1
|
Wang X, Roy M, Wang R, Kwok O, Wang Y, Wang Y, Qin B, Burgess DJ. Towards in vitro - In vivo correlation models for in situ forming drug implants. J Control Release 2024; 372:648-660. [PMID: 38936743 DOI: 10.1016/j.jconrel.2024.06.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 06/29/2024]
Abstract
In vitro-In vivo correlation (IVIVC) is a main focus of the pharmaceutical industry, academia and the regulatory sectors, as this is an effective modelling tool to predict drug product in vivo performance based on in vitro release data and serve as a surrogate for bioequivalence studies, significantly reducing the need for clinical studies. Till now, IVIVCs have not been successfully developed for in situ forming implants due to the significantly different in vitro and in vivo drug release profiles that are typically achieved for these dosage forms. This is not unexpected considering the unique complexity of the drug release mechanisms of these products. Using risperidone in situ forming implants as a model, the current work focuses on: 1) identification of critical attributes of in vitro release testing methods that may contribute to differences in in vitro and in vivo drug release from in situ forming implants; and 2) optimization of the in vitro release method, with the aim of developing Level A IVIVCs for risperidone implants. Dissolution methods based on a novel Teflon shape controlling adapter along with a water non-dissolvable glass fiber membrane (GF/F) instead of a water dissolvable PVA film (named as GF/F-Teflon adapter and PVA-Teflon adapter, respectively), and an in-house fabricated Glass slide adapter were used to investigate the impact of: the surface-to-volume ratio, water uptake ratio, phase separation rate (measured by NMP release in 24 h post injection in vitro or in vivo), and mechanical pressure on the drug release patterns. The surface-to-volume ratio and water uptake were shown to be more critical in vitro release testing method attributes compared to the phase separation rate and mechanical pressure. The Glass slide adapter-based dissolution method, which allowed for the formation of depots with bio-mimicking surface-to-volume ratios and sufficient water uptake, has the ability to generate bio-relevant degradation profiles as well as in vitro release profiles for risperidone implants. For the first time, a Level A IVIVC (rabbit model) has been successfully developed for in situ forming implants. Release data for implant formulations with slightly different PLGA molecular weights (MWs) were used to develop the IVIVC. The predictability of the model passed external validation using the reference listed drug (RLD), Perseris®. IVIVC could not be developed when formulations with different PLGA molar ratios of lactic acid to glycolic acid (L/G) were included. The present work provides a comprehensive understanding of the impact of the testing method attributes on drug release from in situ forming implants, which is a valuable practice for level A IVIVC development.
Collapse
Affiliation(s)
- Xiaoyi Wang
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Mckenzie Roy
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Ruifeng Wang
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Owen Kwok
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Yinhang Wang
- Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Yan Wang
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Bin Qin
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Diane J Burgess
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
2
|
Wang X, Bao Q, Wang R, Li T, Wang Y, Qin B, Li Q, Burgess DJ. In Vivo Characterization of Perseris and Compositionally Equivalent Formulations. Int J Pharm 2023:123170. [PMID: 37354927 DOI: 10.1016/j.ijpharm.2023.123170] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 06/26/2023]
Abstract
Perseris is asubcutaneous extended-release risperidone in situ forming implant (suspension) indicated for the treatment of adult schizophrenia. Owing to the release rate controlling polymer poly(lactide-co-glycolide) (PLGA), one injection of Perseris can deliver risperidone for one month, which significantly reduces the administration frequency and improves patient compliance. The PLGA and drug used in Perseris was previously identified through reverse engineering and two compositionally equivalent formulations (F-1 and F-2) showing similar in vitro drug release were developed. The current work focuses on in vivo exploration of Perseris and the developed compositionally equivalent formulations using a rabbit model and further evaluate the sameness of the developed formulations compared to Perseris. The in vivo pharmacokinetic (PK) profiles, drug absorption rate, phase separation rate, macro appearance, weight loss as well as the water uptake of the solidified drug depots at different time points were investigated and compared with the in vitro release data as well as with dog and human in vivo data available in literature. Results show that the rabbit PK profile of Perseris was relevant with those obtained from both the dog model and the clinical data, indicating that the rabbit model is appropriate for investigation of the in vivo performance of risperidone implants. Consistent with their similar in vitro drug release, the two compositionally equivalent formulations demonstrated similar PK profiles, drug absorption rates, weight loss and swelling in vivo compared to Perseris. Although the erosion mechanism appeared to be similar between in vitro and in vivo, there were in vitro-in vivo differences concerning the drug release kinetics, phase separation rates and swelling behavior. This work provides a comprehensive in vitro/in vivo understanding of Perseris and the developed compositionally equivalent formulations, which will be beneficial for future development of generic as well as novel PLGA in situ forming implant products.
