1
|
Du L, Zhong H, Guo X, Li H, Xia J, Chen Q. Nitrogen fertilization and soil nitrogen cycling: Unraveling the links among multiple environmental factors, functional genes, and transformation rates. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175561. [PMID: 39153640 DOI: 10.1016/j.scitotenv.2024.175561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Anthropogenic nitrogen (N) inputs substantially influence the N cycle in agricultural ecosystems. However, the potential links among various environmental factors, nitrogen functional genes, and transformation rates under N fertilization remain poorly understood. Here, we conducted a five-year field experiment and collected 54 soil samples from three 0-4 m boreholes across different treatments: control, N-addition (nitrogen fertilizer) and NPK-addition (combined application of nitrogen, phosphorus and potassium fertilizers) treatments. Our results revealed pronounced variations in soil physiochemical parameters, metal concentrations and antibiotic levels under both N and NPK treatments. These alternations induced significant shifts in bacterial and fungal communities, altered NFG abundance and composition, and greatly enhanced rates of nitrate reduction processes. Notably, nutrients, antibiotics and bacteria exerted a more pronounced influence on NFGs and nitrate reduction under N treatment, whereas nutrients, metals, bacteria and fungi had a significant impact under NPK treatment. Furthermore, we established multidimensional correlations between nitrate reduction gene profiles and the activity rates under N and NPK treatments, contrasting with the absence of significant relationships in the control treatment. These findings shed light on the intricate relationships between microbial genetics and ecosystem functions in agricultural ecosystem, which is of significance for predicting and managing metabolic processes effectively.
Collapse
Affiliation(s)
- Lei Du
- College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing 100871, PR China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, PR China; College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, PR China
| | - Haohui Zhong
- College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing 100871, PR China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, PR China
| | - Xinnian Guo
- Institute of Agricultural Resources and Environment/Ningxia Academy of Agriculture and Forestry Sciences, Ningxia 750002, PR China
| | - Hongna Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jianxin Xia
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, PR China.
| | - Qian Chen
- College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing 100871, PR China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, PR China.
| |
Collapse
|
2
|
Kemarau RA, Sakawi Z, Eboy OV, Anak Suab S, Ibrahim MF, Rosli NNB, Md Nor NNF. Planetary boundaries transgressions: A review on the implications to public health. ENVIRONMENTAL RESEARCH 2024; 260:119668. [PMID: 39048067 DOI: 10.1016/j.envres.2024.119668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/09/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
This literature review systematically examines the impacts of violating planetary boundaries from 2009 to 2023, emphasizing the implications for human health. Planetary boundaries define safe operational limits for Earth's systems, and their transgression poses significant threats to environmental stability and public health. This paper reviews extensive research on the health effects of breaches in these boundaries, including climate change, biodiversity loss, freshwater use, and aerosol loading. The review integrates findings from numerous studies, providing a critical overview of health impacts across various global regions. The analysis underscores the intricate links between planetary boundaries breaching impacts, highlighting urgent policy and governance challenges. The study's outcomes aim to inform policymakers, businesses, and communities, promoting sustainable development and resilience in the face of escalating global challenges.
Collapse
Affiliation(s)
- Ricky Anak Kemarau
- Earth Observation Centre, Institute of Climate Change, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia.
| | - Zaini Sakawi
- Earth Observation Centre, Institute of Climate Change, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Oliver Valentine Eboy
- Geography Program, Faculty of Social Science and Humanities, Universiti Malaysia Sabah, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Stanley Anak Suab
- Graduate School of Environmental Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Mohd Faiz Ibrahim
- Environmental Health Research Centre, Institute for Medical Research, National Institutes of Health, 40170, Shah Alam, Selangor, Malaysia
| | - Nurul Nazli Binti Rosli
- Center for STEM Enculturation Faculty of Education, Universiti Kebangsaan Malaysia, Selangor, Malaysia
| | - Nik Norliati Fitri Md Nor
- Geography Section, School Distance Learning, Universiti Sains Malaysia, Jalan Universiti, 11700, Gelugor, Penang, Malaysia
| |
Collapse
|
3
|
Mouttoucomarassamy S, Virk HS, Dharmalingam SN. Evaluation and health risk assessment of arsenic and potentially toxic elements pollution in groundwater of Majha Belt, Punjab, India. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:208. [PMID: 38806960 DOI: 10.1007/s10653-024-02002-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 04/17/2024] [Indexed: 05/30/2024]
Abstract
Concentrations of potentially toxic elements (PTEs) like arsenic, uranium, iron, and nitrate in the groundwater of the Majha Belt (including Tarn Taran, Amritsar, Gurdaspur, and Pathankot districts) in Punjab, India were measured to evaluate the health risks associated with its consumption and daily use. The average concentrations of these elements in some locations exceeded the WHO-recommended values. Arsenic and iron toxicity levels were found to be higher in the Amritsar district, while uranium toxicity was more prevalent in Tarn Taran. The Trace Element Evaluation Index suggests that Amritsar is one of the districts most affected by toxic elements. According to the US Environmental Protection Agency's (USEPA) guidelines, the HQ values of U, Fe, and nitrate were less than one, indicating that there is no non-carcinogenic health risk for adults and children. However, the hazard quotient (HQ) value for arsenic was greater than one, indicating a higher possibility of health risk due to arsenic in the study area. The total hazard index values of 44.10% of samples were greater than four for arsenic, indicating that people in the Majha Belt are at a very high health risk due to the usage of water for drinking and domestic purposes. The cancer risk assessment values for arsenic in children (5.69E + 0) and adults (4.07E + 0) were higher than the accepted limit of USEPA (10-4 to 10-6) in the Majha Belt. The average radiological cancer risk values of U for children and adults were 8.68E-07 and 9.45E-06, respectively, which are well below the permissible limit of 1.67 × 10-4 suggested by the Atomic Energy Regulatory Board of DAE, India. The results of this study confirm that the residents of the Majha Belt who use contaminated groundwater are at a serious risk of exposure to arsenic in the Amritsar district and uranium in Tarn Taran district.
