1
|
Zhang Y, Li Q, Ding M, Xiu W, Shan J, Yuwen L, Yang D, Song X, Yang G, Su X, Mou Y, Teng Z, Dong H. Endogenous/Exogenous Nanovaccines Synergistically Enhance Dendritic Cell-Mediated Tumor Immunotherapy. Adv Healthc Mater 2023; 12:e2203028. [PMID: 36807733 PMCID: PMC11468714 DOI: 10.1002/adhm.202203028] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/20/2023] [Indexed: 02/20/2023]
Abstract
Traditional dendritic cell (DC)-mediated immunotherapy is usually suppressed by weak immunogenicity in tumors and generally leads to unsatisfactory outcomes. Synergistic exogenous/endogenous immunogenic activation can provide an alternative strategy for evoking a robust immune response by promoting DC activation. Herein, Ti3 C2 MXene-based nanoplatforms (termed MXP) are prepared with high-efficiency near-infrared photothermal conversion and immunocompetent loading capacity to form endogenous/exogenous nanovaccines. Specifically, the immunogenic cell death of tumor cells induced by the photothermal effects of the MXP can generate endogenous danger signals and antigens release to boost vaccination for DC maturation and antigen cross-presentation. In addition, MXP can deliver model antigen ovalbumin (OVA) and agonists (CpG-ODN) as an exogenous nanovaccine (MXP@OC), which further enhances DC activation. Importantly, the synergistic strategy of photothermal therapy and DC-mediated immunotherapy by MXP significantly eradicates tumors and enhances adaptive immunity. Hence, the present work provides a two-pronged strategy for improving immunogenicity and killing tumor cells to achieve a favorable outcome in tumor patients.
Collapse
Affiliation(s)
- Yu Zhang
- Nanjing Stomatological HospitalMedical School of Nanjing University30 Zhongyang RoadNanjingJiangsu210008P. R. China
| | - Qiang Li
- Nanjing Stomatological HospitalMedical School of Nanjing University30 Zhongyang RoadNanjingJiangsu210008P. R. China
| | - Meng Ding
- Nanjing Stomatological HospitalMedical School of Nanjing University30 Zhongyang RoadNanjingJiangsu210008P. R. China
| | - Weijun Xiu
- Key Laboratory for Organic Electronics and Information DisplaysJiangsu Key Laboratory for BiosensorsInstitute of Advanced MaterialsJiangsu National Synergetic Innovation Centre for Advanced MaterialsNanjing University of Posts and Telecommunications9 Wenyuan RoadNanjingJiangsu210023P. R. China
| | - Jingyang Shan
- Department of NeurologyShenzhen Institute of Translational MedicineThe First Affiliated Hospital of Shenzhen UniversityShenzhen Second People's HospitalShenzhen518000P. R. China
| | - Lihui Yuwen
- Key Laboratory for Organic Electronics and Information DisplaysJiangsu Key Laboratory for BiosensorsInstitute of Advanced MaterialsJiangsu National Synergetic Innovation Centre for Advanced MaterialsNanjing University of Posts and Telecommunications9 Wenyuan RoadNanjingJiangsu210023P. R. China
| | - Dongliang Yang
- School of Physical and Mathematical SciencesNanjing Tech University30 South Puzhu RoadNanjingJiangsu211816P. R. China
| | - Xuejiao Song
- School of Physical and Mathematical SciencesNanjing Tech University30 South Puzhu RoadNanjingJiangsu211816P. R. China
| | - Guangwen Yang
- Nanjing Stomatological HospitalMedical School of Nanjing University30 Zhongyang RoadNanjingJiangsu210008P. R. China
| | - Xiaodan Su
- Key Laboratory for Organic Electronics and Information DisplaysJiangsu Key Laboratory for BiosensorsInstitute of Advanced MaterialsJiangsu National Synergetic Innovation Centre for Advanced MaterialsNanjing University of Posts and Telecommunications9 Wenyuan RoadNanjingJiangsu210023P. R. China
| | - Yongbin Mou
- Nanjing Stomatological HospitalMedical School of Nanjing University30 Zhongyang RoadNanjingJiangsu210008P. R. China
| | - Zhaogang Teng
- Key Laboratory for Organic Electronics and Information DisplaysJiangsu Key Laboratory for BiosensorsInstitute of Advanced MaterialsJiangsu National Synergetic Innovation Centre for Advanced MaterialsNanjing University of Posts and Telecommunications9 Wenyuan RoadNanjingJiangsu210023P. R. China
| | - Heng Dong
- Nanjing Stomatological HospitalMedical School of Nanjing University30 Zhongyang RoadNanjingJiangsu210008P. R. China
| |
Collapse
|
2
|
Lipopeptides in promoting signals at surface/interface of micelles: Their roles in repairing cellular and nuclear damages. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2021.101522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
3
|
Tähtinen V, Gulumkar V, Maity SK, Yliperttula AM, Siekkinen S, Laine T, Lisitsyna E, Haapalehto I, Viitala T, Vuorimaa-Laukkanen E, Yliperttula M, Virta P. Assembly of Bleomycin Saccharide-Decorated Spherical Nucleic Acids. Bioconjug Chem 2022; 33:206-218. [PMID: 34985282 PMCID: PMC8778632 DOI: 10.1021/acs.bioconjchem.1c00539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/24/2021] [Indexed: 11/30/2022]
Abstract
Glyco-decorated spherical nucleic acids (SNAs) may be attractive delivery vehicles, emphasizing the sugar-specific effect on the outer sphere of the construct and at the same time hiding unfavorable distribution properties of the loaded oligonucleotides. As examples of such nanoparticles, tripodal sugar constituents of bleomycin were synthesized and conjugated with a fluorescence-labeled antisense oligonucleotide (AONARV7). Successive copper(I)-catalyzed azide-alkyne and strain-promoted alkyne-nitrone cycloadditions (SPANC) were utilized for the synthesis. Then, the glyco-AONARV7 conjugates were hybridized with complementary strands of a C60-based molecular spherical nucleic acid (i.e., a hybridization-mediated carrier). The formation and stability of these assembled glyco-decorated SNAs were evaluated by polyacrylamide gel electrophoresis (PAGE), UV melting profile analysis, and time-resolved fluorescence spectroscopy. Association constants were extracted from time-resolved fluorescence data. Preliminary cellular uptake experiments of the glyco-AONARV7 conjugates (120 nM solutions) and of the corresponding glyco-decorated SNAs (10 nM solutions) with human prostate cancer cells (PC3) showed an efficient uptake in each case. A marked variation in intracellular distribution was observed.
Collapse
Affiliation(s)
- Ville Tähtinen
- Department
of Chemistry, University of Turku, FI-20500 Turku, Finland
| | - Vijay Gulumkar
- Department
of Chemistry, University of Turku, FI-20500 Turku, Finland
| | - Sajal K. Maity
- Department
of Chemistry, University of Turku, FI-20500 Turku, Finland
| | - Ann-Mari Yliperttula
- Department
of Chemistry, University of Turku, FI-20500 Turku, Finland
- Division
of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Saara Siekkinen
- Department
of Chemistry, University of Turku, FI-20500 Turku, Finland
- Division
of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Toni Laine
- Department
of Chemistry, University of Turku, FI-20500 Turku, Finland
| | - Ekaterina Lisitsyna
- Faculty
of Engineering and Natural Sciences, Tampere
University, FI-33014 Tampere, Finland
| | - Iida Haapalehto
- Faculty
of Engineering and Natural Sciences, Tampere
University, FI-33014 Tampere, Finland
| | - Tapani Viitala
- Division
of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
- Pharmaceutical
Sciences, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland
| | | | - Marjo Yliperttula
- Division
of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Pasi Virta
- Department
of Chemistry, University of Turku, FI-20500 Turku, Finland
| |
Collapse
|
4
|
Liu J, Li HJ, Luo YL, Chen YF, Fan YN, Du JZ, Wang J. Programmable Delivery of Immune Adjuvant to Tumor-Infiltrating Dendritic Cells for Cancer Immunotherapy. NANO LETTERS 2020; 20:4882-4889. [PMID: 32551705 DOI: 10.1021/acs.nanolett.0c00893] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Tumor-infiltrating dendritic cells (TIDCs) are mostly immature and immunosuppressive, usually mediating immune inhibition. The utilization of cytosine-guanine oligodeoxynucleotides (CpG ODNs) to stimulate the activation of TIDCs has been demonstrated to be effective for improving antitumor immunity. However, a series of biological barriers has limited the efficacy of previous nanocarriers for delivering CpG to TIDCs. Herein, we developed a dual-sensitive dendrimer cluster-based nanoadjuvant for delivering CpG ODNs into TIDCs. We show that the tumor acidity triggers the rapid release of CpG conjugated polyamidoamine (PAMAM) dendrimers from the nanoadjuvant, thus facilitating its perfusion deep into tumors and phagocytosis by TIDCs. Thereafter, the reductive condition of the endolysosomes led to the subsequent release of CpG, which promotes the DCs activation and enhances antitumor immunotherapies. Programmable delivery of immune adjuvant efficiently overcomes the barriers for targeted delivery to TIDCs and provides a promising strategy for improving cancer immunotherapy.
Collapse
Affiliation(s)
- Jing Liu
- Guangzhou First People's Hospital, School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou 510006, P. R. China
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, P. R. China
| | - Hong-Jun Li
- Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou 510006, P. R. China
| | - Ying-Li Luo
- Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou 510006, P. R. China
| | - Yi-Fang Chen
- Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou 510006, P. R. China
| | - Ya-Nan Fan
- Guangzhou First People's Hospital, School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou 510006, P. R. China
| | - Jin-Zhi Du
- Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou 510006, P. R. China
| | - Jun Wang
- Guangzhou First People's Hospital, School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou 510006, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
- Key Laboratory of Biomedical Engineering of Guangdong Province, and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, P. R. China
| |
Collapse
|
5
|
Xue XY, Mao XG, Zhou Y, Chen Z, Hu Y, Hou Z, Li MK, Meng JR, Luo XX. Advances in the delivery of antisense oligonucleotides for combating bacterial infectious diseases. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:745-758. [PMID: 29341934 DOI: 10.1016/j.nano.2017.12.026] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 12/12/2017] [Accepted: 12/31/2017] [Indexed: 12/22/2022]
Abstract
Discovery and development of new antibacterial drugs against multidrug resistant bacterial strains have become more and more urgent. Antisense oligonucleotides (ASOs) show immense potential to control the spread of resistant microbes due to its high specificity of action, little risk to human gene expression, and easy design and synthesis to target any possible gene. However, efficient delivery of ASOs to their action sites with enough concentration remains a major obstacle, which greatly hampers their clinical application. In this study, we reviewed current progress on delivery strategies of ASOs into bacteria, focused on various non-virus gene vectors, including cell penetrating peptides, lipid nanoparticles, bolaamphiphile-based nanoparticles, DNA nanostructures and Vitamin B12. The current review provided comprehensive understanding and novel perspective for the future application of ASOs in combating bacterial infections.