Collapse
Affiliation(s)
- Xiaoyi Wang
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Quanying Bao
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Ruifeng Wang
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Tingting Li
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Yan Wang
- U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Bin Qin
- U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Qi Li
- U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Diane J Burgess
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
3
|
Novel adapter method for in vitro release testing of in situ forming implants. Int J Pharm 2022; 621:121777. [PMID: 35489601 DOI: 10.1016/j.ijpharm.2022.121777] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/20/2022] [Accepted: 04/24/2022] [Indexed: 01/05/2023]
Abstract
In situ forming implants are injectable liquid formulations which form solid or semisolid depots following injection. This allows for minimally invasive administration, localized drug delivery, and extended drug release. Unfortunately, this drug delivery strategy lacks standardized in vitro dissolution methods due to the difficulties in recreating implant formation in vitro that is biomimicry and with reproducible and controllable shape and dimensions. In the present study, an innovative, adapter-based in vitro release testing method was developed to solve this problem. Two distinctively different in situ forming implants (a risperidone formulation (suspension) consisting of PLGA dissolved in N-methyl pyrrolidone (NMP), where risperidone powder was suspended to form a drug suspension, and a naproxen formulation (solution) consisting of PLGA dissolved in NMP, where naproxen was completely dissolved to form a solution), were used as model in situ-forming implants. The results revealed that the implants formed in the custom-designed adapter with a water-dissolvable polyvinyl alcohol (PVA) film were bio-mimicking and reproducible in both shape and burst release of drug according to rabbit data. For both the suspension and solution formulations, this adapter-based in vitro release testing method resulted in consistent release data. Compared with a direct injection in vitro release testing method, the release profiles generated using the adapter-based method were capable of distinguishing the different release phases (initial release within 24 h, diffusion-facilitated release, and degradation-controlled release). In addition, the adapter-based method could discriminate formulation and dissolution apparatus changes and could be utilized to develop accelerated release testing methods. This adapter-based method has the promise of wide use in release testing of in situ forming implant formulations and has the potential to be used in the development of in vivo-predictive in vitro release methods.
Collapse
|
4
|
Yang L, Yang Y, Chen H, Mei L, Zeng X. Polymeric microneedle-mediated sustained release systems: Design strategies and promising applications for drug delivery. Asian J Pharm Sci 2022; 17:70-86. [PMID: 35261645 PMCID: PMC8888142 DOI: 10.1016/j.ajps.2021.07.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 04/24/2021] [Accepted: 07/03/2021] [Indexed: 12/24/2022] Open
Abstract
Parenteral sustained release drug formulations, acting as preferable platforms for long-term exposure therapy, have been wildly used in clinical practice. However, most of these delivery systems must be given by hypodermic injection. Therefore, issues including needle-phobic, needle-stick injuries and inappropriate reuse of needles would hamper the further applications of these delivery platforms. Microneedles (MNs) as a potential alternative system for hypodermic needles can benefit from minimally invasive and self-administration. Recently, polymeric microneedle-mediated sustained release systems (MN@SRS) have opened up a new way for treatment of many diseases. Here, we reviewed the recent researches in MN@SRS for transdermal delivery, and summed up its typical design strategies and applications in various diseases therapy, particularly focusing on the applications in contraception, infection, cancer, diabetes, and subcutaneous disease. An overview of the present clinical translation difficulties and future outlook of MN@SRS was also provided.
