1
|
Yamaguchi T, Endo-Takahashi Y, Awaji K, Numazawa S, Onishi Y, Tada R, Ogasawara M, Takizawa Y, Kurumizaka H, Negishi Y. Microfluidic nanobubbles produced using a micromixer for ultrasound imaging and gene delivery. Sci Rep 2025; 15:14871. [PMID: 40295603 PMCID: PMC12038047 DOI: 10.1038/s41598-025-99171-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 04/17/2025] [Indexed: 04/30/2025] Open
Abstract
Ultrasound (US)-mediated delivery is considered relatively safe and achieves tissue-specific targeting by simply adjusting the application site of the physical energy. Moreover, combining US with micro- or nanobubbles (MBs or NBs), which serve as US contrast agents, enhances the delivery of drugs, genes, and nucleic acids which also functioning as a tool for US. The performance of US-responsive MBs and NBs, including their therapeutic outcomes, is influenced by the bubble manufacturing methods. Furthermore, productivity and scalability must also be considered for clinical applications. Among various NBs fabrication techniques, microfluidic technology has emerged as a promising approach. However, the potential of NBs generated by microfluidics for drug delivery remains unexplored. In this study, US-responsive NBs were prepared using a microfluidic device, providing a single step gas-filling operation and rapid production method not only for US imaging but also for gene delivery. The effectiveness of these NBs was subsequently evaluated. The preparation conditions for the microfluidic NBs (MF-NBs) were optimized based on their physical properties, including particle size, number concentration, and their performance as US agents. Gene delivery capability was assessed in various tissues, including muscles, heart, kidney, and brain. The results demonstrated that MF-NBs exhibit high monodispersity, enhance US imaging, achieve widespread distribution following administration (including in brain tissue), and enable gene delivery to irradiated areas. These findings suggest that MF-NBs, with their high productivity and uniformity, are promising candidates for practical applications in US imaging, gene delivery, and nucleic acid delivery systems.
Collapse
Affiliation(s)
- Taiki Yamaguchi
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Yoko Endo-Takahashi
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan.
| | - Kento Awaji
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Seiyo Numazawa
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Yuni Onishi
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Rui Tada
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Mitsuo Ogasawara
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Yoshimasa Takizawa
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Hitoshi Kurumizaka
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Yoichi Negishi
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan.
| |
Collapse
|
2
|
Endo-Takahashi Y, Sakurai A, Oguri Y, Katagiri F, Akiyama S, Sashida S, Yamaguchi T, Marunouchi T, Suzuki R, Maruyama K, Tanonaka K, Nomizu M, Negishi Y. Phosphorodiamidate Morpholino Oligomers-Loaded Nanobubbles for Ultrasound-Mediated Delivery to the Myocardium in Muscular Dystrophy. ACS OMEGA 2025; 10:9639-9648. [PMID: 40092813 PMCID: PMC11904648 DOI: 10.1021/acsomega.4c10896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/06/2025] [Accepted: 02/12/2025] [Indexed: 03/19/2025]
Abstract
Microbubbles (MBs) and nanobubbles (NBs) can oscillate and collapse in response to ultrasound exposure, resulting in contrast and delivery effects. Therefore, the retention of the entrapped gas is an important condition in bubble formulations, especially for MBs and NBs with lipid shells, and the stability of the lipid membrane is considered to be affected. We previously developed NBs, which are polyethylene glycol-modified liposomes entrapping an ultrasound contrast gas that can serve as nucleic acid carriers and ultrasound contrast agents. In particular, NBs containing cationic lipids were useful as systemic delivery tools that can load genes and nucleic acids on their surfaces. However, the gas retention of NBs containing cationic lipids were low, leaving room for improvement as ultrasound contrast agents. In this study, we attempted to prepare NBs containing anionic lipids to improve their stability in vivo, and found that they lasted longer in contrast time than previous NBs. In order to utilize anionic NBs, we evaluated their usefulness as systemic delivery tools for cationic-peptide-conjugated phosphorodiamidate morpholino oligomers (PMO). PMO has attracted attention as a therapeutic agent for Duchenne muscular dystrophy (DMD); however, its charge neutrality makes its delivery into muscle fibers challenging, especially more difficult to apply PMO to myocardial damage. We examined the systemic delivery of PMO to the heart using a combination of anionic NBs and ultrasound. Furthermore, we evaluated the usability of octaarginine (R8), a cationic cell-penetrating peptide (CPP), in loading PMO onto the surface of NBs and verified the potential of PMO-loaded NBs as a therapy for cardiac dysfunction in muscular dystrophy.
Collapse
Affiliation(s)
- Yoko Endo-Takahashi
- Department
of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Akane Sakurai
- Department
of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Yukiko Oguri
- Department
of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Fumihiko Katagiri
- Department
of Clinical Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Saki Akiyama
- Department
of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Sanae Sashida
- Department
of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Taiki Yamaguchi
- Department
of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Tetsuro Marunouchi
- Department
of Molecular and Cellular Pharmacology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Ryo Suzuki
- Laboratory
of Drug and Gene Delivery Research, Faculty of Pharmaceutical Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Kazuo Maruyama
- Laboratory
of Theranostics, Faculty of Pharmaceutical Sciences, Teikyo University, 2-11-1
Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Kouichi Tanonaka
- Department
of Molecular and Cellular Pharmacology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Motoyoshi Nomizu
- Department
of Clinical Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Yoichi Negishi
- Department
of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| |
Collapse
|
3
|
Cho YN, Lim JW, Oh SJ, Han SR, Cho S, Jeong J, Han BH, Jeong JH. O 2-microbubble of iron-porphyrin conjugated polyaspartamide for molecular ultrasound contrast effect. Biotechnol Lett 2025; 47:28. [PMID: 39969614 DOI: 10.1007/s10529-025-03571-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 01/28/2025] [Accepted: 02/10/2025] [Indexed: 02/20/2025]
Abstract
OBJECTIVE This study aimed to prepare oxygen-microbubbles incorporating ferrous porphyrin to emulate the oxygen-capturing ability of hemoglobin porphyrin in red blood cells. RESULTS We synthesized poly(2-hydroxyethyl aspartamide) (PHEA) grafted with ferrous porphyrins (Iron-P-PHEA) and created microbubbles using 1,2-dipalmitoyl-sn-glycero-3-phosphocholine. These microbubbles trapped oxygen and retained it over a 2 h period. The O2-microbubbles demonstrated an enhanced photoacoustic effect as an ultrasound contrast agent, as confirmed by Doppler ultrasound testing. CONCLUSIONS The innovative strategy for O2-microbubble preparation enhances the efficiency of targeted delivery in molecular optical and ultrasound imaging.
Collapse
Affiliation(s)
- Yoon Na Cho
- Department of Chemical Engineering, Soongsil University, 369, Sangdo-Ro, Dongjak-Gu, Seoul, 06978, Republic of Korea
| | - Jun Woo Lim
- Department of Chemical Engineering, Soongsil University, 369, Sangdo-Ro, Dongjak-Gu, Seoul, 06978, Republic of Korea
| | - Seung Joo Oh
- Department of Chemical Engineering, Soongsil University, 369, Sangdo-Ro, Dongjak-Gu, Seoul, 06978, Republic of Korea
| | - Sa Ra Han
- Department of Chemical Engineering, Soongsil University, 369, Sangdo-Ro, Dongjak-Gu, Seoul, 06978, Republic of Korea
| | - Sungwoo Cho
- Department of Chemical Engineering, Soongsil University, 369, Sangdo-Ro, Dongjak-Gu, Seoul, 06978, Republic of Korea
| | - Jimin Jeong
- Department of Chemical Engineering, Soongsil University, 369, Sangdo-Ro, Dongjak-Gu, Seoul, 06978, Republic of Korea
| | - Byoung Hee Han
- Department of Radiology, GangNeung Asan Hospital, Gangneung, Ganwon-do, Republic of Korea.
| | - Jae Hyun Jeong
- Department of Chemical Engineering, Soongsil University, 369, Sangdo-Ro, Dongjak-Gu, Seoul, 06978, Republic of Korea.
| |
Collapse
|
4
|
Yano Y, Tada R, Hamano N, Haruta K, Kobayashi T, Sato M, Kikkawa Y, Endo-Takahashi Y, Nomizu M, Negishi Y. Development of a concise and reliable method for quantifying the antibody loaded onto lipid nanoparticles modified with Herceptin. J Immunol Methods 2023; 521:113554. [PMID: 37661049 DOI: 10.1016/j.jim.2023.113554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/01/2023] [Accepted: 08/31/2023] [Indexed: 09/05/2023]
Abstract
Antibodies are essential components of the immune system with a wide range of molecular targets. They have been recognized as modalities for treating several diseases and more than 130 approved antibody-based therapeutics are available for clinical use. However, limitations remain associated with its efficacy, tissue permeability, and safety, especially in cancer treatment. Nanoparticles, particularly those responsive to external stimuli, have shown promise in improving the efficacy of antibody-based therapeutics and tissue-selective delivery. In this study, we developed a reliable and accurate method for quantifying the amount of antibody loaded onto lipid nanoparticles modified with Herceptin® (Trastuzumab), an antibody-based therapeutic used to treat HER2-positive cancers, using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) followed by silver staining. This method proved to be a suitable alternative to commonly used protein quantification techniques, which are limited by lipid interference present in the samples. Furthermore, the amount of Herceptin modified on the liposomes, measured by this method, was confirmed by Herceptin's antibody-dependent cell-mediated cytotoxicity activity. Our results demonstrate the potential of this method as a critical tool for developing tissue-selective antibody delivery systems, leading to improved efficacy and reduced side effects of antibody-based therapeutics.
Collapse
Affiliation(s)
- Yusuke Yano
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Rui Tada
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Nobuhito Hamano
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Kenshin Haruta
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Tomomi Kobayashi
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Masahiro Sato
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Yamato Kikkawa
- Department of Clinical Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | - Yoko Endo-Takahashi
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Motoyoshi Nomizu
- Department of Clinical Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | - Yoichi Negishi
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan.
| |
Collapse
|
5
|
Sekine S, Mayama S, Nishijima N, Kojima T, Endo-Takahashi Y, Ishii Y, Shiono H, Akiyama S, Sakurai A, Sashida S, Hamano N, Tada R, Suzuki R, Maruyama K, Negishi Y. Development of a Gene and Nucleic Acid Delivery System for Skeletal Muscle Administration via Limb Perfusion Using Nanobubbles and Ultrasound. Pharmaceutics 2023; 15:1665. [PMID: 37376113 PMCID: PMC10302710 DOI: 10.3390/pharmaceutics15061665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/31/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
Strategies for gene and nucleic acid delivery to skeletal muscles have been extensively explored to treat Duchenne muscular dystrophy (DMD) and other neuromuscular diseases. Of these, effective intravascular delivery of naked plasmid DNA (pDNA) and nucleic acids into muscles is an attractive approach, given the high capillary density in close contact with myofibers. We developed lipid-based nanobubbles (NBs) using polyethylene-glycol-modified liposomes and an echo-contrast gas and found that these NBs could improve tissue permeability by ultrasound (US)-induced cavitation. Herein, we delivered naked pDNA or antisense phosphorodiamidate morpholino oligomers (PMOs) into the regional hindlimb muscle via limb perfusion using NBs and US exposure. pDNA encoding the luciferase gene was injected with NBs via limb perfusion into normal mice with application of US. High luciferase activity was achieved in a wide area of the limb muscle. DMD model mice were administered PMOs, designed to skip the mutated exon 23 of the dystrophin gene, with NBs via intravenous limb perfusion, followed by US exposure. The number of dystrophin-positive fibers increased in the muscles of mdx mice. Combining NBs and US exposure, which can be widely delivered to the hind limb muscles via the limb vein, could be an effective therapeutic approach for DMD and other neuromuscular disorders.
