1
|
Rahaman J, Mukherjee D. Insulin for oral bone tissue engineering: a review on innovations in targeted insulin-loaded nanocarrier scaffold. J Drug Target 2025; 33:648-665. [PMID: 39707830 DOI: 10.1080/1061186x.2024.2445737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/21/2024] [Accepted: 12/15/2024] [Indexed: 12/23/2024]
Abstract
The occurrence of oral bone tissue degeneration and bone defects by osteoporosis, tooth extraction, obesity, trauma, and periodontitis are major challenges for clinicians. Traditional bone regeneration methods often come with limitations such as donor site morbidity, limitation of special shape, inflammation, and resorption of the implanted bone. The treatment oriented with biomimetic bone materials has achieved significant attention recently. In the oral bone tissue engineering arena, insulin has gained considerable attention among all the known biomaterials for osteogenesis and angiogenesis. It also exhibits osteogenic and angiogenic properties by interacting with insulin receptors on osteoblasts. Insulin influences bone remodelling both directly and indirectly. It acts directly through the PI3K/Akt and MAPK signalling pathways and indirectly by modulating the RANK/RANKL/OPG pathway, which helps reduce bone resorption. The current review reports the role of insulin in bone remodelling and bone tissue regeneration in the oral cavity in the form of scaffolds and nanomaterials. Different insulin delivery systems, utilising nanomaterials and scaffolds functionalised with polymeric biomaterials have been explored for oral bone tissue regeneration. The review put forward a theoretical basis for future research in insulin delivery in the form of scaffolds and composite materials for oral bone tissue regeneration.
Collapse
Affiliation(s)
- Jiyaur Rahaman
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S Narsee Monjee Institute of Management Studies, Shirpur, India
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-be University, Mumbai, India
| | - Dhrubojyoti Mukherjee
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S Narsee Monjee Institute of Management Studies, Shirpur, India
| |
Collapse
|
2
|
Helal MH, Sheta MS, Alsherif AA, Hassan MA, Aboushelib MN, Ghouraba RF. The Effectiveness of Hyaluronic Acid on Prefabricated CAD CAM Bone Blocks for Ridge Augmentation: A Split Mouth Study. Clin Implant Dent Relat Res 2025; 27:e70035. [PMID: 40231349 DOI: 10.1111/cid.70035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/11/2025] [Accepted: 03/26/2025] [Indexed: 04/16/2025]
Abstract
INTRODUCTION Alveolar ridge augmentation has been one of the most accepted treatments for restoring bone volume. Various products are available in particle forms, which have limitations, especially related to controlling the expected volume gain. A prefabricated computer-aided design and computer-aided manufacturing (CAD-CAM) allogenic bone block could provide a good alternative. MATERIALS AND METHODS A split-mouth randomized clinical trial included 10 patients with the bilateral posterior atrophic mandible (20 sides), who were randomly assigned to two groups with an allocation ratio of 1:1. Group I: the ridge was augmented using prefabricated CAD-CAM allogenic bone block hydrated using hyaluronic acid, and group II was hydrated using saline. Blinding was limited to the patients and the investigator responsible for data analysis (double blinding). Six months after grafting surgery, a core biopsy was taken for histological analysis, and implants were inserted into the augmented ridge. The amount of bone gain was evaluated radiographically using CBCT. RESULTS All ridges in both groups revealed a successful bone gain in CBCT. However, the mean bone gain in group I (3.975 ± 0.31) was significantly higher than in group II (2.497 ± 0.66). Histologically, both groups showed osteointegration and new bone formation, with group I being superior. VEGF, OPN, and Cox 2 expressions were more intense in group I than in group II. The histomorphometric analysis revealed that group I had a considerably higher surface area of new bone formation than group II (p-value < 0.001). Immunohistochemical staining for VEGF revealed a significant difference between groups I (15.04 ± 0.47) and II (11.41 ± 0.54). CONCLUSION Within the limitations of this study, the addition of HA to prefabricated CAD-CAM allogenic block enhanced its osteogenic properties and guaranteed adequate integration of the graft for implant insertion. TRIAL REGISTRATION This clinical trial was not registered before the participants' recruitment and randomization (https://clinicaltrials.gov/study/NCT06395818).
Collapse
Affiliation(s)
- Mohamed Hamdy Helal
- Faculty of Dentistry, Oral Medicine, Periodontology, Oral Diagnosis, and Radiology Department, Tanta University, Tanta, Egypt
| | - Mona S Sheta
- Faculty of Dentistry, Oral and Maxillofacial Surgery Department, Tanta University, Tanta, Egypt
| | - Aya Anwar Alsherif
- Oral Biology Department, Faculty of Dentistry, Tanta University, Tanta, Egypt
| | - Mai Atef Hassan
- Faculty of Dentistry, Oral Medicine, Periodontology, Oral Diagnosis, and Radiology Department, Tanta University, Tanta, Egypt
| | | | - Rehab F Ghouraba
- Faculty of Dentistry, Oral Medicine, Periodontology, Oral Diagnosis, and Radiology Department, Tanta University, Tanta, Egypt
| |
Collapse
|
3
|
Zhang L, Su L, Wu L, Zhou W, Xie J, Fan Y, Zhou X, Zhou C, Cui Y, Sun J. Versatile hydrogels prepared by microfluidics technology for bone tissue engineering applications. J Mater Chem B 2025; 13:2611-2639. [PMID: 39876639 DOI: 10.1039/d4tb02314e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Bone defects are a prevalent issue resulting from various factors, such as trauma, degenerative diseases, congenital disabilities, and the surgical removal of tumors. Current methods for bone regeneration have limitations. In this context, the fusion of tissue engineering and microfluidics has emerged as a promising strategy in the field of bone regeneration. This study describes the classification of microfluidic devices based on the nature of flow and channel type, as well as the materials and techniques required. An overview of microfluidic methods used to prepare hydrogels and the advantages of using these hydrogels in bone tissue engineering (BTE) combining several basic elements of BTE to highlight its advantages is provided. Furthermore, this work emphasizes the benefits of using hydrogels prepared via microfluidics over conventional hydrogels in BTE because of their controlled release of cargo, they can be used for in situ injection, simplify the steps of single-cell encapsulation and have the advantages of high-throughput and precise preparation. Additionally, organ-on-a-chip models fabricated via microfluidics offer a platform for studying cell and tissue behaviors in an authentic and dynamic environment. Moreover, microfluidic devices can be utilized for noninvasive diagnosis and therapy. Finally, this paper summarizes the preclinical and clinical applications of hydrogels prepared via microfluidics for bone regeneration by focusing on their current developmental status, limitations associated with their application, and future challenges, which underscore their potential impacts on advancing regenerative medicine practices.
Collapse
Affiliation(s)
- Luyue Zhang
- State Key Laboratory of Oral Disease & National Center for Stomatology & National Clinical Center for Oral Diseases & Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Liqian Su
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Lina Wu
- College of Biomedical Engineering, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Weikai Zhou
- State Key Laboratory of Oral Disease & National Center for Stomatology & National Clinical Center for Oral Diseases & Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Jing Xie
- State Key Laboratory of Oral Disease & National Center for Stomatology & National Clinical Center for Oral Diseases & Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Yi Fan
- State Key Laboratory of Oral Disease & National Center for Stomatology & National Clinical Center for Oral Diseases & Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Xuedong Zhou
- State Key Laboratory of Oral Disease & National Center for Stomatology & National Clinical Center for Oral Diseases & Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Changchun Zhou
- College of Biomedical Engineering, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Yujia Cui
- State Key Laboratory of Oral Disease & National Center for Stomatology & National Clinical Center for Oral Diseases & Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Jianxun Sun
- State Key Laboratory of Oral Disease & National Center for Stomatology & National Clinical Center for Oral Diseases & Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
4
|
de Souza Araújo IJ, Bottino MC. Biofabrication - Revolutionizing the future of regenerative periodontics. Dent Mater 2025; 41:179-193. [PMID: 39632205 DOI: 10.1016/j.dental.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/19/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
Periodontium is a compartmentalized and highly specialized tissue responsible for tooth stability. Loss of tooth attachment due to periodontitis and trauma is a complex clinical burden affecting a large parcel of the adult and elderly population worldwide, and regenerative strategies to reestablish the native conditions of the periodontium are paramount. Biofabrication of scaffolds, through various techniques and materials, for regenerative periodontics has significantly evolved in the last decades. From the basics of occlusive membranes and graft materials to the complexity of converging 3D printing and Bioprinting using image-based models, biofabrication opens many possibilities for patient-specific scaffolds that recapitulate the anatomical and physiological conditions of periodontal tissues and interfaces. Thus, this review presents fundamental concepts related to the native characteristics of the periodontal tissues, the key to designing personalized strategies, and the latest trends of biofabrication in regenerative periodontics with a critical overview of how these emerging technologies have the potential to shift the one-size-fits-all paradigm.
Collapse
Affiliation(s)
- Isaac J de Souza Araújo
- Department of Bioscience Research, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Marco C Bottino
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
5
|
Avinashi SK, Mishra RK, Shweta, Kumar S, Shamsad A, Parveen S, Sahu S, Kumari S, Fatima Z, Yadav SK, Banerjee M, Mishra M, Mehta N, Gautam CR. 3D nanocomposites of β-TCP-H 3BO 3-Cu with improved mechanical and biological performances for bone regeneration applications. Sci Rep 2025; 15:3224. [PMID: 39863796 PMCID: PMC11763077 DOI: 10.1038/s41598-025-87988-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 01/23/2025] [Indexed: 01/27/2025] Open
Abstract
Recently, 3-D porous architecture of the composites play a key role in cell proliferation, bone regeneration, and anticancer activities. The osteoinductive and osteoconductive properties of β-TCP allow for the complete repair of numerous bone defects. Herein, β-TCP was synthesized by wet chemical precipitation route, and their 3-D porous composites with H3BO3 and Cu nanoparticles were prepared by the solid-state reaction method with improved mechanical and biological performances. Several characterization techniques have been used to investigate the various characteristics of fabricated porous composites. SEM and TEM studies revealed the porous morphology and hexagonal sheets of the β-TCP for the composite THC8 (82TCP-10H3BO3-8Cu). Moreover, the mechanical study showed excellent compressive strength (188 MPa), a high Young's modulus (2.84 GPa), and elevated fracture toughness (9.11 MPa.m1/2). An in vitro study by MTT assay on osteoblast (MG-63) cells demonstrated no or minimal cytotoxicity at the higher concentration, 100 µg/ml after 24 h and it was found a more pronounced result at 20 µg/ml on increasing the concentration of Cu nanoparticles after incubating 72 h. The THC12 composite showed the highest antibacterial potency exclusively against B. subtilis. S. pyogene, S. typhi and E. coli. at 10 mg/ml, indicating its potential effectiveness in inhibiting all of these pathogens. Genotoxicity and cytotoxicity tests were also performed on rearing Drosophila melanogaster, and these findings did not detect any trypan blue-positive staining, which further recommended that the existence of composites did not harm the larval gut. Therefore, the fabricated porous composites THC8 and THC12 are suitable for bone regrowth without harming the surrounding cells and protect against bacterial infections.
Collapse
Affiliation(s)
- Sarvesh Kumar Avinashi
- Advanced Glass and Glass Ceramic Research Laboratory, Department of Physics, University of Lucknow, Lucknow, 226007, India
| | - Rajat Kumar Mishra
- Advanced Glass and Glass Ceramic Research Laboratory, Department of Physics, University of Lucknow, Lucknow, 226007, India
| | - Shweta
- Advanced Glass and Glass Ceramic Research Laboratory, Department of Physics, University of Lucknow, Lucknow, 226007, India
| | - Saurabh Kumar
- Molecular and Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow, 226007, India
| | - Amreen Shamsad
- Molecular and Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow, 226007, India
| | - Shama Parveen
- Molecular and Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow, 226007, India
| | - Surajita Sahu
- Neural Developmental Biology Lab, Department of Life Science, NIT Rourkela, Rourkela, Odisha, 769008, India
| | - Savita Kumari
- Advanced Glass and Glass Ceramic Research Laboratory, Department of Physics, University of Lucknow, Lucknow, 226007, India
| | - Zaireen Fatima
- Advanced Glass and Glass Ceramic Research Laboratory, Department of Physics, University of Lucknow, Lucknow, 226007, India
- Department of Physics, Integral University, Lucknow, 226026, India
| | - Sachin Kumar Yadav
- Department of Physics, Banaras Hindu University, Varanasi, 221005, India
| | - Monisha Banerjee
- Molecular and Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow, 226007, India
| | - Monalisa Mishra
- Neural Developmental Biology Lab, Department of Life Science, NIT Rourkela, Rourkela, Odisha, 769008, India
| | - Neeraj Mehta
- Department of Physics, Banaras Hindu University, Varanasi, 221005, India
| | - Chandki Ram Gautam
- Advanced Glass and Glass Ceramic Research Laboratory, Department of Physics, University of Lucknow, Lucknow, 226007, India.
| |
Collapse
|
6
|
Hao F, Pan K, Huang L, Chen X, Wei H, Chen X, Zhang J. [Preparation of decellularized bone graft material with supercritical carbon dioxide extraction technique]. Zhejiang Da Xue Xue Bao Yi Xue Ban 2024; 53:772-778. [PMID: 39482966 PMCID: PMC11736345 DOI: 10.3724/zdxbyxb-2024-0108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 09/30/2024] [Indexed: 11/03/2024]
Abstract
OBJECTIVES To evaluate the immunogenicity and osteogenic ability of animal-derived bone graft material decellularized with supercritical carbon dioxide. METHODS Porcine femurs were randomly divided into two groups after preliminary treatment, and decellularized with conventional method (control group) or supercritical carbon dioxide (experimental group). Allogenic demineralized bone matrix was used as positive control. Clearance rate of galactose-α-1, 3-galactose (α-Gal) antigen was determined by enzyme-linked immunosorbent assay and residual DNA was detected by a fluorescence method. Nine SPF-grade male athymic nude mice of 6 weeks old were randomly divided into experimental, control and positive control groups. Samples were implanted over biceps femoris muscle of athymic nude mice. The explants were collected 4 weeks post implantation. Hematoxylin and eosin (HE) staining and immunohistochemistry were applied to determine the osteogenic ability and bone tissue-associated protein expressions of the implants. RESULTS The clearance rates of α-Gal antigen in the experimental group and the control group were (99.09±0.26)% and (30.18±2.02)%, respectively (t=58.67, P<0.01). The residual DNA of the experimental, control and positive control groups were (13.49±0.07), (15.20±0.21) and (14.70±0.17) ng/mg. The residual DNA in the experimental group was significantly lower than that in the control group (t=-13.41, P<0.01) and positive control group (t=-11.30, P<0.01). HE staining results showed that multiple bone formation centers with active osteogenesis and rich bone marrow were observed in experimental group 4 weeks after implantation, but only a small number of bone formation centers were observed in the control and positive control groups, with no obvious osteoblasts present. Immunohistochemistry results indicated that the expressions of alkaline phosphatase, Runt-related transcription factor 2, collagen typeⅠand osteocalcin in the experimental group showed an increasing trend compared with those in the control and positive control groups. CONCLUSIONS Compared with clinically used allogenic demineralized bone matrix and bone graft material decellularized with conventional method, bone graft material decellularized with supercritical carbon dioxide exhibits lower immunogenicity and better osteogenic ability.