Collapse
Affiliation(s)
- Xiao-Yan Xue
- Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University, Xi'an, China.
| | - Xing-Gang Mao
- Department of Neurosurgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Ying Zhou
- Department of Pharmacology, Xi'an Medical University, Xi'an, China
| | - Zhou Chen
- Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University, Xi'an, China
| | - Yue Hu
- Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University, Xi'an, China
| | - Zheng Hou
- Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University, Xi'an, China
| | - Ming-Kai Li
- Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University, Xi'an, China
| | - Jing-Ru Meng
- Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University, Xi'an, China
| | - Xiao-Xing Luo
- Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
6
|
Kuhlmann M, Hamming JBR, Voldum A, Tsakiridou G, Larsen MT, Schmøkel JS, Sohn E, Bienk K, Schaffert D, Sørensen ES, Wengel J, Dupont DM, Howard KA. An Albumin-Oligonucleotide Assembly for Potential Combinatorial Drug Delivery and Half-Life Extension Applications. MOLECULAR THERAPY. NUCLEIC ACIDS 2017; 9:284-293. [PMID: 29246307 PMCID: PMC5676087 DOI: 10.1016/j.omtn.2017.10.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 10/04/2017] [Accepted: 10/04/2017] [Indexed: 01/31/2023]
Abstract
The long blood circulatory property of human serum albumin, due to engagement with the cellular recycling neonatal Fc receptor (FcRn), is an attractive drug half-life extension enabling technology. This work describes a novel site-specific albumin double-stranded (ds) DNA assembly approach, in which the 3′ or 5′ end maleimide-derivatized oligodeoxynucleotides are conjugated to albumin cysteine at position 34 (cys34) and annealed with complementary strands to allow single site-specific protein modification with functionalized ds oligodeoxynucleotides. Electrophoretic gel shift assays demonstrated successful annealing of complementary strands bearing Atto488, 6-carboxyfluorescein (6-FAM), or a factor IXa aptamer to the albumin-oligodeoxynucleotide conjugate. A fluorometric factor IXa activity assay showed retained aptamer inhibitory activity upon assembly with the albumin and completely blocked factor IXa at a concentration of 100 nM for 2 hr. The assembled construct exhibited stability in serum-containing buffer and FcRn engagement that could be increased using an albumin variant engineered for higher FcRn affinity. This work presents a novel albumin-oligodeoxynucleotide assembly technology platform that offers potential combinatorial drug delivery and half-life extension applications.
Collapse
Affiliation(s)
- Matthias Kuhlmann
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Jonas B R Hamming
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Anders Voldum
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Georgia Tsakiridou
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Maja T Larsen
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Julie S Schmøkel
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Emil Sohn
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Konrad Bienk
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - David Schaffert
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Esben S Sørensen
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Jesper Wengel
- Nucleic Acid Center, Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Daniel M Dupont
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Kenneth A Howard
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark.
| |
Collapse
|
7
|
Rozenfeld JHK, Duarte EL, Barbosa LRS, Lamy MT. The effect of an oligonucleotide on the structure of cationic DODAB vesicles. Phys Chem Chem Phys 2015; 17:7498-506. [PMID: 25706300 DOI: 10.1039/c4cp05652c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effect of a small single-stranded oligonucleotide (ODN) on the structure of cationic DODAB vesicles was investigated by means of differential scanning calorimetry (DSC), small angle X-ray scattering (SAXS) and electron spin resonance (ESR) spectroscopy. ODN adsorption induced coalescence of vesicles and formation of multilamellar structures with close contact between lamellae. It also increased the phase transition temperature by 10 °C but decreased transition cooperativity. The ODN rigidified and stabilized the gel phase. In the fluid phase, a simultaneous decrease of ordering close to the bilayer surface and increase in bilayer core rigidity was observed in the presence of the ODN. These effects may be due not only to electrostatic shielding of DODAB head groups but also to superficial dehydration of the bilayers. The data suggest that oligonucleotides may induce the formation of a multilamellar poorly hydrated coagel-like phase below phase transition. These effects should be taken into account when planning ODN delivery employing cationic bilayer carriers.
Collapse
|
8
|
Kim DH, Moon C, Oh SS, Park S, Jeong JW, Kim S, Lee HG, Kwon HJ, Kim KD. Liposome-encapsulated CpG enhances antitumor activity accompanying the changing of lymphocyte populations in tumor via intratumoral administration. Nucleic Acid Ther 2015; 25:95-102. [PMID: 25692533 DOI: 10.1089/nat.2014.0509] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Although oligodeoxynucleotides containing CpG motifs (CpG-ODN) are potent immune stimulators, the use of natural CpG-ODN--phosphodiester-backbone CpG--has been limited due to its instability by nuclease in vivo. The aim of this study is to investigate the anticancer efficiency of CpG-ODN capsulated using liposome, which enhances the stability of CpG-ODN. We formulated lipoplex, encapsulated natural CpG-ODN from Mycobacterium bovis with liposome, and tested its immune stimulatory activity in vitro and in vivo. The lipoplex induced a systemic innate immune response in vivo and stimulated dendritic cells, but not macrophages, to stimulate proinflammatory cytokines such as tumor necrosis factor alpha and interleukin-6 in vitro. As expected, the lipoplex effectively mediated the prolonged cancer-therapeutic activity against B16 melanoma, which was dependent on natural killer and CD8(+) T cells. The therapeutic activity was observed after only intratumoral administration of lipoplex among several treatment routes. Intratumoral treatment of lipoplex significantly increased the populations of natural killer and CD8(+) T cells and reduced regulatory CD4(+) T cell recruitment, which was correlated with expression profiles of chemokines (CCL1, CCL3, CXCL1, CXCL10, and CCL22). The antitumor therapeutic effect of lipoplex was dependent on the altered lymphocyte population that might be developed by the profile of intratumoral chemokine expression.
Collapse
Affiliation(s)
- Dong Hyeok Kim
- 1 Division of Applied Life Science, College of Veterinary Medicine, Gyeongsang National University , Jinju, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Mannosylated chitosan nanoparticles for delivery of antisense oligonucleotides for macrophage targeting. BIOMED RESEARCH INTERNATIONAL 2014; 2014:526391. [PMID: 25057492 PMCID: PMC4098891 DOI: 10.1155/2014/526391] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 06/02/2014] [Indexed: 12/11/2022]
Abstract
The therapeutic potential of antisense oligonucleotides (ASODN) is primarily dependent upon its safe and efficient delivery to specific cells overcoming degradation and maximizing cellular uptake in vivo. The present study focuses on designing mannosylated low molecular weight (LMW) chitosan nanoconstructs for safe ODNs delivery by macrophage targeting. Mannose groups were coupled with LMW chitosan and characterized spectroscopically. Mannosylated chitosan ODN nanoparticles (MCHODN NPs) were formulated by self-assembled method using various N/P ratio (moles of amine groups of MCH to phosphate moieties of ODNs) and characterized for gel retardation assay, physicochemical characteristics, cytotoxicity and transfection efficiency, and antisense assay. Complete complexation of MCH/ODN was achieved at charge ratio of 1:1 and above. On increasing the N/P ratio of MCH/ODN, particle size of the NPs decreased whereas zeta potential (ZV) increased. MCHODN NPs displayed much higher transfection efficiency into Raw 264.7 cells (bears mannose receptors) than Hela cells and no significant toxicity was observed at all MCH concentrations. Antisense assay revealed that reduction in lipopolysaccharide (LPS) induced serum TNF-α is due to antisense activity of TJU-2755 ODN (sequence complementary to 3′-UTR of TNF-α). These results suggest that MCHODN NPs are acceptable choice to improve transfection efficiency in vitro and in vivo.
Collapse
|
10
|
A novel nonviral gene delivery system: multifunctional envelope-type nano device. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2014; 119:197-230. [PMID: 19343308 DOI: 10.1007/10_2008_40] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
In this review we introduce a new concept for developing a nonviral gene delivery system which we call "Programmed Packaging." Based on this concept, we succeeded in developing a multifunctional envelope-type nano device (MEND), which exerts high transfection activities equivalent to those of an adenovirus in a dividing cell. The use of MEND has been extended to in vivo applications. PEG/peptide/DOPE ternary conjugate (PPD)-MEND, a new in vivo gene delivery system for the targeting of tumor cells that dissociates surface-modified PEG in tumor tissue by matrix metalloproteinase (MMP) and exerts significant transfection activities, was developed. In parallel with the development of MEND, a quantitative gene delivery system, Confocal Image-assisted 3-dimensionally integrated quantification (CIDIQ), also was developed. This method identified the rate-limiting step of the nonviral gene delivery system by comparing it with adenoviral-mediated gene delivery. The results of this analysis provide a new direction for the development of rational nonviral gene delivery systems.