Collapse
Affiliation(s)
- Shohko Sekine
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan (Y.E.-T.); (N.H.); (R.T.)
| | - Sayaka Mayama
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan (Y.E.-T.); (N.H.); (R.T.)
| | - Nobuaki Nishijima
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan (Y.E.-T.); (N.H.); (R.T.)
| | - Takuo Kojima
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan (Y.E.-T.); (N.H.); (R.T.)
| | - Yoko Endo-Takahashi
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan (Y.E.-T.); (N.H.); (R.T.)
| | - Yuko Ishii
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan (Y.E.-T.); (N.H.); (R.T.)
| | - Hitomi Shiono
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan (Y.E.-T.); (N.H.); (R.T.)
| | - Saki Akiyama
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan (Y.E.-T.); (N.H.); (R.T.)
| | - Akane Sakurai
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan (Y.E.-T.); (N.H.); (R.T.)
| | - Sanae Sashida
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan (Y.E.-T.); (N.H.); (R.T.)
| | - Nobuhito Hamano
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan (Y.E.-T.); (N.H.); (R.T.)
| | - Rui Tada
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan (Y.E.-T.); (N.H.); (R.T.)
| | - Ryo Suzuki
- Laboratory of Drug and Gene Delivery Research, Faculty of Pharma-Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan;
- Advanced Comprehensive Research Organization (ACRO), Teikyo University, Tokyo 173-8605, Japan;
| | - Kazuo Maruyama
- Advanced Comprehensive Research Organization (ACRO), Teikyo University, Tokyo 173-8605, Japan;
- Laboratory of Ultrasound Theranostics, Faculty of Pharma-Sciences, Teikyo University, Tokyo 173-8605, Japan
| | - Yoichi Negishi
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan (Y.E.-T.); (N.H.); (R.T.)
| |
Collapse
|
6
|
Nsairat H, Alshaer W, Odeh F, Esawi E, Khater D, Bawab AA, El-Tanani M, Awidi A, Mubarak MS. Recent advances in using liposomes for delivery of nucleic acid-based therapeutics. OPENNANO 2023; 11:100132. [DOI: 10.1016/j.onano.2023.100132] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
|
7
|
Moradi Kashkooli F, Jakhmola A, Hornsby TK, Tavakkoli JJ, Kolios MC. Ultrasound-mediated nano drug delivery for treating cancer: Fundamental physics to future directions. J Control Release 2023; 355:552-578. [PMID: 36773959 DOI: 10.1016/j.jconrel.2023.02.009] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/13/2023]
Abstract
The application of biocompatible nanocarriers in medicine has provided several benefits over conventional treatment methods. However, achieving high treatment efficacy and deep penetration of nanocarriers in tumor tissue is still challenging. To address this, stimuli-responsive nano-sized drug delivery systems (DDSs) are an active area of investigation in delivering anticancer drugs. While ultrasound is mainly used for diagnostic purposes, it can also be applied to affect cellular function and the delivery/release of anticancer drugs. Therapeutic ultrasound (TUS) has shown potential as both a stand-alone anticancer treatment and a method to induce targeted drug release from nanocarrier systems. TUS approaches have been used to overcome various physiological obstacles, including endothelial barriers, the tumor microenvironment (TME), and immunological hurdles. Combining nanomedicine and ultrasound as a smart DDS can increase in situ drug delivery and improve access to impermeable tissues. Furthermore, smart DDSs can perform targeted drug release in response to distinctive TMEs, external triggers, or dual/multi-stimulus. This results in enhanced treatment efficacy and reduced damage to surrounding healthy tissue or organs at risk. Integrating DDSs and ultrasound is still in its early stages. More research and clinical trials are required to fully understand ultrasound's underlying physical mechanisms and interactions with various types of nanocarriers and different types of cells and tissues. In the present review, ultrasound-mediated nano-sized DDS, specifically focused on cancer treatment, is presented and discussed. Ultrasound interaction with nanoparticles (NPs), drug release mechanisms, and various types of ultrasound-sensitive NPs are examined. Additionally, in vitro, in vivo, and clinical applications of TUS are reviewed in light of the critical challenges that need to be considered to advance TUS toward an efficient, secure, straightforward, and accessible cancer treatment. This study also presents effective TUS parameters and safety considerations for this treatment modality and gives recommendations about system design and operation. Finally, future perspectives are considered, and different TUS approaches are examined and discussed in detail. This review investigates drug release and delivery through ultrasound-mediated nano-sized cancer treatment, both pre-clinically and clinically.
Collapse
Affiliation(s)
| | - Anshuman Jakhmola
- Department of Physics, Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Tyler K Hornsby
- Department of Physics, Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Jahangir Jahan Tavakkoli
- Department of Physics, Toronto Metropolitan University, Toronto, Ontario, Canada; Institute for Biomedical Engineering, Science and Technology (iBEST), Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Michael C Kolios
- Department of Physics, Toronto Metropolitan University, Toronto, Ontario, Canada; Institute for Biomedical Engineering, Science and Technology (iBEST), Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada.
| |
Collapse
|
8
|
Lai B, Ouyang X, Mao S, Cao J, Li H, Li S, Wang J. Target tumor therapy in human gastric cancer cells through the combination of docetaxel-loaded cationic lipid microbubbles and ultrasound-triggered microbubble destruction. Funct Integr Genomics 2023; 23:59. [PMID: 36757623 DOI: 10.1007/s10142-022-00952-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/18/2022] [Accepted: 12/25/2022] [Indexed: 02/10/2023]
Abstract
It is well accepted that ultrasound-induced microbubble (USMB) cavitation is a promising method for drug delivery. Ultrasound-targeted destruction of cytotoxic drug-loaded lipid microbubbles (LMs) is used to promote the treatment of cancer. This study aimed to investigate the antitumor effects from a combination of docetaxel-loaded cationic lipid microbubbles (DLLM+) and ultrasound (US)-triggered microbubble destruction (UTMD) on gastric cancer (GC). It was found that the functional dose of DOC in this study was 1 × 10-9 mol/L. We found that DLLM combined with the UTMD group showed greater growth inhibition of the cultured human gastric cancer cells (HGCCs) when compared with the other five groups by arresting the G2/M phase in the cell cycle. However, DLLM+ combined with UTMD showed a higher inhibition rate of tumor growth than DLLM combined with UTMD and that of the RC/CMV-p16 combined with UTMD in vitro and in vivo experiments. DLLM+ combined with UTMD significantly suppressed proliferation and promoted the apoptosis of HGCCs with more cells arrested in the G2/M phase. In addition, DLLM+ combined with UTMD suppressed the proliferation and induced apoptosis by arresting cells in the G2/M phase, which led to a great inhibition of GC progression. Thus, our results indicated that the combination of DLLM+ and UTMD might represent a novel and promising approach to chemotherapy for GC.
Collapse
Affiliation(s)
- Bin Lai
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xi Ouyang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shengxun Mao
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jiaqin Cao
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Honglang Li
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Song Li
- Mudanjiang Medical College, Mudanjiang, China
| | - Jiwei Wang
- Department of Ultrasound, The Second Affiliated Hospital of Nanchang University, No.1, Minde Road, Donghu District, Nanchang, China.
| |
Collapse
|
9
|
Development of an Antibody Delivery Method for Cancer Treatment by Combining Ultrasound with Therapeutic Antibody-Modified Nanobubbles Using Fc-Binding Polypeptide. Pharmaceutics 2022; 15:pharmaceutics15010130. [PMID: 36678759 PMCID: PMC9861716 DOI: 10.3390/pharmaceutics15010130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/17/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
A key challenge in treating solid tumors is that the tumor microenvironment often inhibits the penetration of therapeutic antibodies into the tumor, leading to reduced therapeutic efficiency. It has been reported that the combination of ultrasound-responsive micro/nanobubble and therapeutic ultrasound (TUS) enhances the tissue permeability and increases the efficiency of delivery of macromolecular drugs to target tissues. In this study, to facilitate efficient therapeutic antibody delivery to tumors using this combination system, we developed therapeutic antibody-modified nanobubble (NBs) using an Fc-binding polypeptide that can quickly load antibodies to nanocarriers; since the polypeptide was derived from Protein G. TUS exposure to this Herceptin®-modified NBs (Her-NBs) was followed by evaluation of the antibody's own ADCC activity, resulting the retained activity. Moreover, the utility of combining therapeutic antibody-modified NBs and TUS exposure as an antibody delivery system for cancer therapy was assessed in vivo. The Her-NBs + TUS group had a higher inhibitory effect than the Herceptin and Her-NBs groups. Overall, these results suggest that the combination of therapeutic antibody-modified NBs and TUS exposure can enable efficient antibody drug delivery to tumors, while retaining the original antibody activity. Hence, this system has the potential to maximize the therapeutic effects in antibody therapy for solid cancers.
Collapse
|
10
|
De Serres-Bérard T, Ait Benichou S, Jauvin D, Boutjdir M, Puymirat J, Chahine M. Recent Progress and Challenges in the Development of Antisense Therapies for Myotonic Dystrophy Type 1. Int J Mol Sci 2022; 23:13359. [PMID: 36362145 PMCID: PMC9657934 DOI: 10.3390/ijms232113359] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 08/01/2023] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a dominant genetic disease in which the expansion of long CTG trinucleotides in the 3' UTR of the myotonic dystrophy protein kinase (DMPK) gene results in toxic RNA gain-of-function and gene mis-splicing affecting mainly the muscles, the heart, and the brain. The CUG-expanded transcripts are a suitable target for the development of antisense oligonucleotide (ASO) therapies. Various chemical modifications of the sugar-phosphate backbone have been reported to significantly enhance the affinity of ASOs for RNA and their resistance to nucleases, making it possible to reverse DM1-like symptoms following systemic administration in different transgenic mouse models. However, specific tissue delivery remains to be improved to achieve significant clinical outcomes in humans. Several strategies, including ASO conjugation to cell-penetrating peptides, fatty acids, or monoclonal antibodies, have recently been shown to improve potency in muscle and cardiac tissues in mice. Moreover, intrathecal administration of ASOs may be an advantageous complementary administration route to bypass the blood-brain barrier and correct defects of the central nervous system in DM1. This review describes the evolution of the chemical design of antisense oligonucleotides targeting CUG-expanded mRNAs and how recent advances in the field may be game-changing by forwarding laboratory findings into clinical research and treatments for DM1 and other microsatellite diseases.