Collapse
Affiliation(s)
- Feng Hao
- Zhejiang Decellmatrix Biotech Co., Ltd., Hangzhou 310018, China.
| | - Kaifeng Pan
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China.
| | - Liuyun Huang
- Zhejiang Decellmatrix Biotech Co., Ltd., Hangzhou 310018, China
| | - Xuhong Chen
- Zhejiang Decellmatrix Biotech Co., Ltd., Hangzhou 310018, China
| | - Haikun Wei
- Zhejiang Decellmatrix Biotech Co., Ltd., Hangzhou 310018, China
| | - Xianhua Chen
- Zhejiang Institute of Medical Device Testing, Hangzhou 310018, China
| | - Jianfeng Zhang
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China.
| |
Collapse
|
7
|
Kolk A, Bauer F, Weitz J, Stigler R, Walch B, Grill F, Boskov M. Minimally invasive balloon-assisted sinus floor elevation vs. conventional transcrestal procedure in terms of new bone formation in a split-mouth Goettingen minipig model. Int J Implant Dent 2024; 10:63. [PMID: 39693009 DOI: 10.1186/s40729-024-00546-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 05/21/2024] [Indexed: 12/19/2024] Open
Abstract
PURPOSE Currently, maxillary sinus floor (SF) elevation is based on off-the-shelf allogeneic, xenogeneic or synthetic bone augmentation materials (BAM) that are implanted via an open lateral sinus wall approach (OSFE). However, this invasive method is associated with postoperative complications caused by an inadequate blood supply of the alveolar ridge. Balloon-assisted procedures are minimal invasive alternatives with lower complication rates. The aim was to evaluate local new bone (NB) formation in the SF following the application of a particulate BAM (Easy graft) via two different SF elevation techniques in a split mouth mini-pig sinus augmentation model. MATERIAL AND METHODS Seven adult Goettingen minipigs were used for evaluation of a biphasic ceramic (PLGA/ß-TCP) BAM in the elevated SF region. Treatments were randomized to the contralateral sinus sites and included two procedures: OSFE (control group) versus minimally invasive SF elevation by a balloon-lift-control system (BLC) (treatment group). The animals were euthanized after 28 and 56 days for analysis of new bone (NB) formation. RESULTS The biphasic synthetic BAM implanted via BLC increased more NB formation (5.2 ± 1.9 mm and 4.9 ± 1.6 mm vs. 2.6 ± 0.5 mm) and osseointegration of the particles (18.0 ± 6.0% and 25.1 ± 18.2% vs. 10.1 ± 8.0%, p < 0.05) compared to the control. CONCLUSIONS Implantation of a biphasic synthetic BAM enhanced NB formation in the mini-pig maxillary sinus at both time points and in both groups, although BLC resulted in a slightly better total NB formation compared to the control.
Collapse
Affiliation(s)
- Andreas Kolk
- Department of Oral and Maxillofacial Surgery, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany.
- Department of Oral and Maxillofacial Surgery, Med University of Innsbruck, 6020, Innsbruck, Austria.
| | - Florian Bauer
- Department of Oral and Maxillofacial Surgery, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Jochen Weitz
- Department of Oral and Maxillofacial Surgery, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Robert Stigler
- Department of Oral and Maxillofacial Surgery, Med University of Innsbruck, 6020, Innsbruck, Austria
| | - Benjamin Walch
- Department of Oral and Maxillofacial Surgery, Med University of Innsbruck, 6020, Innsbruck, Austria
| | - Florian Grill
- Department of Oral and Maxillofacial Surgery, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Marko Boskov
- Department of Oral and Maxillofacial Surgery, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- Department of Oral and Maxillofacial Surgery, Ludwig-Maximilians University, Munich, Germany
| |
Collapse
|
8
|
Shi Y, Gu J, Zhang C, Mi R, Ke Z, Xie M, Jin W, Shao C, He Y, Shi J, Xie Z. A Janus Microsphere Delivery System Orchestrates Immunomodulation and Osteoinduction by Fine-tuning Release Profiles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403835. [PMID: 38984921 DOI: 10.1002/smll.202403835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/17/2024] [Indexed: 07/11/2024]
Abstract
Bone regeneration is a well-orchestrated process synergistically involving inflammation, angiogenesis, and osteogenesis. Therefore, an effective bone graft should be designed to target multiple molecular events and biological demands during the bone healing process. In this study, a biodegradable gelatin methacryloyl (GelMA)-based Janus microsphere delivery system containing calcium phosphate oligomer (CPO) and bone morphogenetic protein-2 (BMP-2) is developed based on natural biological events. The exceptional adjustability of GelMA facilitates the controlled release and on-demand application of biomolecules, and optimized delivery profiles of CPO and BMP-2 are explored. The sustained release of CPO during the initial healing stages contributes to early immunomodulation and promotes mineralization in the late stage. Meanwhile, the administration of BMP-2 at a relatively high concentration within the therapeutic range enhances the osteoinductive property. This delivery system, with fine-tuned release patterns, induces M2 macrophage polarization and creates a conducive immuno-microenvironment, which in turn facilitates effective bone regeneration in vivo. Collectively, this study proposes a bottom-up concept, aiming to develop a user-friendly and easily controlled delivery system targeting individual biological events, which may offer a new perspective on developing function-optimized biomaterials for clinical use.
Collapse
Affiliation(s)
- Yang Shi
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Jingyi Gu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Chun Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Rui Mi
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Zhiwei Ke
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Mingjun Xie
- Plastic and Reconstructive Surgery Center, Department of Plastic and Reconstructive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China
| | - Wenjing Jin
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Changyu Shao
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Yong He
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, College of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China
- The Second Affiliated Hospital of Zhejiang University and State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310027, China
| | - Jue Shi
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Zhijian Xie
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| |
Collapse
|
9
|
Pourhajrezaei S, Abbas Z, Khalili MA, Madineh H, Jooya H, Babaeizad A, Gross JD, Samadi A. Bioactive polymers: A comprehensive review on bone grafting biomaterials. Int J Biol Macromol 2024; 278:134615. [PMID: 39128743 DOI: 10.1016/j.ijbiomac.2024.134615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 08/07/2024] [Accepted: 08/07/2024] [Indexed: 08/13/2024]
Abstract
The application of bone grafting materials in bone tissue engineering is paramount for treating severe bone defects. In this comprehensive review, we explore the significance and novelty of utilizing bioactive polymers as grafts for successful bone repair. Unlike metals and ceramics, polymers offer inherent biodegradability and biocompatibility, mimicking the native extracellular matrix of bone. While these polymeric micro-nano materials may face challenges such as mechanical strength, various fabrication techniques are available to overcome these shortcomings. Our study not only investigates diverse biopolymeric materials but also illuminates innovative fabrication methods, highlighting their importance in advancing bone tissue engineering.
Collapse
Affiliation(s)
- Sana Pourhajrezaei
- Department of biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Zahid Abbas
- Department of Chemistry, University of Bologna, Bologna, Italy
| | | | - Hossein Madineh
- Department of Polymer Engineering, University of Tarbiat Modares, Tehran, Iran
| | - Hossein Jooya
- Biochemistry group, Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ali Babaeizad
- Faculty of Medicine, Semnan University of Medical Science, Semnan, Iran
| | - Jeffrey D Gross
- ReCELLebrate Regenerative Medicine Clinic, Henderson, NV, USA
| | - Ali Samadi
- Department of Basic Science, School of Medicine, Bam University of Medical Sciences, Bam, Iran.
| |
Collapse
|
10
|
Wang H, Li J, Qin R, Guo F, Wang R, Bian Y, Chen H, Yuan H, Pan Y, Jin J, Wang Y, Du Y, Wu F. Porous Gelatin Methacrylate Gel Engineered by Freeze-Ultraviolet Promotes Osteogenesis and Angiogenesis. ACS Biomater Sci Eng 2024; 10:5764-5773. [PMID: 39190529 DOI: 10.1021/acsbiomaterials.4c00269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Alveolar bone defect reconstruction is a common challenge in stomatology. To address this, a thermosensitive/photosensitive gelatin methacrylate (GelMA) gel was developed based on various air solubilities and light-curing technologies. The gel was synthesized by using a freeze-ultraviolet (FUV) method to form a porous and quickly (within 15 min) solidifying modified network structure. Unlike other gel scaffolds limited by complex preparation procedures and residual products, this FUV-GelMA gel shows favorable manufacturing ability, promising biocompatibility, and adjustable macroporous structures. The results from a rat model suggested that this gel scaffold creates a conducive microenvironment for mandible reconstruction and vascularization. In vitro experiments further confirmed that the FUV-GelMA gel promotes osteogenic differentiation of human bone marrow mesenchymal stem cells and angiogenesis of human umbilical vein endothelial cells. Investigation of the underlying mechanism focused on the p38 mitogen-activated protein kinase (MAPK) pathway. We found that SB203580, a specific inhibitor of p38 MAPK, abolished the therapeutic effects of the FUV-GelMA gel on osteogenesis and angiogenesis, both in vitro and in vivo. These findings introduced a novel approach for scaffold-based tissue regeneration in future clinical applications.
Collapse
Affiliation(s)
- Haoran Wang
- Department of Oral and Maxillofacial Surgery, the Affiliated Stomatological Hospital of Nanjing Medical University; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases; Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Department of Oral and Maxillofacial Surgery, Zaozhuang Stomatological Hospital, Zaozhuang, Shandong 277100, China
| | - Jianfeng Li
- Department of Oral and Maxillofacial Surgery, the Affiliated Stomatological Hospital of Nanjing Medical University; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases; Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Ran Qin
- Department of Oral and Maxillofacial Surgery, the Affiliated Stomatological Hospital of Nanjing Medical University; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases; Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Fanyi Guo
- Department of Oral and Maxillofacial Surgery, the Affiliated Stomatological Hospital of Nanjing Medical University; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases; Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Ruyu Wang
- Department of Oral and Maxillofacial Surgery, the Affiliated Stomatological Hospital of Nanjing Medical University; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases; Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yifeng Bian
- Department of Oral and Maxillofacial Surgery, the Affiliated Stomatological Hospital of Nanjing Medical University; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases; Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Hanbang Chen
- Department of Prosthodontics, the Affiliated Stomatological Hospital of Nanjing Medical University; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases; Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Hua Yuan
- Department of Oral and Maxillofacial Surgery, the Affiliated Stomatological Hospital of Nanjing Medical University; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases; Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yongchu Pan
- Department of Orthodontic, the Affiliated Stomatological Hospital of Nanjing Medical University; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases; Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jianliang Jin
- Department of Human Anatomy, Research Centre for Bone and Stem Cells, School of Basic Medical Sciences; Key Laboratory for Aging & Disease; School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yuli Wang
- Department of Oral and Maxillofacial Surgery, the Affiliated Stomatological Hospital of Nanjing Medical University; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases; Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yifei Du
- Department of Oral and Maxillofacial Surgery, the Affiliated Stomatological Hospital of Nanjing Medical University; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases; Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Fan Wu
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education; International Joint Laboratory for Drug Target of Critical Illnesses; School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
11
|
Wang L, Zhang G, Gao Y, Dai T, Yu J, Liu Y, Bao H, She J, Hou Y, Kong L, Cai B. Extracellular Vesicles Derived from Neutrophils Accelerate Bone Regeneration by Promoting Osteogenic Differentiation of BMSCs. ACS Biomater Sci Eng 2024; 10:3868-3882. [PMID: 38703236 PMCID: PMC11167592 DOI: 10.1021/acsbiomaterials.4c00106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/22/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
The reconstruction of bone defects has been associated with severe challenges worldwide. Nowadays, bone marrow mesenchymal stem cell (BMSC)-based cell sheets have rendered this approach a promising way to facilitate osteogenic regeneration in vivo. Extracellular vesicles (EVs) play an essential role in intercellular communication and execution of various biological functions and are often employed as an ideal natural endogenous nanomedicine for restoring the structure and functions of damaged tissues. The perception of polymorphonuclear leukocytes (neutrophils, PMNs) as indiscriminate killer cells is gradually changing, with new evidence suggesting a role for these cells in tissue repair and regeneration, particularly in the context of bone healing. However, the role of EVs derived from PMNs (PMN-EVs) in bone regeneration remains largely unknown, with limited research being conducted on this aspect. In the current study, we investigated the effects of PMN-EVs on BMSCs and the underlying molecular mechanisms as well as the potential application of PMN-EVs in bone regeneration. Toward this end, BMSC-based cell sheets with integrated PMN-EVs (BS@PMN-EVs) were developed for bone defect regeneration. PMN-EVs were found to significantly enhance the proliferation and osteogenic differentiation of BMSCs in vitro. Furthermore, BS@PMN-EVs were found to significantly accelerate bone regeneration in vivo by enhancing the maturation of the newly formed bone in rat calvarial defects; this is likely attributable to the effect of PMN-EVs in promoting the expression of key osteogenic proteins such as SOD2 and GJA1 in BMSCs. In conclusion, our findings demonstrate the crucial role of PMN-EVs in promoting the osteogenic differentiation of BMSCs during bone regeneration. Furthermore, this study proposes a novel strategy for enhancing bone repair and regeneration via the integration of PMN-EVs with BMSC-based cell sheets.
Collapse
Affiliation(s)
- Le Wang
- State
Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration,
National Clinical Research Center for Oral Diseases, Shaanxi Clinical
Research Center for Oral Diseases, Department of Oral and Maxillofacial
Surgery, School of Stomatology, The Fourth
Military Medical University, Xi’an 710032, China
| | - Guanhua Zhang
- State
Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration,
National Clinical Research Center for Oral Diseases, Shaanxi Clinical
Research Center for Oral Diseases, Department of Oral Implants, School
of Stomatology, The Fourth Military Medical
University, Xi’an 710032, China
| | - Ye Gao
- State
Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration,
National Clinical Research Center for Oral Diseases, Shaanxi Clinical
Research Center for Oral Diseases, Department of Oral and Maxillofacial
Surgery, School of Stomatology, The Fourth
Military Medical University, Xi’an 710032, China
| | - Taiqiang Dai
- State
Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration,
National Clinical Research Center for Oral Diseases, Shaanxi Clinical
Research Center for Oral Diseases, Department of Oral and Maxillofacial
Surgery, School of Stomatology, The Fourth
Military Medical University, Xi’an 710032, China
| | - Jie Yu
- State
Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration,
National Clinical Research Center for Oral Diseases, Shaanxi Clinical
Research Center for Oral Diseases, Department of Oral and Maxillofacial
Surgery, School of Stomatology, The Fourth
Military Medical University, Xi’an 710032, China
| | - Ya Liu
- State
Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration,
National Clinical Research Center for Oral Diseases, Shaanxi Clinical
Research Center for Oral Diseases, Department of Oral and Maxillofacial
Surgery, School of Stomatology, The Fourth
Military Medical University, Xi’an 710032, China
- College
of Life Sciences, Northwest University, Xi’an 710069, China
| | - Han Bao
- State
Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration,
National Clinical Research Center for Oral Diseases, Shaanxi Clinical
Research Center for Oral Diseases, Department of Oral and Maxillofacial
Surgery, School of Stomatology, The Fourth
Military Medical University, Xi’an 710032, China
| | - Jianzhen She
- State
Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration,
National Clinical Research Center for Oral Diseases, Shaanxi Clinical
Research Center for Oral Diseases, Department of Oral and Maxillofacial
Surgery, School of Stomatology, The Fourth
Military Medical University, Xi’an 710032, China
| | - Yan Hou
- State
Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration,
National Clinical Research Center for Oral Diseases, Shaanxi Clinical
Research Center for Oral Diseases, Department of Oral and Maxillofacial
Surgery, School of Stomatology, The Fourth
Military Medical University, Xi’an 710032, China
| | - Liang Kong
- State
Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration,
National Clinical Research Center for Oral Diseases, Shaanxi Clinical
Research Center for Oral Diseases, Department of Oral and Maxillofacial
Surgery, School of Stomatology, The Fourth
Military Medical University, Xi’an 710032, China
| | - Bolei Cai
- State
Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration,
National Clinical Research Center for Oral Diseases, Shaanxi Clinical
Research Center for Oral Diseases, Department of Oral and Maxillofacial
Surgery, School of Stomatology, The Fourth
Military Medical University, Xi’an 710032, China
| |
Collapse
|
12
|
Sadeghian Dehkord E, De Carvalho B, Ernst M, Albert A, Lambert F, Geris L. Influence of physicochemical characteristics of calcium phosphate-based biomaterials in cranio-maxillofacial bone regeneration. A systematic literature review and meta-analysis of preclinical models. Mater Today Bio 2024; 26:101100. [PMID: 38854953 PMCID: PMC11157282 DOI: 10.1016/j.mtbio.2024.101100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/11/2024] Open
Abstract
Objectives Calcium phosphate-based biomaterials (CaP) are the most widely used biomaterials to enhance bone regeneration in the treatment of alveolar bone deficiencies, cranio-maxillofacial and periodontal infrabony defects, with positive preclinical and clinical results reported. This systematic review aimed to assess the influence of the physicochemical properties of CaP biomaterials on the performance of bone regeneration in preclinical animal models. Methods The PubMed, EMBASE and Web of Science databases were searched to retrieve the preclinical studies investigating physicochemical characteristics of CaP biomaterials. The studies were screened for inclusion based on intervention (physicochemical characterization and in vivo evaluation) and reported measurable outcomes. Results A total of 1532 articles were retrieved and 58 studies were ultimately included in the systematic review. A wide range of physicochemical characteristics of CaP biomaterials was found to be assessed in the included studies. Despite a high degree of heterogeneity, the meta-analysis was performed on 39 studies and evidenced significant effects of biomaterial characteristics on their bone regeneration outcomes. The study specifically showed that macropore size, Ca/P ratio, and compressive strength exerted significant influence on the formation of newly regenerated bone. Moreover, factors such as particle size, Ca/P ratio, and surface area were found to impact bone-to-material contact during the regeneration process. In terms of biodegradability, the amount of residual graft was determined by macropore size, particle size, and compressive strength. Conclusion The systematic review showed that the physicochemical characteristics of CaP biomaterials are highly determining for scaffold's performance, emphasizing its usefulness in designing the next generation of bone scaffolds to target higher rates of regeneration.