Collapse
|
11
|
Xie Z, Sundström JF, Jin Y, Liu C, Jansson C, Sun C. A selection strategy in plant transformation based on antisense oligodeoxynucleotide inhibition. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 77:954-61. [PMID: 24438514 DOI: 10.1111/tpj.12433] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 12/20/2013] [Accepted: 01/13/2014] [Indexed: 05/18/2023]
Abstract
Antisense oligodeoxynucleotide (asODN) inhibition was developed in the 1970s, and since then has been widely used in animal research. However, in plant biology, the method has had limited application because plant cell walls significantly block efficient uptake of asODN to plant cells. Recently, we have found that asODN uptake is enhanced in a sugar solution. The method has promise for many applications, such as a rapid alternative to time-consuming transgenic studies, and high potential for studying gene functionality in intact plants and multiple plant species, with particular advantages in evaluating the roles of multiple gene family members. Generation of transgenic plants relies on the ability to select transformed cells. This screening process is based on co-introduction of marker genes into the plant cell together with a gene of interest. Currently, the most common marker genes are those that confer antibiotic or herbicide resistance. The possibility that traits introduced by selectable marker genes in transgenic field crops may be transferred horizontally is of major public concern. Marker genes that increase use of antibiotics and herbicides may increase development of antibiotic-resistant bacterial strains or contribute to weed resistance. Here, we describe a method for selection of transformed plant cells based on asODN inhibition. The method enables selective and high-throughput screening for transformed cells without conferring new traits or functions to the transgenic plants. Due to their high binding specificity, asODNs may also find applications as plant-specific DNA herbicides.
Collapse
Affiliation(s)
- Zhoupeng Xie
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, PO Box 7080, SE-75007, Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
12
|
Abstract
Recent interest in clinical therapy has been directed to deliver nucleic acids (DNA, RNA or short-chain oligonucleotides) that alter gene expression within a specific cell population, thereby manipulating cellular processes and responses, which in turn stimulate immune responses or tissue regeneration, or blocks expression at the level of transcription or translation for treatment of several diseases. Both ex vivo and in vivo gene delivery can be achieved mostly by using a delivery system (vector). Viral vectors exhibit high gene expression, but also have very significant side effects. Mainly cationic polymeric systems are used as nonviral vectors, although usually with low levels of transfection. Through the use of stimuli-responsive polymers as novel vectors for gene delivery, two benefits can be obtained: high gene expression efficiency and more selective gene expression.
Collapse
Affiliation(s)
- Erhan Piskin
- Hacettepe University, Chemical Engineering Department, Bioengineering Division, Beytepe, Ankara, Turkey.
| |
Collapse
|
13
|
Rozenfeld JHK, Duarte EL, Oliveira TR, Lonez C, Ruysschaert JM, Lamy MT. Oligonucleotide adsorption affects phase transition but not interdigitation of diC14-amidine bilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:11102-11108. [PMID: 23926901 DOI: 10.1021/la4016004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In this work, we investigate the effect of a small single-stranded oligonucleotide (ODN) on the colloid stability and structure of cationic diC14-amidine liposomes. Dynamic light scattering (DLS) shows that small, stable, anionic assemblies are formed in presence of excess ODN negative charge. This charge overcompensation condition was further characterized. A less cooperative bilayer phase transition is observed by differential scanning calorimetry (DSC). Electron spin resonance (ESR) spectra of probes at different bilayer depths show that ODN electrostatic adsorption increases the rigidity of both interdigitated gel and lamellar fluid phases. The increase in gel phase rigidity could be explained by the transformation of an adjacent to an interpenetrated interdigitation. Interdigitated fusogenic bilayers may find interesting applications in delivery of therapeutic oligonucleotides.
Collapse
|
14
|
Saffari M, Tamaddon AM, Shirazi FH, Oghabian MA, Moghimi HR. Improving cellular uptake and in vivo tumor suppression efficacy of liposomal oligonucleotides by urea as a chemical penetration enhancer. J Gene Med 2013; 15:12-9. [PMID: 23281182 DOI: 10.1002/jgm.2688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 11/11/2012] [Accepted: 11/26/2012] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Liposomes are among the most widely used carriers for the delivery of antisense oligonucleotides (AsODNs) to intracellular targets. Although different strategies have been employed, the question of how to improve liposomal uptake and enhance the release of AsODN into cytoplasm still remains to be answered with respect to the use of a safe, easy and economic method. In the present study, the possibility of enhancing such processes at cellular and animal levels using urea as a penetration enhancer was investigated. METHODS To perform this investigation, a cationic liposome containing an AsODN against protein kinase (PKC)-α was prepared, and the effect of urea on its cellular internalization and the related sequence-specific inhibition of gene expression in human lung adenocarcinoma A549 cells were investigated by flow cytometry and the reverse transcriptase-polymerase chain reaction, respectively. In in vivo studies, a xenograft lung tumor was established in nude mice by A549 cells and the enhancement effect of urea toward the effects of liposomal AsODN on tumor growth was investigated. RESULTS Cellular studies revealed that urea treatment increases liposomal uptake and the release of AsODN into the cytoplasm by approximately 40%. Sequence-specific inhibition of target gene PKC-α expression was also increased by approximately two-fold by urea at 200-300 nM AsODN. In animal studies, urea significantly decreased the tumor volume (approximately 40%) and increased its doubling time from approximately 13 days to 17 days. CONCLUSIONS Urea, and possibly other membrane fluidizers, could be regarded as penetration enhancers for liposomal AsODN delivery and may improve the therapeutic effect of these gene-therapy vectors at both cellular and animal levels.
Collapse
Affiliation(s)
- Mostafa Saffari
- School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | | | | |
Collapse
|
15
|
Luo Z, Ye T, Ma Y, Gill HS, Nitin N. Microprecision delivery of oligonucleotides in a 3D tissue model and its characterization using optical imaging. Mol Pharm 2013; 10:2868-79. [PMID: 23795670 DOI: 10.1021/mp300717f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Despite significant potential of oligonucleotides (ONs) for therapeutic and diagnostic applications, rapid and widespread intracellular delivery of ONs in cells situated in tissues such as skin, head and neck cavity, and eye has not been achieved. This study was aimed at evaluating the synergistic combination of microneedle (MN) arrays and biochemical approaches for localized intratissue delivery of oligonucleotides in living cells in 3D tissue models. This synergistic combination was based on the ability of MNs to precisely deliver ONs into tissues to achieve widespread distribution, and the ability of biochemical agents (streptolysin O (SLO) and cholesterol conjugation to ONs) to enhance intracellular ON delivery. The results of this study demonstrate that ON probes were uniformly coated on microneedle arrays and were efficiently released from the microneedle surface upon insertion in tissue phantoms. Co-insertion of microneedles coated with ONs and SLO into 3D tissue models resulted in delivery of ONs into both the cytoplasm and nucleus of cells. Within a short incubation time (35 min), ONs were observed both laterally and along the depth of a 3D tissue up to a distance of 500 μm from the microneedle insertion point. Similar widespread intratissue distribution of ONs was achieved upon delivery of ON-cholesterol conjugates. Uniformity of ON delivery in tissues improved with longer incubation times (24 h) postinsertion. Using cholesterol-conjugated ONs, delivery of ON probes was limited to the cytoplasm of cells within a tissue. Finally, delivery of cholesterol-conjugated anti-GFP ON resulted in reduction of GFP expression in HeLa cells. In summary, the results of this study provide a novel approach for efficient intracellular delivery of ONs in tissues.
Collapse
Affiliation(s)
- Zhen Luo
- Department of Biological and Agricultural Engineering, University of California, Davis, Davis, California 95616, United States
| | | | | | | | | |
Collapse
|
16
|
Rush AM, Thompson MP, Tatro ET, Gianneschi NC. Nuclease-resistant DNA via high-density packing in polymeric micellar nanoparticle coronas. ACS NANO 2013; 7:1379-87. [PMID: 23379679 PMCID: PMC3608424 DOI: 10.1021/nn305030g] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Herein, we describe a polymeric micellar nanoparticle capable of rendering nucleic acids resistant to nuclease digestion. This approach relies on utilizing DNA as the polar headgroup of a DNA-polymer amphiphile in order to assemble well-defined, discrete nanoparticles. Dense packing of DNA in the micelle corona allows for hybridization of complementary oligonucleotides while prohibiting enzymatic degradation. We demonstrate the preparation, purification, and characterization of the nanoparticles, then describe their resistance to treatment with endo- and exonucleases including snake-venom phosphodiesterase (SVP), a common, general DNA digestion enzyme.
Collapse
Affiliation(s)
- Anthony M Rush
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | | | | | | |
Collapse
|
17
|
How cationic lipids transfer nucleic acids into cells and across cellular membranes: Recent advances. J Control Release 2013; 166:46-56. [DOI: 10.1016/j.jconrel.2012.12.014] [Citation(s) in RCA: 153] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 12/06/2012] [Accepted: 12/10/2012] [Indexed: 12/16/2022]
|
18
|
Finotti A, Borgatti M, Bezzerri V, Nicolis E, Lampronti I, Dechecchi M, Mancini I, Cabrini G, Saviano M, Avitabile C, Romanelli A, Gambari R. Effects of decoy molecules targeting NF-kappaB transcription factors in Cystic fibrosis IB3-1 cells: recruitment of NF-kappaB to the IL-8 gene promoter and transcription of the IL-8 gene. ARTIFICIAL DNA, PNA & XNA 2012; 3:97-296. [PMID: 22772035 PMCID: PMC3429536 DOI: 10.4161/adna.21061] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
One of the clinical features of cystic fibrosis (CF) is a deep inflammatory process, which is characterized by production and release of cytokines and chemokines, among which interleukin 8 (IL-8) represents one of the most important. Accordingly, there is a growing interest in developing therapies against CF to reduce the excessive inflammatory response in the airways of CF patients. Since transcription factor NF-kappaB plays a critical role in IL-8 expression, the transcription factor decoy (TFD) strategy might be of interest. In order to demonstrate that TFD against NF-kappaB interferes with the NF-kappaB pathway we proved, by chromatin immunoprecipitation (ChIP) that treatment with TFD oligodeoxyribonucleotides of cystic fibrosis IB3–1 cells infected with Pseudomonas aeruginosa leads to a decrease occupancy of the Il-8 gene promoter by NF-kappaB factors. In order to develop more stable therapeutic molecules, peptide nucleic acids (PNAs) based agents were considered. In this respect PNA-DNA-PNA (PDP) chimeras are molecules of great interest from several points of view: (1) they can be complexed with liposomes and microspheres; (2) they are resistant to DNases, serum and cytoplasmic extracts; (3) they are potent decoy molecules. By using electrophoretic mobility shift assay and RT-PCR analysis we have demonstrated that (1) the effects of PDP/PDP NF-kappaB decoy chimera on accumulation of pro-inflammatory mRNAs in P.aeruginosa infected IB3–1 cells reproduce that of decoy oligonucleotides; in particular (2) the PDP/PDP chimera is a strong inhibitor of IL-8 gene expression; (3) the effect of PDP/PDP chimeras, unlike those of ODN-based decoys, are observed even in the absence of protection with lipofectamine. These informations are of great impact, in our opinion, for the development of stable molecules to be used in non-viral gene therapy of cystic fibrosis.