Collapse
Affiliation(s)
- Thiéry De Serres-Bérard
- CERVO Research Center, Institut Universitaire en Santé Mentale de Québec, Quebec City, QC G1J 2G3, Canada
| | - Siham Ait Benichou
- LOEX, CHU de Québec-Université Laval Research Center, Quebec City, QC G1J 1Z4, Canada
| | - Dominic Jauvin
- CERVO Research Center, Institut Universitaire en Santé Mentale de Québec, Quebec City, QC G1J 2G3, Canada
| | - Mohamed Boutjdir
- Cardiovascular Research Program, VA New York Harbor Healthcare System, New York, NY 11209, USA
- Department of Medicine, Cell Biology and Pharmacology, State University of New York Downstate Health Science University, New York, NY 11203, USA
- Department of Medicine, NYU School of Medicine, New York, NY 10016, USA
| | - Jack Puymirat
- LOEX, CHU de Québec-Université Laval Research Center, Quebec City, QC G1J 1Z4, Canada
- Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Mohamed Chahine
- CERVO Research Center, Institut Universitaire en Santé Mentale de Québec, Quebec City, QC G1J 2G3, Canada
- Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
| |
Collapse
|
11
|
Pasupathy R, Pandian P, Selvamuthukumar S. Nanobubbles: A Novel Targeted Drug Delivery System. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e19604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
12
|
Endo-Takahashi Y, Negishi Y. Gene and oligonucleotide delivery via micro- and nanobubbles by ultrasound exposure. Drug Metab Pharmacokinet 2022; 44:100445. [DOI: 10.1016/j.dmpk.2022.100445] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 12/15/2022]
|
13
|
Zhang N, Wang J, Foiret J, Dai Z, Ferrara KW. Synergies between therapeutic ultrasound, gene therapy and immunotherapy in cancer treatment. Adv Drug Deliv Rev 2021; 178:113906. [PMID: 34333075 PMCID: PMC8556319 DOI: 10.1016/j.addr.2021.113906] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/12/2021] [Accepted: 07/25/2021] [Indexed: 12/14/2022]
Abstract
Due to the ease of use and excellent safety profile, ultrasound is a promising technique for both diagnosis and site-specific therapy. Ultrasound-based techniques have been developed to enhance the pharmacokinetics and efficacy of therapeutic agents in cancer treatment. In particular, transfection with exogenous nucleic acids has the potential to stimulate an immune response in the tumor microenvironment. Ultrasound-mediated gene transfection is a growing field, and recent work has incorporated this technique into cancer immunotherapy. Compared with other gene transfection methods, ultrasound-mediated gene transfection has a unique opportunity to augment the intracellular uptake of nucleic acids while safely and stably modulating the expression of immunostimulatory cytokines. The development and commercialization of therapeutic ultrasound systems further enhance the potential translation. In this Review, we introduce the underlying mechanisms and ongoing preclinical studies of ultrasound-based techniques in gene transfection for cancer immunotherapy. Furthermore, we expand on aspects of therapeutic ultrasound that impact gene therapy and immunotherapy, including tumor debulking, enhancing cytokines and chemokines and altering nanoparticle pharmacokinetics as these effects of ultrasound cannot be fully dissected from targeted gene therapy. We finally explore the outlook for this rapidly developing field.
Collapse
Affiliation(s)
- Nisi Zhang
- Department of Radiology, Stanford University, Palo Alto, CA, USA; Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
| | - James Wang
- Department of Radiology, Stanford University, Palo Alto, CA, USA
| | - Josquin Foiret
- Department of Radiology, Stanford University, Palo Alto, CA, USA
| | - Zhifei Dai
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China.
| | | |
Collapse
|
14
|
Tehrani Fateh S, Moradi L, Kohan E, Hamblin MR, Shiralizadeh Dezfuli A. Comprehensive review on ultrasound-responsive theranostic nanomaterials: mechanisms, structures and medical applications. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2021; 12:808-862. [PMID: 34476167 PMCID: PMC8372309 DOI: 10.3762/bjnano.12.64] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 07/15/2021] [Indexed: 05/03/2023]
Abstract
The field of theranostics has been rapidly growing in recent years and nanotechnology has played a major role in this growth. Nanomaterials can be constructed to respond to a variety of different stimuli which can be internal (enzyme activity, redox potential, pH changes, temperature changes) or external (light, heat, magnetic fields, ultrasound). Theranostic nanomaterials can respond by producing an imaging signal and/or a therapeutic effect, which frequently involves cell death. Since ultrasound (US) is already well established as a clinical imaging modality, it is attractive to combine it with rationally designed nanoparticles for theranostics. The mechanisms of US interactions include cavitation microbubbles (MBs), acoustic droplet vaporization, acoustic radiation force, localized thermal effects, reactive oxygen species generation, sonoluminescence, and sonoporation. These effects can result in the release of encapsulated drugs or genes at the site of interest as well as cell death and considerable image enhancement. The present review discusses US-responsive theranostic nanomaterials under the following categories: MBs, micelles, liposomes (conventional and echogenic), niosomes, nanoemulsions, polymeric nanoparticles, chitosan nanocapsules, dendrimers, hydrogels, nanogels, gold nanoparticles, titania nanostructures, carbon nanostructures, mesoporous silica nanoparticles, fuel-free nano/micromotors.
Collapse
Affiliation(s)
- Sepand Tehrani Fateh
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Lida Moradi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Elmira Kohan
- Department of Science, University of Kurdistan, Kurdistan, Sanandaj, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | | |
Collapse
|
15
|
Zhang Y, Fowlkes JB. Liposomes-based nanoplatform enlarges ultrasound-related diagnostic and therapeutic precision. Curr Med Chem 2021; 29:1331-1341. [PMID: 34348609 DOI: 10.2174/0929867328666210804092624] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 06/23/2021] [Accepted: 06/30/2021] [Indexed: 12/07/2022]
Abstract
Ultrasound (US) is notable in the medical field as a safe and effective imaging modality due to its lack of ionizing radiation, non-invasive approach, and real-time monitoring capability. Accompanying recent progress in nanomedicine, US has been providing hope of theranostic capability not only for imaging-based diagnosis but also for US-based therapy by taking advantage of the bioeffects induced by US. Cavitation, sonoporation, thermal effects, and other cascade effects stimulated by acoustic energy conversion have contributed to medical problem-solving in the past decades although to varying degrees of efficacy in comparisons to other methods. Recently, the usage of liposomes-based nanoplatform fuels the development of nanomedicine and provides novel clinical strategies for antitumor, thrombolysis, and controlled drug release. Merging of novel liposome-based nanoplatforms and US-induced reactions has promise for a new blueprint for future medicine. In the present review article, the value of liposome-based nanoplatforms in US-related diagnosis and therapy will be discussed and summarized along with potential future directions for further investigations.
Collapse
Affiliation(s)
- Ying Zhang
- Dept. Radiology, University of Michigan, Ann Arbor, Michigan, 48109. United States
| | - J Brian Fowlkes
- Dept. Radiology, University of Michigan, Ann Arbor, Michigan, 48109. United States
| |
Collapse
|
16
|
Omata D, Munakata L, Kageyama S, Suzuki Y, Maruyama T, Shima T, Chikaarashi T, Kajita N, Masuda K, Tsuchiya N, Maruyama K, Suzuki R. Ultrasound image-guided gene delivery using three-dimensional diagnostic ultrasound and lipid-based microbubbles. J Drug Target 2021; 30:200-207. [PMID: 34254554 DOI: 10.1080/1061186x.2021.1953510] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Gene therapy is a promising technology for genetic and intractable diseases. Drug delivery carriers or systems for genes and nucleic acids have been studied to improve transfection efficiency and achieve sufficient therapeutic effects. Ultrasound (US) and microbubbles have also been combined for use in gene delivery. To establish a clinically effective gene delivery system, exposing the target tissues to US is important. The three-dimensional (3D) diagnostic probe can three-dimensionally scan the tissue with mechanical regulation, and homogenous US exposure to the targeted tissue can be expected. However, the feasibility of therapeutically applying 3D probes has not been evaluated, especially gene delivery. In this study, we evaluated the characteristics of a 3D probe and lipid-based microbubbles (LB) for gene delivery and determined whether the 3D probe in the diagnostic US device could be used for efficient gene delivery to the targeted tissue using a mouse model. The 3D probe RSP6-16 with LB delivered plasmid DNA (pDNA) to the kidney after systemic injection with luciferase activity similar to that of probes used in previously studies. No toxicity was observed after treatment and, therefore, the combined 3D probe and LB would deliver genes to targeted tissue safely and efficiently.
Collapse
Affiliation(s)
- Daiki Omata
- Faculty of Pharma-Science, Laboratory of Drug and Gene Delivery Research, Teikyo University, Tokyo, Japan
| | - Lisa Munakata
- Faculty of Pharma-Science, Laboratory of Drug and Gene Delivery Research, Teikyo University, Tokyo, Japan
| | - Saori Kageyama
- Faculty of Pharma-Science, Laboratory of Drug and Gene Delivery Research, Teikyo University, Tokyo, Japan
| | - Yuno Suzuki
- Faculty of Pharma-Science, Laboratory of Drug and Gene Delivery Research, Teikyo University, Tokyo, Japan
| | - Tamotsu Maruyama
- Faculty of Pharma-Science, Laboratory of Drug and Gene Delivery Research, Teikyo University, Tokyo, Japan
| | - Tadamitsu Shima
- Faculty of Pharma-Science, Laboratory of Drug and Gene Delivery Research, Teikyo University, Tokyo, Japan
| | - Takumi Chikaarashi
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Naoya Kajita
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Kohji Masuda
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Naoto Tsuchiya
- Laboratory of Molecular Carcinogenesis, National Cancer Center Research Institute, Tokyo, Japan
| | - Kazuo Maruyama
- Faculty of Pharma-Science, Laboratory of Theranostics, Teikyo University, Tokyo, Japan.,Advanced Comprehensive Research Organization (ACRO), Teikyo University, Tokyo, Japan
| | - Ryo Suzuki
- Faculty of Pharma-Science, Laboratory of Drug and Gene Delivery Research, Teikyo University, Tokyo, Japan.,Advanced Comprehensive Research Organization (ACRO), Teikyo University, Tokyo, Japan
| |
Collapse
|
17
|
Ternary Complexes of pDNA, Neuron-Binding Peptide, and PEGylated Polyethyleneimine for Brain Delivery with Nano-Bubbles and Ultrasound. Pharmaceutics 2021; 13:pharmaceutics13071003. [PMID: 34371694 PMCID: PMC8309135 DOI: 10.3390/pharmaceutics13071003] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/24/2021] [Accepted: 06/29/2021] [Indexed: 01/06/2023] Open
Abstract
In brain-targeted delivery, the transport of drugs or genes across the blood-brain barrier (BBB) is a major obstacle. Recent reports found that focused ultrasound (FUS) with microbubbles enables transient BBB opening and improvement of drug or gene delivery. We previously developed nano-sized bubbles (NBs), which were prepared based on polyethylene glycol (PEG)-modified liposomes containing echo-contrast gas, and showed that our NBs with FUS could also induce BBB opening. The aim of this study was to enhance the efficiency of delivery of pDNA into neuronal cells following transportation across the BBB using neuron-binding peptides. This study used the RVG-R9 peptide, which is a chimeric peptide synthesized by peptides derived from rabies virus glycoprotein and nonamer arginine residues. The RVG peptide is known to interact specifically with the nicotinic acetylcholine receptor in neuronal cells. To enhance the stability of the RVG-R9/pDNA complex in vivo, PEGylated polyethyleneimine (PEG-PEI) was also used. The ternary complexes composed of RVG-R9, PEG-PEI, and pDNA could interact with mouse neuroblastoma cells and deliver pDNA into the cells. Furthermore, for the in vivo experiments using NBs and FUS, gene expression was observed in the FUS-exposed brain hemispheres. These results suggest that this systemic gene delivery system could be useful for gene delivery across the BBB.
