewska M, Gomułka K. The Role of the Microbiome in the Pathogenesis and Treatment of Ulcerative Colitis-A Literature Review. Biomedicines 2023; 11:3144. [PMID: 38137365 PMCID: PMC10740415 DOI: 10.3390/biomedicines11123144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease affecting the colon and rectum. UC's pathogenesis involves colonic epithelial cell abnormalities and mucosal barrier dysfunction, leading to recurrent mucosal inflammation. The purpose of the article is to show the complex interplay between ulcerative colitis and the microbiome. The literature search was conducted using the PubMed database. After a screening process of studies published before October 2023, a total of 136 articles were selected. It has been discovered that there is a fundamental correlation of a robust intestinal microbiota and the preservation of gastrointestinal health. Dysbiosis poses a grave risk to the host organism. It renders the host susceptible to infections and has been linked to the pathogenesis of chronic diseases, with particular relevance to conditions such as ulcerative colitis. Current therapeutic strategies for UC involve medications such as aminosalicylic acids, glucocorticoids, and immunosuppressive agents, although recent breakthroughs in monoclonal antibody therapies have significantly improved UC treatment. Furthermore, modulating the gut microbiome with specific compounds and probiotics holds potential for inflammation reduction, while fecal microbiota transplantation shows promise for alleviating UC symptoms. This review provides an overview of the gut microbiome's role in UC pathogenesis and treatment, emphasizing areas for further research.
Collapse
Affiliation(s)
- Gabriela Świrkosz
- Student Scientific Group of Adult Allergology, Wroclaw Medical University, 50-369 Wrocław, Poland; (G.Ś.); (K.L.)
| | - Aleksandra Szczygieł
- Student Scientific Group of Adult Allergology, Wroclaw Medical University, 50-369 Wrocław, Poland; (G.Ś.); (K.L.)
| | - Katarzyna Logoń
- Student Scientific Group of Adult Allergology, Wroclaw Medical University, 50-369 Wrocław, Poland; (G.Ś.); (K.L.)
| | - Martyna Wrześniewska
- Student Scientific Group of Adult Allergology, Wroclaw Medical University, 50-369 Wrocław, Poland; (G.Ś.); (K.L.)
| | - Krzysztof Gomułka
- Clinical Department of Internal Medicine, Pneumology and Allergology, Wroclaw Medical University, 50-369 Wrocław, Poland;
| |
Collapse
|
18
|
Huo X, Jia S, Zhang X, Sun L, Liu X, Liu L, Zuo X, Chen X. Association of dietary live microbe intake with abdominal aortic calcification in US adults: a cross-sectional study of NHANES 2013-2014. Front Nutr 2023; 10:1267607. [PMID: 38075227 PMCID: PMC10704926 DOI: 10.3389/fnut.2023.1267607] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/10/2023] [Indexed: 07/02/2024] Open
Abstract
OBJECT To explore the potential association between dietary live microbe intake and abdominal aortic calcification (AAC). METHODS We conducted a cross-section study based on the National Health and Nutrition Examination Survey (NHANES). We categorized the participants into three groups (low, medium, and high dietary intake of live microbes) according to Sanders's dietary live microbe classification system and participants' 24-h dietary recall data. AAC was quantified by using dual-energy X-ray absorptiometry (DXA) and diagnosed by using the Kauppila AAC-24 score system. The analyses utilized weighted logistic regression and weighted linear regression. RESULTS A total of 2,586 participants were included. After the full adjustment for covariates, compared to participants with a low dietary live microbe intake, participants with a high dietary live microbe intake had a significantly lower risk of severe AAC (OR: 0.39, 95% CI: 0.22, 0.68, p = 0.003), and the AAC score was also significantly decreased (β:-0.53, 95% CI: -0.83, -0.23, p = 0.002). CONCLUSION In this study, more dietary live microbial intake was associated with lower AAC scores and a lower risk of severe AAC. However, more research is needed to verify this.
Collapse
Affiliation(s)
- Xingwei Huo
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shanshan Jia
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xin Zhang
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lirong Sun
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Second Department of Internal Medicine, Affiliated Hospital of Tibet University for Nationalities, Xianyang, Shaanxi, China
| | - Xueting Liu
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lu Liu
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xianghao Zuo
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaoping Chen
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
19
|
Gou W, Miao Z, Deng K, Zheng JS. Nutri-microbiome epidemiology, an emerging field to disentangle the interplay between nutrition and microbiome for human health. Protein Cell 2023; 14:787-806. [PMID: 37099800 PMCID: PMC10636640 DOI: 10.1093/procel/pwad023] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/02/2023] [Indexed: 04/28/2023] Open
Abstract
Diet and nutrition have a substantial impact on the human microbiome, and interact with the microbiome, especially gut microbiome, to modulate various diseases and health status. Microbiome research has also guided the nutrition field to a more integrative direction, becoming an essential component of the rising area of precision nutrition. In this review, we provide a broad insight into the interplay among diet, nutrition, microbiome, and microbial metabolites for their roles in the human health. Among the microbiome epidemiological studies regarding the associations of diet and nutrition with microbiome and its derived metabolites, we summarize those most reliable findings and highlight evidence for the relationships between diet and disease-associated microbiome and its functional readout. Then, the latest advances of the microbiome-based precision nutrition research and multidisciplinary integration are described. Finally, we discuss several outstanding challenges and opportunities in the field of nutri-microbiome epidemiology.