Collapse
Affiliation(s)
- Alessia Finotti
- ER-GenTech and BioPharmaNet, Department of Biochemistry and Molecular Biology, Università di Ferrara, Ferrara, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Surface conjugation of triphenylphosphonium to target poly(amidoamine) dendrimers to mitochondria. Biomaterials 2012; 33:4773-82. [PMID: 22469294 DOI: 10.1016/j.biomaterials.2012.03.032] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 03/10/2012] [Indexed: 11/23/2022]
Abstract
Dendrimers have emerged as promising carriers for the delivery of a wide variety of pay-loads including therapeutic drugs, imaging agents and nucleic acid materials into biological systems. The current work aimed to develop a novel mitochondria-targeted generation 5 poly(amidoamine) (PAMAM) dendrimer (G(5)-D). To achieve this goal, a known mitochondriotropic ligand triphenylphosphonium (TPP) was conjugated on the surface of the dendrimer. A fraction of the cationic surface charge of G(5)-D was neutralized by partial acetylation of the primary amine groups. Next, the mitochondria-targeted dendrimer was synthesized via the acid-amine-coupling conjugation reaction between the acid group of (3-carboxypropyl)triphenyl-phosphonium bromide and the primary amines of the acetylated dendrimer (G(5)-D-Ac). These dendrimers were fluorescently labeled with fluorescein isothiocyanate (FITC) to quantify cell association by flow cytometry and for visualization under confocal laser scanning microscopy to assess the mitochondrial targeting in vitro. The newly developed TPP-anchored dendrimer (G(5)-D-Ac-TPP) was efficiently taken up by the cells and demonstrated good mitochondrial targeting. In vitro cytotoxicity experiments carried out on normal mouse fibroblast cells (NIH-3T3) had greater cell viability in the presence of the G(5)-D-Ac-TPP compared to the parent unmodified G(5)-D. This mitochondria-targeted dendrimer-based nanocarrier could be useful for imaging as well as for selective delivery of bio-actives to the mitochondria for the treatment of diseases associated with mitochondrial dysfunction.
Collapse
|
20
|
Aralov AV, Klykov VN, Chakhmakhcheva OG, Efimov VA. [Monomers containing 2'-o-alkoxymethyl groups as synthons for the synthesis of oligoribonucleotides by the phosphotriester method]. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2012; 37:654-61. [PMID: 22332361 DOI: 10.1134/s1068162011050025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A general scheme for the synthesis of ribonucleotide monomers containing alkoxymethyl group in 2'-O-position for the solid-phase phosphotriester oligonucleotide synthesis using O-nucleophilic intramolecular catalysis has been developed. In particular, the monomers containing 2'-O-modifying 2-azidoethoxymethyl, propargyloxymethyl, or 3,4-cyclocarbonatebutoxymethyl groups has been prepared.
Collapse
|
21
|
Biswas S, Dodwadkar NS, Deshpande PP, Torchilin VP. Liposomes loaded with paclitaxel and modified with novel triphenylphosphonium-PEG-PE conjugate possess low toxicity, target mitochondria and demonstrate enhanced antitumor effects in vitro and in vivo. J Control Release 2012; 159:393-402. [PMID: 22286008 DOI: 10.1016/j.jconrel.2012.01.009] [Citation(s) in RCA: 200] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 01/09/2012] [Accepted: 01/12/2012] [Indexed: 12/12/2022]
Abstract
Previously, stearyl triphenylphosphonium (STPP)-modified liposomes (STPP-L) were reported to target mitochondria. To overcome a non-specific cytotoxicity of STPP-L, we synthesized a novel polyethylene glycol-phosphatidylethanolamine (PEG-PE) conjugate with the TPP group attached to the distal end of the PEG block (TPP-PEG-PE). This conjugate was incorporated into the liposomal lipid bilayer, and the modified liposomes were studied for their toxicity, mitochondrial targeting, and efficacy in delivering paclitaxel (PTX) to cancer cells in vitro and in vivo. These TPP-PEG-PE-modified liposomes (TPP-PEG-L), surface grafted with as high as 8 mol% of the conjugate, were less cytotoxic compared to STPP-L or PEGylated STPP-L. At the same time, TPP-PEG-L demonstrated efficient mitochondrial targeting in cancer cells as shown by confocal microscopy in co-localization experiments with stained mitochondria. PTX-loaded TPP-PEG-L demonstrated enhanced PTX-induced cytotoxicity and anti-tumor efficacy in cell culture and mouse experiments compared to PTX-loaded unmodified plain liposomes (PL). Thus, TPP-PEG-PE can serve as a targeting ligand to prepare non-toxic liposomes as mitochondria-targeted drug delivery systems (DDS).
Collapse
Affiliation(s)
- Swati Biswas
- Center for Pharmaceutical Biotechnology and Nanomedicine, 360 Huntington Avenue, 312 Mugar Hall, Northeastern University, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
22
|
Dinç E, Tóth SZ, Schansker G, Ayaydin F, Kovács L, Dudits D, Garab G, Bottka S. Synthetic antisense oligodeoxynucleotides to transiently suppress different nucleus- and chloroplast-encoded proteins of higher plant chloroplasts. PLANT PHYSIOLOGY 2011; 157:1628-41. [PMID: 21980174 PMCID: PMC3327186 DOI: 10.1104/pp.111.185462] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 10/05/2011] [Indexed: 05/18/2023]
Abstract
Selective inhibition of gene expression by antisense oligodeoxynucleotides (ODNs) is widely applied in gene function analyses; however, experiments with ODNs in plants are scarce. In this work, we extend the use of ODNs in different plant species, optimizing the uptake, stability, and efficiency of ODNs with a combination of molecular biological and biophysical techniques to transiently inhibit the gene expression of different chloroplast proteins. We targeted the nucleus-encoded phytoene desaturase (pds) gene, encoding a key enzyme in carotenoid biosynthesis, the chlorophyll a/b-binding (cab) protein genes, and the chloroplast-encoded psbA gene, encoding the D1 protein. For pds and psbA, the in vivo stability of ODNs was increased by phosphorothioate modifications. After infiltration of ODNs into juvenile tobacco (Nicotiana benthamiana) leaves, we detected a 25% to 35% reduction in mRNA level and an approximately 5% decrease in both carotenoid content and the variable fluorescence of photosystem II. In detached etiolated wheat (Triticum aestivum) leaves, after 8 h of greening, the mRNA level, carotenoid content, and variable fluorescence were inhibited up to 75%, 25%, and 20%, respectively. Regarding cab, ODN treatments of etiolated wheat leaves resulted in an up to 59% decrease in the amount of chlorophyll b, a 41% decrease of the maximum chlorophyll fluorescence intensity, the cab mRNA level was reduced to 66%, and the protein level was suppressed up to 85% compared with the control. The psbA mRNA and protein levels in Arabidopsis (Arabidopsis thaliana) leaves were inhibited by up to 85% and 72%, respectively. To exploit the potential of ODNs for photosynthetic genes, we propose molecular design combined with fast, noninvasive techniques to test their functional effects.
Collapse
Affiliation(s)
- Emine Dinç
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, H-6701 Szeged, Hungary.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Interaction of cationic bilayer fragments with a model oligonucleotide. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:649-55. [DOI: 10.1016/j.bbamem.2010.11.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 11/26/2010] [Accepted: 11/30/2010] [Indexed: 11/15/2022]
|
24
|
Zhi C, Meng W, Yamazaki T, Bando Y, Golberg D, Tang C, Hanagata N. BN nanospheres as CpG ODN carriers for activation of toll-like receptor 9. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c1jm10199d] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
Gambari R, Borgatti M, Bezzerri V, Nicolis E, Lampronti I, Dechecchi MC, Mancini I, Tamanini A, Cabrini G. Decoy oligodeoxyribonucleotides and peptide nucleic acids-DNA chimeras targeting nuclear factor kappa-B: inhibition of IL-8 gene expression in cystic fibrosis cells infected with Pseudomonas aeruginosa. Biochem Pharmacol 2010; 80:1887-94. [PMID: 20615393 DOI: 10.1016/j.bcp.2010.06.047] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2010] [Revised: 06/24/2010] [Accepted: 06/28/2010] [Indexed: 12/25/2022]
Abstract
Cystic fibrosis (CF) is characterized by a deep inflammatory process, with production and release of cytokines and chemokines, among which interleukin 8 (IL-8) represents one of the most important. Accordingly, there is a growing interest in developing therapies against IL-8, with the aim of reducing the excessive inflammatory response in the airways of CF patients. Since transcription factor NF-kappaB plays a critical role in IL-8 expression, the transcription factor decoy (TFD) strategy might be of interest. TFD is based on biomolecules mimicking the target sites of transcription factors (TFs) and able to interfere with TF activity when delivered to target cells. Here, we review the inhibitory effects of decoy oligodeoxyribonucleotides (ODNs) on expression of IL-8 gene and secretion of IL-8 by cystic fibrosis cells infected by Pseudomonas aeruginosa. In addition, the effects of decoy molecules based on peptide nucleic acids (PNAs) are discussed. In this respect PNA-DNA-PNA (PDP) chimeras are interesting: (a) unlike PNAs, they can be complexed with liposomes and microspheres; (b) unlike oligodeoxyribonucleotides (ODNs), they are resistant to DNAses, serum and cytoplasmic extracts; (c) unlike PNA/PNA and PNA/DNA hybrids, they are potent decoy molecules. Interestingly, PDP/PDP NF-kappaB decoy chimeras inhibit accumulation of pro-inflammatory mRNAs (including IL-8 mRNA) in P. aeruginosa infected IB3-1, cells reproducing the effects of decoy oligonucleotides. The effects of PDP/PDP chimeras, unlike ODN-based decoys, are observed even in absence of protection with lipofectamine. Since IL-8 is pivotal in pro-inflammatory processes affecting cystic fibrosis, inhibition of its functions might have a clinical relevance.