Collapse
|
18
|
Franco-Urquijo CA, Navarro-Becerra JÁ, Ríos A, Escalante B. Release of vascular agonists from liposome-microbubble conjugate by ultrasound-mediated microbubble destruction: effect on vascular function. Drug Deliv Transl Res 2021; 12:1175-1186. [PMID: 33939122 DOI: 10.1007/s13346-021-00994-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2021] [Indexed: 11/26/2022]
Abstract
The endothelium is a single cell layer of the vessel wall and a key regulator of blood flow in vascular beds. Local and systemic pathologies have been associated with alterations in endothelial function. However, targeting the endothelium with vasoconstrictor or vasodilator drugs is often accompanied by systemic effects. Here, we evaluated a liposome-microbubble delivery system as a vascular hydrophilic agonist carrier. Phenylephrine (Phe) or acetylcholine (Ach)-loaded liposomes were conjugated to microbubbles. The drug release was triggered by ultrasound (US), and the vascular response was assessed in rat aortic rings using an isolated organ chamber. Aortic rings incubated with Phe-liposome-microbubble conjugate, exposed to US showed a marked contractile response (0.79 ± 0.04 g) compared to empty liposomes conjugated to microbubbles, aortic rings exposed only to US, and Phe-liposome-microbubble conjugate without US exposure that elicited a minimal or no response. Expressed as %, contractile responses were 85.24 ± 4.31% and 12.62 ± 3.23% for Phe-Chol-liposome-microbubble conjugate and empty Chol-liposome-microbubble conjugate exposed to US, respectively. Addition of 1 × 10-5 M Ach to pre-contracted aortic rings decreased the contraction response from 1 to 0.21 g. The addition of Ach-liposome conjugate and exposure to US decreased the contraction response to 0.32 g. Additionally, the ED50 values for Phe and Ach released by US from liposome-microbubble conjugates were 3.6 × 10-8 M ± 2.8 × 10-9 M for Phe and 2.0 × 10-8 M ± 1.8 × 10-9 M. In conclusion, we evaluated a hybrid delivery system that consisted of loaded liposomes conjugated to microbubbles to deliver and release vascular agonists using UMMD.
Collapse
Affiliation(s)
- Carlos A Franco-Urquijo
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad-Monterrey, Vía del Conocimiento 201, PIIT, NL, Apodaca, Mexico
| | - J Ángel Navarro-Becerra
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad-Monterrey, Vía del Conocimiento 201, PIIT, NL, Apodaca, Mexico
- Department of Mechanical Engineering, University of Colorado, 1111 Engineering Drive, Boulder, CO, USA
| | - Amelia Ríos
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad-Monterrey, Vía del Conocimiento 201, PIIT, NL, Apodaca, Mexico.
| | - Bruno Escalante
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad-Monterrey, Vía del Conocimiento 201, PIIT, NL, Apodaca, Mexico
- Universidad de Monterrey, Av. Ignacio Morones Prieto 4500, San Pedro Garza García, NL, Mexico
| |
Collapse
|
19
|
Yamaguchi K, Matsumoto Y, Suzuki R, Nishida H, Omata D, Inaba H, Kukita A, Tanikawa M, Sone K, Oda K, Osuga Y, Maruyama K, Fujii T. Enhanced antitumor activity of combined lipid bubble ultrasound and anticancer drugs in gynecological cervical cancers. Cancer Sci 2021; 112:2493-2503. [PMID: 33793049 PMCID: PMC8177762 DOI: 10.1111/cas.14907] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/24/2021] [Accepted: 03/28/2021] [Indexed: 12/23/2022] Open
Abstract
Chemotherapy plays an important role in the treatment of patients with gynecological cancers. Delivering anticancer drugs effectively to tumor cells with just few side effects is key in cancer treatment. Lipid bubbles (LB) are compounds that increase the vascular permeability of the tumor under diagnostic ultrasound (US) exposure and enable the effective transport of drugs to tumor cells. The aim of our study was to establish a novel drug delivery technique for chemotherapy and to identify the most effective anticancer drugs for the bubble US‐mediated drug delivery system (BUS‐DDS) in gynecological cancer treatments. We constructed xenograft models using cervical cancer (HeLa) and uterine endometrial cancer (HEC1B) cell lines. Lipid bubbles were injected i.v., combined with either cisplatin (CDDP), pegylated liposomal doxorubicin (PLD), or bevacizumab, and US was applied to the tumor. We compared the enhanced chemotherapeutic effects of these drugs and determined the optimal drugs for BUS‐DDS. Tumor volume reduction of HeLa and HEC1B xenografts following cisplatin treatment was significantly enhanced by BUS‐DDS. Both CDDP and PLD significantly enhanced the antitumor effects of BUS‐DDS in HeLa tumors; however, volume reduction by BUS‐DDS was insignificant when combined with bevacizumab, a humanized anti‐vascular endothelial growth factor mAb. The BUS‐DDS did not cause any severe adverse events and significantly enhanced the antitumor effects of cytotoxic drugs. The effects of bevacizumab, which were not as dose‐dependent as those of the two drugs used prior, were minimal. Our data suggest that BUS‐DDS technology might help achieve “reinforced targeting” in the treatment of gynecological cancers.
Collapse
Affiliation(s)
- Kohei Yamaguchi
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoko Matsumoto
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Obstetrics and Gynecology, Tokyo Metropolitan Bokutoh Hospital, Tokyo, Japan
| | - Ryo Suzuki
- Laboratory of Drug and Gene Delivery Research, Faculty of Pharma-Science, Teikyo University, Tokyo, Japan
| | - Haruka Nishida
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Daiki Omata
- Laboratory of Drug and Gene Delivery Research, Faculty of Pharma-Science, Teikyo University, Tokyo, Japan
| | - Hirofumi Inaba
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Asako Kukita
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Michihiro Tanikawa
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kenbun Sone
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Katsutoshi Oda
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan.,Division of Interactive Genomics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yutaka Osuga
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazuo Maruyama
- Laboratory of Theranostics, Faculty of Pharma-Science, Teikyo University, Tokyo, Japan
| | - Tomoyuki Fujii
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
20
|
Andreana I, Repellin M, Carton F, Kryza D, Briançon S, Chazaud B, Mounier R, Arpicco S, Malatesta M, Stella B, Lollo G. Nanomedicine for Gene Delivery and Drug Repurposing in the Treatment of Muscular Dystrophies. Pharmaceutics 2021; 13:278. [PMID: 33669654 PMCID: PMC7922331 DOI: 10.3390/pharmaceutics13020278] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/07/2021] [Accepted: 02/14/2021] [Indexed: 12/11/2022] Open
Abstract
Muscular Dystrophies (MDs) are a group of rare inherited genetic muscular pathologies encompassing a variety of clinical phenotypes, gene mutations and mechanisms of disease. MDs undergo progressive skeletal muscle degeneration causing severe health problems that lead to poor life quality, disability and premature death. There are no available therapies to counteract the causes of these diseases and conventional treatments are administered only to mitigate symptoms. Recent understanding on the pathogenetic mechanisms allowed the development of novel therapeutic strategies based on gene therapy, genome editing CRISPR/Cas9 and drug repurposing approaches. Despite the therapeutic potential of these treatments, once the actives are administered, their instability, susceptibility to degradation and toxicity limit their applications. In this frame, the design of delivery strategies based on nanomedicines holds great promise for MD treatments. This review focuses on nanomedicine approaches able to encapsulate therapeutic agents such as small chemical molecules and oligonucleotides to target the most common MDs such as Duchenne Muscular Dystrophy and the Myotonic Dystrophies. The challenge related to in vitro and in vivo testing of nanosystems in appropriate animal models is also addressed. Finally, the most promising nanomedicine-based strategies are highlighted and a critical view in future developments of nanomedicine for neuromuscular diseases is provided.
Collapse
Affiliation(s)
- Ilaria Andreana
- Laboratoire d’Automatique, de Génie des Procédés et de Génie Pharmaceutique, Université Claude Bernard Lyon 1, CNRS UMR 5007, 43 bd 11 Novembre 1918, 69622 Villeurbanne, France; (I.A.); (M.R.); (D.K.); (S.B.)
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Torino, Italy;
| | - Mathieu Repellin
- Laboratoire d’Automatique, de Génie des Procédés et de Génie Pharmaceutique, Université Claude Bernard Lyon 1, CNRS UMR 5007, 43 bd 11 Novembre 1918, 69622 Villeurbanne, France; (I.A.); (M.R.); (D.K.); (S.B.)
- Department of Neurosciences, Biomedicine and Movement Sciences, Anatomy and Histology Section, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy; (F.C.); (M.M.)
| | - Flavia Carton
- Department of Neurosciences, Biomedicine and Movement Sciences, Anatomy and Histology Section, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy; (F.C.); (M.M.)
- Department of Health Sciences, University of Eastern Piedmont, Via Solaroli 17, 28100 Novara, Italy
| | - David Kryza
- Laboratoire d’Automatique, de Génie des Procédés et de Génie Pharmaceutique, Université Claude Bernard Lyon 1, CNRS UMR 5007, 43 bd 11 Novembre 1918, 69622 Villeurbanne, France; (I.A.); (M.R.); (D.K.); (S.B.)
- Hospices Civils de Lyon, 69437 Lyon, France
| | - Stéphanie Briançon
- Laboratoire d’Automatique, de Génie des Procédés et de Génie Pharmaceutique, Université Claude Bernard Lyon 1, CNRS UMR 5007, 43 bd 11 Novembre 1918, 69622 Villeurbanne, France; (I.A.); (M.R.); (D.K.); (S.B.)
| | - Bénédicte Chazaud
- Institut NeuroMyoGène, University of Lyon, INSERM U1217, CNRS UMR 5310, 8 Avenue Rockefeller, 69008 Lyon, France; (B.C.); (R.M.)
| | - Rémi Mounier
- Institut NeuroMyoGène, University of Lyon, INSERM U1217, CNRS UMR 5310, 8 Avenue Rockefeller, 69008 Lyon, France; (B.C.); (R.M.)
| | - Silvia Arpicco
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Torino, Italy;
| | - Manuela Malatesta
- Department of Neurosciences, Biomedicine and Movement Sciences, Anatomy and Histology Section, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy; (F.C.); (M.M.)
| | - Barbara Stella
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Torino, Italy;
| | - Giovanna Lollo
- Laboratoire d’Automatique, de Génie des Procédés et de Génie Pharmaceutique, Université Claude Bernard Lyon 1, CNRS UMR 5007, 43 bd 11 Novembre 1918, 69622 Villeurbanne, France; (I.A.); (M.R.); (D.K.); (S.B.)
| |
Collapse
|
21
|
Fumoto S, Yamamoto T, Okami K, Maemura Y, Terada C, Yamayoshi A, Nishida K. Understanding In Vivo Fate of Nucleic Acid and Gene Medicines for the Rational Design of Drugs. Pharmaceutics 2021; 13:159. [PMID: 33530309 PMCID: PMC7911509 DOI: 10.3390/pharmaceutics13020159] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 02/07/2023] Open
Abstract
Nucleic acid and genetic medicines are increasingly being developed, owing to their potential to treat a variety of intractable diseases. A comprehensive understanding of the in vivo fate of these agents is vital for the rational design, discovery, and fast and straightforward development of the drugs. In case of intravascular administration of nucleic acids and genetic medicines, interaction with blood components, especially plasma proteins, is unavoidable. However, on the flip side, such interaction can be utilized wisely to manipulate the pharmacokinetics of the agents. In other words, plasma protein binding can help in suppressing the elimination of nucleic acids from the blood stream and deliver naked oligonucleotides and gene carriers into target cells. To control the distribution of these agents in the body, the ligand conjugation method is widely applied. It is also important to understand intracellular localization. In this context, endocytosis pathway, endosomal escape, and nuclear transport should be considered and discussed. Encapsulated nucleic acids and genes must be dissociated from the carriers to exert their activity. In this review, we summarize the in vivo fate of nucleic acid and gene medicines and provide guidelines for the rational design of drugs.