Collapse
Affiliation(s)
- Ehsan Sadeghian Dehkord
- GIGA In Silico Medicine, Biomechanics Research Unit (Biomech), University of Liège, Belgium
- Prometheus, The R&D Division for Skeletal Tissue Engineering, KU Leuven, Belgium
| | - Bruno De Carvalho
- Department of Periodontology, Oral-Dental and Implant Surgery, CHU of Liège, Belgium
- Dental Biomaterials Research Unit (d-BRU), University of Liège, Belgium
| | - Marie Ernst
- Biostatistics and Research Method Center (B-STAT), CHU of Liège and University of Liège, Belgium
| | - Adelin Albert
- Biostatistics and Research Method Center (B-STAT), CHU of Liège and University of Liège, Belgium
- Department of Public Health Sciences, University of Liège, Belgium
| | - France Lambert
- Department of Periodontology, Oral-Dental and Implant Surgery, CHU of Liège, Belgium
- Dental Biomaterials Research Unit (d-BRU), University of Liège, Belgium
| | - Liesbet Geris
- GIGA In Silico Medicine, Biomechanics Research Unit (Biomech), University of Liège, Belgium
- Prometheus, The R&D Division for Skeletal Tissue Engineering, KU Leuven, Belgium
- Department of Mechanical Engineering, Biomechanics Section (BMe), KU Leuven, Belgium
| |
Collapse
|
13
|
Rogers JD, Adsit MH, Serbin PA, Worcester KS, Firoved AB, Bonner KF. Clinical Outcomes of Single-Stage Revision Anterior Cruciate Ligament Reconstruction Using a Fast-Setting Bone Graft Substitute. J Knee Surg 2024; 37:505-511. [PMID: 38049097 DOI: 10.1055/s-0043-1777053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Revision anterior cruciate ligament reconstruction (ACLR) can be achieved in a single-stage or two-stage approach. Single-stage revisions have several advantages, including one less operation, decreased cost, and a quicker recovery for patients. Revision ACLR can be complicated by malpositioned or dilated bone tunnels, which makes a single-stage revision more challenging or sometimes necessitates a two-stage approach. The use of fast-setting bone graft substitutes (BGS) has been described in recent literature as a strategy to potentially help address this problem in the setting of single-stage revision ACLR. The aim of this study was to evaluate patient-reported clinical outcomes of patients who have undergone single-stage revision ACLR using fast-setting BGS to address prior malpositioned or dilated tunnels. A retrospective review was conducted of the first nine consecutive patients who had undergone single-stage revision ACLR using a fast-setting BGS by a single surgeon between May 2017 and February 2020 with a minimum of 2-year follow-up. Patient-reported clinical outcomes, including the International Knee Documentation Committee (IKDC) questionnaire, the Tegner Lysholm Knee Scoring Scale, patient satisfaction questions, and the need for additional surgery were evaluated for this group between 26 and 49 months postoperative. Of the nine patients eligible for inclusion, eight patients (88.9%) were evaluated, and one was lost to follow-up. At an average follow-up of 37.9 months (range: 27.8-55.7), the mean postoperative IKDC score was 75.0 ± 11.3, and the mean postoperative Tegner Lysholm Knee Score was 83.0 ± 17.6. None of the patients required additional revision surgery or experienced construct failure at the time of follow-up. Seven of eight respondents (87.5%) had their preoperative expectations met with the surgery, and 100% of patients stated they would have the surgery again. Single-stage revision ACLR using fast-setting BGS showed overall positive clinical outcomes for this pilot group of patients at a minimum 2-year follow-up. In select revision scenarios, these materials may be a valuable option to allow the filling of defects without compromising fixation or clinical outcomes.
Collapse
Affiliation(s)
| | - Matthew H Adsit
- Department of Orthopaedic Surgery, Virginia Commonwealth University Medical Center, Richmond, Virginia
| | - Philip A Serbin
- Department of Orthopaedic Surgery, The University of Texas Southwestern Medical Center, Dallas, Texas
| | | | | | - Kevin F Bonner
- Eastern Virginia Medical School, Norfolk, Virginia
- Jordan Research Foundation, Virginia Beach, Virginia
- Orthopaedic Surgery and Sports Medicine, Jordan-Young Institute, Virginia Beach, Virginia
| |
Collapse
|
14
|
Schaffler BC, Konda SR. Tibial bone loss. OTA Int 2024; 7:e315. [PMID: 38840708 PMCID: PMC11149745 DOI: 10.1097/oi9.0000000000000315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 06/07/2024]
Abstract
Critical bone loss after open fractures, while relatively uncommon, occurs most frequently in high-energy injuries. Fractures of the tibia account for the majority of open fractures with significant bone loss. A number of different surgical strategies exist for treatment of tibial bone loss, all with different advantages and disadvantages. Care should be taken by the surgeon to review appropriate indications and all relevant evidence before selecting a strategy.
Collapse
Affiliation(s)
| | - Sanjit R. Konda
- NYU Langone Orthopedic Hospital, NYU Langone Health, New York, NY
- Jamaica Hospital Medical Center, Queens, NY
| |
Collapse
|
15
|
Su Z, Ding M, Zhu N, Cheung JCW, Wong DWC, Sun W, Ni M. Biomechanical role of bone grafting for calcaneal fracture fixation in the presence of bone defect: A finite element analysis. Clin Biomech (Bristol, Avon) 2024; 116:106278. [PMID: 38821036 DOI: 10.1016/j.clinbiomech.2024.106278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/28/2024] [Accepted: 05/20/2024] [Indexed: 06/02/2024]
Abstract
BACKGROUND The purpose of this study was to compare the biomechanical stress and stability of calcaneal fixations with and without bone defect, before and after bone grafting, through a computational approach. METHODS A finite element model of foot-ankle complex was reconstructed, impoverished with a Sanders III calcaneal fracture without bone defect and with moderate and severe bone defects. Plate fixations with and without bone grafting were introduced with walking stance simulated. The stress and fragment displacement of the calcaneus were evaluated. FINDINGS Moderate and severe defect increased the calcaneus stress by 16.11% and 32.51%, respectively and subsequently decreased by 10.76% and 20.78% after bone grafting. The total displacement was increased by 3.99% and 24.26%, respectively by moderate and severe defect, while that of posterior joint facet displacement was 86.66% and 104.44%. The former was decreased by 25.73% and 35.96% after grafting, while that of the latter was reduced by 88.09% and 84.78% for moderate and severe defect, respectively. INTERPRETATION Our finite element prediction supported that bone grafting for fixation could enhance the stability and reduce the risk of secondary stress fracture in cases of bone defect in calcaneal fracture.
Collapse
Affiliation(s)
- Zhihao Su
- The Ninth People's Hospital of Wuxi Affiliated to Soochow University, Wuxi 214023, China; School of Medical Instrument, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China; Department of Orthopedics, Shanghai Pudong New Area People's Hospital, Shanghai 201299, China.
| | - Ming Ding
- The Ninth People's Hospital of Wuxi Affiliated to Soochow University, Wuxi 214023, China; School of Nursing, Fujian University of Traditional Chinese Medicine, Fuzhou 350004, China.
| | - Ning Zhu
- School of Medical Instrument, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China; Department of Orthopedics, Shanghai Pudong New Area People's Hospital, Shanghai 201299, China
| | - James Chung-Wai Cheung
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China.
| | - Duo Wai-Chi Wong
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China.
| | - Wanju Sun
- Department of Orthopedics, Shanghai Pudong New Area People's Hospital, Shanghai 201299, China.
| | - Ming Ni
- Department of Orthopedics, Shanghai Pudong New Area People's Hospital, Shanghai 201299, China; Department of Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
16
|
Shikarkhane V, Dodwad V, Bhosale N, Patankar SA, Patankar A, Nair VS. Comparative Evaluation of the Differentiation and Proliferation Potential of Dental Pulp Stem Cells on Hydroxyapatite/Beta-Tricalcium Bone Graft and Bovine Bone Graft: An In Vitro Study. Cureus 2024; 16:e62351. [PMID: 39006559 PMCID: PMC11246762 DOI: 10.7759/cureus.62351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2024] [Indexed: 07/16/2024] Open
Abstract
BACKGROUND Stem cells of mesenchymal origin have good proliferative capacity when compared to other stem cell types. Dental pulp stem cells (DPSCs) are a variety of mesenchymal cells obtained from the pulpal tissue of teeth and are abundantly available and easy to obtain. DPSCs facilitate and improve the formation of new bone using different bone graft scaffolds. This present study aims to evaluate and compare the osteogenic potential of DPSCs on alloplastic and xenogeneic bone grafts. MATERIALS AND METHODS Hydroxyapatite and beta-tricalcium bone graft and bovine bone graft were used in a triplicate manner in the laboratory. DPSCs were obtained from the pulpal tissue of extracted third molars in the laboratory. The cytotoxicity, osteogenic potential, and difference in the rate of proliferation of mesenchymal cells on the biomaterials were assessed. RESULTS Darker purple staining was seen in the case of hydroxyapatite/beta-tricalcium bone graft on MTT colorimetric assay stating that there was an increase in cell viability in hydroxyapatite/beta-tricalcium bone graft as compared to the bovine bone graft. Hydroxyapatite/beta-tricalcium bone graft showed more osteogenic potential as compared to the bovine bone graft as a higher degree of red staining was seen in Alizarin staining. CONCLUSION Higher cell viability and higher osteogenic proliferation and differentiation were seen on the hydroxyapatite/beta-tricalcium bone graft compared to the bovine bone scaffold.
Collapse
Affiliation(s)
| | - Vidya Dodwad
- Periodontology, Bharati Vidyapeeth Dental College & Hospital, Pune, IND
| | - Nishita Bhosale
- Periodontology, Bharati Vidyapeeth Dental College & Hospital, Pune, IND
| | - Swapna A Patankar
- Oral Pathology and Microbiology, Bharati Vidyapeeth Dental College & Hospital, Pune, IND
| | - Amod Patankar
- Oral and Maxillofacial Surgery, Bharati Vidyapeeth Dental College & Hospital, Pune, IND
| | - Vivek S Nair
- Oral and Maxillofacial Surgery, Bharati Vidyapeeth Dental College & Hospital, Pune, IND
| |
Collapse
|
17
|
Mahboubian MH, Kadkhodazadeh M, Amid R, Moscowchi A. Comparative assessment of the physical structure of antler and bovine bone substitutes: An in vitro study. JOURNAL OF ADVANCED PERIODONTOLOGY & IMPLANT DENTISTRY 2024; 16:4-8. [PMID: 39027212 PMCID: PMC11252153 DOI: 10.34172/japid.2024.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/13/2024] [Indexed: 07/20/2024]
Abstract
Background The use of bone graft materials has significantly increased. Given the inherent variations in structure and functionality between different grafting materials, this evaluated and compared the physical attributes of antler and bovine femur bone substitutes. Methods In the present in vitro investigation, the surface morphological architecture of the two bone substitutes with different origins was assessed through scanning electron microscopy. Furthermore, the Brunauer-Emmett-Teller (BET) technique was employed to measure the porosity, specific surface area (SSA), and pore morphology. Results Scanning electron microscopy observations indicated that the surface of the bovine particles appeared smoother, while the antler particles exhibited a rougher surface texture. The BET analysis revealed that both samples exhibited identical pore morphology. The SSA was 15.974 m2/g in the antler particles compared with 18.404 m2/g in the bovine sample. The total porosity volume in the antler and bovine femur bone substitutes were 0.2172 cm3/g and 0.2918 cm3/g, respectively. Additionally, the antler particles had a porosity percentage of 40%, whereas the bovine femur bone substitute showed a porosity percentage of 43.5%. Conclusion Based on the results of this study, it seems that the two samples of bone grafting materials have comparable physical structures.