Collapse
Affiliation(s)
- Roberto Gambari
- ER-GenTech and BioPharmaNet, Department of Biochemistry and Molecular Biology, University of Ferrara, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Namgung R, Brumbach JH, Jeong JH, Yockman JW, Kim SW, Lin C, Zhong Z, Feijen J, Engbersen JFJ, Kim WJ. Dual bio-responsive gene delivery via reducible poly(amido amine) and survivin-inducible plasmid DNA. Biotechnol Lett 2010; 32:755-64. [PMID: 20155385 DOI: 10.1007/s10529-010-0219-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 01/18/2010] [Accepted: 01/21/2010] [Indexed: 11/29/2022]
Abstract
A bioreducible poly(amido amine) (SS-PAA) gene carrier, known as poly (amido-butanol) (pABOL), was used to transfect a variety of cancer and non-cancer cell lines. To obtain cancer-specific transgene expression for therapeutic efficiency in cancer treatment, we constructed survivin-inducible plasmid DNA expressing the soluble VEGF receptor, sFlt-1, downstream of the survivin promoter (pSUR-sFlt-1). Cancer-specific expression of sFlt-1 was observed in the mouse renal carcinoma (RENCA) cell line. pABOL enhanced the efficiency of gene delivery compared to traditional carriers used in the past. Thus, a dual bio-responsive gene delivery system was developed by using bioreducible p(ABOL) for enhanced intracellular gene delivery and survivin-inducible gene expression system (pSUR-sFlt-1 or pSUR-Luc reporter gene) that demonstrates increased gene expression in cancer that has advantages over current gene delivery systems.
Collapse
Affiliation(s)
- Ran Namgung
- Department of Chemistry, Pohang University of Science and Technology, Pohang, 790-784, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Peddada LY, Harris NK, Devore DI, Roth CM. Novel graft copolymers enhance in vitro delivery of antisense oligonucleotides in the presence of serum. J Control Release 2009; 140:134-40. [PMID: 19699243 PMCID: PMC2783907 DOI: 10.1016/j.jconrel.2009.08.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Revised: 07/25/2009] [Accepted: 08/11/2009] [Indexed: 01/08/2023]
Abstract
Antisense technology holds tremendous potential in the research and clinical settings. However, successful delivery of antisense oligodeoxynucleotides (ODNs) to the intracellular site of action requires the passage of many barriers, including survival against extracellular serum nucleases and escape from endolysosomal degradation. Previous work has shown that the effectiveness of antisense delivery by the cationic liposome, dioleoyl-3-trimethylammonium-propane (DOTAP), is enhanced substantially by the incorporation of a pH-sensitive polymer, poly (propylacrylic acid) (PPAA), in serum-free media. To improve this system for application in serum-containing media conditions, PPAA was modified in this work by grafting onto it either poly(ethylene oxide) (PEO) or a more hydrophobic analog, poly (oxyalkylene amine), known as Jeffamine. The ternary formulation of DOTAP/ODN/PPAA-g-Jeffamine resulted in 8-fold increased uptake of fluorescently-labeled ODNs compared to DOTAP/ODN/PPAA and ~80% silencing of green fluorescent protein (GFP) expression in CHO-d1EGFP cells treated in the presence of 10% FBS-containing media. In contrast, the carrier systems that contained PPAA or PPAA-g-PEO failed to display any significant antisense activity in the presence of serum, even though all of the delivery systems displayed moderate to high levels of antisense activity in serum-free conditions. The results reveal that the carrier system with the Jeffamine graft copolymer effectively mediates specific gene silencing in the presence of serum, while the system with the PEO graft copolymer fails to do so. While the pH-dependent lytic functionality of PPAA was found to be lost upon grafting with PEO or Jeffamine, the hydrophobicity of the latter was sufficient to mediate cellular internalization and endosomal escape. Thus, the PPAA-g-Jeffamine copolymers hold substantial promise as agents for controlled therapeutic delivery of antisense oligonucleotides.
Collapse
Affiliation(s)
| | - Nicole K. Harris
- Department of Chemistry and Chemical Biology, Rutgers University
| | - David I. Devore
- Department of Chemistry and Chemical Biology, Rutgers University
| | - Charles M. Roth
- Department of Biomedical Engineering, Rutgers University
- Department of Chemical and Biochemical Engineering, Rutgers University
| |
Collapse
|
28
|
Lendvai G, Monazzam A, Velikyan I, Eriksson B, Josephsson R, Långström B, Bergström M, Estrada S. Non-hybridization saturable mechanisms play a role in the uptake of (68)Ga-Labeled LNA-DNA mixmer antisense oligonucleotides in rats. Oligonucleotides 2009; 19:223-32. [PMID: 19732020 DOI: 10.1089/oli.2009.0192] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Oligonucleotides (ODN) are key molecules for the aim of preventing translation of a gene product or monitoring gene expression in tissues. However, multiple methodological and biological hurdles need to be solved before in vivo application in humans will be possible. For positron emission tomography (PET) investigations, a 20-mer DNA-locked nucleic acid (LNA) mixmer ODN specific for rat chromogranin-A mRNA was labeled with (68)Ga and its uptake was examined in vivo in rats with and without blocking of scavenger receptors by polyribonucleotides. In addition, uptake studies of (68)Ga-LNA were performed with respect to time and concentration in human and rat cell lines. The human cell lines did not express the target mRNA. Both polyinosinic acid (poly-I) and polyadenylic acid (poly-A) reduced the uptake in rat tissues and in human cell lines. Poly-I was found to be more effective in the liver whereas poly-A was more effective in the kidney. In addition, the blockade by poly-I was statistically significant in the pancreas, adrenal gland, bone marrow, intestine, testis, urinary bladder, muscle, parotid gland, and heart, whereas poly-A also caused significant reduction in pancreas, adrenal gland, and bone marrow but not as much as in kidney. Cell culture study showed a 2-phase dose-dependent uptake characteristic with a saturable and a passive diffusion-like phase; however, these 2 phases were not so well expressed in the rat cell line. The results suggest that scavenger receptors or other saturable processes unrelated to hybridization may be involved in the tissue uptake of (68)Ga-LNA and in the clearance of antisense ODN through the liver, kidney, spleen, and bone marrow. The fact that these processes may be sequence-dependent suggests that proof of in vivo hybridization through imaging may not be obtained by only comparing sense and antisense sequences and proving dose-dependency.
Collapse
Affiliation(s)
- Gabor Lendvai
- Uppsala Imanet, GEMS PET Systems, GE Healthcare, Uppsala S-751 09, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Zhao X, Pan F, Holt CM, Lewis AL, Lu JR. Controlled delivery of antisense oligonucleotides: a brief review of current strategies. Expert Opin Drug Deliv 2009; 6:673-86. [PMID: 19552611 DOI: 10.1517/17425240902992894] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Antisense therapy has been investigated extensively over the past two decades, either experimentally for gene functional research or clinically as therapeutic agents owing to the conceptual simplicity, ease of design and low cost. The concept of this therapeutic approach is promising because short antisense oligonucleotides (ASOs) can be delivered into target cells for specific hybridisation with target mRNA, resulting in the inhibition of the expression of pathogenic genes. However, the efficient delivery of the ASO molecules into target cells remains challenging; this bottleneck together with several other technical hurdles need to be overcome before this approach becomes effective and widely adopted. A variety of vectors such as lipids, polymers, peptides and nanoparticles have been explored. This review outlines the recent advances of the non-viral ASO delivery strategies. Several recent scientific studies, including authors' contributions, have been selected to highlight the technical aspects of ASO delivery.
Collapse
Affiliation(s)
- Xiubo Zhao
- University of Manchester, School of Physics and Astronomy, Biological Physics Group, Schuster Building, Manchester M13 9PL, UK.
| | | | | | | | | |
Collapse
|
30
|
Juliano R, Bauman J, Kang H, Ming X. Biological barriers to therapy with antisense and siRNA oligonucleotides. Mol Pharm 2009; 6:686-95. [PMID: 19397332 PMCID: PMC2758224 DOI: 10.1021/mp900093r] [Citation(s) in RCA: 227] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Attaining the full therapeutic utility of antisense and siRNA oligonucleotides will require understanding of the biological barriers that stand between initial administration of these drugs and their final actions within cells. This review examines some of the key barriers that affect the biodistribution of oligonucleotides both in molecular form and when they are associated with nanocarriers. An understanding of the biological processes underlying these barriers will aid in the design of more effective delivery systems.
Collapse
Affiliation(s)
- R Juliano
- UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, USA.
| | | | | | | |
Collapse
|
31
|
Wilson KD, de Jong SD, Tam YK. Lipid-based delivery of CpG oligonucleotides enhances immunotherapeutic efficacy. Adv Drug Deliv Rev 2009; 61:233-42. [PMID: 19232375 DOI: 10.1016/j.addr.2008.12.014] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Accepted: 12/15/2008] [Indexed: 11/26/2022]
Abstract
There has been significant interest in the potential of cytosine-guanine (CpG) containing oligodeoxynucleotides (ODN) as an immunotherapy for malignant, infectious and allergic diseases. While human trials have yielded promising results, clinical use of free CpG ODN still faces several challenges which limit their effectiveness. These include suboptimal in vivo stability, toxicity, unfavorable pharmacokinetic/biodistribution characteristics, lack of specificity for target cells and the requirement for intracellular uptake. To overcome these challenges, optimized lipid-based delivery systems have been developed to protect the CpG ODN payload, modify their circulation/distribution so as to enhance immune cell targeting and facilitate intracellular uptake. Ultimately, lipid-mediated delivery has the capacity to increase the immunopotency of CpG ODN and enhance their prophylactic or therapeutic efficacy in a range of diseases. Lipid-encapsulation provides a feasible strategy to optimize the immunostimulatory activity and immunotherapeutic efficacy of CpG ODN, thereby allowing their full clinical potential to be realized.