Collapse
Affiliation(s)
- Shintaro Fumoto
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan; (T.Y.); (K.O.); (Y.M.); (C.T.); (A.Y.); (K.N.)
| | | | | | | | | | | | | |
Collapse
|
22
|
Suppression of Peritoneal Fibrosis by Sonoporation of Hepatocyte Growth Factor Gene-Encoding Plasmid DNA in Mice. Pharmaceutics 2021; 13:pharmaceutics13010115. [PMID: 33477422 PMCID: PMC7829751 DOI: 10.3390/pharmaceutics13010115] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/15/2021] [Accepted: 01/15/2021] [Indexed: 12/14/2022] Open
Abstract
Gene therapy is expected to be used for the treatment of peritoneal fibrosis, which is a serious problem associated with long-term peritoneal dialysis. Hepatocyte growth factor (HGF) is a well-known anti-fibrotic gene. We developed an ultrasound and nanobubble-mediated (sonoporation) gene transfection system, which selectively targets peritoneal tissues. Thus, we attempted to treat peritoneal fibrosis by sonoporation-based human HGF (hHGF) gene transfection in mice. To prepare a model of peritoneal fibrosis, mice were intraperitoneally injected with chlorhexidine digluconate. We evaluated the preventive and curative effects of sonoporation-based hHGF transfection by analyzing the following factors: hydroxyproline level, peritoneum thickness, and the peritoneal equilibration test. The transgene expression characteristics of sonoporation were also evaluated using multicolor deep imaging. In early-stage fibrosis in mice, transgene expression by sonoporation was observed in the submesothelial layer. Sonoporation-based hHGF transfection showed not only a preventive effect but also a curative effect for early-stage peritoneal fibrosis. Sonoporation-based hHGF transfection may be suitable for the treatment of peritoneal fibrosis regarding the transfection characteristics of transgene expression in the peritoneum under fibrosis.
Collapse
|
23
|
Microbubbles and Nanobubbles with Ultrasound for Systemic Gene Delivery. Pharmaceutics 2020; 12:pharmaceutics12100964. [PMID: 33066531 PMCID: PMC7602142 DOI: 10.3390/pharmaceutics12100964] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 10/12/2020] [Accepted: 10/12/2020] [Indexed: 02/08/2023] Open
Abstract
The regulation of gene expression is a promising therapeutic approach for many intractable diseases. However, its use in clinical applications requires the efficient delivery of nucleic acids to target tissues, which is a major challenge. Recently, various delivery systems employing physical energy, such as ultrasound, magnetic force, electric force, and light, have been developed. Ultrasound-mediated delivery has particularly attracted interest due to its safety and low costs. Its delivery effects are also enhanced when combined with microbubbles or nanobubbles that entrap an ultrasound contrast gas. Furthermore, ultrasound-mediated nucleic acid delivery could be performed only in ultrasound exposed areas. In this review, we summarize the ultrasound-mediated nucleic acid systemic delivery system, using microbubbles or nanobubbles, and discuss its possibilities as a therapeutic tool.
Collapse
|
24
|
Shah H, Tariq I, Engelhardt K, Bakowsky U, Pinnapireddy SR. Development and Characterization of Ultrasound Activated Lipopolyplexes for Enhanced Transfection by Low Frequency Ultrasound in In Vitro Tumor Model. Macromol Biosci 2020; 20:e2000173. [DOI: 10.1002/mabi.202000173] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/10/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Hirva Shah
- Department of Pharmaceutics and Biopharmaceutics University of Marburg Robert Koch Straße 4 Marburg 35037 Germany
| | - Imran Tariq
- Department of Pharmaceutics and Biopharmaceutics University of Marburg Robert Koch Straße 4 Marburg 35037 Germany
- Punjab University College of Pharmacy University of the Punjab Lahore 54000 Pakistan
| | - Konrad Engelhardt
- Department of Pharmaceutics and Biopharmaceutics University of Marburg Robert Koch Straße 4 Marburg 35037 Germany
| | - Udo Bakowsky
- Department of Pharmaceutics and Biopharmaceutics University of Marburg Robert Koch Straße 4 Marburg 35037 Germany
| | - Shashank Reddy Pinnapireddy
- Department of Pharmaceutics and Biopharmaceutics University of Marburg Robert Koch Straße 4 Marburg 35037 Germany
- CSL Behring GmbH Emil‐von‐Behring‐Str. 76 Marburg 35041 Germany
| |
Collapse
|
25
|
A Pilot Study on Efficacy of Lipid Bubbles for Theranostics in Dogs with Tumors. Cancers (Basel) 2020; 12:cancers12092423. [PMID: 32859089 PMCID: PMC7564957 DOI: 10.3390/cancers12092423] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/21/2020] [Accepted: 08/22/2020] [Indexed: 12/17/2022] Open
Abstract
The combined administration of microbubbles and ultrasound (US) is a promising strategy for theranostics, i.e., a combination of therapeutics and diagnostics. Lipid bubbles (LBs), which are experimental theranostic microbubbles, have demonstrated efficacy in vitro and in vivo for both contrast imaging and drug delivery in combination with US irradiation. To evaluate the clinical efficacy of LBs in combination with US in large animals, we performed a series of experiments, including clinical studies in dogs. First, contrast-enhanced ultrasonography using LBs (LB-CEUS) was performed on the livers of six healthy Beagles. The hepatic portal vein and liver tissue were enhanced; no adverse reactions were observed. Second, LB-CEUS was applied clinically to 21 dogs with focal liver lesions. The sensitivity and specificity were 100.0% and 83.3%, respectively. These results suggested that LB-CEUS could be used safely for diagnosis, with high accuracy. Finally, LBs were administered in combination with therapeutic US to three dogs with an anatomically unresectable solid tumor in the perianal and cervical region to determine the enhancement of the chemotherapeutic effect of liposomal doxorubicin; a notable reduction in tumor volume was observed. These findings indicate that LBs have potential for both therapeutic and diagnostic applications in dogs in combination with US irradiation.
Collapse
|
26
|
Rezk AR, Ahmed H, Ramesan S, Yeo LY. High Frequency Sonoprocessing: A New Field of Cavitation-Free Acoustic Materials Synthesis, Processing, and Manipulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 8:2001983. [PMID: 33437572 PMCID: PMC7788597 DOI: 10.1002/advs.202001983] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/17/2020] [Indexed: 04/14/2023]
Abstract
Ultrasound constitutes a powerful means for materials processing. Similarly, a new field has emerged demonstrating the possibility for harnessing sound energy sources at considerably higher frequencies (10 MHz to 1 GHz) compared to conventional ultrasound (⩽3 MHz) for synthesizing and manipulating a variety of bulk, nanoscale, and biological materials. At these frequencies and the typical acoustic intensities employed, cavitation-which underpins most sonochemical or, more broadly, ultrasound-mediated processes-is largely absent, suggesting that altogether fundamentally different mechanisms are at play. Examples include the crystallization of novel morphologies or highly oriented structures; exfoliation of 2D quantum dots and nanosheets; polymer nanoparticle synthesis and encapsulation; and the possibility for manipulating the bandgap of 2D semiconducting materials or the lipid structure that makes up the cell membrane, the latter resulting in the ability to enhance intracellular molecular uptake. These fascinating examples reveal how the highly nonlinear electromechanical coupling associated with such high-frequency surface vibration gives rise to a variety of static and dynamic charge generation and transfer effects, in addition to molecular ordering, polarization, and assembly-remarkably, given the vast dimensional separation between the acoustic wavelength and characteristic molecular length scales, or between the MHz-order excitation frequencies and typical THz-order molecular vibration frequencies.
Collapse
Affiliation(s)
- Amgad R. Rezk
- Micro/Nanophysics Research LaboratorySchool of EngineeringRMIT UniversityMelbourneVIC3000Australia
| | - Heba Ahmed
- Micro/Nanophysics Research LaboratorySchool of EngineeringRMIT UniversityMelbourneVIC3000Australia
| | - Shwathy Ramesan
- Micro/Nanophysics Research LaboratorySchool of EngineeringRMIT UniversityMelbourneVIC3000Australia
| | - Leslie Y. Yeo
- Micro/Nanophysics Research LaboratorySchool of EngineeringRMIT UniversityMelbourneVIC3000Australia
| |
Collapse
|
27
|
Omata D, Maruyama T, Unga J, Hagiwara F, Munakata L, Kageyama S, Shima T, Suzuki Y, Maruyama K, Suzuki R. Effects of encapsulated gas on stability of lipid-based microbubbles and ultrasound-triggered drug delivery. J Control Release 2019; 311-312:65-73. [DOI: 10.1016/j.jconrel.2019.08.023] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 08/21/2019] [Accepted: 08/23/2019] [Indexed: 11/30/2022]
|
28
|
Tabata H, Koyama D, Matsukawa M, Yoshida K, Krafft MP. Vibration Characteristics and Persistence of Poloxamer- or Phospholipid-Coated Single Microbubbles under Ultrasound Irradiation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:11322-11329. [PMID: 31419140 DOI: 10.1021/acs.langmuir.9b02006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Microbubbles shelled with soft materials are expected to find applications as ultrasound-sensitive drug delivery systems, including through sonoporation. Microbubbles with specific vibrational characteristics and long intravascular persistence are required for clinical uses. To achieve this aim, the kinetics of the microbubble shell components at the gas/liquid interface while being subjected to ultrasound need to be better understood. This paper investigates the vibration characteristics and lifetime of single microbubbles coated with a poloxamer surfactant, Pluronic F-68, and 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) under ultrasound irradiation. Air- and perfluorohexane (PFH)-filled microbubbles coated with Pluronic F-68 and DMPC at several concentrations (0 to 10-2 mol L-1) were produced. An optical measurement system using a laser Doppler vibrometer and microscope was used to observe the radial vibration mode of single microbubbles. The vibrational displacement amplitude and resonance radius of Pluronic- or DMPC-coated microbubbles were found to depend very little on the concentrations. The resonance radius was around 65 μm at 38.8 kHz under all the experimental conditions investigated. The lifetime of the microbubbles was investigated simultaneously by measuring their temporal change in volume, and it was increased with Pluronic concentration. Remarkably, the oscillation amplitude of the bubble has an effect on the bubble lifetime. In other words, larger oscillation under the resonance condition accelerates the diffusion of the inner gas.