Collapse
Affiliation(s)
- Mohammad Hossein Mahboubian
- Dental Research Center, Research Institute for Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Periodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Kadkhodazadeh
- Dental Research Center, Research Institute for Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Periodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Amid
- Dental Research Center, Research Institute for Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Periodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Anahita Moscowchi
- Dental Research Center, Research Institute for Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Periodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Su Y, Li D, Du B, Li Z, Lu Y, Xu Y, Wang Q, Li Z, Ren C, Ma T. Analysis of risk factors for the recurrence of osteomyelitis of the limb after treatment with antibiotic-loaded calcium sulfate and autologous bone graft. Front Bioeng Biotechnol 2024; 12:1368818. [PMID: 38807650 PMCID: PMC11130418 DOI: 10.3389/fbioe.2024.1368818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/01/2024] [Indexed: 05/30/2024] Open
Abstract
Objective We aimed to evaluate the efficacy of antibiotic-loaded calcium sulfate combined with autologous iliac bone transplantation in the treatment of limb-localized osteomyelitis (Cierny-Mader type III) and analyze the causes and risk factors associated with infection recurrence. Methods Clinical data of 163 patients with localized osteomyelitis of the extremities treated with antibiotic-loaded calcium sulfate combined with autologous iliac bone transplantation in Xi'an Honghui Hospital from January 2017 to December 2022 were retrospectively analyzed. All patients were diagnosed with localized osteomyelitis through clinical examination and treated with antibiotic-loaded calcium sulfate combined with autologous iliac bone. Based on the infection recurrence status, the patients were divided into the recurrence group and the non-recurrence group. The clinical data of the two groups were compared using univariate analysis. Subsequently, the distinct datasets were included in the binary logistic regression analysis to determine the risk and protective factors. Results This study included 163 eligible patients, with an average age of 51.0 years (standard deviation: 14.9). After 12 months of follow-up, 25 patients (15.3%) experienced infection recurrence and were included in the recurrence group; the remaining 138 patients were included in the non-recurrence group. Among the 25 patients with recurrent infection, 20 required reoperation, four received antibiotic treatment alone, and one refused further treatment. Univariate analysis showed that education level, smoking, hypoproteinemia, open injury-related infection, and combined flap surgery were associated with infection recurrence (p < 0.05). Logistic regression analysis showed that open injury-related infection (odds ratio [OR] = 35.698; 95% confidence interval [CI]: 5.997-212.495; p < 0.001) and combined flap surgery (OR = 41.408; 95% CI: 5.806-295.343; p < 0.001) were independent risk factors for infection recurrence. Meanwhile, high education level (OR = 0.009; 95% CI: 0.001-0.061; p < 0.001) was a protective factor for infection recurrence. Conclusion Antibiotic-loaded calcium sulfate combined with autologous iliac bone transplantation is an effective method for treating limb-localized osteomyelitis. Patients without previous combined flap surgery and non-open injury-related infections have a relatively low probability of recurrence of infection after treatment with this surgical method. Additionally, patients with a history of smoking and hypoproteinemia should pay attention to preventing the recurrence of infection after operation. Providing additional guidance and support, particularly in patients with lower education levels and compliance, could contribute to the reduction of infection recurrence.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Cheng Ren
- Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Teng Ma
- Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| |
Collapse
|
19
|
Hashimoto K, Oikawa H, Shibata H. Characterization of Porous β-Type Tricalcium Phosphate Ceramics Formed via Physical Foaming with Freeze-Drying. Int J Mol Sci 2024; 25:5363. [PMID: 38791401 PMCID: PMC11120988 DOI: 10.3390/ijms25105363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/28/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Porous β-tricalcium phosphate (Ca3(PO4)2; β-TCP) was prepared via freeze-drying and the effects of this process on pore shapes and sizes were investigated. Various samples were prepared by freezing β-TCP slurries above a liquid nitrogen surface at -180 °C with subsequent immersion in liquid nitrogen at -196 °C. These materials were then dried under reduced pressure in a freeze-dryer, after which they were sintered with heating. Compared with conventional heat-based drying, the resulting pores were more spherical, which increased both the mechanical strength and porosity of the β-TCP. These materials had a wide range of pore sizes from 50 to 200 µm, with the mean and median values both approximately 100 µm regardless of the freeze-drying conditions. Mercury porosimetry data showed that the samples contained small, interconnected pores with sizes of 1.24 ± 0.25 µm and macroscopic, interconnected pores of 25.8 ± 4.7 µm in size. The effects of nonionic surfactants having different hydrophilic/lipophilic balance (HLB) values on foaming and pore size were also investigated. Materials made with surfactants having lower HLB values exhibited smaller pores and lower porosity, whereas higher HLB surfactants gave higher porosity and slightly larger macropores. Even so, the pore diameter could not be readily controlled solely by adjusting the HLB value. The findings of this work indicated that high porosity (>75%) and good compressive strength (>2 MPa) can both be obtained in the same porous material and that foaming agents with HLB values between 12.0 and 13.5 were optimal.
Collapse
Affiliation(s)
- Kazuaki Hashimoto
- Department of Applied Chemistry, Faculty of Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino-shi 275-0016, Chiba, Japan; (H.O.); (H.S.)
| | | | | |
Collapse
|
20
|
Verdecchia A, Suárez-Fernández C, Miquel A, Bardini G, Spinas E. Biological Effects of Orthodontic Tooth Movement on the Periodontium in Regenerated Bone Defects: A Scoping Review. Dent J (Basel) 2024; 12:50. [PMID: 38534275 PMCID: PMC10969356 DOI: 10.3390/dj12030050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/28/2024] Open
Abstract
The aim of this scoping review is to analyse the biological effects of the orthodontic tooth movement (OTM) in areas with bone defects that are undergoing regeneration using different types of regenerative materials and techniques. The electronic research was performed on four databases as follows: PubMed, Scopus, EMBASE, and Web of Science. Data were extracted according to publication information, study design, sample characteristics, parameters of OTM, biological repercussions on the periodontium complex, methods of analysis, and conclusions. A total of thirty studies were included in the final review. In twenty-two studies, the most widely adopted grafting materials were alloplastics. In most studies, the orthodontic force used was 10 or 100 g, and the timing of application ranged from immediate to 6 months after grafting surgery. Twenty-four studies showed an increase in osteogenesis; in five studies, the clinical attachment level (CAL) increased; in five others, the probing pocket depth (PPD) decreased; in sixteen studies, there was root resorption of a different magnitude. Though the effects of OTM on the periodontium in the grafted areas were positive, the outcomes should be interpreted with caution as future preclinical and clinical studies are needed to extrapolate more valid conclusions.
Collapse
Affiliation(s)
- Alessio Verdecchia
- Department of Surgery and Medical-Surgical Specialities, School of Medicine and Health Sciences, University of Oviedo, 33003 Oviedo, Spain;
| | - Carlota Suárez-Fernández
- Department of Surgery and Medical-Surgical Specialities, School of Medicine and Health Sciences, University of Oviedo, 33003 Oviedo, Spain;
| | - Andrea Miquel
- Department of Surgical Sciences, School of Periodontology and Implantology, Mississippi Institution, 28010 Madrid, Spain;
| | - Giulia Bardini
- Department of Surgical Sciences, Division of Conservative Dentistry and Endodontics, University of Cagliari, 09124 Cagliari, Italy;
| | - Enrico Spinas
- Department of Surgical Sciences, Postgraduate School in Orthodontics, University of Cagliari, 09124 Cagliari, Italy
| |
Collapse
|
21
|
Kim KY, Oh M, Kim M. Treatment of a Large Tibial Non-Union Bone Defect in a Cat Using Xenograft with Canine-Derived Cancellous Bone, Demineralized Bone Matrix, and Autograft. Animals (Basel) 2024; 14:690. [PMID: 38473075 DOI: 10.3390/ani14050690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/16/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
A 17-month-old domestic short-hair cat was referred due to a non-union in the left tibia. The initial repair, conducted 3 months prior at another animal hospital, involved an intramedullary (IM) pin and wire to address a comminuted fracture. Unfortunately, the wire knot caused a skin tract, resulting in osteomyelitis. Although the wire knot was removed at that hospital, the draining tract persisted, continuously discharging exudate. Upon evaluation, the first surgery was reassessed and revised, involving the removal of the IM pin and the application of external skeletal fixation alongside an antibiotic susceptibility test. After 118 days post-revision surgery, while some cortical continuity was observed, a significant bone defect persisted, posing a substantial risk of refracture should the implant be removed. A second revision surgery was performed, utilizing a bone plate combined with cancellous bone autograft, recombinant human bone morphogenetic protein-2, and xenograft featuring a canine-derived cancellous chip mixed with demineralized bone matrix. Remarkably, the bone completed its healing within 105 days following the subsequent surgery. Radiography demonstrated successful management of the large bone defect up to the 2-year postoperative check-up. During telephone follow-ups for 3.5 years after surgery, no complications were identified, and the subject maintained a favorable gait.
Collapse
Affiliation(s)
- Keun-Yung Kim
- Fatima Animal Medical Center, Daegu 41216, Republic of Korea
| | - Minha Oh
- Veteregen, Hanam 12930, Republic of Korea
| | - Minkyung Kim
- Keunmaum Animal Medical Center, Busan 48096, Republic of Korea
| |
Collapse
|
22
|
Yotsova R, Peev S. Biological Properties and Medical Applications of Carbonate Apatite: A Systematic Review. Pharmaceutics 2024; 16:291. [PMID: 38399345 PMCID: PMC10892468 DOI: 10.3390/pharmaceutics16020291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/10/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
Bone defects represent an everyday challenge for clinicians who work in the fields of orthopedic surgery, maxillofacial and oral surgery, otorhinolaryngology, and dental implantology. Various bone substitutes have been developed and utilized, according to the needs of bone reconstructive surgery. Carbonate apatite has gained popularity in recent years, due to its excellent tissue behavior and osteoconductive potential. This systematic review aims to evaluate the role of carbonate apatite in bone reconstructive surgery and tissue engineering, analyze its advantages and limitations, and suggest further directions for research and development. The Web of Science, PubMed, and Scopus electronic databases were searched for relevant review articles, published from January 2014 to 21 July 2023. The study was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Eighteen studies were included in the present review. The biological properties and medical applications of carbonate apatite (CO3Ap) are discussed and evaluated. The majority of articles demonstrated that CO3Ap has excellent biocompatibility, resorbability, and osteoconductivity. Furthermore, it resembles bone tissue and causes minimal immunological reactions. Therefore, it may be successfully utilized in various medical applications, such as bone substitution, scaffolding, implant coating, drug delivery, and tissue engineering.
Collapse
Affiliation(s)
- Ralitsa Yotsova
- Department of Oral Surgery, Faculty of Dental Medicine, Medical University of Varna, bul. Tsar Osvoboditel 84, 9002 Varna, Bulgaria
| | - Stefan Peev
- Department of Periodontology and Dental Implantology, Faculty of Dental Medicine, Medical University of Varna, bul. Tsar Osvoboditel 84, 9002 Varna, Bulgaria;
| |
Collapse
|
23
|
De Carvalho B, Dory E, Trus C, Pirson J, Germain L, Lecloux G, Lambert F, Rompen E. Biological performance of a novel bovine hydroxyapatite in a guided bone regeneration model: A preclinical study in a mandibular defect in dogs. Clin Implant Dent Relat Res 2024; 26:183-196. [PMID: 37789642 DOI: 10.1111/cid.13260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/21/2023] [Accepted: 07/29/2023] [Indexed: 10/05/2023]
Abstract
OBJECTIVES This preclinical model study aims to evaluate the performance and safety of a novel hydroxyapatite biomaterial (Wishbone Hydroxyapatite, WHA) on guided bone regeneration compared to a commercially available deproteinized bovine bone mineral (Bio-Oss, BO). MATERIAL AND METHODS Twenty-four beagle dogs were allocated to three timepoint cohorts (4, 12, and 26 weeks) of eight animals each. In all animals, four critical-sized, independent wall mandibular defects were created (32 defects/cohort). Each animal received all four treatments, allocated randomly to separated defects: WHA + collagen membrane (M), BO + M, no treatment (Sham, Sh), and Sh + M. At each timepoint, the specimens were harvested for histologic and histomorphometric analyses to determine the newly formed bone and osteoconductivity. RESULTS At 4 weeks, bone regeneration was significantly higher for WHA + M (46.8%) when compared to BO + M (21.4%), Sh (15.1%), and Sh + M (23.1%) (p < 0.05); at 12 and 26 weeks, regeneration was similar for WHA and BO. Bone-to-material contact increased over time similarly for WHA + M and BO + M. From a safety point of view, inflammation attributed to WHA + M or BO + M was minimal; necrosis or fatty infiltrate was absent. CONCLUSIONS WHA + M resulted in higher bone regeneration rate than BO + M at 4 weeks. Both BO + M and WHA + M were more efficient than both Sh groups at all timepoints. Safety and biocompatibility of WHA was favorable and comparable to that of BO.
Collapse
Affiliation(s)
- Bruno De Carvalho
- Department of Periodontology, Oro-Dental and Implant Surgery, Dental Biomaterial Research Unit, Liège, Belgium
| | | | | | | | | | - Geoffrey Lecloux
- Department of Periodontology, Oro-Dental and Implant Surgery, Dental Biomaterial Research Unit, Liège, Belgium
| | - France Lambert
- Department of Periodontology, Oro-Dental and Implant Surgery, Dental Biomaterial Research Unit, Liège, Belgium
| | | |
Collapse
|
24
|
Hashemi S, Tabatabaei S, Fathi A, Asadinejad SM, Atash R. Tooth Graft: An Umbrella Overview. Eur J Dent 2024; 18:41-54. [PMID: 37059449 PMCID: PMC10959636 DOI: 10.1055/s-0043-1764420] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2023] Open
Abstract
This umbrella review aims to evaluate systematic/meta-analysis studies containing clinical evidence on tooth grafts as bone substitutes in the oral and maxillofacial regions. Using language restrictions and Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, an electronic database search of PubMed, MEDLINE, Embase, Cochrane library, and Google Scholar was conducted, featuring published studies up until August 2022. All systematic/meta-analysis review articles relating to tooth graft materials were matched against the inclusion criteria. Two qualified researchers independently assessed the studies' inclusion or exclusion criteria and risk of bias, and a third investigator assisted in resolving ambiguities. A total of 81 systematic/meta-analysis studies, comprising 21 animal-controlled trials, 23 randomized controlled human trials, 23 prospective studies, and 14 retrospective studies, were selected for this study. A small risk of bias was observed in systematic studies/meta-analyses. In addition, the clinical evidence from the analysis of these studies revealed a low incidence of side effects. According to the current review, two systematic reviews indicated that autogenous bone grafting of prepared teeth might be as effective as other bone grafting materials. Four studies also mentioned autologous grafts as potential alternatives to autologous grafts, autogenous demineralized dentin (ADDM), engineered grafts, root blocks, and dental matrix. On the other hand, three systematic studies stated that more long-term research is needed to confirm their findings. Finally, given the importance of standardization and homogeneity of studies for clinical cases, it is advised to be used cautiously due to the risks of transplant rejection.
Collapse
Affiliation(s)
- Sara Hashemi
- Dental Students Research Committee, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Amirhossein Fathi
- Dental Prosthodontics Department, Dental Materials Research Center, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Ramin Atash
- Department of Prosthodontics, School of Dentistry, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
25
|
Zhang X, Gong C, Wang X, Wei Z, Guo W. A Bioactive Gelatin-Methacrylate Incorporating Magnesium Phosphate Cement for Bone Regeneration. Biomedicines 2024; 12:228. [PMID: 38275399 PMCID: PMC10813803 DOI: 10.3390/biomedicines12010228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
Maintaining proper mechanical strength and tissue volume is important for bone growth at the site of a bone defect. In this study, potassium magnesium phosphate hexahydrate (KMgPO4·6H2O, MPC) was applied to gelma-methacrylate hydrogel (GelMA) to prepare GelMA/MPC composites (GMPCs). Among these, 5 GMPC showed the best performance in vivo and in vitro. These combinations significantly enhanced the mechanical strength of GelMA and regulated the degradation and absorption rate of MPC. Considerably better mechanical properties were noted in 5 GMPC compared with other concentrations. Better bioactivity and osteogenic ability were also found in 5 GMPC. Magnesium ions (Mg2+) are bioactive and proven to promote bone tissue regeneration, in which the enhancement efficiency is closely related to Mg2+ concentrations. These findings indicated that GMPCs that can release Mg2+ are effective in the treatment of bone defects and hold promise for future in vivo applications.