Collapse
|
4
|
Tang L, Yao R, Zhang Y, Ding W, Wang J, Kang J, Liu G, Zhang W, Li X. Hydrochemical analysis and groundwater suitability for drinking and irrigation in an arid agricultural area of the Northwest China. JOURNAL OF CONTAMINANT HYDROLOGY 2023; 259:104256. [PMID: 37865976 DOI: 10.1016/j.jconhyd.2023.104256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/28/2023] [Accepted: 10/11/2023] [Indexed: 10/24/2023]
Abstract
Groundwater is the foremost water source in the arid and semiarid regions of Northwest China. Assessing groundwater's drinking and irrigation quality is essential for protecting these valuable groundwater resources. In this study, a total of 24 confined groundwater samples and 54 phreatic groundwater samples were collected in the southern and central Ningxia area for hydrochemical analysis and quality assessment. The hydrochemical results revealed that hydrochemical types of phreatic and confined groundwater consistently belonged to Na-SO4-Cl and Na-Mg-SO4-Cl types. The driving forces of groundwater chemistry were determined by gypsum dissolution, silicate dissolution, and positive cation exchange for phreatic and confined aquifers. The entropy-weighted water quality index (EWQI) and irrigation water quality index (IWQI) showed that the drinking water quality and irrigation quality were better in phreatic groundwater than in confined groundwater due to the Neogene-Paleogene groundwater system recharge and strong evaporation. Measures such as controlling groundwater extraction and optimizing well placement need to be implemented. The achievements would be helpful for groundwater management and protection in agricultural areas under semi-arid and arid climates.
Collapse
Affiliation(s)
- Lijun Tang
- Ningxia Survey and Monitoring Institute of Land and Resources, Yinchuan 750000, China
| | - Rongwen Yao
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Yunhui Zhang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education of China, Beijing Normal University, Beijing 100875, China.
| | - Wenming Ding
- Mineral Geological Survey Institute of Ningxia Hui Autonomous Region, Yinchuan 750000, China
| | - Jing Wang
- Ningxia Survey and Monitoring Institute of Land and Resources, Yinchuan 750000, China
| | - Jinhui Kang
- Ningxia Survey and Monitoring Institute of Land and Resources, Yinchuan 750000, China
| | - Guihuan Liu
- Ningxia Survey and Monitoring Institute of Land and Resources, Yinchuan 750000, China
| | - Wei Zhang
- Ningxia Survey and Monitoring Institute of Land and Resources, Yinchuan 750000, China
| | - Xiaohui Li
- Ningxia Survey and Monitoring Institute of Land and Resources, Yinchuan 750000, China
| |
Collapse
|
5
|
Feng B, Zhong Y, He J, Sha X, Fang L, Xu Z, Qi Y. Nitrogen sources and conversion processes in shallow groundwater around a plain lake (Northwest China): Evidenced by multiple isotopes and water chemistry. CHEMOSPHERE 2023:139322. [PMID: 37356584 DOI: 10.1016/j.chemosphere.2023.139322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 06/27/2023]
Abstract
The groundwater quality is severely impacted by Nitrate (NO3--N) pollution worldwide. Effective lake quality management depends on understanding the origin and fate of nitrogen (N) in the groundwater around lakes. This study combined data for multiple stable isotopes (δ2H-H2O and δ18O-H2O, δ15N-NO3 and δ18O-NO3) and hydrochemistry with the hydrodynamic monitoring profile and a Bayesian isotope mixing (MixSIAR) model to clarify the sources and transformation of N within shallow groundwater around Shahu Lake in the arid area plain of Northwest China. In May 2022, multiple water samples were collected from aquifers (n = 33), drainage water (n = 1), channel water (n = 1), and lake water (n = 7). The results showed that 57% of groundwater samples had high NO3--N concentrations exceeding the World Health Organisation threshold for drinking water (10 mg/L). The high variation in δ15N-NO3 (from -9.21‰ to +27.57‰) and δ18O-NO3 (from -8.32‰ to +19.04‰) revealed multiple N sources and conversion processes. According to nitrate isotopes and the MixSIAR model, N fertilizer, soil organic N and manure, and sewage are the main sources of nitrogen in groundwater and lake water, which account for 40.61%, 35.86%, and 21.55% of groundwater NO3--N, respectively, and 35.07%, 34.43%, and 27.49% of lake water NO3--N. Hydrodynamic monitoring combined with water isotopes showed that upper groundwater (5-10 m) within 1.22 km of the adjacent lake shore strongly interacted with the lake. In groundwater, nitrification predominated, while local denitrification remained a possibility. In conclusion, this research offers a comprehensive approach to determining the sources and conversion of N in contaminated groundwater.