Collapse
Affiliation(s)
- Hiraku Tabata
- Faculty of Science and Engineering , Doshisha University , 1-3 Tataramiyakodani , Kyotanabe , Kyoto 610-0321 , Japan
| | - Daisuke Koyama
- Faculty of Science and Engineering , Doshisha University , 1-3 Tataramiyakodani , Kyotanabe , Kyoto 610-0321 , Japan
| | - Mami Matsukawa
- Faculty of Science and Engineering , Doshisha University , 1-3 Tataramiyakodani , Kyotanabe , Kyoto 610-0321 , Japan
| | - Kenji Yoshida
- Center for Frontier Medical Engineering , Chiba University , 1-33 Yayoicho , Inage-ku , Chiba 263-8522 , Japan
| | - Marie Pierre Krafft
- Institut Charles Sadron (CNRS) , University of Strasbourg , 23 rue du Loess , 67034 Strasbourg , France
| |
Collapse
|
29
|
Komiya S, Nagano S, Setoguchi T. Current therapeutic modalities and newly designed gene therapy for refractory sarcomas. J Orthop Sci 2019; 24:764-769. [PMID: 31196729 DOI: 10.1016/j.jos.2018.10.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 09/12/2018] [Accepted: 10/11/2018] [Indexed: 10/26/2022]
Affiliation(s)
- Setsuro Komiya
- Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8520, Japan; Shinkado Orthopaedic Clinic, 1-8-16 Chugo, Satsuma-Sendai, 895-0072, Japan.
| | - Satoshi Nagano
- Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8520, Japan
| | - Takao Setoguchi
- The Near-Future Locomotor Organ Medicine Creation Course (Kusunoki Kai), Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8520, Japan
| |
Collapse
|
30
|
Development of Antibody-Modified Nanobubbles Using Fc-Region-Binding Polypeptides for Ultrasound Imaging. Pharmaceutics 2019; 11:pharmaceutics11060283. [PMID: 31208098 PMCID: PMC6631014 DOI: 10.3390/pharmaceutics11060283] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 06/10/2019] [Accepted: 06/12/2019] [Indexed: 02/01/2023] Open
Abstract
Ultrasound (US) imaging is a widely used imaging technique. The use of US contrast agents such as microbubbles, which consist of phospholipids and are filled with perfluorocarbon gases, has become an indispensable component of clinical US imaging, while molecular US imaging has recently attracted significant attention in combination with efficient diagnostics. The avidin–biotin interaction method is frequently used to tether antibodies to microbubbles, leading to the development of a molecular targeting US imaging agent. However, avidin still has limitations such as immunogenicity. We previously reported that lipid-based nanobubbles (NBs) containing perfluorocarbon gas are suitable for US imaging and gene delivery. In this paper, we report on the development of a novel antibody modification method for NBs using Fc-region-binding polypeptides derived from protein A/G. First, we prepared anti-CD146 antibody-modified NBs using this polypeptide, resulting in high levels of attachment to human umbilical vein endothelial cells expressing CD146. To examine their targeting ability and US imaging capability, the NBs were administered to tumor-bearing mice. The contrast imaging of antibody-modified NBs was shown to be prolonged compared with that of non-labeled NBs. Thus, this antibody modification method using an Fc-binding polypeptide may be a feasible tool for developing a next-generation antibody-modified US imaging agent.
Collapse
|
31
|
Negishi Y, Nomizu M. Laminin-derived peptides: Applications in drug delivery systems for targeting. Pharmacol Ther 2019; 202:91-97. [PMID: 31158392 DOI: 10.1016/j.pharmthera.2019.05.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 05/29/2019] [Indexed: 12/29/2022]
Abstract
Recently, the development of drug delivery systems (DDSs) for clinical application of anticancer drugs and gene therapy has rapidly progressed. In particular, DDS carriers used for chemotherapy and gene therapy are required to selectively deliver drugs and genes to cancer cells. Both the carrier and the molecule must in combination be highly selective in most cases. Possible candidate targeting molecules are the laminins, major basement membrane proteins that interact with various cells through their multiple constituent active peptide sequences. Laminin-derived peptides bind to various cellular receptors and have been used for DDSs as a targeting moiety. Here, we review the progress in laminin-derived peptide-conjugated DDSs. Drug and gene carriers as well as ultrasound diagnostic contrast agents utilizing laminin-derived peptides for selective targeting are useful components of DDSs and play important roles in cancer and in the neovasculature.
Collapse
Affiliation(s)
- Yoichi Negishi
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Motoyoshi Nomizu
- Department of Clinical Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan.
| |
Collapse
|
32
|
Nishimura K, Yonezawa K, Fumoto S, Miura Y, Hagimori M, Nishida K, Kawakami S. Application of Direct Sonoporation from a Defined Surface Area of the Peritoneum: Evaluation of Transfection Characteristics in Mice. Pharmaceutics 2019; 11:pharmaceutics11050244. [PMID: 31121989 PMCID: PMC6571618 DOI: 10.3390/pharmaceutics11050244] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/14/2019] [Accepted: 05/20/2019] [Indexed: 02/07/2023] Open
Abstract
In the present study, we developed a sonoporation system, namely “direct sonoporation”, for transfecting the peritoneum from a defined surface area to avoid systematic side effects. Here, the transfection characteristics are explained because there is less information about direct sonoporation. Naked pDNA and nanobubbles were administered to diffusion cell attached to the visceral and parietal peritoneum from the liver and peritoneal wall surface, respectively. Then, ultrasound was irradiated. Direct sonoporation showed a higher transfection efficacy at the applied peritoneum site from the liver surface while other sites were not detected. Moreover, transgene expression was observed in the peritoneal mesothelial cells (PMCs) at the applied peritoneum site. No abnormality was observed in the inner part of the liver. Although transgene expression of the visceral peritoneum was tenfold higher than that of the parietal peritoneum, transgene expression was observed in the PMCs on both the applied peritoneum sites. These results suggest that direct sonoporation is a site-specific transfection method of the PMCs on the applied peritoneum site without transgene expression at other sites and show little toxicity in the inner tissues at the applied site via cavitation energy. This information is valuable for the development of an intraperitoneal sonoporation device for treatment of peritoneal diseases such as peritoneal fibrosis.
Collapse
Affiliation(s)
- Koyo Nishimura
- Department of Pharmaceutical Informatics, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki-shi, Nagasaki 852-8588, Japan.
| | - Keita Yonezawa
- Department of Pharmaceutical Informatics, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki-shi, Nagasaki 852-8588, Japan.
| | - Shintaro Fumoto
- Department of Pharmaceutics, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki-shi, Nagasaki 852-8588, Japan.
| | - Yusuke Miura
- Department of Pharmaceutical Informatics, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki-shi, Nagasaki 852-8588, Japan.
| | - Masayori Hagimori
- Department of Pharmaceutical Informatics, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki-shi, Nagasaki 852-8588, Japan.
| | - Koyo Nishida
- Department of Pharmaceutics, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki-shi, Nagasaki 852-8588, Japan.
| | - Shigeru Kawakami
- Department of Pharmaceutical Informatics, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki-shi, Nagasaki 852-8588, Japan.
| |
Collapse
|
33
|
Exon Skipping by Ultrasound-Enhanced Delivery of Morpholino with Bubble Liposomes for Myotonic Dystrophy Model Mice. Methods Mol Biol 2019; 1828:481-487. [PMID: 30171561 DOI: 10.1007/978-1-4939-8651-4_30] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Abnormal splicing of the chloride channel 1 (CLCN1) gene causes myotonic dystrophy type 1 (DM1). Therefore, controlling the alternative splicing process of this gene by antisense oligonucleotides can be a promising treatment for DM1. In this study, we describe an efficient phosphorodiamidate morpholino oligomer (PMO) delivery method by ultrasound-mediated bubble liposomes, which is a known gene delivery tool with ultrasound exposure, to treat skeletal muscles in a DM1 mouse model, HSALR. Effective delivery of PMO using this technique can help control the alternative splicing of the Clcn1 gene via exon skipping and enhance the expression of Clcn1 protein in skeletal muscles and the amelioration of myotonia. Thus, exon skipping by PMO delivery with ultrasound-mediated BLs may be feasible in myotonic dystrophy model mice.
Collapse
|
34
|
Ogawa K, Fuchigami Y, Hagimori M, Fumoto S, Maruyama K, Kawakami S. Ultrasound-responsive nanobubble-mediated gene transfection in the cerebroventricular region by intracerebroventricular administration in mice. Eur J Pharm Biopharm 2019; 137:1-8. [PMID: 30738859 DOI: 10.1016/j.ejpb.2019.02.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/05/2019] [Accepted: 02/06/2019] [Indexed: 01/06/2023]
Abstract
AIM Intracerebroventricular (ICV) administration of ultrasound-responsive bubbles and cranial ultrasound irradiation is reported as a transfection system for the cerebroventricular region. This study aimed to characterize the transfection system with respect to transfection efficiency, spatial distribution of transgene expression, and safety. METHODS Plasmid DNA was transfected to mouse brain by ICV injection of ultrasound-responsive nanobubbles, followed by ultrasound irradiation to brain. Spatial distribution of transgene expression in the cerebroventricular region was investigated using multicolor deep imaging. RESULT This transfection system efficiently transferred the transgene to the choroid plexus with no morphological change or cerebral hemorrhage. Moreover, sustained secretion of transgenic protein was achieved by transferring the transgene encoding the secretable protein. CONCLUSION We successfully developed an ultrasound-responsive nanobubbles-mediated method for gene transfection into the cerebroventricular region via ICV administration in mice.
Collapse
Affiliation(s)
- Koki Ogawa
- Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki-shi, Nagasaki 852-8588, Japan
| | - Yuki Fuchigami
- Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki-shi, Nagasaki 852-8588, Japan.
| | - Masayori Hagimori
- Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki-shi, Nagasaki 852-8588, Japan.
| | - Shintaro Fumoto
- Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki-shi, Nagasaki 852-8588, Japan.
| | - Kazuo Maruyama
- Faculty of Pharma-Sciences, Teikyo University, 2-11-1 Kaga, Itabashiku, Tokyo 173-8605, Japan.
| | - Shigeru Kawakami
- Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki-shi, Nagasaki 852-8588, Japan.
| |
Collapse
|
35
|
Bai Z, Wei J, Yu C, Han X, Qin X, Zhang C, Liao W, Li L, Huang W. Non-viral nanocarriers for intracellular delivery of microRNA therapeutics. J Mater Chem B 2019; 7:1209-1225. [DOI: 10.1039/c8tb02946f] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
MicroRNAs are small regulatory noncoding RNAs that regulate various biological processes. Herein, we will present the development of the strategies for intracellular miRNAs delivery, and specially focus on the rational designed routes, their mechanisms of action, as well as potential therapeutics used in the host cells orin vivostudies.
Collapse
Affiliation(s)
- Zhiman Bai
- School of Physics and Materials Science
- Anhui University
- Hefei 230601
- China
| | - Jing Wei
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University (NanjingTech)
- Nanjing 211816
- China
| | - Changmin Yu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University (NanjingTech)
- Nanjing 211816
- China
| | - Xisi Han
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University (NanjingTech)
- Nanjing 211816
- China
| | - Xiaofei Qin
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University (NanjingTech)
- Nanjing 211816
- China
| | - Chengwu Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University (NanjingTech)
- Nanjing 211816
- China
| | - Wenzhen Liao
- Department of Nutrition and Food Hygiene
- Guangdong Provincial Key Laboratory of Tropical Disease Research
- School of Public Health
- Southern Medical University
- Guangzhou 510515
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University (NanjingTech)
- Nanjing 211816
- China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University (NanjingTech)
- Nanjing 211816
- China
| |
Collapse
|
36
|
A versatile and robust microfluidic device for capillary-sized simple or multiple emulsions production. Biomed Microdevices 2018; 20:94. [DOI: 10.1007/s10544-018-0340-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
37
|
PMO Delivery System Using Bubble Liposomes and Ultrasound Exposure for Duchenne Muscular Dystrophy Treatment. Methods Mol Biol 2018; 1687:185-192. [PMID: 29067664 DOI: 10.1007/978-1-4939-7374-3_13] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a genetic disorder characterized by progressive muscle degeneration, caused by nonsense or frameshift mutations in the dystrophin (DMD) gene. Antisense oligonucleotides can be used to induce specific exon skipping; recently, a phosphorodiamidate morpholino oligomer (PMO) has been approved for clinical use in DMD. However, an efficient PMO delivery strategy is required to improve the therapeutic efficacy in DMD patients. We previously developed polyethylene glycol (PEG)-modified liposomes containing ultrasound contrast gas, "Bubble liposomes" (BLs), and found that the combination of BLs with ultrasound exposure is a useful gene delivery tool. Here, we describe an efficient PMO delivery strategy using the combination of BLs and ultrasound exposure to treat muscles in a DMD mouse model (mdx). This ultrasound-mediated BL technique can increase the PMO-mediated exon-skipping efficiency, leading to significantly increased dystrophin expression. Thus, the combination of BLs and ultrasound exposure may be a feasible PMO delivery method to improve therapeutic efficacy and reduce the PMO dosage for DMD treatment.