Collapse
Affiliation(s)
| | | | | | | | - Weichun Guo
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan 430060, China; (X.Z.); (C.G.); (X.W.); (Z.W.)
| |
Collapse
|
26
|
Natsir Kalla DS, Alkaabi S, Fauzi A, Tajrin A, Nurrahma R, Müller WEG, Schröder HC, Wang X, Forouzanfar T, Helder MN, Ruslin M. Microfragmented Fat and Biphasic Calcium Phosphates for Alveolar Cleft Repair: Protocol for a Prospective, Nonblinded, First-in-Human Clinical Study. JMIR Res Protoc 2024; 13:e42371. [PMID: 38224475 PMCID: PMC10825761 DOI: 10.2196/42371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 01/16/2024] Open
Abstract
BACKGROUND Biphasic calcium phosphates (BCP) may serve as off-the-shelf alternatives for iliac crest-derived autologous bone in alveolar cleft reconstructions. To add osteoinductivity to the osteoconductive BCPs to achieve similar regenerative capacity as autologous bone, a locally harvested buccal fat pad will be mechanically fractionated to generate microfragmented fat (MFAT), which has been shown to have high regenerative capacity due to high pericyte and mesenchymal stem cell content and a preserved perivascular niche. OBJECTIVE Our primary objectives will be to assess the feasibility and safety of the BCP-MFAT combination. The secondary objective will be efficacy, which will be evaluated using radiographic imaging and histological and histomorphometric evaluation of biopsies taken 6 months postoperatively, concomitant with dental implant placement. METHODS Eight patients with alveolar cleft (≥15 years) will be included in this prospective, nonblinded, first-in-human clinical study. MFAT will be prepared intraoperatively from the patient's own buccal fat pad. Regular blood tests and physical examinations will be conducted, and any adverse events (AEs) or serious EAs (SAEs) will be meticulously recorded. Radiographic imaging will be performed prior to surgery and at regular intervals after reconstruction of the alveolar cleft with the BCP-MFAT combination. Biopsies obtained after 6 months with a trephine drill used to prepare the implantation site will be assessed with histological and histomorphometric analyses after methylmethacrylate embedding and sectioning. RESULTS The primary outcome parameter will be safety after 6 months' follow-up, as monitored closely using possible occurrences of SAEs based on radiographic imaging, blood tests, and physical examinations. For efficacy, radiographic imaging will be used for clinical grading of the bone construct using the Bergland scale. In addition, bone parameters such as bone volume, osteoid volume, graft volume, and number of osteoclasts will be histomorphometrically quantified. Recruitment started in November 2019, and the trial is currently in the follow-up stage. This protocol's current version is 1.0, dated September 15, 2019. CONCLUSIONS In this first-in-human study, not only safety but also the histologically and radiographically assessed regenerative potential of the BCP-MFAT combination will be evaluated in an alveolar cleft model. When an SAE occurs, it will be concluded that the BCP-MFAT combination is not yet safe in the current setting. Regarding AEs, if they do not occur at a higher frequency than that in patients treated with standard care (autologous bone) or can be resolved by noninvasive conventional methods (eg, with analgesics or antibiotics), the BCP-MFAT combination will be considered safe. In all other cases, the BCP-MFAT combination will not yet be considered safe. TRIAL REGISTRATION Indonesia Clinical Trial Registry INA-EW74C1N; https://tinyurl.com/28tnrr64. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) DERR1-10.2196/42371.
Collapse
Affiliation(s)
- Diandra Sabrina Natsir Kalla
- Department of Oral and Maxillofacial Surgery/Oral Pathology, Amsterdam University Medical Centers and Academic Centre for Dentistry Amsterdam, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, Netherlands
- Department of Biochemistry, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Salem Alkaabi
- Department of Oral and Maxillofacial Surgery/Oral Pathology, Amsterdam University Medical Centers and Academic Centre for Dentistry Amsterdam, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, Netherlands
- Department of Oral and Maxillofacial Surgery, Fujairah Hospital, Ministry of Health, Fujairah, United Arab Emirates
| | - Abul Fauzi
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Hasanuddin University, Makassar, Indonesia
| | - Andi Tajrin
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Hasanuddin University, Makassar, Indonesia
| | - Rifaat Nurrahma
- Department of Oral and Maxillofacial Surgery/Oral Pathology, Amsterdam University Medical Centers and Academic Centre for Dentistry Amsterdam, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, Netherlands
- Department of Prosthodontics, Faculty of Dentistry, Hasanuddin University, Makassar, Indonesia
| | - Werner E G Müller
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Heinz C Schröder
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Xiaohong Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Tymour Forouzanfar
- Department of Oral and Maxillofacial Surgery/Oral Pathology, Amsterdam University Medical Centers and Academic Centre for Dentistry Amsterdam, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, Netherlands
- Department of Oral and Maxillofacial Surgery, Leiden University Medical Centre, Leiden, Netherlands
| | - Marco N Helder
- Department of Oral and Maxillofacial Surgery/Oral Pathology, Amsterdam University Medical Centers and Academic Centre for Dentistry Amsterdam, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, Netherlands
| | - Muhammad Ruslin
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Hasanuddin University, Makassar, Indonesia
| |
Collapse
|
27
|
Karanth D, Song K, Martin ML, Meyer DR, Dolce C, Huang Y, Holliday LS. Towards resorbable 3D-printed scaffolds for craniofacial bone regeneration. Orthod Craniofac Res 2023; 26 Suppl 1:188-195. [PMID: 36866957 DOI: 10.1111/ocr.12645] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/19/2023] [Accepted: 02/24/2023] [Indexed: 03/04/2023]
Abstract
This review will briefly examine the development of 3D-printed scaffolds for craniofacial bone regeneration. We will, in particular, highlight our work using Poly(L-lactic acid) (PLLA) and collagen-based bio-inks. This paper is a narrative review of the materials used for scaffold fabrication by 3D printing. We have also reviewed two types of scaffolds that we designed and fabricated. Poly(L-lactic acid) (PLLA) scaffolds were printed using fused deposition modelling technology. Collagen-based scaffolds were printed using a bioprinting technique. These scaffolds were tested for their physical properties and biocompatibility. Work in the emerging field of 3D-printed scaffolds for bone repair is briefly reviewed. Our work provides an example of PLLA scaffolds that were successfully 3D-printed with optimal porosity, pore size and fibre thickness. The compressive modulus was similar to, or better than, the trabecular bone of the mandible. PLLA scaffolds generated an electric potential upon cyclic/repeated loading. The crystallinity was reduced during the 3D printing. The hydrolytic degradation was relatively slow. Osteoblast-like cells did not attach to uncoated scaffolds but attached well and proliferated after coating the scaffold with fibrinogen. Collagen-based bio-ink scaffolds were also printed successfully. Osteoclast-like cells adhered, differentiated, and survived well on the scaffold. Efforts are underway to identify means to improve the structural stability of the collagen-based scaffolds, perhaps through mineralization by the polymer-induced liquid precursor process. 3D-printing technology is promising for constructing next-generation bone regeneration scaffolds. We describe our efforts to test PLLA and collagen scaffolds produced by 3D printing. The 3D-printed PLLA scaffolds showed promising properties akin to natural bone. Collagen scaffolds need further work to improve structural integrity. Ideally, such biological scaffolds will be mineralized to produce true bone biomimetics. These scaffolds warrant further investigation for bone regeneration.
Collapse
Affiliation(s)
- Divakar Karanth
- Department of Orthodontics, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Kaidong Song
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, Florida, USA
| | - Macey L Martin
- University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Delaney R Meyer
- Department of Materials Science & Engineering, University of Florida, Gainesville, Florida, USA
| | - Calogero Dolce
- Department of Orthodontics, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Yong Huang
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, Florida, USA
- Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| | - L Shannon Holliday
- Department of Orthodontics, University of Florida College of Dentistry, Gainesville, Florida, USA
| |
Collapse
|
28
|
Abu Alfar TM, Alaida WS, Hammudah HA, Mohamado LL, Gaw RR, Al-Salamah L, Alasmari BA, Alotaibi RM, Almutairi MA. Exploring the Potential of Phytogenic Materials for Bone Regeneration: A Narrative Review of Current Advances and Future Directions. Cureus 2023; 15:e48175. [PMID: 38046714 PMCID: PMC10693310 DOI: 10.7759/cureus.48175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2023] [Indexed: 12/05/2023] Open
Abstract
In dentistry, bone regeneration in areas following tooth loss, the removal of a tumor or cyst, and craniofacial surgery can be accomplished by using bone grafts. Many biocompatible materials have been employed for bone regeneration in dentistry; however, all these bone graft materials come with various drawbacks. Therefore, there is a growing demand for natural, cost-effective, and biocompatible plant-based bone grafts. This review explores the emerging field of phytogenic elements in bone restoration and their specific applications in dentistry. The review focuses on key phytogenic compounds, such as algae-based and plant-based bone substitutes, delineating their roles in bone regeneration in dental bone defects. It also highlights the existing challenges associated with phytogenic grafts, such as limited bioavailability and high-dose toxicity. This calls for increased research into compatible, affordable carriers and a broader spectrum of studies to determine the most effective phytogenic solutions in dental regenerative medicine.
Collapse
|
29
|
Sakaguchi R, Xavier SP, Morinaga K, Botticelli D, Silva ER, Nakajima Y, Baba S. Histological Comparison of Collagenated Cancellous Equine Bone Blocks Used as Inlay or Onlay for Lateral Bone Augmentation in Rabbits. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6742. [PMID: 37895725 PMCID: PMC10608602 DOI: 10.3390/ma16206742] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023]
Abstract
BACKGROUND The conformation of the recipient site for an inlay graft presents an increased contact with the parent bone compared to an onlay graft. This might favor bone growth within the inlay compared to onlay grafts. Hence, the objective of this study was to compare the bone incorporation and remodeling processes of xenogeneic en bloc grafts placed using two bone grafting techniques, i.e., onlay vs. inlay. METHODS In this prospective, randomized, split-mouth study (test and control sides in the same animal), two bone grafting techniques were comparatively evaluated. The lateral aspect of the rabbit mandible was used as the recipient site, bilaterally. On one side of the mandible, the cortical bone was perforated with drills to allow a better bone formation from the bone wound and the marrow spaces. A xenogeneic bone block was fixed in the center of the prepared region, representing the onlay site. On the other side of the mandible, a 7 mm wide and 3 mm deep circumferential defect was prepared using trephines and drills. A xenogeneic bone block was fixed in the center of the defect, representing the inlay site. Two healing periods were applied in the study: 2 and 10 weeks, each represented by 10 rabbits (n = 10 for each period). RESULTS After 2 weeks of healing, the mean percentage of new bone was 10.4% and 23.3% at the onlay and inlay grafts, respectively (p = 0.022). After 10 weeks of healing, new bone increased to 13.2% at the onlay sites and 25.4% at the inlay sites (p = 0.080). In the 10-week period, the inlay grafts presented a homogeneous growth of new bone in all regions, while in the onlay grafts, low percentages of new bone were observed in the external regions. CONCLUSION The percentage of new bone increased faster and was higher in the inlay grafts than in the onlay grafts. This outcome might be related to the self-contained conformation of the recipient site in the inlay group, which offered more sources for new bone formation compared to the one-wall conformation of the recipient sites in the onlay group. The osteoconductive properties of the biomaterial allowed the newly formed bone to reach the most peripheral regions in both groups. The osteoconductive properties of the biomaterial, together with the protection offered by the collagen membrane, allowed marginal closure of the defects by newly formed bone in the inlay group.
Collapse
Affiliation(s)
- Ryuichi Sakaguchi
- Department of Oral Implantology, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata 573-1121, Japan; (R.S.); (K.M.); (Y.N.); (S.B.)
| | - Samuel Porfirio Xavier
- Department of Oral and Maxillofacial Surgery and Periodontology, Faculty of Dentistry of Ribeirão Preto, University of São Paulo, Av. do Café, Subsetor Oeste, 11 (N-11), Ribeirao Preto 14040-904, SP, Brazil; (S.P.X.); (E.R.S.)
| | - Kenzo Morinaga
- Department of Oral Implantology, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata 573-1121, Japan; (R.S.); (K.M.); (Y.N.); (S.B.)
| | - Daniele Botticelli
- Department of Oral Implantology, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata 573-1121, Japan; (R.S.); (K.M.); (Y.N.); (S.B.)
- ARDEC Academy, 47923 Rimini, Italy
| | - Erick Ricardo Silva
- Department of Oral and Maxillofacial Surgery and Periodontology, Faculty of Dentistry of Ribeirão Preto, University of São Paulo, Av. do Café, Subsetor Oeste, 11 (N-11), Ribeirao Preto 14040-904, SP, Brazil; (S.P.X.); (E.R.S.)
| | - Yasushi Nakajima
- Department of Oral Implantology, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata 573-1121, Japan; (R.S.); (K.M.); (Y.N.); (S.B.)
- Department of Oral and Maxillofacial Surgery and Periodontology, Faculty of Dentistry of Ribeirão Preto, University of São Paulo, Av. do Café, Subsetor Oeste, 11 (N-11), Ribeirao Preto 14040-904, SP, Brazil; (S.P.X.); (E.R.S.)
| | - Shunsuke Baba
- Department of Oral Implantology, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata 573-1121, Japan; (R.S.); (K.M.); (Y.N.); (S.B.)
| |
Collapse
|
30
|
Kim K, Su Y, Kucine AJ, Cheng K, Zhu D. Guided Bone Regeneration Using Barrier Membrane in Dental Applications. ACS Biomater Sci Eng 2023; 9:5457-5478. [PMID: 37650638 DOI: 10.1021/acsbiomaterials.3c00690] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Guided bone regeneration (GBR) is a widely used technique in preclinical and clinical studies due to its predictability. Its main purpose is to prevent the migration of soft tissue into the osseous wound space, while allowing osseous cells to migrate to the site. GBR is classified into two main categories: resorbable and non-resorbable membranes. Resorbable membranes do not require a second surgery but tend to have a short resorption period. Conversely, non-resorbable membranes maintain their mechanical strength and prevent collapse. However, they require removal and are susceptible to membrane exposure. GBR is often used with bone substitute graft materials to fill the defect space and protect the bone graft. The membrane can also undergo various modifications, such as surface modification and biological factor loading, to improve barrier functions and bone regeneration. In addition, bone regeneration is largely related to osteoimmunology, a new field that focuses on the interactions between bone and the immune system. Understanding these interactions can help in developing new treatments for bone diseases and injuries. Overall, GBR has the potential to be a powerful tool in promoting bone regeneration. Further research in this area could lead to advancements in the field of bone healing. This review will highlight resorbable and non-resorbable membranes with cellular responses during bone regeneration, provide insights into immunological response during bone remodeling, and discuss antibacterial features.
Collapse
Affiliation(s)
- Kakyung Kim
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Yingchao Su
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Allan J Kucine
- Department of Oral and Maxillofacial Surgery, Stony Brook University, Stony Brook, New York 11794, United States
| | - Ke Cheng
- Department of Biomedical Engineering, Columbia University, New York City, New York 10027, United States
| | - Donghui Zhu
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| |
Collapse
|
31
|
Donos N, Akcali A, Padhye N, Sculean A, Calciolari E. Bone regeneration in implant dentistry: Which are the factors affecting the clinical outcome? Periodontol 2000 2023; 93:26-55. [PMID: 37615306 DOI: 10.1111/prd.12518] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 07/08/2023] [Accepted: 08/01/2023] [Indexed: 08/25/2023]
Abstract
The key factors that are needed for bone regeneration to take place include cells (osteoprogenitor and immune-inflammatory cells), a scaffold (blood clot) that facilitates the deposition of the bone matrix, signaling molecules, blood supply, and mechanical stability. However, even when these principles are met, the overall amount of regenerated bone, its stability over time and the incidence of complications may significantly vary. This manuscript provides a critical review on the main local and systemic factors that may have an impact on bone regeneration, trying to focus, whenever possible, on bone regeneration simultaneous to implant placement to treat bone dehiscence/fenestration defects or for bone contouring. In the future, it is likely that bone tissue engineering will change our approach to bone regeneration in implant dentistry by replacing the current biomaterials with osteoinductive scaffolds combined with cells and mechanical/soluble factors and by employing immunomodulatory materials that can both modulate the immune response and control other bone regeneration processes such as osteogenesis, osteoclastogenesis, or inflammation. However, there are currently important knowledge gaps on the biology of osseous formation and on the factors that can influence it that require further investigation. It is recommended that future studies should combine traditional clinical and radiographic assessments with non-invasive imaging and with patient-reported outcome measures. We also envisage that the integration of multi-omics approaches will help uncover the mechanisms responsible for the variability in regenerative outcomes observed in clinical practice.