Collapse
Affiliation(s)
- Bo Feng
- School of Civil and Hydraulic Engineering, Ningxia University, Yinchuan, Ningxia, 750021, China
| | - Yanxia Zhong
- School of Civil and Hydraulic Engineering, Ningxia University, Yinchuan, Ningxia, 750021, China; Breeding Base for State Key Lab. of Land Degradation and Ecological Restoration in Northwestern China, Yinchuan, Ningxia, 750021, China; Key Lab. for Restoration and Reconstruction of Degraded Ecosystems in Northwestern China of Ministry of Education, Yinchuan, Ningxia, 750021, China.
| | - Jing He
- Breeding Base for State Key Lab. of Land Degradation and Ecological Restoration in Northwestern China, Yinchuan, Ningxia, 750021, China; Key Lab. for Restoration and Reconstruction of Degraded Ecosystems in Northwestern China of Ministry of Education, Yinchuan, Ningxia, 750021, China; School of Ecology and Environment, Ningxia University, Yinchuan, Ningxia, 750021, China
| | - Xiaohua Sha
- Ningxia Vocational Technical College of Industry and Commerce, Yinchuan, Ningxia, 750021, China
| | - Lei Fang
- Hydrology Environmental Geological Survey Institute of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, 750021, China
| | - Zhaoxiang Xu
- Hydrology Environmental Geological Survey Institute of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, 750021, China
| | - Yarong Qi
- School of Civil and Hydraulic Engineering, Ningxia University, Yinchuan, Ningxia, 750021, China
| |
Collapse
|
6
|
Mohamadi S, Honarmand M, Ghazanfari S, Hassanzadeh R. Hotspot and accumulated hotspot analysis for assessment of groundwater quality and pollution indices using GIS in the arid region of Iran. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27177-w. [PMID: 37138127 DOI: 10.1007/s11356-023-27177-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 04/19/2023] [Indexed: 05/05/2023]
Abstract
Because groundwater quality representatives for drinking usage (i.e., Schuler method, Nitrate and Groundwater Quality Index) have been abruptly changing due to extreme events induced by global climate change and over-abstracting, applying an efficient tool for their assessments is vitally important. While hotspot analysis is introduced as an efficient tool concentrating on sharp changes in groundwater quality, it has not been closely examined. Accordingly, this study is an attempt to determine the groundwater quality proxies and assess them through hotspot and accumulated hotspot analyses. To this end, a GIS-based hotspot analysis (HA) applying Getis-Ord Gi* statistics was used. The accumulated hotspot analysis was launched to identify the Groundwater Quality Index (AHA-GQI). Moreover, Schuler method (AHA-SM) was utilized to determine the maximum levels (ML) for the hottest hotspot and the lowest levels (LL) for the coldest cold-spot, and compound levels (CL). The results revealed that a significant correlation (r = 0.8) between GQI and SM was observed. However, the correlation between GQI and nitrate was not significant and the correlation between SM and nitrate was so low (r = 0.298, sig > 0.05). The results also demonstrated that using hotspot analysis on only GQI, the correlation between GQI and SM increased from 0.8 to 0.856, while using hotspot analysis on both GQI and SM increased the correlation to 0.945. Likewise, when GQI was subjected to hotspot analysis and SM underwent accumulated hotspot analysis (i.e., AHA-SM (ML)), the correlation degree increased to the highest extent (i.e., 0.958), indicating the usefulness of including the hotspot analysis and accumulated hotspot analysis in the evaluation of groundwater quality.
Collapse
Affiliation(s)
- Sedigheh Mohamadi
- Department of Ecology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran.
| | - Mehdi Honarmand
- Department of Ecology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Sadegh Ghazanfari
- Department of Energy Management and Optimization, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Reza Hassanzadeh
- Department of Ecology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| |
Collapse
|