Collapse
|
32
|
|
33
|
Lendvai G, Velikyan I, Estrada S, Eriksson B, Långström B, Bergström M. Biodistribution of 68Ga-labeled LNA-DNA mixmer antisense oligonucleotides for rat chromogranin-A. Oligonucleotides 2008; 18:33-49. [PMID: 18321161 DOI: 10.1089/oli.2007.0104] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In vivo monitoring of gene expression may be accomplished using a most advanced imaging technology such as positron emission tomography (PET). However, a range of methodological and biological hurdles needs exploration. In the present study, 20-mer DNA-LNA (locked nucleic acid) mixmer oligonucleotides specific for rat Chromogranin-A (Chg-A) mRNA were labeled with 68Ga and their biodistribution were investigated in rats; namely, two Antisense (LNA1, LNA2--differing only in the positioning of LNA modification), Mismatched, and Sense sequences. In addition, in vivo and in vitro metabolite analysis of LNA1 and LNA2 was compared, and hybridization in solution was performed to verify the hybridization ability after labeling. Furthermore, semiquantitative polymerase chain reaction was carried out to find organs expressing Chg-A mRNA in the rat. The biodistribution patterns altered according to the sequence and the positioning of LNA modification. The pattern of Mismatched--differing only in two nucleotides from the two Antisenses--was similar to that of Sense, whereas the pattern of LNA1 and LNA2 showed differences. Uptake in the adrenal gland was twofold higher with LNA2 compared to the other three oligonucleotides. Intact LNA2 could be observed in the 60-minute sample in vivo, whereas in vitro, the intact compound of both Antisenses could also be detected after 2 hours. Hybridization in solution revealed that the two Antisenses retained their hybridization abilities after 68Ga-labeling. With decreasing magnitude, Chg-A mRNA was expressed in the adrenal gland, intestine, testis, and pancreas. This study further supported LNA-DNA mixmer to be a favorable modification for antisense targeting approach with respect to hybridization and longer plasma residence; however, the organ uptake was dominated by processes irrelevant to specific hybridization.
Collapse
Affiliation(s)
- Gabor Lendvai
- Uppsala Imanet, GE Healthcare, S-751 09 Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
34
|
Sun C, Ghebramedhin H, Höglund AS, Jansson C. Antisense oligodeoxynucleotide inhibition as a potent diagnostic tool for gene function in plant biology. PLANT SIGNALING & BEHAVIOR 2008; 3:328-30. [PMID: 19841661 PMCID: PMC2634273 DOI: 10.4161/psb.3.5.5341] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2007] [Accepted: 11/28/2007] [Indexed: 05/08/2023]
Abstract
Antisense oligodeoxynucleotide (ODN) inhibition emerges as an effective means for probing gene function in plant cells. Employing this method we have established the importance of the SUSIBA2 transcription factor for regulation of starch synthesis in barley endosperm, and arrived at a model for the role of the SUSIBAs in sugar signaling and source-sink commutation during cereal endosperm development. In this addendum we provide additional data demonstrating the suitability of the antisense ODN technology in studies on starch branching enzyme activities in barley leaves. We also comment on the mechanism for ODN uptake in plant cells.
Collapse
Affiliation(s)
- Chuanxin Sun
- Department of Plant Biology & Forest Genetics; Uppsala BioCenter; Swedish University of Agricultural Sciences (SLU); Uppsala, Sweden
| | - Haile Ghebramedhin
- Department of Plant Biology & Forest Genetics; Uppsala BioCenter; Swedish University of Agricultural Sciences (SLU); Uppsala, Sweden
| | - Anna-Stina Höglund
- Department of Neuroscience; Uppsala University; BioMedical Center (BMC); Uppsala, Sweden
| | - Christer Jansson
- Department of Plant Biology & Forest Genetics; Uppsala BioCenter; Swedish University of Agricultural Sciences (SLU); Uppsala, Sweden
- Lawrence Berkeley National Lab; Earth Science Division; Berkeley, California USA
| |
Collapse
|
35
|
Hecker M, Wagner S, Henning SW, Wagner AH. Decoy Oligodeoxynucleotides to Treat Inflammatory Diseases. THERAPEUTIC OLIGONUCLEOTIDES 2008. [DOI: 10.1039/9781847558275-00163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Markus Hecker
- Institute of Physiology and Pathophysiology, Division of Cardiovascular Physiology, University of Heidelberg Germany
| | | | | | - Andreas H. Wagner
- Institute of Physiology and Pathophysiology, Division of Cardiovascular Physiology, University of Heidelberg Germany
| |
Collapse
|
36
|
Sun C, Ridderstråle K, Höglund AS, Larsson LG, Jansson C. Sweet delivery - sugar translocators as ports of entry for antisense oligodeoxynucleotides in plant cells. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 52:1192-1198. [PMID: 17922813 DOI: 10.1111/j.1365-313x.2007.03287.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Antisense oligodeoxynucleotides (ODNs) are short (12-25 nt long) stretches of single-stranded DNA that may be delivered to a cell, where they hybridize to the cognate mRNA in a sequence-specific manner, thereby inhibiting gene expression. Here we used confocal microscopy to monitor the uptake and trafficking of ODNs in barley tissues. We conclude that uptake of ODNs across the plant plasma membrane is mediated by active transport of mono- or disaccharides through sugar translocators. We demonstrate that sugar transport can deliver ODNs to barley seeds, and that this strategy may be employed to suppress gene activity in endosperm cells by antisense ODN inhibition. We further found that sucrose compared favorably with oligofectamine as a vehicle for ODN delivery to human cells in a low-serum environment.
Collapse
Affiliation(s)
- Chuanxin Sun
- Department of Plant Biology & Forest Genetics, The Swedish University of Agricultural Sciences (SLU), Uppsala BioCenter, PO Box 7080, SE-75007 Uppsala, Sweden
| | | | | | | | | |
Collapse
|
37
|
Abes S, Turner JJ, Ivanova GD, Owen D, Williams D, Arzumanov A, Clair P, Gait MJ, Lebleu B. Efficient splicing correction by PNA conjugation to an R6-Penetratin delivery peptide. Nucleic Acids Res 2007; 35:4495-502. [PMID: 17584792 PMCID: PMC1934994 DOI: 10.1093/nar/gkm418] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Revised: 04/20/2007] [Accepted: 05/07/2007] [Indexed: 12/02/2022] Open
Abstract
Sequence-specific interference with the nuclear pre-mRNA splicing machinery has received increased attention as an analytical tool and for development of therapeutics. It requires sequence-specific and high affinity binding of RNaseH-incompetent DNA mimics to pre-mRNA. Peptide nucleic acids (PNA) or phosphoramidate morpholino oligonucleotides (PMO) are particularly suited as steric block oligonucleotides in this respect. However, splicing correction by PNA or PMO conjugated to cell penetrating peptides (CPP), such as Tat or Penetratin, has required high concentrations (5-10 microM) of such conjugates, unless an endosomolytic agent was added to increase escape from endocytic vesicles. We have focused on the modification of existing CPPs to search for peptides able to deliver more efficiently splice correcting PNA or PMO to the nucleus in the absence of endosomolytic agents. We describe here R6-Penetratin (in which arginine-residues were added to the N-terminus of Penetratin) as the most active of all CPPs tested so far in a splicing correction assay in which masking of a cryptic splice site allows expression of a luciferase reporter gene. Efficient and sequence-specific correction occurs at 1 muM concentration of the R6Pen-PNA705 conjugate as monitored by luciferase luminescence and by RT-PCR. Some aspects of the R6Pen-PNA705 structure-function relationship have also been evaluated.
Collapse
Affiliation(s)
- Saïd Abes
- UMR 5235 CNRS, Université Montpellier 2, Place Eugene Bataillon, 34095 Montpellier cedex 5, France and Medical Research Council, Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH UK
| | - John J. Turner
- UMR 5235 CNRS, Université Montpellier 2, Place Eugene Bataillon, 34095 Montpellier cedex 5, France and Medical Research Council, Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH UK
| | - Gabriela D. Ivanova
- UMR 5235 CNRS, Université Montpellier 2, Place Eugene Bataillon, 34095 Montpellier cedex 5, France and Medical Research Council, Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH UK
| | - David Owen
- UMR 5235 CNRS, Université Montpellier 2, Place Eugene Bataillon, 34095 Montpellier cedex 5, France and Medical Research Council, Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH UK
| | - Donna Williams
- UMR 5235 CNRS, Université Montpellier 2, Place Eugene Bataillon, 34095 Montpellier cedex 5, France and Medical Research Council, Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH UK
| | - Andrey Arzumanov
- UMR 5235 CNRS, Université Montpellier 2, Place Eugene Bataillon, 34095 Montpellier cedex 5, France and Medical Research Council, Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH UK
| | | | - Michael J. Gait
- UMR 5235 CNRS, Université Montpellier 2, Place Eugene Bataillon, 34095 Montpellier cedex 5, France and Medical Research Council, Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH UK
| | - Bernard Lebleu
- UMR 5235 CNRS, Université Montpellier 2, Place Eugene Bataillon, 34095 Montpellier cedex 5, France and Medical Research Council, Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH UK
| |
Collapse
|
38
|
Sundaram S, Lee LK, Roth CM. Interplay of polyethyleneimine molecular weight and oligonucleotide backbone chemistry in the dynamics of antisense activity. Nucleic Acids Res 2007; 35:4396-408. [PMID: 17576672 PMCID: PMC1935005 DOI: 10.1093/nar/gkm450] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The widespread utilization of gene silencing techniques, such as antisense, is impeded by the poor cellular delivery of oligonucleotides (ONs). Rational design of carriers for enhanced ON delivery demands a better understanding of the role of the vector on the extent and time course of antisense effects. The aim of this study is to understand the effects of polymer molecular weight (MW) and ON backbone chemistry on antisense activity. Complexes were prepared between branched polyethyleneimine (PEI) of various MWs and ONs of phosphodiester and phosphorothioate chemistries. We measured their physico-chemical properties and evaluated their ability to deliver ONs to cells, leading to an antisense response. Our key finding is that the antisense activity is not determined solely by PEI MW or by ON chemistry, but rather by the interplay of both factors. While the extent of target mRNA down-regulation was determined primarily by the polymer MW, dynamics were determined principally by the ON chemistry. Of particular importance is the strength of interactions between the carrier and the ON, which determines the rate at which the ONs are delivered intracellularly. We also present a mathematical model of the antisense process to highlight the importance of ON delivery to antisense down-regulation.