Collapse
Affiliation(s)
- Nikolaos Donos
- Centre for Oral Clinical Research, Institute of Dentistry, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Aliye Akcali
- Centre for Oral Clinical Research, Institute of Dentistry, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
- Department of Periodontology, Faculty of Dentistry, Dokuz Eylul University, Izmir, Turkey
| | - Ninad Padhye
- Centre for Oral Clinical Research, Institute of Dentistry, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Anton Sculean
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Elena Calciolari
- Centre for Oral Clinical Research, Institute of Dentistry, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
- Department of Medicine and Dentistry, Dental School, University of Parma, Parma, Italy
| |
Collapse
|
32
|
Sivolella S, Brunello G, Nika E, Badocco D, Pastore P, Carturan SM, Bernardo E, Elsayed H, Biasetto L, Brun P. In vitro evaluation of granules obtained from 3D sphene scaffolds and bovine bone grafts: chemical and biological assays. J Mater Chem B 2023; 11:8775-8787. [PMID: 37665632 DOI: 10.1039/d3tb00499f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Sphene is an innovative bone graft material. The aim of this study was to investigate and compare the physicochemical and biological properties of Bio-Oss® (BO) and in-lab synthesized and processed sphene granules. BO granules of 1000-2000 μm (BO-L), 250-1000 μm (BO-S) and 100-200 μm (BO-p) for derived granules, and corresponding groups of sphene granules obtained from 3D printed blocks (SB-L, SB-S, SB-p) and foams (SF-L, SF-S and SF-p) were investigated. The following analyses were conducted: morphological analysis, specific surface area and porosity, inductively coupled plasma mass spectrometry (ICP-MS), cytotoxicity assay, Alizarin staining, bone-related gene expression, osteoblast migration and proliferation assays. All pulverized granules exhibited a similar morphology and SF-S resembled natural bone. Sphene-derived granules showed absence of micro- and mesopores and a low specific surface area. ICP-MS revealed a tendency for absorption of Ca and P for all BO samples, while sphene granules demonstrated a release of Ca. No cellular cytotoxicity was detected and osteoblastic phenotype in primary cells was observed, with significantly increased values for SF-L, SF-S, BO-L and BO-p. Further investigations are needed before clinical use can be considered.
Collapse
Affiliation(s)
- Stefano Sivolella
- Department of Neuroscience, Dentistry Section, University of Padova, Via Giustiniani 2, 35128 Padova, Italy.
| | - Giulia Brunello
- Department of Neuroscience, Dentistry Section, University of Padova, Via Giustiniani 2, 35128 Padova, Italy.
- Department of Oral Surgery, Universitätsklinikum Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Ervin Nika
- Department of Neuroscience, Dentistry Section, University of Padova, Via Giustiniani 2, 35128 Padova, Italy.
| | - Denis Badocco
- Department of Chemical Sciences, University of Padova, Via F. Marzolo 1, 35131 Padova, Italy.
| | - Paolo Pastore
- Department of Chemical Sciences, University of Padova, Via F. Marzolo 1, 35131 Padova, Italy.
| | - Sara M Carturan
- INFN-Laboratori Nazionali di Legnaro, Viale dell'Università 2, 35020, Legnaro, PD, Italy.
- Dipartimento di Fisica e Astronomia, Università di Padova, Via Marzolo 8, 5131, Padua, Italy
| | - Enrico Bernardo
- Department of Industrial Engineering, University of Padova, Via F. Marzolo 9, 35131 Padova, Italy.
| | - Hamada Elsayed
- Department of Industrial Engineering, University of Padova, Via F. Marzolo 9, 35131 Padova, Italy.
- Refractories, Ceramics and Building Materials Department, National Research Centre, El Buhouth Str., Cairo 12622, Egypt
| | - Lisa Biasetto
- Department of Management and Engineering, University of Padova, Stradella San Nicola 3, 36100 Vicenza, Italy.
| | - Paola Brun
- Department of Molecular Medicine, Section of Microbiology, University of Padova, via A. Gabelli, 63, 35121 Padova, Italy.
| |
Collapse
|
33
|
Kühl J, Gorb S, Kern M, Klüter T, Kühl S, Seekamp A, Fuchs S. Extrusion-based 3D printing of osteoinductive scaffolds with a spongiosa-inspired structure. Front Bioeng Biotechnol 2023; 11:1268049. [PMID: 37790253 PMCID: PMC10544914 DOI: 10.3389/fbioe.2023.1268049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/04/2023] [Indexed: 10/05/2023] Open
Abstract
Critical-sized bone defects resulting from trauma, inflammation, and tumor resections are individual in their size and shape. Implants for the treatment of such defects have to consider biomechanical and biomedical factors, as well as the individual conditions within the implantation site. In this context, 3D printing technologies offer new possibilities to design and produce patient-specific implants reflecting the outer shape and internal structure of the replaced bone tissue. The selection or modification of materials used in 3D printing enables the adaption of the implant, by enhancing the osteoinductive or biomechanical properties. In this study, scaffolds with bone spongiosa-inspired structure for extrusion-based 3D printing were generated. The computer aided design process resulted in an up scaled and simplified version of the bone spongiosa. To enhance the osteoinductive properties of the 3D printed construct, polycaprolactone (PCL) was combined with 20% (wt) calcium phosphate nano powder (CaP). The implants were designed in form of a ring structure and revealed an irregular and interconnected porous structure with a calculated porosity of 35.2% and a compression strength within the range of the natural cancellous bone. The implants were assessed in terms of biocompatibility and osteoinductivity using the osteosarcoma cell line MG63 and patient-derived mesenchymal stem cells in selected experiments. Cell growth and differentiation over 14 days were monitored using confocal laser scanning microscopy, scanning electron microscopy, deoxyribonucleic acid (DNA) quantification, gene expression analysis, and quantitative assessment of calcification. MG63 cells and human mesenchymal stem cells (hMSC) adhered to the printed implants and revealed a typical elongated morphology as indicated by microscopy. Using DNA quantification, no differences for PCL or PCL-CaP in the initial adhesion of MG63 cells were observed, while the PCL-based scaffolds favored cell proliferation in the early phases of culture up to 7 days. In contrast, on PCL-CaP, cell proliferation for MG63 cells was not evident, while data from PCR and the levels of calcification, or alkaline phosphatase activity, indicated osteogenic differentiation within the PCL-CaP constructs over time. For hMSC, the highest levels in the total calcium content were observed for the PCL-CaP constructs, thus underlining the osteoinductive properties.
Collapse
Affiliation(s)
- Julie Kühl
- Experimental Trauma Surgery, Department of Orthopedics and Trauma Surgery, University Medical Center, Kiel, Germany
| | - Stanislav Gorb
- Department of Functional Morphology and Biomechanics, Kiel University, Kiel, Germany
| | - Matthias Kern
- Department of Prosthodontics, Propaedeutics and Dental Material, University Medical Center, Kiel, Germany
| | - Tim Klüter
- Experimental Trauma Surgery, Department of Orthopedics and Trauma Surgery, University Medical Center, Kiel, Germany
| | - Sebastian Kühl
- Department of Electrical and Information Engineering, Kiel University, Kiel, Germany
| | - Andreas Seekamp
- Experimental Trauma Surgery, Department of Orthopedics and Trauma Surgery, University Medical Center, Kiel, Germany
| | - Sabine Fuchs
- Experimental Trauma Surgery, Department of Orthopedics and Trauma Surgery, University Medical Center, Kiel, Germany
| |
Collapse
|
34
|
Bigus S, Holzinger D, Bechtold M, Voelzke K, Seemann R, Sacher CL. A prospective, randomized, single-blind study to compare two methods of treating cystic lesions in the jaw. Oral Surg Oral Med Oral Pathol Oral Radiol 2023; 136:308-314. [PMID: 37331889 DOI: 10.1016/j.oooo.2023.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/17/2023] [Accepted: 02/17/2023] [Indexed: 02/26/2023]
Abstract
OBJECTIVE The study aimed to assess the usefulness of a bovine bone substitute material in treating cystic lesions in the jaw with a maximum diameter of <4 cm. MATERIAL AND METHODS In this prospective, randomized, single-blind intervention study of 116 patients, 61 underwent cystectomy with a subsequent filling of the defect using a bovine xenograft, and 55 underwent cystectomy alone. Volumetric measurement of the cysts was performed preoperatively and 6 and 12 months postoperatively using the available digital volume tomography data sets. Follow-up appointments were made 14 days and 1, 3, 6, and 12 months postoperatively. RESULTS Almost complete regeneration was seen in both treatment groups within 12 months, with no significant difference in absolute volume loss between the 2 groups (P = .521). Examination 14 days after surgery revealed a tendency for more wound healing disorders with the use of a bone substitute (P = .077). It was no longer possible to detect any further differences in later examinations. CONCLUSION Using bovine bone substitute material has no radiologically measurable advantage over cystectomy alone without defect filling regarding bone regeneration. In addition, there was a tendency for more wound-healing disorders to occur in the bone substitute group.
Collapse
Affiliation(s)
- Simon Bigus
- Charité-Universitätsmedizin Berlin, Department of Oral and Maxillofacial Surgery, Berlin, Germany
| | | | - Moritz Bechtold
- University Hospital Vienna, Department of Oral and Maxillofacial Surgery, Vienna, Austria
| | - Kristina Voelzke
- University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Rudolf Seemann
- Evangelical Hospital Vienna, Institute of Head and Neck Diseases, Vienna, Austria
| | | |
Collapse
|
35
|
Kandhari S, Khalid S, James A, Laverty DP. Bone grafting techniques and materials for implant dentistry. Br Dent J 2023; 235:180-189. [PMID: 37563385 DOI: 10.1038/s41415-023-6113-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/28/2023] [Indexed: 08/12/2023]
Abstract
Bone quality, volume, height and width all play a pivotal role in dental implant stability, success and survival. A lack of adequate bone can be overcome with various bone grafting procedures. Dependent on many factors, including the amount of bone required, the site of implant placement, patient preferences and clinician factors; the type of bone grafting material and procedure undertaken can vary. Supplemental bone can be sourced from a variety of sources, including autogenous, allogenous and xenograft bone. Dependent on the source of the bone, it will have different properties in aiding bone formation, as well as being presented in different formulations, such as bone particles or bone blocks.The aim of this paper is to provide an overview of bone grafting indications, materials and types of bone grafting techniques that can be utilised to aid dental implant provision. It also discusses the properties needed to ensure optimal success of guided bone regeneration techniques.
Collapse
Affiliation(s)
- Sunmeet Kandhari
- Restorative Dental Core Trainee, Birmingham Community Healthcare NHS Foundation Trust, Birmingham Dental Hospital, 5 Mill Pool Way, Birmingham, B5 7EG, UK.
| | - Sehrish Khalid
- Speciality Registrar in Restorative Dentistry, Birmingham Community Healthcare NHS Foundation Trust, Birmingham Dental Hospital, 5 Mill Pool Way, Birmingham, B5 7EG, UK
| | - Alistair James
- General Dental Practitioner and Speciality Dentist in Restorative Dentistry, Birmingham Community Healthcare NHS Foundation Trust, Birmingham Dental Hospital, 5 Mill Pool Way, Birmingham, B5 7EG, UK
| | - Dominic P Laverty
- Consultant in Restorative Dentistry, Birmingham Community Healthcare NHS Foundation Trust, Birmingham Dental Hospital, 5 Mill Pool Way, Birmingham, B5 7EG, UK
| |
Collapse
|
36
|
Thakur M, Chandel M, Kumar A, Kumari S, Kumar P, Pathania D. The development of carbohydrate polymer- and protein-based biomaterials and their role in environmental health and hygiene: A review. Int J Biol Macromol 2023; 242:124875. [PMID: 37196726 DOI: 10.1016/j.ijbiomac.2023.124875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 05/03/2023] [Accepted: 05/11/2023] [Indexed: 05/19/2023]
Abstract
Biological macromolecules have been significantly used in the medicine due to their certain therapeutic values. Macromolecules have been employed in medical filed in order to enhance, support, and substitute damaged tissues or any other biological function. In the past decade, the biomaterial field has developed considerably because of vast innovations in regenerative medicine, tissue engineering, etc. Different types of biological macromolecules such as natural protein and polysaccharide etc. and synthetic molecules such as metal based, polymer based, and ceramic based etc. have been discussed. These materials can be modified by coatings, fibres, machine parts, films, foams, and fabrics for utilization in biomedical products and other environmental applications. At present, the biological macromolecules can used in different areas like medicine, biology, physics, chemistry, tissue engineering, and materials science. These materials have been used to promote the healing of human tissues, medical implants, bio-sensors and drug delivery, etc. These materials also considered as environmentally sustainable as they are prepared in association with renewable natural resources and living organisms in contrast to non-renewable resources (petrochemicals). In addition, enhanced compatibility, durability and circular economy of biological materials make them highly attractive and innovative for current research.The present review paper summarizes a brief about biological macromolecules, their classification, methods of synthesis, and their role in biomedicine, dyes and herbal products.
Collapse
Affiliation(s)
- Manita Thakur
- Department of Chemistry, IEC University Baddi, Solan, Himachal Pradesh, India
| | - Manisha Chandel
- Department of Chemistry, IEC University Baddi, Solan, Himachal Pradesh, India
| | - Ajay Kumar
- Department of Chemistry, Maharaja Agrasen University, Solan, Himachal Pradesh, India
| | - Sarita Kumari
- Department of Zoology, Sardar Patel University, Mandi, (HP) 175001, India
| | - Pawan Kumar
- Himalayan Forest Research Institute, Conifer Campus, Panthaghati, Shimla 171013, India
| | - Deepak Pathania
- Department of Environmental Sciences, Central University of Jammu, Bagla (RahyaSuchani), Jammu 181143, India.
| |
Collapse
|
37
|
Morgan N, Meeus J, Shujaat S, Cortellini S, Bornstein MM, Jacobs R. CBCT for Diagnostics, Treatment Planning and Monitoring of Sinus Floor Elevation Procedures. Diagnostics (Basel) 2023; 13:1684. [PMID: 37238169 PMCID: PMC10217207 DOI: 10.3390/diagnostics13101684] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Sinus floor elevation (SFE) is a standard surgical technique used to compensate for alveolar bone resorption in the posterior maxilla. Such a surgical procedure requires radiographic imaging pre- and postoperatively for diagnosis, treatment planning, and outcome assessment. Cone beam computed tomography (CBCT) has become a well-established imaging modality in the dentomaxillofacial region. The following narrative review is aimed to provide clinicians with an overview of the role of three-dimensional (3D) CBCT imaging for diagnostics, treatment planning, and postoperative monitoring of SFE procedures. CBCT imaging prior to SFE provides surgeons with a more detailed view of the surgical site, allows for the detection of potential pathologies three-dimensionally, and helps to virtually plan the procedure more precisely while reducing patient morbidity. In addition, it serves as a useful follow-up tool for assessing sinus and bone graft changes. Meanwhile, using CBCT imaging has to be standardized and justified based on the recognized diagnostic imaging guidelines, taking into account both the technical and clinical considerations. Future studies are recommended to incorporate artificial intelligence-based solutions for automating and standardizing the diagnostic and decision-making process in the context of SFE procedures to further improve the standards of patient care.