Collapse
Affiliation(s)
- Wanglong Gou
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
- Research Center for Industries of the Future, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310030, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Zelei Miao
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
- Research Center for Industries of the Future, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310030, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Kui Deng
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
- Research Center for Industries of the Future, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310030, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Ju-Sheng Zheng
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
- Research Center for Industries of the Future, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310030, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| |
Collapse
|
20
|
Nagakubo D, Kaibori Y. Oral Microbiota: The Influences and Interactions of Saliva, IgA, and Dietary Factors in Health and Disease. Microorganisms 2023; 11:2307. [PMID: 37764151 PMCID: PMC10535076 DOI: 10.3390/microorganisms11092307] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/31/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Recent advances in metagenomic analyses have made it easier to analyze microbiota. The microbiota, a symbiotic community of microorganisms including bacteria, archaea, fungi, and viruses within a specific environment in tissues such as the digestive tract and skin, has a complex relationship with the host. Recent studies have revealed that microbiota composition and balance particularly affect the health of the host and the onset of disease. Influences such as diet, food preferences, and sanitation play crucial roles in microbiota composition. The oral cavity is where the digestive tract directly communicates with the outside. Stable temperature and humidity provide optimal growth environments for many bacteria. However, the oral cavity is a unique environment that is susceptible to pH changes, salinity, food nutrients, and external pathogens. Recent studies have emphasized the importance of the oral microbiota, as changes in bacterial composition and balance could contribute to the development of systemic diseases. This review focuses on saliva, IgA, and fermented foods because they play critical roles in maintaining the oral bacterial environment by regulating its composition and balance. More attention should be paid to the oral microbiota and its regulatory factors in oral and systemic health.
Collapse
Affiliation(s)
- Daisuke Nagakubo
- Division of Health and Hygienic Sciences, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, 7-2-1 Kamiohno, Himeji 670-8524, Hyogo, Japan
| | - Yuichiro Kaibori
- Division of Health and Hygienic Sciences, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, 7-2-1 Kamiohno, Himeji 670-8524, Hyogo, Japan
- Laboratory of Analytics for Biomolecules, Faculty of Pharmaceutical Science, Setsunan University, 45-1 Nagaotoge-cho, Hirakata-shi 573-0101, Osaka, Japan;
| |
Collapse
|
21
|
Ecklu-Mensah G, Choo-Kang C, Maseng MG, Donato S, Bovet P, Viswanathan B, Bedu-Addo K, Plange-Rhule J, Oti Boateng P, Forrester TE, Williams M, Lambert EV, Rae D, Sinyanya N, Luke A, Layden BT, O'Keefe S, Gilbert JA, Dugas LR. Gut microbiota and fecal short chain fatty acids differ with adiposity and country of origin: the METS-microbiome study. Nat Commun 2023; 14:5160. [PMID: 37620311 PMCID: PMC10449869 DOI: 10.1038/s41467-023-40874-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 08/11/2023] [Indexed: 08/26/2023] Open
Abstract
The relationship between microbiota, short chain fatty acids (SCFAs), and obesity remains enigmatic. We employ amplicon sequencing and targeted metabolomics in a large (n = 1904) African origin cohort from Ghana, South Africa, Jamaica, Seychelles, and the US. Microbiota diversity and fecal SCFAs are greatest in Ghanaians, and lowest in Americans, representing each end of the urbanization spectrum. Obesity is significantly associated with a reduction in SCFA concentration, microbial diversity, and SCFA synthesizing bacteria, with country of origin being the strongest explanatory factor. Diabetes, glucose state, hypertension, obesity, and sex can be accurately predicted from the global microbiota, but when analyzed at the level of country, predictive accuracy is only universally maintained for sex. Diabetes, glucose, and hypertension are only predictive in certain low-income countries. Our findings suggest that adiposity-related microbiota differences differ between low-to-middle-income compared to high-income countries. Further investigation is needed to determine the factors driving this association.
Collapse
Affiliation(s)
- Gertrude Ecklu-Mensah
- Department of Pediatrics, Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
| | - Candice Choo-Kang
- Public Health Sciences, Parkinson School of Health Sciences and Public Health, Loyola University Chicago, Maywood, IL, USA
| | - Maria Gjerstad Maseng
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Dep. of Gastroenterology, Oslo University Hospital, Oslo, Norway
- Bio-Me, Oslo, Norway
| | - Sonya Donato
- Department of Pediatrics, Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
| | - Pascal Bovet
- University Center for Primary Care and Public Health (Unisanté), Lausanne University Hospital, Lausanne, Switzerland
- Ministry of Health, Victoria, Republic of Seychelles
| | | | - Kweku Bedu-Addo
- Department of Physiology, SMS, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Jacob Plange-Rhule
- Department of Physiology, SMS, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Prince Oti Boateng
- Department of Physiology, SMS, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Terrence E Forrester
- Solutions for Developing Countries, University of the West Indies, Mona, Kingston, Jamaica
| | - Marie Williams
- Solutions for Developing Countries, University of the West Indies, Mona, Kingston, Jamaica
| | - Estelle V Lambert
- Research Unit for Exercise Science and Sports Medicine, University of Cape Town, Cape Town, South Africa
| | - Dale Rae
- Research Unit for Exercise Science and Sports Medicine, University of Cape Town, Cape Town, South Africa
| | - Nandipha Sinyanya
- Research Unit for Exercise Science and Sports Medicine, University of Cape Town, Cape Town, South Africa
| | - Amy Luke
- Public Health Sciences, Parkinson School of Health Sciences and Public Health, Loyola University Chicago, Maywood, IL, USA
| | - Brian T Layden
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
- Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA
| | - Stephen O'Keefe
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jack A Gilbert
- Department of Pediatrics, Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA.
| | - Lara R Dugas
- Public Health Sciences, Parkinson School of Health Sciences and Public Health, Loyola University Chicago, Maywood, IL, USA.