Collapse
Affiliation(s)
- Sumati Sundaram
- Department of Chemical and Biochemical Engineering and Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Li Kim Lee
- Department of Chemical and Biochemical Engineering and Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Charles M. Roth
- Department of Chemical and Biochemical Engineering and Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA
- *To whom correspondence should be addressed. +732-445-4500+732-445-3753
| |
Collapse
|
39
|
Choleris E, Little SR, Mong JA, Puram SV, Langer R, Pfaff DW. Microparticle-based delivery of oxytocin receptor antisense DNA in the medial amygdala blocks social recognition in female mice. Proc Natl Acad Sci U S A 2007; 104:4670-5. [PMID: 17360582 PMCID: PMC1838659 DOI: 10.1073/pnas.0700670104] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2006] [Indexed: 11/18/2022] Open
Abstract
Social recognition constitutes the basis of social life. In male mice and rats, social recognition is known to be governed by the neuropeptide oxytocin (OT) through its action on OT receptors (OTRs) in the medial amygdala. In female rats and mice, which have sociosexual behaviors controlling substantial investment in reproduction, an important role for OT in sociosexual behaviors has also been shown. However, the site in the female brain for OT action on social recognition is still unknown. Here we used a customized, controlled release system of biodegradable polymeric microparticles to deliver, in the medial amygdala of female mice, "locked nucleic acid" antisense (AS) oligonucleotides with sequences specific for the mRNA of the OTR gene. We found that single bilateral intraamygdala injections of OTR AS locked nucleic acid oligonucleotides several days before behavioral testing reduced social recognition. Thus, we showed that gene expression for OTR specifically in the amygdala is required for normal social recognition in female mice. Importantly, during the same experiment, we performed a detailed ethological analysis of mouse behavior revealing that OTR AS-treated mice underwent an initial increase in ambivalent risk-assessment behavior. Other behaviors were not affected, thus revealing specific roles for amygdala OTR in female social recognition potentially mediated by anxiety in a social context. Understanding the functional genomics of OT and OTR in social recognition should help elucidate the neurobiological bases of human disorders of social behavior (e.g., autism).
Collapse
Affiliation(s)
- Elena Choleris
- *Laboratory of Neurobiology and Behavior, The Rockefeller University, New York, NY 10021
- Department of Psychology, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Steven R. Little
- Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, PA 15261
| | - Jessica A. Mong
- *Laboratory of Neurobiology and Behavior, The Rockefeller University, New York, NY 10021
- Department of Pharmacology and Experimental Therapeutics, School of Medicine, University of Maryland, Baltimore, MD 21201
| | - Sidharth V. Puram
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142; and
| | - Robert Langer
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142; and
| | - Donald W. Pfaff
- *Laboratory of Neurobiology and Behavior, The Rockefeller University, New York, NY 10021
| |
Collapse
|
40
|
Plant Breeding: Antisense ODN Inhibition in in vitro spike cultures as a powerful Diagnostic Tool in Studies on Cereal Grain Development. ACTA ACUST UNITED AC 2007. [DOI: 10.1007/978-3-540-36832-8_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
41
|
Abstract
Liver fibrosis results from chronic liver injury due to hepatitis B and C, excessive alcohol ingestion, and metal ion overload. Fibrosis culminates in cirrhosis and results in liver failure. Therefore, a potent antifibrotic therapy is urgently needed to reverse scarring and eliminate progression to cirrhosis. Although activated hepatic stellate cells (HSCs) remain the principle cell type responsible for liver fibrosis, perivascular fibroblasts of portal and central veins as well as periductular fibroblasts are other sources of fibrogenic cells. This review will critically discuss various treatment strategies for liver fibrosis, including prevention of liver injury, reduction of inflammation, inhibition of HSC activation, degradation of scar matrix, and inhibition of aberrant collagen synthesis. Oligonucleotides (ODNs) are short, single-stranded nucleic acids, which disrupt expression of target protein by binding to complementary mRNA or forming triplex with genomic DNA. Triplex forming oligonucleotides (TFOs) provide an attractive strategy for treating liver fibrosis. A series of TFOs have been developed for inhibiting the transcription of alpha1(I) collagen gene, which opens a new area for antifibrotic drugs. There will be in-depth discussion on the use of TFOs and how different bioconjugation strategies can be utilized for their site-specific delivery to HSCs or hepatocytes for enhanced antifibrotic activities. Various insights developed in individual strategy and the need for multipronged approaches will also be discussed.
Collapse
Affiliation(s)
- Zhaoyang Ye
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163
| | - Houssam S. Hajj Houssein
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163
| | - Ram I. Mahato
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163
| |
Collapse
|
42
|
Turner JJ, Jones S, Fabani MM, Ivanova G, Arzumanov AA, Gait MJ. RNA targeting with peptide conjugates of oligonucleotides, siRNA and PNA. Blood Cells Mol Dis 2007; 38:1-7. [PMID: 17113327 DOI: 10.1016/j.bcmd.2006.10.003] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2006] [Revised: 10/05/2006] [Accepted: 10/05/2006] [Indexed: 11/22/2022]
Abstract
Towards the development of oligonucleotide analogues and siRNA as drugs, one potential alternative to the use of liposomal transfection agents is the covalent conjugation of a cell-penetrating peptide (CPP), with the intention of imparting on the oligonucleotide or siRNA an enhanced ability to enter mammalian cells and reach the appropriate RNA target. We have developed robust methods for the chemical synthesis of disulfide-linked conjugates of oligonucleotide analogues, siRNA and peptide nucleic acids (PNA) with a range of cationic and other CPPs. In a HeLa cell assay with integrated plasmid reporters of Tat-dependent trans-activation at the TAR RNA target in the cell nucleus, we were unable to obtain steric block inhibition of gene expression for conjugates of CPPs with a 12-mer oligonucleotide mixmer of 2'-O-methyl and locked nucleic acids units. By contrast, we were able to obtain some reductions in expression of P38alpha MAP kinase mRNA in HeLa cells using microM concentrations of Penetratin or Tat peptides conjugated to the 3'-end of the sense strand of siRNA. However, the most promising results to date have been with a 16-mer PNA conjugated to the CPP Transportan or a double CPP R(6)-Penetratin, where we have demonstrated Tat-dependent trans-activation inhibition in HeLa cells. Results to date suggest the possibility of development of CPP-PNA conjugates as anti-HIV agents as well as other potential applications involving nuclear cell delivery, such as the redirection of splicing.
Collapse
Affiliation(s)
- John J Turner
- Medical Research Council, Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 2QH, UK
| | | | | | | | | | | |
Collapse
|
43
|
Dorn A, Ludwig RJ, Bock A, Thaci D, Hardt K, Bereiter-Hahn J, Kaufmann R, Bernd A, Kippenberger S. Oligonucleotides suppress IL-8 in skin keratinocytes in vitro and offer anti-inflammatory properties in vivo. J Invest Dermatol 2006; 127:846-54. [PMID: 17139269 DOI: 10.1038/sj.jid.5700620] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
DNA codes for genetic information. Furthermore, recent findings suggest that DNA offers additional function, particularly in the recognition of microorganisms. In this study, we investigated two classes of oligodeoxynucleotides (ODN) in skin keratinocytes; namely, an ODN comprising two cytidine-phosphate-guanosine (CpG) motifs (CpG-1-phosphorothioate (PTO)) and a poly-cytidine (Non-CpG-5-PTO) as control. Both fluorescence-tagged ODN were rapidly taken up by cells and accumulated already after 5 minutes in perinuclear compartments. In order to test whether ODN convey immunological effects in keratinocytes, secretion of IL-8 was measured. Interestingly, both CpG-1-PTO and Non-CpG-5-PTO suppressed basal and tumor necrosis factor alpha-induced IL-8 levels measured in cell culture supernatants. Experiments using deletion mutant revealed a critical length of approximately 16 nucleotides conveying IL-8 suppression. Studies regarding the ODN backbone offered that PTO bondings are critical for significant IL-8 suppression. In order to substantiate the anti-inflammatory response, a contact hypersensitivity mouse model was utilized. Topical application of Non-CpG-5-PTO-containing ointments reduced ear thickness in sensitized mice. Taken together, these findings suggest an anti-inflammatory effect of ODN in epithelial cells in vitro and in vivo, indicating that DNA molecules offer distinct biological activities restricted to the physiological compartment applied. This effect seems to be independent from Toll-like receptor 9.
Collapse
Affiliation(s)
- Annette Dorn
- Department of Dermatology and Venerology, J.W. Goethe-University, Frankfurt/Main, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Nakamura Y, Kogure K, Yamada Y, Futaki S, Harashima H. Significant and prolonged antisense effect of a multifunctional envelope-type nano device encapsulating antisense oligodeoxynucleotide. J Pharm Pharmacol 2006; 58:431-7. [PMID: 16597360 DOI: 10.1211/jpp.58.4.0002] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
A multifunctional envelope-type nano device (MEND) was developed for use as an efficient non-viral system for the delivery of plasmid DNA (pDNA) using octaarginine (R8) as an internalizing ligand. Three types of R8-MENDs were prepared, co-encapsulating luciferase-encoding pDNA and anti-luciferase oligodeoxynucleotide (ODN) condensed by three polycations, stearyl octaarginine (STRR8), poly-L-lysine (PLL) and protamine, and the antisense effects of the ODN-encapsulated R8-MENDs (ODN-MEND) were analysed in-vitro. The ODN-MEND packaged using protamine as a condenser showed a 90% antisense effect 16 h after the transfection, and a persistent antisense effect of over 75% for up to 48 h, which was much more effective than that of LipofectAmine2000. On the other hand, the ODN-MENDs prepared using PLL and STR-R8 as condensers did not show any significant inhibition of luciferase activity. Although there was no specific relation between the physicochemical characteristics of the ODN-MENDs and their antisense effect, the pattern of the antisense effect among the ODN-MENDs was similar to that of the silencing effect of R8-MEND encapsulating plasmid DNA encoding siRNA. These results suggest that R8-MENDs are able to deliver encapsulated DNA to the cytosol as well as to the nucleus, and that protamine can also function as an efficient decondenser, not only in the nucleus but also in the cytosol. In conclusion, we successfully developed an ODN-MEND with a high antisense effect using protamine as a DNA condensing as well as a decondensing agent.