Collapse
Affiliation(s)
- Nermin Morgan
- OMFS IMPATH Research Group, Department of Imaging & Pathology, Faculty of Medicine, KU Leuven, 3000 Leuven, Belgium
- Department of Oral Medicine, Faculty of Dentistry, Mansoura University, Mansoura 35516, Egypt
| | - Jan Meeus
- Department of Oral and Maxillofacial Surgery, University Hospitals Leuven, Campus Sint-Rafael, 3000 Leuven, Belgium
| | - Sohaib Shujaat
- OMFS IMPATH Research Group, Department of Imaging & Pathology, Faculty of Medicine, KU Leuven, 3000 Leuven, Belgium
- Department of Oral and Maxillofacial Surgery, University Hospitals Leuven, Campus Sint-Rafael, 3000 Leuven, Belgium
- King Abdullah International Medical Research Center, Department of Maxillofacial Surgery and Diagnostic Sciences, College of Dentistry, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia
| | - Simone Cortellini
- Department of Oral Health Sciences, Section of Periodontology, KU Leuven, 3000 Leuven, Belgium
- Department of Dentistry, University Hospitals Leuven, KU Leuven, 3000 Leuven, Belgium
| | - Michael M. Bornstein
- Department of Oral Health & Medicine, University Center for Dental Medicine Basel UZB, University of Basel, 4058 Basel, Switzerland
| | - Reinhilde Jacobs
- OMFS IMPATH Research Group, Department of Imaging & Pathology, Faculty of Medicine, KU Leuven, 3000 Leuven, Belgium
- Department of Oral and Maxillofacial Surgery, University Hospitals Leuven, Campus Sint-Rafael, 3000 Leuven, Belgium
- Department of Dental Medicine, Karolinska Institute, 141 04 Huddinge, Sweden
| |
Collapse
|
38
|
Santos MS, Carvalho MS, Silva JC. Recent Advances on Electrospun Nanofibers for Periodontal Regeneration. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1307. [PMID: 37110894 PMCID: PMC10141626 DOI: 10.3390/nano13081307] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 03/29/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
Periodontitis is an inflammatory infection caused by bacterial plaque accumulation that affects the periodontal tissues. Current treatments lack bioactive signals to induce tissue repair and coordinated regeneration of the periodontium, thus alternative strategies are needed to improve clinical outcomes. Electrospun nanofibers present high porosity and surface area and are able to mimic the natural extracellular matrix, which modulates cell attachment, migration, proliferation, and differentiation. Recently, several electrospun nanofibrous membranes have been fabricated with antibacterial, anti-inflammatory, and osteogenic properties, showing promising results for periodontal regeneration. Thus, this review aims to provide an overview of the current state of the art of these nanofibrous scaffolds in periodontal regeneration strategies. First, we describe the periodontal tissues and periodontitis, as well as the currently available treatments. Next, periodontal tissue engineering (TE) strategies, as promising alternatives to the current treatments, are addressed. Electrospinning is briefly explained, the characteristics of electrospun nanofibrous scaffolds are highlighted, and a detailed overview of electrospun nanofibers applied to periodontal TE is provided. Finally, current limitations and possible future developments of electrospun nanofibrous scaffolds for periodontitis treatment are also discussed.
Collapse
Affiliation(s)
- Mafalda S. Santos
- Department of Bioengineering, iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal;
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Marta S. Carvalho
- Department of Bioengineering, iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal;
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - João C. Silva
- Department of Bioengineering, iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal;
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
39
|
Gens L, Marchionatti E, Steiner A, Stoddart MJ, Thompson K, Mys K, Zeiter S, Constant C. Surgical technique and comparison of autologous cancellous bone grafts from various donor sites in rats. J Orthop Res 2023; 41:834-844. [PMID: 35953282 DOI: 10.1002/jor.25429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/29/2022] [Accepted: 08/09/2022] [Indexed: 02/04/2023]
Abstract
Autologous cancellous bone graft is the gold standard in large bone defect repair. However, studies using autologous bone grafting in rats are rare. To determine the feasibility of autologous cancellous bone graft harvest from different anatomical donor sites (humerus, ilium, femur, tibia, and tail vertebrae) in rats and compare their suitability as donor sites, a total of 13 freshly euthanized rats were used to describe the surgical technique, determine the cancellous bone volume and microstructure, and compare the cancellous bone collected quantitatively and qualitatively. It was feasible to harvest cancellous bone grafts from all five anatomical sites with the humerus and tail being more surgically challenging. The microstructural analysis using micro-computed tomography showed a significantly lower bone volume fraction, bone mineral density, and trabecular thickness of the humerus and iliac crest compared to the femur, tibia, and tail vertebrae. The harvested weight and volume did not differ between the donor sites. All donor sites apart from the femur yielded primary osteogenic cells confirmed by the presence of alkaline phosphatase and Alizarin Red S stain. Bone samples from the iliac crest showed the most consistent outgrowth of osteoprogenitor cells. In conclusion, the tibia and iliac crest may be the most favorable donor sites considering the surgical approach. However, due to the differences in microstructure of the cancellous bone and the consistency of outgrowth of osteoprogenitor cells, the donor sites may have different healing properties, that need further investigation in an in vivo study.
Collapse
Affiliation(s)
- Lena Gens
- AO Research Institute Davos, Davos, Switzerland
| | - Emma Marchionatti
- Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Adrian Steiner
- Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | | | | | - Karen Mys
- AO Research Institute Davos, Davos, Switzerland
| | | | | |
Collapse
|
40
|
Gulati K, Ding C, Guo T, Guo H, Yu H, Liu Y. Craniofacial therapy: advanced local therapies from nano-engineered titanium implants to treat craniofacial conditions. Int J Oral Sci 2023; 15:15. [PMID: 36977679 PMCID: PMC10050545 DOI: 10.1038/s41368-023-00220-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/05/2023] [Accepted: 02/28/2023] [Indexed: 03/30/2023] Open
Abstract
Nano-engineering-based tissue regeneration and local therapeutic delivery strategies show significant potential to reduce the health and economic burden associated with craniofacial defects, including traumas and tumours. Critical to the success of such nano-engineered non-resorbable craniofacial implants include load-bearing functioning and survival in complex local trauma conditions. Further, race to invade between multiple cells and pathogens is an important criterion that dictates the fate of the implant. In this pioneering review, we compare the therapeutic efficacy of nano-engineered titanium-based craniofacial implants towards maximised local therapy addressing bone formation/resorption, soft-tissue integration, bacterial infection and cancers/tumours. We present the various strategies to engineer titanium-based craniofacial implants in the macro-, micro- and nano-scales, using topographical, chemical, electrochemical, biological and therapeutic modifications. A particular focus is electrochemically anodised titanium implants with controlled nanotopographies that enable tailored and enhanced bioactivity and local therapeutic release. Next, we review the clinical translation challenges associated with such implants. This review will inform the readers of the latest developments and challenges related to therapeutic nano-engineered craniofacial implants.
Collapse
Affiliation(s)
- Karan Gulati
- The University of Queensland, School of Dentistry, Herston, QLD, Australia
| | - Chengye Ding
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Tianqi Guo
- The University of Queensland, School of Dentistry, Herston, QLD, Australia
| | - Houzuo Guo
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
- Department of Oral Implantology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Huajie Yu
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China.
- Fourth Clinical Division, Peking University School and Hospital of Stomatology, Beijing, China.
| | - Yan Liu
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China.
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China.
| |
Collapse
|
41
|
Lee KK, Raja N, Yun HS, Lee SC, Lee CS. Multifunctional bone substitute using carbon dot and 3D printed calcium-deficient hydroxyapatite scaffolds for osteoclast inhibition and fluorescence imaging. Acta Biomater 2023; 159:382-393. [PMID: 36669550 DOI: 10.1016/j.actbio.2023.01.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/28/2022] [Accepted: 01/11/2023] [Indexed: 01/19/2023]
Abstract
Multifunctional bone substitute materials (BSM) have gained considerable attention with the exponential increase in aging populations. The development of hybrid materials for diagnosis and therapy of bone-related diseases and dysfunctions, especially, has been a significant challenge in the biological and the biomedical field, due to the shortage of agents with specificity and selectivity toward bone. In this study, a hybrid material, referred as Alen-CDs@CDHA, fabricated from alendronate-conjugated carbon dots (Alen-CDs) and calcium-deficient hydroxyapatite (CDHA, the mineral component of bones) scaffolds is offered as a novel multifunctional BSM for in vivo osteoclasts deactivation and fluorescence imaging. The fluorescent Alen-CDs were hydrothermally prepared using phytic acid as carbon source, followed by conjugating alendronate, for controlled alendronate release and fluorescent imaging under acidic conditions. As-prepared fluorescent Alen-CDs were consecutively immobilized on surfaces of CDHA scaffolds, exhibiting high affinity by bisphosphonate group, easily fabricated from α-tricalcium phosphate (α-TCP) paste using three-dimensional (3D) printing system. The resultant Alen-CDs@CDHA caused a significant decrease (> 50%) in viability of osteoclasts at 7 days after in vitro treatment. Furthermore, when Alen-CDs@CDHA was implanted in balb/c nude mice for in vivo evaluation, we found Alen-CDs@CDHA to be suitable for bone imaging through fluorescence signals, without necrosis or inflammatory symptoms in the epidermal tissues. Thus, these observations offer new opportunities for a novel and revolutionary use of Alen-CDs@CDHA as highly specific multifunctional BSM for bone diagnosis and imaging, and as bone-specific drug delivery materials, eventually providing anti-osteoclastogenic treatments solution for degenerative bone disorders. STATEMENT OF SIGNIFICANCE: Alen-CDs@CDHA significantly reduced the viability of osteoclasts and fluorescently imaged in vivo after transplantation, releasing drug via pH modulation. The development of fluorescence materials for bone imaging remains still a major challenge in the biomedical field owing to the shortage of selectivity and specificity. The results could lead to improvements in bone treatment strategies, as it could reduce the invasiveness of procedures and the associated negative outcomes, and increase the precision of strategies. Further, we believe that this study will be of interest to the readership of your journal as clearly focuses on the advancement of a biomaterial, where we have engineered a substance to substitute bone and integrate with a living system.
Collapse
Affiliation(s)
- Kyung Kwan Lee
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Biomedical and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Naren Raja
- Department of Advanced Biomaterials Research, Ceramics Materials Division, Korea Institute of Materials Science (KIMS), Changwon 51508, Republic of Korea
| | - Hui-Suk Yun
- Department of Advanced Biomaterials Research, Ceramics Materials Division, Korea Institute of Materials Science (KIMS), Changwon 51508, Republic of Korea; Department of Advanced Materials Engineering, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Sang Cheon Lee
- Department of Maxillofacial Biomedical Engineering, School of Dentistry, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Chang-Soo Lee
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Biotechnology, University of Science and Technology (UST), Daejeon 34113, Republic of Korea.
| |
Collapse
|
42
|
Tomas M, Karl M, Čandrlić M, Matijević M, Juzbašić M, Peloza OC, Radetić ATJ, Kuiš D, Vidaković B, Ivanišević Z, Kačarević ŽP. A Histologic, Histomorphometric, and Immunohistochemical Evaluation of Anorganic Bovine Bone and Injectable Biphasic Calcium Phosphate in Humans: A Randomized Clinical Trial. Int J Mol Sci 2023; 24:ijms24065539. [PMID: 36982613 PMCID: PMC10056509 DOI: 10.3390/ijms24065539] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/15/2023] Open
Abstract
Following trauma, chronic periapical process, or tooth extraction, a large loss of bone volume is noticed during the healing process. To facilitate the placement of dental implants, various surgical procedures are used for an optimal alveolar ridge profile, while maintaining adequate bone dimensions. The main aim of this study was to determine the healing ability (histologically and immunohistologically) of alveolar bone defects during augmentation with two different biomaterials: injectable biphasic calcium phosphate (BCP) and anorganic bovine bone (ABB). Thirty-eight subjects were randomly divided into two groups. The first group received the tested bone substitute biomaterial (BSB), i.e., BCP (maxresorb inject®), and the second group received an alternative to the gold standard, i.e., ABB (Bio-Oss®). The histopathological, histomorphometric, and immunohistochemical analyses gave comparable results for these bone substitute materials in terms of newly formed bone: (BCP: 39.91 ± 8.49%, ABB: 41.73 ± 13.99%), residual biomaterial (BCP: 28.61 ± 11.38%, ABB: 31.72 ± 15.52%), and soft tissue (BCP: 31.49 ± 11.09%, ABB: 26.54 ± 7.25%), with no significant difference found between the groups (p < 0.05, t-test), proving that BCP is equally suitable and successful for alveolar bone regeneration.
Collapse
Affiliation(s)
- Matej Tomas
- Department of Dental Medicine, Faculty of Dental Medicine and Health Osijek, J. J. Strossmayer University of Osijek, 31 000 Osijek, Croatia
- Interdisciplinary University Study of Molecular Biosciences, J. J. Strossmayer University of Osijek, 31 000 Osijek, Croatia
| | - Matej Karl
- Department of Dental Medicine, Faculty of Dental Medicine and Health Osijek, J. J. Strossmayer University of Osijek, 31 000 Osijek, Croatia
- Faculty of Medicine Osijek, J. J. Strossmayer University of Osijek, 31 000 Osijek, Croatia
| | - Marija Čandrlić
- Department of Dental Medicine, Faculty of Dental Medicine and Health Osijek, J. J. Strossmayer University of Osijek, 31 000 Osijek, Croatia
- Faculty of Medicine Osijek, J. J. Strossmayer University of Osijek, 31 000 Osijek, Croatia
| | - Marko Matijević
- Interdisciplinary University Study of Molecular Biosciences, J. J. Strossmayer University of Osijek, 31 000 Osijek, Croatia
- Community Healthcare Center of Osijek-Baranja County, 31 000 Osijek, Croatia
| | - Martina Juzbašić
- Department of Dental Medicine, Faculty of Dental Medicine and Health Osijek, J. J. Strossmayer University of Osijek, 31 000 Osijek, Croatia
- Interdisciplinary University Study of Molecular Biosciences, J. J. Strossmayer University of Osijek, 31 000 Osijek, Croatia
| | - Olga Cvijanović Peloza
- Department of Anatomy, Faculty of Medicine, University of Rijeka, 51 000 Rijeka, Croatia
| | | | - Davor Kuiš
- Department of Dental Medicine, Faculty of Dental Medicine and Health Osijek, J. J. Strossmayer University of Osijek, 31 000 Osijek, Croatia
- Department of Periodontology, Faculty of Dental Medicine Rijeka, Univeristy of Rijeka, 51 000 Rijeka, Croatia
- Clinical Hospital Center Rijeka, 51 000 Rijeka, Croatia
| | - Bruno Vidaković
- Department of Dental Medicine, Faculty of Dental Medicine and Health Osijek, J. J. Strossmayer University of Osijek, 31 000 Osijek, Croatia
| | - Zrinka Ivanišević
- Department of Dental Medicine, Faculty of Dental Medicine and Health Osijek, J. J. Strossmayer University of Osijek, 31 000 Osijek, Croatia
- Correspondence: (Z.I.); (Ž.P.K.)
| | - Željka Perić Kačarević
- Interdisciplinary University Study of Molecular Biosciences, J. J. Strossmayer University of Osijek, 31 000 Osijek, Croatia
- Department of Anatomy, Histology, Embriology, Pathology Anatomy and Pathology Histology, Faculty of Dental Medicine and Health Osijek, J. J. Strossmayer University of Osijek, 31 000 Osijek, Croatia
- Correspondence: (Z.I.); (Ž.P.K.)
| |
Collapse
|
43
|
Preliminary results of customized bone graft made by robocasting hydroxyapatite and tricalcium phosphates for oral surgery. Oral Surg Oral Med Oral Pathol Oral Radiol 2023; 135:192-203. [PMID: 36089487 DOI: 10.1016/j.oooo.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/24/2022] [Accepted: 06/05/2022] [Indexed: 11/22/2022]
Abstract
OBJECTIVE The objective of this study was to assess the mechanical characteristics and the clinical usefulness of beta-tricalcium phosphate (β-TCP) and hydroxyapatite (HA) bioblocks grafted in edentulous jaws of 12 patients. METHODS The scaffolds were produced by robocasting ceramic inks containing 80%/20% β-TCP and HA, respectively, with an overall porosity of 60%, with a macropore size between 300 and 500 μm. The mechanical performance of cylindrical vs conical specimens was compared using a universal testing machine. The clinical study was performed on 12 edentulous patients who received 4 cylindrical bone bioblocks. After 10 to 16 weeks of osseointegration, the bioblocks were explanted with trephine for histologic analysis by Goldner and Von Kossa staining. RESULTS Conical shapes were significantly stronger (96.4 ± 8.7 MPa) than cylindrical shapes (87.8 ± 12.2 MPa). The overall degree of porosity ranged from 53.4% to 58.1% in the coronal region to 62.5% to 66.9% at the apex. After the maturation period, 41 valid bioblocks (85.4%) were obtained for histologic study. Bone showing some cellularity was found in 68.4% of the samples, indicating biologically active bone, and adequate calcification was found in 31.7% of the samples. In terms of biomaterial degradation, 73.2% of the samples were completely resorbed or showed significant resorption. CONCLUSIONS The 80%/20% β-TCP and HA grafts customized by robocasting appear adequate for regenerating self-contained defects.