- Division of Epidemiology and Biostatistics, School of Public Health, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
22
|
Andres SF, Zhang Y, Kuhn M, Scottoline B. Building better barriers: how nutrition and undernutrition impact pediatric intestinal health. Front Immunol 2023; 14:1192936. [PMID: 37545496 PMCID: PMC10401430 DOI: 10.3389/fimmu.2023.1192936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/26/2023] [Indexed: 08/08/2023] Open
Abstract
Chronic undernutrition is a major cause of death for children under five, leaving survivors at risk for adverse long-term consequences. This review focuses on the role of nutrients in normal intestinal development and function, from the intestinal epithelium, to the closely-associated mucosal immune system and intestinal microbiota. We examine what is known about the impacts of undernutrition on intestinal physiology, with focus again on the same systems. We provide a discussion of existing animal models of undernutrition, and review the evidence demonstrating that correcting undernutrition alone does not fully ameliorate effects on intestinal function, the microbiome, or growth. We review efforts to treat undernutrition that incorporate data indicating that improved recovery is possible with interventions focused not only on delivery of sufficient energy, macronutrients, and micronutrients, but also on efforts to correct the abnormal intestinal microbiome that is a consequence of undernutrition. Understanding of the role of the intestinal microbiome in the undernourished state and correction of the phenotype is both complex and a subject that holds great potential to improve recovery. We conclude with critical unanswered questions in the field, including the need for greater mechanistic research, improved models for the impacts of undernourishment, and new interventions that incorporate recent research gains. This review highlights the importance of understanding the mechanistic effects of undernutrition on the intestinal ecosystem to better treat and improve long-term outcomes for survivors.
Collapse
Affiliation(s)
- Sarah F. Andres
- Division of Pediatric Gastroenterology, Department of Pediatrics, Oregon Health and Science University, Portland, OR, United States
| | - Yang Zhang
- Division of Pediatric Gastroenterology, Department of Pediatrics, Oregon Health and Science University, Portland, OR, United States
| | - Madeline Kuhn
- Division of Pediatric Gastroenterology, Department of Pediatrics, Oregon Health and Science University, Portland, OR, United States
| | - Brian Scottoline
- Division of Neonatology, Department of Pediatrics, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
23
|
Wollmuth EM, Angert ER. Microbial circadian clocks: host-microbe interplay in diel cycles. BMC Microbiol 2023; 23:124. [PMID: 37161348 PMCID: PMC10173096 DOI: 10.1186/s12866-023-02839-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 03/28/2023] [Indexed: 05/11/2023] Open
Abstract
BACKGROUND Circadian rhythms, observed across all domains of life, enable organisms to anticipate and prepare for diel changes in environmental conditions. In bacteria, a circadian clock mechanism has only been characterized in cyanobacteria to date. These clocks regulate cyclical patterns of gene expression and metabolism which contribute to the success of cyanobacteria in their natural environments. The potential impact of self-generated circadian rhythms in other bacterial and microbial populations has motivated extensive research to identify novel circadian clocks. MAIN TEXT Daily oscillations in microbial community composition and function have been observed in ocean ecosystems and in symbioses. These oscillations are influenced by abiotic factors such as light and the availability of nutrients. In the ocean ecosystems and in some marine symbioses, oscillations are largely controlled by light-dark cycles. In gut systems, the influx of nutrients after host feeding drastically alters the composition and function of the gut microbiota. Conversely, the gut microbiota can influence the host circadian rhythm by a variety of mechanisms including through interacting with the host immune system. The intricate and complex relationship between the microbiota and their host makes it challenging to disentangle host behaviors from bacterial circadian rhythms and clock mechanisms that might govern the daily oscillations observed in these microbial populations. CONCLUSIONS While the ability to anticipate the cyclical behaviors of their host would likely be enhanced by a self-sustained circadian rhythm, more evidence and further studies are needed to confirm whether host-associated heterotrophic bacteria possess such systems. In addition, the mechanisms by which heterotrophic bacteria might respond to diel cycles in environmental conditions has yet to be uncovered.