Collapse
|
38
|
de Leon A, Perera R, Nittayacharn P, Cooley M, Jung O, Exner AA. Ultrasound Contrast Agents and Delivery Systems in Cancer Detection and Therapy. Adv Cancer Res 2018; 139:57-84. [PMID: 29941107 DOI: 10.1016/bs.acr.2018.04.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Ultrasound is the second most utilized imaging modality in the world because it is widely accessible, robust, and safe. Aside from its extensive use in diagnostic imaging, ultrasound has also been frequently utilized in therapeutic applications. Particularly, when combined with appropriate delivery systems, ultrasound provides a flexible platform for simultaneous real-time imaging and triggered release, enabling precise, on-demand drug delivery to target sites. This chapter will discuss the basics of ultrasound including its mechanism of action and how it can be used to trigger the release of encapsulated drug either through thermal or cavitation effects. Fundamentals of ultrasound contrast agents, how they enhance ultrasound signals, and how they can be modified to function as carriers for triggered and targeted release of drugs will also be discussed.
Collapse
Affiliation(s)
- Al de Leon
- Department of Radiology, Case Western Reserve University, Cleveland, OH, United States
| | - Reshani Perera
- Department of Radiology, Case Western Reserve University, Cleveland, OH, United States
| | - Pinunta Nittayacharn
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Michaela Cooley
- Department of Radiology, Case Western Reserve University, Cleveland, OH, United States
| | - Olive Jung
- Department of Radiology, Case Western Reserve University, Cleveland, OH, United States; Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Agata A Exner
- Department of Radiology, Case Western Reserve University, Cleveland, OH, United States; Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States.
| |
Collapse
|
39
|
Wang S, Hossack JA, Klibanov AL. Targeting of microbubbles: contrast agents for ultrasound molecular imaging. J Drug Target 2018; 26:420-434. [PMID: 29258335 DOI: 10.1080/1061186x.2017.1419362] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
For contrast ultrasound imaging, the most efficient contrast agents comprise highly compressible gas-filled microbubbles. These micrometer-sized particles are typically filled with low-solubility perfluorocarbon gases, and coated with a thin shell, often a lipid monolayer. These particles circulate in the bloodstream for several minutes; they demonstrate good safety and are already in widespread clinical use as blood pool agents with very low dosage necessary (sub-mg per injection). As ultrasound is an ubiquitous medical imaging modality, with tens of millions of exams conducted annually, its use for molecular/targeted imaging of biomarkers of disease may enable wider implementation of personalised medicine applications, precision medicine, non-invasive quantification of biomarkers, targeted guidance of biopsy and therapy in real time. To achieve this capability, microbubbles are decorated with targeting ligands, possessing specific affinity towards vascular biomarkers of disease, such as tumour neovasculature or areas of inflammation, ischaemia-reperfusion injury or ischaemic memory. Once bound to the target, microbubbles can be selectively visualised to delineate disease location by ultrasound imaging. This review discusses the general design trends and approaches for such molecular ultrasound imaging agents, which are currently at the advanced stages of development, and are evolving towards widespread clinical trials.
Collapse
Affiliation(s)
- Shiying Wang
- a Department of Biomedical Engineering , University of Virginia , Charlottesville , VA , USA
| | - John A Hossack
- a Department of Biomedical Engineering , University of Virginia , Charlottesville , VA , USA
| | - Alexander L Klibanov
- a Department of Biomedical Engineering , University of Virginia , Charlottesville , VA , USA.,b Cardiovascular Division (Department of Medicine), Robert M Berne Cardiovascular Research Center , University of Virginia , Charlottesville , VA , USA
| |
Collapse
|
40
|
Miura Y, Fuchigami Y, Hagimori M, Sato H, Ogawa K, Munakata C, Wada M, Maruyama K, Kawakami S. Evaluation of the targeted delivery of 5-fluorouracil and ascorbic acid into the brain with ultrasound-responsive nanobubbles. J Drug Target 2017; 26:684-691. [DOI: 10.1080/1061186x.2017.1419354] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Yusuke Miura
- Department of Pharmaceutical Informatics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Yuki Fuchigami
- Department of Pharmaceutical Informatics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Masayori Hagimori
- Department of Pharmaceutical Informatics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Hiroki Sato
- Department of Pharmaceutical Informatics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Koki Ogawa
- Department of Pharmaceutical Informatics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Chie Munakata
- Department of Pharmaceutical Informatics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Mitsuhiro Wada
- Department of Pharmaceutical Informatics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Kazuo Maruyama
- Laboratory of Drug Delivery System, Faculty of Pharma-Sciences, Teikyo University, Itabashi-ku, Tokyo, Japan
| | - Shigeru Kawakami
- Department of Pharmaceutical Informatics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
41
|
Cationic gas-filled microbubbles for ultrasound-based nucleic acids delivery. Biosci Rep 2017; 37:BSR20160619. [PMID: 29180378 PMCID: PMC5741830 DOI: 10.1042/bsr20160619] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 11/23/2017] [Accepted: 11/27/2017] [Indexed: 12/11/2022] Open
Abstract
The use of ultrasound has gained great interest for nucleic acids delivery. Ultrasound can reach deep tissues in non-invasive manner. The process of sonoporation is based on the use of low-frequency ultrasound combined with gas-filled microbubbles (MBs) allowing an improved delivery of molecules including nucleic acids in the insonified tissue. For in vivo gene transfer, the engineering of cationic MBs is essential for creating strong electrostatic interactions between MBs and nucleic acids leading to their protection against nucleases degradation and high concentration within the target tissue. Cationic MBs must be stable enough to withstand nucleic acids interaction, have a good size distribution for in vivo administration, and enough acoustic activity to be detected by echography. This review aims to summarize the basic principles of ultrasound-based delivery and new knowledge acquired in these recent years about this method. A focus is made on gene delivery by discussing reported studies made with cationic MBs including ours. They have the ability for efficient delivery of plasmid DNA (pDNA), mRNA or siRNA. Last, we discuss about the key challenges that have to be faced for a fine use of this delivery system.
Collapse
|
42
|
Nishimura K, Fumoto S, Fuchigami Y, Hagimori M, Maruyama K, Kawakami S. Effective intraperitoneal gene transfection system using nanobubbles and ultrasound irradiation. Drug Deliv 2017; 24:737-744. [PMID: 28446052 PMCID: PMC8241157 DOI: 10.1080/10717544.2017.1319433] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
In this study, we demonstrate the low toxicity and highly efficient and spatially improved transfection of plasmid DNA (pDNA) with liposomal nanobubbles (bubble liposomes [BLs]) using ultrasound (US) irradiation in mice. Naked pDNA with BLs was intraperitoneally injected, followed by US irradiation. The injection volume, the duration of US irradiation, and the dose of BLs were optimized. Both BLs and US irradiation were essential to achieve high transgene expression from naked pDNA. We observed transgene expression in the entire peritoneal tissues, including the peritoneal wall, liver, spleen, stomach and small and large intestines. The area of transfection could be controlled with focused US irradiation. There were few changes in the morphology of the peritoneum, the peritoneal function or serum alanine aminotransferase levels, suggesting the safety of BLs with US irradiation. Using a tissue-clearing method, the spatial distribution of transgene expression was evaluated. BLs with US irradiation delivered pDNA to the submesothelial layer in the peritoneal wall, whereas transgene expression was restricted to the surface layer in the liver and stomach. Therefore, BLs with US irradiation could be an effective and safe method of gene transfection to the peritoneum.
Collapse
Affiliation(s)
- Koyo Nishimura
- a Graduate School of Biomedical Sciences , Nagasaki University , Nagasaki , Japan and
| | - Shintaro Fumoto
- a Graduate School of Biomedical Sciences , Nagasaki University , Nagasaki , Japan and
| | - Yuki Fuchigami
- a Graduate School of Biomedical Sciences , Nagasaki University , Nagasaki , Japan and
| | - Masayori Hagimori
- a Graduate School of Biomedical Sciences , Nagasaki University , Nagasaki , Japan and
| | - Kazuo Maruyama
- b Faculty of Pharma-Sciences , Teikyo University , Tokyo , Japan
| | - Shigeru Kawakami
- a Graduate School of Biomedical Sciences , Nagasaki University , Nagasaki , Japan and
| |
Collapse
|
43
|
Tamarov K, Sviridov A, Xu W, Malo M, Andreev V, Timoshenko V, Lehto VP. Nano Air Seeds Trapped in Mesoporous Janus Nanoparticles Facilitate Cavitation and Enhance Ultrasound Imaging. ACS APPLIED MATERIALS & INTERFACES 2017; 9:35234-35243. [PMID: 28921952 DOI: 10.1021/acsami.7b11007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The current contrast agents utilized in ultrasound (US) imaging are based on microbubbles which suffer from a short lifetime in systemic circulation. The present study introduces a new type of contrast agent for US imaging based on bioresorbable Janus nanoparticles (NPs) that are able to generate microbubbles in situ under US radiation for extended time. The Janus NPs are based on porous silicon (PSi) that was modified via a nanostopper technique. The technique was exploited to prepare PSi NPs which had hydrophobic pore walls (inner face), while the external surfaces of the NPs (outer face) were hydrophilic. As a consequence, when dispersed in an aqueous solution, the Janus NPs contained a substantial amount of air trapped in their nanopores. The specific experimental setup was developed to prove that these nano air seeds were indeed acting as nuclei for microbubble growth during US radiation. Using the setup, the cavitation thresholds of the Janus NPs were compared to their completely hydrophilic counterparts by detecting the subharmonic signals from the microbubbles. These experiments and the numerical simulations of the bubble dynamics demonstrated that the Janus NPs generated microbubbles with a radii of 1.1 μm. Furthermore, the microbubbles generated by the NPs were detected with a conventional medical ultrasound imaging device. Long systemic circulation time was ensured by grafting the NPs with two different PEG polymers, which did not affect adversely the microbubble generation. The present findings represent an important landmark in the development of ultrasound contrast agents which possess the properties for both diagnostics and therapy.