Collapse
Affiliation(s)
- Yoshio Nakamura
- Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Sapporo 060-0812, Japan
| | | | | | | | | |
Collapse
|
45
|
Wasungu L, Hoekstra D. Cationic lipids, lipoplexes and intracellular delivery of genes. J Control Release 2006; 116:255-64. [PMID: 16914222 DOI: 10.1016/j.jconrel.2006.06.024] [Citation(s) in RCA: 421] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2006] [Accepted: 06/21/2006] [Indexed: 11/30/2022]
Abstract
As a consequence of several setbacks encountered by viral technology in achieving efficient and safe gene therapy in clinical trials, non-viral gene delivery vectors are considered to date as a valuable alternative and to hold promise for future therapeutic applications. Nevertheless, the transfection efficiency mediated by these non-viral gene delivery vectors has to be improved, especially in vivo, to benefit fully from their advantages. Cationic lipid/nucleic acid complexes or lipoplexes have been the subject of intensive investigations in recent years to understand the parameters governing the efficiency of transfection. Specifically, the comprehension of such mechanisms, from the formation of the complexes to their intracellular delivery, will lead to the design of better adapted non-viral vectors for gene therapy applications. Here, we will discuss some recent developments in the field on the structure/function relationship of cationic lipids in the mechanism of transfection, and where appropriate, we will make a comparison with mechanisms of viral and polyplex-mediated gene delivery. Cationic lipids are often used in combination with helper lipids such as DOPE or cholesterol. The effect of DOPE on lipoplex assembly and the relevance of the structural properties of the lipoplexes in destabilizing endosomal membranes and mediating endosomal escape of DNA will be discussed.
Collapse
Affiliation(s)
- Luc Wasungu
- Department of Cell Biology, Section Membrane Cell Biology, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | | |
Collapse
|
46
|
Couvreur P, Vauthier C. Nanotechnology: intelligent design to treat complex disease. Pharm Res 2006; 23:1417-50. [PMID: 16779701 DOI: 10.1007/s11095-006-0284-8] [Citation(s) in RCA: 523] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2005] [Accepted: 03/01/2006] [Indexed: 01/19/2023]
Abstract
The purpose of this expert review is to discuss the impact of nanotechnology in the treatment of the major health threats including cancer, infections, metabolic diseases, autoimmune diseases, and inflammations. Indeed, during the past 30 years, the explosive growth of nanotechnology has burst into challenging innovations in pharmacology, the main input being the ability to perform temporal and spatial site-specific delivery. This has led to some marketed compounds through the last decade. Although the introduction of nanotechnology obviously permitted to step over numerous milestones toward the development of the "magic bullet" proposed a century ago by the immunologist Paul Ehrlich, there are, however, unresolved delivery problems to be still addressed. These scientific and technological locks are discussed along this review together with an analysis of the current situation concerning the industrial development.
Collapse
Affiliation(s)
- Patrick Couvreur
- Laboratoire de Physico-chimie, Pharmacotechnie et Biopharmacie, UMR CNRS 8612, Université de Paris Sud, 5 Rue J.B. Clément, 92 296, Chatenay-Malabry Cedex, France
| | | |
Collapse
|
47
|
Lee LK, Williams CL, Devore D, Roth CM. Poly(propylacrylic acid) enhances cationic lipid-mediated delivery of antisense oligonucleotides. Biomacromolecules 2006; 7:1502-8. [PMID: 16677032 PMCID: PMC2525803 DOI: 10.1021/bm060114o] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The use of antisense oligodeoxynucleotides (ODNs) to inhibit the expression of specific mRNA targets represents a powerful technology for control of gene expression. Cationic lipids and polymers are frequently used to improve the delivery of ODNs to cells, but the resulting complexes often aggregate, bind to serum components, and are trafficked poorly within cells. We show that the addition of a synthetic, pH-sensitive, membrane-disrupting polyanion, poly(propylacrylic acid) (PPAA), improves the in vitro efficiency of the cationic lipid, DOTAP, with regard to oligonucleotide delivery and antisense activity. In characterization studies, ODN complexation with DOTAP/ODN was maintained even when substantial amounts of PPAA were added. The formulation also exhibited partial protection of phosphodiester oligonucleotides against enzymatic digestion. In Chinese hamster ovary (CHO) cells, incorporation of PPAA in DOTAP/ODN complexes improved 2- to 3-fold the cellular uptake of fluorescently tagged oligonucleotides. DOTAP/ODN complexes containing PPAA also maintained high levels of uptake into cells upon exposure to serum. Addition of PPAA to DOTAP/ODN complexes enhanced the antisense activity (using GFP as the target) over a range of PPAA concentrations in both serum-free, and to a lesser extent, serum-containing media. Thus, PPAA is a useful adjunct that improves the lipid-mediated delivery of oligonucleotides.
Collapse
Affiliation(s)
- Li Kim Lee
- Department of Chemical and Biochemical Engineering, Rutgers University, 98 Brett Road, Piscataway, New Jersey 08854-8058, USA
| | | | | | | |
Collapse
|
48
|
Morán González D, Domínguez-Gil Hurlé A. [Antisense therapy in oncology: present situation]. FARMACIA HOSPITALARIA 2006; 29:269-82. [PMID: 16268744 DOI: 10.1016/s1130-6343(05)73676-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The purpose of antisense therapy is to control the regulation of genes contributing to cancer progression while sparing normal cell growth, which represents a novel alternative with fewer side effects when compared to conventional chemotherapy. Antisense oligonucleotides control cell proliferation by specifically blocking the expression of selected genes, and hence they are being developed as molecular drugs with potential activity for cancer treatment. Extensive clinical information and a number of clinical trials show encouraging results. This review discusses the most significant aspects of this new therapeutic alternative in oncology. Clinical trials performed thus far have demonstrated their short- to mid-term efficacy and safety; however, long-term studies are needed to definitely define their clinical effectiveness and true toxic profile.
Collapse
|
49
|
Zhang J, Gassmann M, He W, Wan F, Chu B. Reversible thermo-responsive sieving matrix for oligonucleotide separation. LAB ON A CHIP 2006; 6:526-33. [PMID: 16572215 DOI: 10.1039/b515557f] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
A reversible thermo-responsive gel system, consisting of Pluronic copolymer mixture of F87 and F127, has been used to successfully carry out the separation of oligonucleotides, for the first time, by microchip-based capillary electrophoresis. Pluronic triblock copolymers F87 (E(61)P(40)E(61)) and F127 (E(99)P(69)E(99)), with E, P, and subscript denoting oxyethylene, oxypropylene, and segment length respectively, have a unique temperature dependent viscosity-adjustable property and a dynamic coating ability in aqueous solution, including 1 x TBE buffer. The mixture solution has a reversible thermo-responsive property and its sol-gel transition temperature can be adjusted ranging from about 17 degrees C to 38 degrees C by varying the relative weight ratio of F87 and F127 at an optimized concentration of approximately 30% (w/v) for oligonucleotide separations. Oligonucleotide sizing markers ranging from 8 to 32 base could be successfully separated in a 1.5 cm long separation channel by the mixture solution in its gel-like state. A 30% (w/v) with a F87/F127 weight ratio of 1 ratio 2 which has a "sol-gel" transition point of about 26 degrees C shows the best sieving ability. The sieving ability of the mixture solution was further confirmed in an Agilent Bioanalyzer 2100 system. Fast separation of oligonucleotides has been achieved within 40 s with one base resolution.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Chemistry, Stony Brook University, Stony Brook, NY, 11794-3400, USA
| | | | | | | | | |
Collapse
|
50
|
Pedersen GM, Johansen A, Olsen RL, Jørgensen JB. Stimulation of type I IFN activity in Atlantic salmon (Salmo salar L.) leukocytes: synergistic effects of cationic proteins and CpG ODN. FISH & SHELLFISH IMMUNOLOGY 2006; 20:503-18. [PMID: 16115781 DOI: 10.1016/j.fsi.2005.06.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2005] [Revised: 06/17/2005] [Accepted: 06/30/2005] [Indexed: 05/04/2023]
Abstract
Unmethylated CpG motifs in DNA are recognised by vertebrate immune cells as pathogen signatures. Consequently, oligodeoxynucleotides containing CpG motifs (CpG ODNs) are able to enhance and direct immune responses. Recent studies have demonstrated that CpG ODNs activate antiviral immune responses in Atlantic salmon (Salmo salar L.) leukocytes, and are therefore promising agents as vaccine adjuvants or immunostimulants in fish. In this work, we report synergy of CpG ODN and cationic proteins in the stimulation of type I IFN activity in Atlantic salmon leukocytes. Different fractions of cationic histone proteins derived from cod milt or poly-l-arginine and poly-l-lysine were screened for their ability to enhance CpG ODN induced type I IFN activity in Atlantic salmon leukocytes. Optimal ratio of histones to CpG ODN was identified, and effects on transcription of type I IFN and antiviral Mx genes were studied. Delivery of CpG ODN with cationic proteins enhanced the production of type I IFN and succeeding Mx transcripts after two and five days of stimulation at substimulatory concentrations of CpG ODN. These results indicate that co-delivery of CpG ODN and cationic proteins enhance antiviral mechanisms in Atlantic salmon leukocytes as compared to CpG ODN alone.
Collapse
Affiliation(s)
- Guro M Pedersen
- Norwegian Institute of Fisheries and Aquaculture Research (Fiskeriforskning), Box 6122, N-9291 Tromsø, Norway.
| | | | | | | |
Collapse
|