Collapse
Affiliation(s)
- Emily M Wollmuth
- Department of Microbiology, Cornell University, 123 Wing Drive, Ithaca, NY, 14853, USA
| | - Esther R Angert
- Department of Microbiology, Cornell University, 123 Wing Drive, Ithaca, NY, 14853, USA.
| |
Collapse
|
24
|
Gilbert J, Ecklu-Mensah G, Maseng MG, Donato S, Coo-Kang C, Dugas L, Bovet P, Bedu-Addo K, Plange-Rhule J, Forrester T, Lambert E, Rae D, Luke A, Layden B, O'Keefe S. Gut microbiota and fecal short chain fatty acids differ with adiposity and country of origin: The METS-Microbiome Study. RESEARCH SQUARE 2023:rs.3.rs-2791107. [PMID: 37090540 PMCID: PMC10120767 DOI: 10.21203/rs.3.rs-2791107/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
The relationship between gut microbiota, short chain fatty acid (SCFA) metabolism, and obesity is still not well understood. Here we investigated these associations in a large (n=1904) African origin cohort from Ghana, South Africa, Jamaica, Seychelles, and the US. Fecal microbiota diversity and SCFA concentration were greatest in Ghanaians, and lowest in the US population, representing the lowest and highest end of the epidemiologic transition spectrum, respectively. Obesity was significantly associated with a reduction in SCFA concentration, microbial diversity and SCFA synthesizing bacteria. Country of origin could be accurately predicted from the fecal microbiota (AUC=0.97), while the predictive accuracy for obesity was inversely correlated to the epidemiological transition, being greatest in Ghana (AUC = 0.57). The findings suggest that the microbiota differences between obesity and non-obesity may be larger in low-to-middle-income countries compared to high-income countries. Further investigation is needed to determine the factors driving this association.
.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Pascal Bovet
- University Center for Primary Care and Public Health
| | | | | | | | | | | | - Amy Luke
- Loyola University School of Medicine
| | | | | |
Collapse
|
25
|
Perler BK, Friedman ES, Wu GD. The Role of the Gut Microbiota in the Relationship Between Diet and Human Health. Annu Rev Physiol 2023; 85:449-468. [PMID: 36375468 DOI: 10.1146/annurev-physiol-031522-092054] [Citation(s) in RCA: 123] [Impact Index Per Article: 61.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The interplay between diet, the gut microbiome, and host health is complex. Diets associated with health have many similarities: high fiber, unsaturated fatty acids, and polyphenols while being low in saturated fats, sodium, and refined carbohydrates. Over the past several decades, dietary patterns have changed significantly in Westernized nations with the increased consumption of calorically dense ultraprocessed foods low in fiber and high in saturated fats, salt, and refined carbohydrates, leading to numerous negative health consequences including obesity, metabolic syndrome, and cardiovascular disease. The gut microbiota is an environmental factor that interacts with diet and may also have an impact on health outcomes, many of which involve metabolites produced by the microbiota from dietary components that can impact the host. This review focuses on our current understanding of the complex relationship between diet, the gut microbiota, and host health, with examples of how diet can support health, increase an individual's risk for disease, and be used as a therapy for specific diseases.
Collapse
Affiliation(s)
- Bryce K Perler
- Division of Gastroenterology and Hepatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA;
| | - Elliot S Friedman
- Division of Gastroenterology and Hepatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA;
| | - Gary D Wu
- Division of Gastroenterology and Hepatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA;
| |
Collapse
|
26
|
Piperata BA, Scaggs SA, Dufour DL, Adams IK. Measuring food insecurity: An introduction to tools for human biologists and ecologists. Am J Hum Biol 2023; 35:e23821. [PMID: 36256611 DOI: 10.1002/ajhb.23821] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 08/20/2022] [Accepted: 09/29/2022] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVE Food insecurity is a significant and growing concern undermining the wellbeing of 30% of the global population. Food in/security is a complex construct consisting of four dimensions: availability, access, utilization, and stability, making it challenging to measure. We provide a toolkit human biologists/ecologists can use to advance research on this topic. METHODS We review the strengths and limitations of common tools used to measure food access and utilization, the two dimensions most proximate to people's lived experience, and emphasize tools that provide data needed to best link food security with human biological outcomes. We also discuss methods that provide contextual data human biologists/ecologists will find useful for study design, ensuring instrument validity, and improving data quality. RESULTS Food access is principally measured using experience-based instruments that emphasize economic access. Social access, such as food sharing, is under-studied and we recommend using social network analysis to explore this dimension. In terms of utilization, emphasis has been on food choice measured as dietary diversity. Food preparation and intrahousehold distribution, also part of the utilization dimension, are less studied and standardized instruments for measuring both are lacking. The embodiment of food insecurity has focused on child growth, although a growing literature addresses adult mental wellbeing and chronic and infectious disease risk. CONCLUSIONS We see the potential to expand outcomes to include reproductive and immune function, physical activity, and the gut microbiome. Human biologists/ecologists are well-positioned to advance understanding of the human health impacts of food insecurity and provide data to support intervention efforts.