Collapse
Affiliation(s)
- Konstantin Tamarov
- M.V. Lomonosov Moscow State University , Faculty of Physics, 119991 Moscow, Russia
- University of Eastern Finland , Department of Applied Physics, 70211 Kuopio, Finland
| | - Andrey Sviridov
- M.V. Lomonosov Moscow State University , Faculty of Physics, 119991 Moscow, Russia
| | - Wujun Xu
- University of Eastern Finland , Department of Applied Physics, 70211 Kuopio, Finland
| | - Markus Malo
- University of Eastern Finland , Department of Applied Physics, 70211 Kuopio, Finland
| | - Valery Andreev
- M.V. Lomonosov Moscow State University , Faculty of Physics, 119991 Moscow, Russia
| | - Victor Timoshenko
- M.V. Lomonosov Moscow State University , Faculty of Physics, 119991 Moscow, Russia
| | - Vesa-Pekka Lehto
- University of Eastern Finland , Department of Applied Physics, 70211 Kuopio, Finland
| |
Collapse
|
44
|
Jiang N, Chen Q, Cao S, Hu B, Wang YJ, Zhou Q, Guo RQ. Ultrasound‑targeted microbubbles combined with a peptide nucleic acid binding nuclear localization signal mediate transfection of exogenous genes by improving cytoplasmic and nuclear import. Mol Med Rep 2017; 16:8819-8825. [PMID: 28990051 PMCID: PMC5779960 DOI: 10.3892/mmr.2017.7681] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 03/01/2017] [Indexed: 11/29/2022] Open
Abstract
The development of an efficient delivery system is critical for the successful treatment of cardiovascular diseases using non-viral gene therapies. Cytoplasmic and nuclear membrane barriers reduce delivery efficiency by impeding the transfection of foreign genes. Thus, a gene delivery system capable of transporting exogenous genes may improve gene therapy. The present study used a novel strategy involving ultrasound-targeted microbubbles and peptide nucleic acid (PNA)-binding nuclear localization signals (NLS). Ultrasound-targeted microbubble destruction (UTMD) and PNA-binding NLS were used to improve the cytoplasmic and nuclear importation of the plasmid, respectively. Experiments were performed using antibody-targeted microbubbles (AT-MCB) that specifically recognize the SV40T antigen receptor expressed on the membranes of 293T cells, resulting in the localization of ultrasound microbubbles to 293T cell membranes. Furthermore, PNA containing NLS was inserted into the enhanced green fluorescent protein (EGFP)-N3 plasmid DNA (NLS-PNA-DNA), which increased nuclear localization. The nuclear import and gene expression efficiency of the AT-MCB with PNA-binding NLS were compared with AT-MCB alone or a PNA-binding NLS. The effect of the AT-MCB containing PNA-binding NLS on transfection was investigated. The ultrasound and AT-MCB delivery significantly enhanced the cytoplasmic intake of exogenous genes and maintained high cell viability. The nuclear import and gene expression of combined microbubble- and PNA-transfected cells were significantly greater compared with cells that were transfected with AT-MCB or DNA with only PNA-binding NLS. The quantity of EGFP-N3 plasmids in the nuclei was increased by >5.0-fold compared with control microbubbles (CMCB) and NLS-free plasmids. The gene expression was ~1.7-fold greater compared with NLS-free plasmids and 1.3-fold greater compared with control microbubbles. In conclusion, UTMD combined with AT-MCB and a PNA-binding NLS plasmid significantly improved transfection efficiency by increasing cytoplasmic and nuclear DNA import. This method is a promising strategy for the noninvasive and effective delivery of target genes or drugs for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Nan Jiang
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Qian Chen
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Sheng Cao
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Bo Hu
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yi-Jia Wang
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Qing Zhou
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Rui-Qiang Guo
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
45
|
Ofek P, Tiram G, Satchi-Fainaro R. Angiogenesis regulation by nanocarriers bearing RNA interference. Adv Drug Deliv Rev 2017; 119:3-19. [PMID: 28163106 DOI: 10.1016/j.addr.2017.01.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 01/25/2017] [Accepted: 01/31/2017] [Indexed: 12/22/2022]
Abstract
Since the approval of bevacizumab as anti-angiogenic therapy in 2004 by the FDA, an array of angiogenesis inhibitors have been developed and approved. However, results were disappointing with regard to their therapeutic efficacy. RNA interference approaches offer the possibility of rational design with high specificity, lacking in many current drug treatments for various diseases including cancer. However, in vivo delivery issues still represent a significant obstacle for widespread clinical applications. In the current review, we summarize the advances in the last decade in the field of angiogenesis-targeted RNA interference approaches, with special emphasis on oncology applications. We present pro-angiogenic and anti-angiogenic factors as potential targets, experimental evidence and clinical trials data on angiogenesis regulation by RNA interference. Consequent challenges and opportunities are discussed.
Collapse
Affiliation(s)
- Paula Ofek
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Galia Tiram
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ronit Satchi-Fainaro
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
46
|
Yamamoto M, Iwanaga K, Okinaga T, Ariyoshi W, Tominaga K, Nishihara T. Application of combination bubble liposomal amphotericin B and sonication has the dramatic effect on oral candidiasis. JOURNAL OF ORAL AND MAXILLOFACIAL SURGERY MEDICINE AND PATHOLOGY 2017. [DOI: 10.1016/j.ajoms.2016.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
47
|
Mufamadi MS, Choonara YE, Kumar P, du Toit LC, Modi G, Naidoo D, Iyuke SE, Pillay V. Functionalized Nanolipobubbles Embedded Within a Nanocomposite Hydrogel: a Molecular Bio-imaging and Biomechanical Analysis of the System. AAPS PharmSciTech 2017; 18:671-685. [PMID: 27188761 DOI: 10.1208/s12249-016-0541-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 04/23/2016] [Indexed: 11/30/2022] Open
Abstract
The purpose of this study was to explore the use of molecular bio-imaging systems and biomechanical dynamics to elucidate the fate of a nanocomposite hydrogel system prepared by merging FITC-labeled nanolipobubbles within a cross-linked hydrogel network. The nanocomposite hydrogel system was characterized by size distribution analysis and zeta potential as well as shears thinning behavior, elastic modulus (G'), viscous loss moduli (G"), TEM, and FTIR. In addition, molecular bio-imaging via Vevo ultrasound and Cell-viZio techniques evaluated the stability and distribution of the nanolipobubbles within the cross-linked hydrogel. FITC-labeled and functionalized nanolipobubbles had particle sizes between 135 and 158 nm (PdI = 0.129 and 0.190) and a zeta potential of -34 mV. TEM and ultrasound imaging revealed the uniformity and dimensional stability of the functionalized nanolipobubbles pre- and post-embedment into the cross-linked hydrogel. Biomechanical characterization of the hydrogel by shear thinning behavior was governed by the polymer concentration and the cross-linker, glutaraldehyde. Ultrasound analysis and Cell-viZio bio-imaging were highly suitable to visualize the fluorescent image-guided nanolipobubbles and their morphology post-embedment into the hydrogel to form the NanoComposite system. Since the nanocomposite is intended for targeted treatment of neurodegenerative disorders, the distribution of the functionalized nanolipobubbles into PC12 neuronal cells was also ascertained via confocal microscopy. Results demonstrated effective release and localization of the nanolipobubbles within PC12 neuronal cells. The molecular structure of the synthetic surface peptide remained intact for an extended period to ensure potency for targeted delivery from the hydrogel ex vivo. These findings provide further insight into the properties of nanocomposite hydrogels for specialized drug delivery.
Collapse
|
48
|
Hayashi K, Iwai H, Kamei T, Iwamoto K, Shimanouchi T, Fujita S, Nakamura H, Umakoshi H. Tailor-made drug carrier: Comparison of formation-dependent physicochemical properties within self-assembled aggregates for an optimal drug carrier. Colloids Surf B Biointerfaces 2017; 152:269-276. [DOI: 10.1016/j.colsurfb.2017.01.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 12/30/2016] [Accepted: 01/07/2017] [Indexed: 10/20/2022]
|
49
|
Endo-Takahashi Y, Ooaku K, Ishida K, Suzuki R, Maruyama K, Negishi Y. Preparation of Angiopep-2 Peptide-Modified Bubble Liposomes for Delivery to the Brain. Biol Pharm Bull 2017; 39:977-83. [PMID: 27251499 DOI: 10.1248/bpb.b15-00994] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the development of therapeutic approaches for central nervous system diseases, a significant obstacle is efficient drug delivery across the blood-brain barrier owing to its low permeability. Various nanocarriers have been developed for brain-targeted drug delivery by modification with specific ligands. We have previously developed polyethylene glycol-modified liposomes (Bubble liposomes [BLs]) that entrap ultrasound (US) contrast gas and can serve as both plasmid DNA or small interfering RNA carriers and US contrast agents. In this study, we attempted to prepare brain-targeting BLs modified with Angiopep-2 (Ang2) peptide (Ang2-BLs). Ang2 is expected to be a useful ligand for the efficient delivery of nanocarriers to the brain. We showed that Ang2-BLs interacted specifically with brain endothelial cells via low-density lipoprotein receptor-related protein-1. We also confirmed that Ang2-BLs could entrap US contrast gas and had US imaging ability as well as unmodified BLs. Furthermore, we demonstrated that Ang2-BLs accumulated in brain tissue after intravascular injection. These results suggested that Ang2-BLs may be a useful tool for brain-targeted delivery and US imaging via systemic administration.
Collapse
Affiliation(s)
- Yoko Endo-Takahashi
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | | | | | | | | | | |
Collapse
|
50
|
Capece S, Domenici F, Brasili F, Oddo L, Cerroni B, Bedini A, Bordi F, Chiessi E, Paradossi G. Complex interfaces in "phase-change" contrast agents. Phys Chem Chem Phys 2017; 18:8378-88. [PMID: 26931337 DOI: 10.1039/c5cp07538f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this paper we report on the study of the interface of hybrid shell droplets encapsulating decafluoropentane (DFP), which exhibit interesting potentialities for ultrasound (US) imaging. The fabrication of the droplets is based on the deposition of a dextran methacrylate layer onto the surface of surfactants. The droplets have been stabilized against coalescence by UV curing, introducing crosslinks in the polymer layer and transforming the shell into an elastomeric membrane with a thickness of about 300 nm with viscoelastic behaviour. US irradiation induces the evaporation of the DFP core of the droplets transforming the particles into microbubbles (MBs). The presence of a robust crosslinked polymer shell introduces an unusual stability of the droplets also during the core phase transition and allows the recovery of the initial droplet state after a few minutes from switching off US. The interfacial tension of the droplets has been investigated by two approaches, the pendant drop method and an indirect method, based on the determination of the liquid ↔ gas transition point of DFP confined in the droplet core. The re-condensation process has been followed by capturing images of single MBs by confocal microscopy. The time evolution of MB relaxation to droplets was analysed in terms of a modified Church model to account for the structural complexity of the MB shell, i.e. a crosslinked polymer layer over a layer of surfactants. In this way the microrheology parameters of the shell were determined. In a previous paper (Chem. Commun., 2013, 49, 5763-5765) we showed that these systems could be used as ultrasound contrast agents (UCAs). In this work we substantiate this view assessing some key features offered by the viscoelastic nature of the droplet shell.
Collapse
Affiliation(s)
- Sabrina Capece
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy.
| | - Fabio Domenici
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy. and Dipartimento di Fisica, Università di Roma Sapienza, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Francesco Brasili
- Dipartimento di Fisica, Università di Roma Sapienza, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Letizia Oddo
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy.
| | - Barbara Cerroni
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy.
| | - Angelico Bedini
- INAIL - Settore Ricerca Certificazione e Verifica - DITSIPIA, Via Fontana Candida, 1 Monteporzio Catone, 00040 Italy
| | - Federico Bordi
- Dipartimento di Fisica, Università di Roma Sapienza, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Ester Chiessi
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy.
| | - Gaio Paradossi
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy.
| |
Collapse
|