Collapse
|
44
|
Al‐allaq AA, Kashan JS. A review: In vivo studies of bioceramics as bone substitute materials. NANO SELECT 2022. [DOI: 10.1002/nano.202200222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Ali A. Al‐allaq
- Ministry of Higher Education and Scientific Research Office Reconstruction and Projects Baghdad Iraq
| | - Jenan S. Kashan
- Biomedical Engineering Department University of Technology Baghdad Iraq
| |
Collapse
|
45
|
Solakoglu Ö, Götz W, von Baehr V, Heydecke G, Pantel K, Schwarzenbach H. Characterization of immunologically detectable T-cell sensitization, Immunohistochemical detection of pro-inflammatory cytokines, and clinical parameters of patients after allogeneic intraoral bone grafting procedures: a prospective randomized controlled clinical trial in humans. BMC Oral Health 2022; 22:592. [PMID: 36496367 PMCID: PMC9741780 DOI: 10.1186/s12903-022-02584-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/11/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The null hypotheses were tested that intraoral bone augmentation using two different allogeneic materials has no impact on the patient's blood levels of material-specific lymphocytes and on the immunohistochemical detection of pro-inflammatory cytokines IL-1α, IL1ß and TNF-α and T-cell markers CD4, CD8 in biopsies of the test groups. METHODS In this prospective RCT, 60 systemically healthy participants were randomly assigned to two allogeneic test groups (1: Maxgraft®, freeze-dried, multiple donors, and 2: Puros®, solvent-dehydrated, single donor) and an autologous control group (10 patients). Plasma samples were collected pre-(T1) and postoperatively (2 weeks (T2) and 4 months (T3)). The Lymphocyte Transformation Test (LTT) was used for analyzing levels of transformed lymphocytes for type IV immune reactions by 3H-thymidine activity. Bone biopsies were harvested at T3 and immunohistochemically analyzed for IL-1α, IL1ß, TNF-α, CD4, CD8 and correlated with the immunological and clinical findings. RESULTS A statistically significant difference between the tested materials was observed for LTT measurements at T3 (p = 0.033). Furthermore, three groups were identified: Group A (LTT negative T1-T3, n = 48), group B (LTT positive T1-T3, n = 7), group C (developing positive LTT at T2, n = 5). A highly significant elevation of IL-1α, IL1ß, TNF-α in patients of group C (p = 0.0001) and a significant elevation of CD4+ cells in patients of group B (p = 0.005) was shown. CONCLUSION Our data show that following allogeneic bone grafting, local and systemic immunological reactions can be detected in some patients. These findings were statistically significant for the timepoint T3 between the tested materials as well as for the groups B and C correlated with group A for both tested materials. Therefore, the null hypotheses were rejected. A preoperative compatibility test for allogeneic materials in order to improve patient safety and the predictability of these materials would be desirable. TRIAL REGISTRATION Ethical commission of the Ärztekammer Hamburg, Germany (PV5211) as well as by the German Registry of Clinical Studies (DRKS00013010) on 30/07/2018 ( http://apps.who.int/trialsearch/ ).
Collapse
Affiliation(s)
- Önder Solakoglu
- grid.13648.380000 0001 2180 3484The Dental Department of the University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Werner Götz
- grid.10388.320000 0001 2240 3300Department of Orthodontics, Laboratory for Oral Biologic Basic Science, University of Bonn, Bonn, Germany
| | | | - Guido Heydecke
- grid.13648.380000 0001 2180 3484The Dental Department of Prosthodontics of the University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Klaus Pantel
- grid.13648.380000 0001 2180 3484Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Heidi Schwarzenbach
- grid.13648.380000 0001 2180 3484Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
46
|
Park HI, Lee JH, Lee SJ. The comprehensive on-demand 3D bio-printing for composite reconstruction of mandibular defects. Maxillofac Plast Reconstr Surg 2022; 44:31. [PMID: 36195777 PMCID: PMC9532487 DOI: 10.1186/s40902-022-00361-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/25/2022] [Indexed: 11/10/2022] Open
Abstract
Background The mandible is a functional bio-organ that supports facial structures and helps mastication and speaking. Large mandible defects, generally greater than 6-cm segment loss, may require composite tissue reconstruction such as osteocutaneous-vascularized free flap which has a limitation of additional surgery and a functional morbidity at the donor site. A 3D bio-printing technology is recently developed to overcome the limitation in the composite reconstruction of the mandible using osteocutaneous-vascularized free flap. Review Scaffold, cells, and bioactive molecules are essential for a 3D bio-printing. For mandibular reconstruction, materials in a 3D bio-printing require mechanical strength, resilience, and biocompatibility. Recently, an integrated tissue and organ printing system with multiple cartridges are designed and it is capable of printing polymers to reinforce the printed structure, such as hydrogel. Conclusion For successful composite tissue reconstruction of the mandible, biologic considerations and components should be presented with a comprehensive on-demand online platform model of customized approaches.
Collapse
Affiliation(s)
- Han Ick Park
- Department of Oral and Maxillofacial Surgery, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, South Korea
| | - Jee-Ho Lee
- Department of Oral and Maxillofacial Surgery, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, South Korea.
| | - Sang Jin Lee
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, 27157, USA.
| |
Collapse
|
47
|
Kowalewicz K, Waselau AC, Feichtner F, Schmitt AM, Brückner M, Vorndran E, Meyer-Lindenberg A. Comparison of degradation behavior and osseointegration of 3D powder-printed calcium magnesium phosphate cement scaffolds with alkaline or acid post-treatment. Front Bioeng Biotechnol 2022; 10:998254. [PMID: 36246367 PMCID: PMC9554004 DOI: 10.3389/fbioe.2022.998254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Due to the positive effects of magnesium substitution on the mechanical properties and the degradation rate of the clinically well-established calcium phosphate cements (CPCs), calcium magnesium phosphate cements (CMPCs) are increasingly being researched as bone substitutes. A post-treatment alters the materials’ physical properties and chemical composition, reinforcing the structure and modifying the degradation rate. By alkaline post-treatment with diammonium hydrogen phosphate (DAHP, (NH4)2HPO4), the precipitation product struvite is formed, while post-treatment with an acidic phosphate solution [e.g., phosphoric acid (PA, H3PO4)] results in precipitation of newberyite and brushite. However, little research has yet been conducted on newberyite as a bone substitute and PA post-treatment of CMPCs has not been described in the accessible literature so far. Therefore, in the present study, the influence of an alkaline (DAHP) or acid (PA) post-treatment on the biocompatibility, degradation behavior, and osseointegration of cylindrical scaffolds (h = 5.1 mm, Ø = 4.2 mm) produced from the ceramic cement powder Ca0.75Mg2.25(PO4)2 by the advantageous manufacturing technique of three-dimensional (3D) powder printing was investigated in vivo. Scaffolds of the material groups Mg225d (DAHP post-treatment) and Mg225p (PA post-treatment) were implanted into the cancellous part of the lateral femoral condyles in rabbits. They were evaluated up to 24 weeks by regular clinical, X-ray, micro-computed tomographic (µCT), and histological examinations as well as scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) analysis and compared with tricalcium phosphate (TCP). All materials showed excellent biocompatibility and rapid osseointegration. While TCP degraded only slightly, the CMPCs showed almost complete degradation. Mg225d demonstrated significantly faster loss of form and demarcability from surrounding bone, scaffold volume reduction, and significantly greater degradation on the side towards the bone marrow than to the cortex than Mg225p. Simultaneously, numerous bone trabeculae have grown into the implantation site. While these were mostly located on the side towards the cortex in Mg225d, they were more evenly distributed in Mg225p and showed almost the same structural characteristics as physiological bone after 24 weeks in Mg225p. Based on these results, the acid post-treated 3D powder-printed Mg225p is a promising degradable bone substitute that should be further investigated.
Collapse
Affiliation(s)
- Katharina Kowalewicz
- Clinic for Small Animal Surgery and Reproduction, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Anja-Christina Waselau
- Clinic for Small Animal Surgery and Reproduction, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Franziska Feichtner
- Clinic for Small Animal Surgery and Reproduction, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Anna-Maria Schmitt
- Department for Functional Materials in Medicine and Dentistry, University of Würzburg, Würzburg, Germany
| | - Manuel Brückner
- Department for Functional Materials in Medicine and Dentistry, University of Würzburg, Würzburg, Germany
| | - Elke Vorndran
- Department for Functional Materials in Medicine and Dentistry, University of Würzburg, Würzburg, Germany
| | - Andrea Meyer-Lindenberg
- Clinic for Small Animal Surgery and Reproduction, Ludwig-Maximilians-University of Munich, Munich, Germany
- *Correspondence: Andrea Meyer-Lindenberg,
| |
Collapse
|
48
|
Alkhursani SA, Ghobashy MM, Al-Gahtany SA, Meganid AS, Abd El-Halim SM, Ahmad Z, Khan FS, Atia GAN, Cavalu S. Application of Nano-Inspired Scaffolds-Based Biopolymer Hydrogel for Bone and Periodontal Tissue Regeneration. Polymers (Basel) 2022; 14:3791. [PMID: 36145936 PMCID: PMC9504130 DOI: 10.3390/polym14183791] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
This review's objectives are to provide an overview of the various kinds of biopolymer hydrogels that are currently used for bone tissue and periodontal tissue regeneration, to list the advantages and disadvantages of using them, to assess how well they might be used for nanoscale fabrication and biofunctionalization, and to describe their production processes and processes for functionalization with active biomolecules. They are applied in conjunction with other materials (such as microparticles (MPs) and nanoparticles (NPs)) and other novel techniques to replicate physiological bone generation more faithfully. Enhancing the biocompatibility of hydrogels created from blends of natural and synthetic biopolymers can result in the creation of the best scaffold match to the extracellular matrix (ECM) for bone and periodontal tissue regeneration. Additionally, adding various nanoparticles can increase the scaffold hydrogel stability and provide a number of biological effects. In this review, the research study of polysaccharide hydrogel as a scaffold will be critical in creating valuable materials for effective bone tissue regeneration, with a future impact predicted in repairing bone defects.
Collapse
Affiliation(s)
- Sheikha A. Alkhursani
- Faculty of Science and Humanities-Jubail, Imam Abdulrahman Bin Faisal University, Jubail 31441, Saudi Arabia
| | - Mohamed Mohamady Ghobashy
- Radiation Research of Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Cairo 11787, Egypt
| | | | - Abeer S. Meganid
- Faculty of Science and Humanities-Jubail, Imam Abdulrahman Bin Faisal University, Jubail 31441, Saudi Arabia
| | - Shady M. Abd El-Halim
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University, 6th of October City, Giza 12585, Egypt
| | - Zubair Ahmad
- Unit of Bee Research and Honey Production, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia
- Biology Department, College of Arts and Sciences, Dehran Al-Junub, King Khalid University, Abha 61413, Saudi Arabia
| | - Farhat S. Khan
- Biology Department, College of Arts and Sciences, Dehran Al-Junub, King Khalid University, Abha 61413, Saudi Arabia
| | - Gamal Abdel Nasser Atia
- Department of Oral Medicine, Periodontology and Diagnosis, Faculty of Dentistry, Suez Canal University, Ismailia 41522, Egypt
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania
| |
Collapse
|
49
|
Moradi N, Kaviani S, Soufizomorrod M, Hosseinzadeh S, Soleimani M. Preparation of poly(acrylic acid)/tricalcium phosphate nanoparticles scaffold: Characterization and releasing UC-MSCs derived exosomes for bone differentiation. BIOIMPACTS : BI 2022; 13:425-438. [PMID: 37736343 PMCID: PMC10509736 DOI: 10.34172/bi.2022.24142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/25/2021] [Accepted: 01/01/2022] [Indexed: 09/23/2023]
Abstract
Introduction This study focused on preparing a multiscale three-dimensional (3D) scaffold using tricalcium phosphate nanoparticles (triCaPNPs) in a substrate of poly(acrylic acid) (PAA) polymer for controlled release of exosomes in bone tissue engineering. Methods A scaffold was fabricated with a material mixture containing acrylic acid (AA) monomer, N,N'-methylenebisacrylamide (MBAA), ammonium persulfate (APS), sodium bicarbonate (SBC), and triCaPNPs called composite scaffold (PAA/triCaPNPs) via cross-linking and freeze-drying methods. The synthesis process was easy and without complex multi-steps. Through mimicking the hybrid (organic-inorganic) structure of the bone matrix, we here chose triCaPNPs for incorporation into the PAA polymer. After assessing the physicochemical properties of the scaffold, the interaction of the scaffold with human umbilical cord mesenchymal stem cells (UC-MSCs) such as attachment, proliferation, and differentiation to osteoblast cells was evaluated. In addition, we used DiI-labeled exosomes to verify the exosome entrapment and release from the scaffold. Results The polymerization reaction of 3D scaffold was successful. Based on results of physicochemical properties, the presence of nanoparticles in the composite scaffold enhanced the mechanical stiffness, boosted the porosity with a larger pore size range, and offered better hydrophilicity, all of which would contribute to greater cell penetration, proliferation, and then better bone differentiation. In addition, our results indicated that our scaffold could take up and release exosomes, where the exosomes released from it could significantly enhance the osteogenic commitment of UC-MSCs. Conclusion The current research is the first study fabricating a multiscale scaffold using triCaPNPs in the substrate of PPA polymer using a cross-linker and freeze-drying process. This scaffold could mimic the nanoscale structure and chemical combination of native bone minerals. In addition, our results suggest that the PAA/triCaPNPs scaffold could be beneficial to achieve controlled exosome release for exosome-based therapy in bone tissue engineering.
Collapse
Affiliation(s)
- Nahid Moradi
- Hematology and Cell Therapy Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Saeid Kaviani
- Hematology and Cell Therapy Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mina Soufizomorrod
- Hematology and Cell Therapy Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Simzar Hosseinzadeh
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Soleimani
- Hematology and Cell Therapy Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
50
|
Valizadeh N, Salehi R, Roshangar L, Agbolaghi S, Mahkam M. Towards osteogenic bioengineering of human dental pulp stem cells induced by incorporating
Prunus amygdalus dulcis
extract in
polycaprolactone‐gelatin
nanofibrous scaffold. J Appl Polym Sci 2022. [DOI: 10.1002/app.52848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Nasrin Valizadeh
- Chemistry Department, Science Faculty Azarbaijan Shahid Madani University Tabriz Iran
| | - Roya Salehi
- Drug Applied Research Center and Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences Tabriz University of Medical Sciences Tabriz Iran
| | - Leila Roshangar
- Stem Cell Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Samira Agbolaghi
- Chemical Engineering Department, Faculty of Engineering Azarbaijan Shahid Madani University Tabriz Iran
| | - Mehrdad Mahkam
- Chemistry Department, Science Faculty Azarbaijan Shahid Madani University Tabriz Iran
| |
Collapse
|