Collapse
Affiliation(s)
- Barbara A Piperata
- Department of Anthropology, The Ohio State University, Columbus, Ohio, USA
| | - Shane A Scaggs
- Department of Anthropology, The Ohio State University, Columbus, Ohio, USA
| | | | - Ingrid K Adams
- Department of Extension and School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
27
|
Mohr AE, Jasbi P, Vander Wyst KB, van Woerden I, Shi X, Gu H, Whisner CM, Bruening M. Association of food insecurity on gut microbiome and metabolome profiles in a diverse college-based sample. Sci Rep 2022; 12:14358. [PMID: 35999348 PMCID: PMC9399224 DOI: 10.1038/s41598-022-18515-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 08/10/2022] [Indexed: 12/18/2022] Open
Abstract
Voluntary caloric restriction (e.g., eating disorders) often results in alterations in the gut microbiota composition and function. However, these findings may not translate to food insecurity, where an individual experiences inconsistent access to healthy food options. In this study we compared the fecal microbiome and metabolome of racially and ethnically diverse first year college students (n = 60) experiencing different levels of food access. Students were dichotomized into food secure (FS) and food insecure (FI) groups using a validated, 2-question screener assessing food security status over the previous 30 days. Fecal samples were collected up to 5 days post survey-completion. Gut microbiome and metabolome were established using 16S rRNA amplicon sequencing, targeted liquid chromatography-tandem mass spectrometry, and gas chromatography-mass spectrometry. FI students experienced significantly greater microbial diversity with increased abundance of Enterobacteriaceae and Eisenbergiella, while FS students had greater abundance of Megasphaera and Holdemanella. Metabolites related to energy transfer and gut–brain-axis communication (picolinic acid, phosphocreatine, 2-pyrrolidinone) were elevated in FI students (q < 0.05). These findings suggest that food insecurity is associated with differential gut microbial and metabolite composition for which the future implications are unknown. Further work is needed to elucidate the longitudinal metabolic effects of food insecurity and how gut microbes influence metabolic outcomes.
Collapse
Affiliation(s)
- Alex E Mohr
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
| | - Paniz Jasbi
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA.,School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
| | | | - Irene van Woerden
- Community and Public Health, Idaho State University, Pocatello, ID, USA
| | - Xiaojian Shi
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA.,Systems Biology Institute, Yale University, West Haven, CT, USA
| | - Haiwei Gu
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA.,Center for Translational Science, Florida International University, Port St. Lucie, FL, USA
| | - Corrie M Whisner
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA. .,Biodesign Institute Health Through Microbiomes Center, Arizona State University, Tempe, AZ, USA.
| | - Meg Bruening
- Department of Nutritional Sciences, Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
28
|
Bixby M, Gennings C, Malecki KMC, Sethi AK, Safdar N, Peppard PE, Eggers S. Individual Nutrition Is Associated with Altered Gut Microbiome Composition for Adults with Food Insecurity. Nutrients 2022; 14:3407. [PMID: 36014913 PMCID: PMC9416073 DOI: 10.3390/nu14163407] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/13/2022] [Accepted: 08/14/2022] [Indexed: 11/17/2022] Open
Abstract
Diet is widely recognized as a key contributor to human gut microbiome composition and function. However, overall nutrition can be difficult to compare across a population with varying diets. Moreover, the role of food security in the relationship with overall nutrition and the gut microbiome is unclear. This study aims to investigate the association between personalized nutrition scores, variation in the adult gut microbiome, and modification by food insecurity. The data originate from the Survey of the Health of Wisconsin and the Wisconsin Microbiome Study. Individual nutrition scores were assessed using My Nutrition Index (MNI), calculated using data from food frequency questionnaires, and additional health history and demographic surveys. Food security and covariate data were measured through self-reported questionnaires. The gut microbiome was assessed using 16S amplicon sequencing of DNA extracted from stool samples. Associations, adjusted for confounding and interaction by food security, were estimated using Weighted Quantile Sum (WQS) regression models with Random Subset and Repeated Holdout extensions (WQSRSRH), with bacterial taxa used as components in the weighted index. Of 643 participants, the average MNI was 66.5 (SD = 31.9), and 22.8% of participants were food insecure. Increased MNI was significantly associated with altered gut microbial composition (β = 2.56, 95% CI = 0.52−4.61), with Ruminococcus, Oscillospira, and Blautia among the most heavily weighted of the 21 genera associated with the MNI score. In the stratified interaction WQSRSRH models, the bacterial taxa most heavily weighted in the association with MNI differed by food security, but the level of association between MNI and the gut microbiome was not significantly different. More bacterial genera are important in the association with higher nutrition scores for people with food insecurity versus food security, including Streptococcus, Parabacteroides Faecalibacterium, and Desulfovibrio. Individual nutrition scores are associated with differences in adult gut microbiome composition. The bacterial taxa most associated with nutrition vary by level of food security. While further investigation is needed, results showed a higher nutrition score was associated with a wider range of bacterial taxa for food insecure vs. secure, suggesting nutritional quality in food insecure individuals is important in maintaining health and reducing disparities.
Collapse
Affiliation(s)
- Moira Bixby
- Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Chris Gennings
- Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Kristen M. C. Malecki
- Population Health Sciences, University of Wisconsin School of Medicine and Public Health, 610 Walnut St., WARF 707, Madison, WI 53726, USA
| | - Ajay K. Sethi
- Population Health Sciences, University of Wisconsin School of Medicine and Public Health, 610 Walnut St., WARF 707, Madison, WI 53726, USA
| | - Nasia Safdar
- Department of Medicine, Division of Infectious Disease, School of Medicine and Public Health, University of Wisconsin-Madison, UW Med. Fndtn. Centennial Bldg., 1685 Highland Ave, Madison, WI 53705, USA
- William S. Middleton Veterans Affairs Medical Center, 2500 Overlook Terrace, Madison, WI 53705, USA
| | - Paul E. Peppard
- Population Health Sciences, University of Wisconsin School of Medicine and Public Health, 610 Walnut St., WARF 707, Madison, WI 53726, USA
| | - Shoshannah Eggers
- Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| |
Collapse
|
29
|
Wetherill MS, Bakhsh C, Caywood L, Williams MB, Hartwell ML, Wheeler DL, Hubach RD, Teague TK, Köhler G, Hebert JR, Weiser SD. Unpacking determinants and consequences of food insecurity for insulin resistance among people living with HIV: Conceptual framework and protocol for the NOURISH-OK study. FRONTIERS IN CLINICAL DIABETES AND HEALTHCARE 2022; 3:947552. [PMID: 36225538 PMCID: PMC9552993 DOI: 10.3389/fcdhc.2022.947552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/01/2022] [Indexed: 11/22/2022]
Abstract
Background Over the past four decades, advances in HIV treatment have contributed to a longer life expectancy for people living with HIV (PLWH). With these gains, the prevention and management of chronic co-morbidities, such as diabetes, are now central medical care goals for this population. In the United States, food insecurity disproportionately impacts PLWH and may play a role in the development of insulin resistance through direct and indirect pathways. The Nutrition to Optimize, Understand, and Restore Insulin Sensitivity in HIV for Oklahoma (NOURISH-OK) will use a novel, multi-level, integrated framework to explore how food insecurity contributes to insulin resistance among PLWH. Specifically, it will explore how food insecurity may operate as an intermediary risk factor for insulin resistance, including potential linkages between upstream determinants of health and downstream consequences of poor diet, other behavioral risk factors, and chronic inflammation. Methods/design This paper summarizes the protocol for the first aim of the NOURISH-OK study, which involves purposeful cross-sectional sampling of PLWH (n=500) across four levels of food insecurity to test our conceptual framework. Developed in collaboration with community stakeholders, this initial phase involves the collection of anthropometrics, fasting blood samples, non-blood biomarkers, 24-hour food recall to estimate the Dietary Inflammatory Index (DII®) score, and survey data. A 1-month, prospective observational sub-study (total n=100; n=25 for each food security group) involves weekly 24-hour food recalls and stool samples to identify temporal associations between food insecurity, diet, and gut microbiome composition. Using structural equation modeling, we will explore how upstream risk factors, including early life events, current discrimination, and community food access, may influence food insecurity and its potential downstream impacts, including diet, other lifestyle risk behaviors, and chronic inflammation, with insulin resistance as the ultimate outcome variable. Findings from these analyses of observational data will inform the subsequent study aims, which involve qualitative exploration of significant pathways, followed by development and testing of a low-DII® food as medicine intervention to reverse insulin resistance among PLWH (ClinicalTrials.gov Identifier: NCT05208671). Discussion The NOURISH-OK study will address important research gaps to inform the development of food as medicine interventions to support healthy aging for PLWH.
Collapse
Affiliation(s)
- Marianna S. Wetherill
- Department of Health Promotion Sciences, Hudson College of Public Health, University of Oklahoma Tulsa Schusterman Center, Tulsa, OK, United States
- Department of Family and Community Medicine, University of Oklahoma School of Community Medicine, Tulsa, OK, United States
| | | | - Lacey Caywood
- Department of Health Promotion Sciences, Hudson College of Public Health, University of Oklahoma Tulsa Schusterman Center, Tulsa, OK, United States
| | - Mary B. Williams
- Department of Family and Community Medicine, University of Oklahoma School of Community Medicine, Tulsa, OK, United States
- Department of Biostatistics and Epidemiology, Hudson College of Public Health, University of Oklahoma Tulsa Schusterman Center, Tulsa, OK, United States
| | - Micah L. Hartwell
- Department of Psychiatry, Oklahoma State University Center for Health Sciences, Tulsa, OK, United States
| | - Denna L. Wheeler
- Center for Rural Health, Oklahoma State University Center for Health Sciences, Tulsa, OK, United States
| | - Randolph D. Hubach
- Department of Public Health, Purdue University, West Lafayette, IN, United States
| | - T. Kent Teague
- Department of Surgery, University of Oklahoma School of Community Medicine, Tulsa, OK, United States
- Department of Psychiatry, University of Oklahoma School of Community Medicine, Tulsa, OK, United States
- Department of Biochemistry and Microbiology, Oklahoma State University Center for Health Sciences, Tulsa, OK, United States
| | - Gerwald Köhler
- Department of Biochemistry and Microbiology, Oklahoma State University Center for Health Sciences, Tulsa, OK, United States
| | - James R. Hebert
- Department of Epidemiology and Biostatistics, University of South Carolina, Columbia, SC, United States
| | - Sheri D. Weiser
- Division of HIV, Infectious Disease and Global Medicine, Department of Medicine, University of California, San Francisco (UCSF), San Francisco, CA, United States
| |
Collapse
|
30
|
Schmidt TM. Stitching together a healthy gut microbiome with fiber. Cell Host Microbe 2022; 30:762-763. [PMID: 35679822 DOI: 10.1016/j.chom.2022.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Inter-individual variability in the gut microbiome confounds efforts to understand host responses to dietary fiber. In this issue of Cell Host & Microbe, Lancaster et al. report individual and generalized host and microbiome responses in an interventional study of fiber supplements, motivating consideration of an alternative classification of fiber.
Collapse
Affiliation(s)
- Thomas M Schmidt
- Departments of Internal Medicine and Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
31
|
Ren Z, Li W, Liu Q, Dong Y, Huang Y. Profiling of the Conjunctival Bacterial Microbiota Reveals the Feasibility of Utilizing a Microbiome-Based Machine Learning Model to Differentially Diagnose Microbial Keratitis and the Core Components of the Conjunctival Bacterial Interaction Network. Front Cell Infect Microbiol 2022; 12:860370. [PMID: 35558101 PMCID: PMC9086711 DOI: 10.3389/fcimb.2022.860370] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/28/2022] [Indexed: 12/29/2022] Open
Abstract
Both healthy and diseased human ocular surfaces possess their own microbiota. If allowed, opportunistic pathogens within the ocular microbiota may cause microbial keratitis (MK). However, the nonpathogenic component of the ocular microbiota has been proven to undermine the performance of culture, the gold standard of the etiological diagnosis for MK. As the conjunctival bacterial microbiota generates unique alterations with various oculopathies, this study aimed to evaluate the feasibility of distinguishing MK using machine learning based on the characteristics of the conjunctival bacterial microbiome associated with various types of MK. This study also aimed to reveal which bacterial genera constitute the core of the interaction network of the conjunctival bacterial microbiome. Conjunctival swabs collected from the diseased eyes of MK patients and the randomly chosen normal eyes of healthy volunteers were subjected for high-throughput 16S rDNA sequencing. The relative content of each bacterial genus and the composition of bacterial gene functions in every sample were used to establish identification models with the random forest algorithm. Tenfold cross validation was adopted. Accuracy was 96.25% using the bacterial microbiota structure and 93.75% using the bacterial gene functional composition. Therefore, machine learning with the conjunctival bacterial microbiome characteristics might be used for differentiation of MKs as a noninvasive supplementary approach. In addition, this study found that Actinobacteria, Lactobacillus, Clostridium, Helicobacter, and Sphingomonas constitute the core of the interaction network of the conjunctival bacterial microbiome.
Collapse
Affiliation(s)
- Zhichao Ren
- Qingdao University Medical College, Qingdao, China
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Wenfeng Li
- Department of Medical Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qing Liu
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Yanling Dong
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Yusen Huang
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
- *Correspondence: Yusen Huang,
| |
Collapse
|
32
|
Frazier K, Leone VA. Host-microbe circadian dynamics: Finding a rhythm and hitting a groove in scientific inquiry. Cell Host Microbe 2022; 30:458-462. [PMID: 35421343 PMCID: PMC9720840 DOI: 10.1016/j.chom.2022.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Gut microbes are mediators of organismal-level circadian rhythms, responding to and transducing environmental cues. Gut microbes also exhibit rhythms, yet their contribution to a healthy microbiome remains unclear. We present our path to identifying host-microbe circadian dynamics related to health and outline a series of forward-thinking questions requiring further exploration.
Collapse
Affiliation(s)
- Katya Frazier
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Vanessa A Leone
- Department of Animal & Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
33
|
Mennella JA, Li Y, Bittinger K, Friedman ES, Zhao C, Li H, Wu GD, Trabulsi JC. The Macronutrient Composition of Infant Formula Produces Differences in Gut Microbiota Maturation That Associate with Weight Gain Velocity and Weight Status. Nutrients 2022; 14:nu14061241. [PMID: 35334900 PMCID: PMC8951061 DOI: 10.3390/nu14061241] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/04/2022] [Accepted: 03/10/2022] [Indexed: 02/06/2023] Open
Abstract
This proof-of-principle study analyzed fecal samples from 30 infants who participated in a randomized controlled trial on the effects of the macronutrient composition of infant formula on growth and energy balance. In that study, infants randomized to be fed cow milk formula (CMF) had faster weight-gain velocity during the first 4 months and higher weight-for-length Z scores up to 11.5 months than those randomized to an isocaloric extensive protein hydrolysate formula (EHF). Here we examined associations among infant formula composition, gut microbial composition and maturation, and children’s weight status. Fecal samples collected before and monthly up to 4.5 months after randomization were analyzed by shotgun metagenomic sequencing and targeted metabolomics. The EHF group had faster maturation of gut microbiota than the CMF group, and increased alpha diversity driven by Clostridia taxa. Abundance of Ruminococcus gnavus distinguished the two groups after exclusive feeding of the assigned formula for 3 months. Abundance of Clostridia at 3–4 months negatively correlated with prior weight-gain velocity and body weight phenotypes when they became toddlers. Macronutrient differences between the formulas likely led to the observed divergence in gut microbiota composition that was associated with differences in transient rapid weight gain, a well-established predictor of childhood obesity and other comorbidities.
Collapse
Affiliation(s)
| | - Yun Li
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (Y.L.); (H.L.)
| | - Kyle Bittinger
- Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (K.B.); (C.Z.)
| | - Elliot S. Friedman
- Division of Gastroenterology and Hepatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (E.S.F.); (G.D.W.)
| | - Chunyu Zhao
- Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (K.B.); (C.Z.)
| | - Hongzhe Li
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (Y.L.); (H.L.)
| | - Gary D. Wu
- Division of Gastroenterology and Hepatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (E.S.F.); (G.D.W.)
| | - Jillian C. Trabulsi
- Department of Behavioral Health and Nutrition, University of Delaware, Newark, DE 19713, USA
- Correspondence: ; Tel.: +1-302-831-4991
| |
Collapse
|
34
|
De Filippis F, Esposito A, Ercolini D. Outlook on next-generation probiotics from the human gut. Cell Mol Life Sci 2022; 79:76. [PMID: 35043293 PMCID: PMC11073307 DOI: 10.1007/s00018-021-04080-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/29/2021] [Accepted: 12/03/2021] [Indexed: 12/15/2022]
Abstract
Probiotics currently available on the market generally belong to a narrow range of microbial species. However, recent studies about the importance of the gut microbial commensals on human health highlighted that the gut microbiome is an unexplored reservoir of potentially beneficial microbes. For this reason, academic and industrial research is focused on identifying and testing novel microbial strains of gut origin for the development of next-generation probiotics. Although several of these are promising for the prevention and treatment of many chronic diseases, studies on human subjects are still scarce and approval from regulatory agencies is, therefore, rare. In addition, some issues need to be overcome before implementing their wide application on the market, such as the best methods for cultivation and storage of these oxygen-sensitive taxa. This review summarizes the most recent evidence related to NGPs and provides an outlook to the main issues that still limit their wide employment.
Collapse
Affiliation(s)
- Francesca De Filippis
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Alessia Esposito
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Danilo Ercolini
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy.
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy.
| |
Collapse
|
35
|
Rastogi S, Mohanty S, Sharma S, Tripathi P. Possible role of gut microbes and host's immune response in gut-lung homeostasis. Front Immunol 2022; 13:954339. [PMID: 36275735 PMCID: PMC9581402 DOI: 10.3389/fimmu.2022.954339] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/07/2022] [Indexed: 02/05/2023] Open
Abstract
The vast diversity of microbial communities reside in various locations of the human body, and they are collectively named as the 'Human Microbiota.' The majority of those microbes are found in the gastrointestinal and respiratory tracts. The microorganisms present in the gastrointestinal and the respiratory tracts are called the gut microbiota and the airway microbiota, respectively. These microbial communities are known to affect both the metabolic functions and the immune responses of the host. Among multiple factors determining the composition of gut microbiota, diet has played a pivotal role. The gut microbes possess enzymatic machinery for assimilating dietary fibers and releasing different metabolites, primarily short-chain fatty acids (SCFAs). The SCFAs modulate the immune responses of not only the gut but other distal mucosal sites as well, such as the lungs. Dysbiosis in normal gut flora is one of the factors involved in the development of asthma and other respiratory disorders. Of note, several human and murine studies have indicated significant cross-talk between gut microbiota and lung immunity, known as the gut-lung axis. Here, in this review, we summarize the recent state of the field concerning the effect of dietary metabolites, particularly SCFAs, on the "gut-lung axis" as well as discuss its impact on lung health. Moreover, we have highlighted the role of the "gut-lung axis" in SARS-CoV-2 mediated inflammation. Also, to analyze the global research progress on the gut-lung axis and to identify the knowledge gap in this field, we have also utilized the bibliographic tools Dimension database and VOS viewer analysis software. Through network mapping and visualization analysis, we can predict the present research trend and the possibility to explore new directions.
Collapse
Affiliation(s)
- Sonakshi Rastogi
- Food Drug and Chemical Toxicology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - Sneha Mohanty
- Food Drug and Chemical Toxicology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - Sapna Sharma
- Institute of Biosciences and Biotechnology, Shri Ramswaroop Memorial University, Barabanki, Uttar Pradesh, India
- *Correspondence: Prabhanshu Tripathi, ; Sapna Sharma,
| | - Prabhanshu Tripathi
- Food Drug and Chemical Toxicology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
- *Correspondence: Prabhanshu Tripathi, ; Sapna Sharma,
| |
Collapse
|
36
|
Jensen SK, Pærregaard SI, Brandum EP, Jørgensen AS, Hjortø GM, Jensen BAH. OUP accepted manuscript. Gastroenterol Rep (Oxf) 2022; 10:goac008. [PMID: 35291443 PMCID: PMC8915887 DOI: 10.1093/gastro/goac008] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/07/2022] [Accepted: 02/16/2022] [Indexed: 11/24/2022] Open
Abstract
Organismal survival depends on a well-balanced immune system and maintenance of host–microbe mutualism. The fine-tuned relationship between the gut microbiota and host immunity is constantly challenged by opportunistic bacteria testing the integrity of gastrointestinal (GI) barrier defenses. Barrier dysfunction reduces immunological tolerance towards otherwise innocuous microbes; it is a process that may instigate chronic inflammation. Paradoxically, sustained inflammation further diminishes barrier function, enabling bacterial translocation to extra-intestinal tissues. Once translocated, these bacteria stimulate systemic inflammation, thereby compromising organ function. While genetic risk alleles associate with barrier dysfunction, environmental stressors are key triggers of GI inflammation and associated breakdown in immune tolerance towards resident gut microbes. As dietary components dictate substrate availability, they also orchestrate microbiota composition and function, including migratory and pro-inflammatory potential, thus holding the capacity to fuel both GI and extra-intestinal inflammation. Additionally, Western diet consumption may weaken barrier defenses via curbed Paneth cell function and diminished host-defense peptide secretion. This review focuses on intervenable niches of host–microbe interactions and mucosal immunity with the ambition to provide a framework of plausible strategies to improve barrier function and regain tolerance in the inflamed mucosa via nutritional intervention.
Collapse
Affiliation(s)
- Sune K Jensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Simone I Pærregaard
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Emma P Brandum
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Astrid S Jørgensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gertrud M Hjortø
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Benjamin A H Jensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Corresponding author. Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, Build. 22.5.39, Copenhagen N 2200, Denmark. Tel: +45-35330188;
| |
Collapse
|