Collapse
Affiliation(s)
- Li Yang
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Yao Yang
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Hongzhong Chen
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Lin Mei
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Xiaowei Zeng
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
5
|
Drug release from in situ forming implants and advances in release testing. Adv Drug Deliv Rev 2021; 178:113912. [PMID: 34363860 DOI: 10.1016/j.addr.2021.113912] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/29/2021] [Accepted: 07/29/2021] [Indexed: 12/29/2022]
Abstract
In situ forming implants, defined as liquid formulations that generate solid or semisolid depots following administration, have shown a range of advantages in drug delivery. This drug delivery strategy allows localized delivery, sustained drug release over periods of days to months, and is a less invasive option compared to traditional solid implants which typically require surgical implantation. Unfortunately, there are a number of quality control challenges in terms of drug release testing of these delivery systems which is likely to have contributed to the relatively few commercially available in situ forming implant products. This article reviews current marketed in situ forming implant products, FDA guidance on in vitro release testing, and formulation and environmental parameters influencing drug release from in situ forming implants. Formulation considerations for development of biological agents loaded in situ forming implants are also discussed. The advantages and limitations of typically used in vitro release testing methods are summarized. Difficulties in the development of in vitro-in vivo correlations (IVIVCs) for in situ forming implant are discussed. The knowledge presented will be helpful for the development of in situ forming implants, as well as for the development of appropriate in vitro testing methods and IVIVCs.
Collapse
|
6
|
Simulate SubQ: The Methods and the Media. J Pharm Sci 2021; 112:1492-1508. [PMID: 34728176 DOI: 10.1016/j.xphs.2021.10.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 11/21/2022]
Abstract
For decades, there has been a growing interest in injectable subcutaneous formulations to improve the absorption of drugs into the systemic circulation and to prolong their release over a longer period. However, fluctuations in the blood plasma levels together with bioavailability issues often limit their clinical success. This warrants a closer look at the performance of long-acting depots, for example, and their dependence on the complex interplay between the dosage form and the physiological microenvironment. For this, biopredictive performance testing is used for a thorough understanding of the biophysical processes affecting the absorption of compounds from the injection site in vivo and their simulation in vitro. In the present work, we discuss in vitro methodologies including methods and media developed for the subcutaneous route of administration on the background of the most relevant absorption mechanisms. Also, we highlight some important knowledge gaps and shortcomings of the existing methodologies to provide the reader with a better understanding of the scientific evidence underlying these models.
Collapse
|
7
|
Zhang X, Yang L, Zhang C, Liu D, Meng S, Zhang W, Meng S. Effect of Polymer Permeability and Solvent Removal Rate on In Situ Forming Implants: Drug Burst Release and Microstructure. Pharmaceutics 2019; 11:pharmaceutics11100520. [PMID: 31658642 PMCID: PMC6835277 DOI: 10.3390/pharmaceutics11100520] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 09/26/2019] [Accepted: 10/08/2019] [Indexed: 02/03/2023] Open
Abstract
To explore the mechanism of drug release and depot formation of in situ forming implants (ISFIs), osthole-loaded ISFIs were prepared by dissolving polylactide, poly(lactide-co-glycolide), polycaprolactone, or poly(trimethylene carbonate) in different organic solvents, including N-methyl-2-pyrrolidone (NMP), dimethyl sulfoxide (DMSO), and triacetin (TA). Drug release, polymer degradation, solvent removal rate and depot microstructure were examined. The burst release effect could be reduced by using solvents exhibit slow forming phase inversion and less permeable polymers. Both the drug burst release and polymer depot microstructure were closely related to the removal rate of organic solvent. Polymers with higher permeability often displayed faster drug and solvent diffusion rates. Due to high polymer-solvent affinity, some of the organic solvent remained in the depot even after the implant was completely formed. The residual of organic solvent could be predicted by solubility parameters. The ISFI showed a lower initial release in vivo than that in vitro. In summary, the effects of different polymers and solvents on drug release and depot formation in ISFI systems were extensively investigated and discussed in this article. The two main factors, polymer permeability and solvent removal rate, were involved in different stages of drug release and depot formation in ISFI systems.
Collapse
Affiliation(s)
- Xiaowei Zhang
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Liaoning 110122, China.
- Key Laboratory of Reproductive Health, Liaoning Research Institute of Family Planning, Liaoning 110031, China.
| | - Liqun Yang
- Key Laboratory of Reproductive Health, Liaoning Research Institute of Family Planning, Liaoning 110031, China.
| | - Chong Zhang
- Key Laboratory of Reproductive Health, Liaoning Research Institute of Family Planning, Liaoning 110031, China.
| | - Danhua Liu
- Key Laboratory of Reproductive Health, Liaoning Research Institute of Family Planning, Liaoning 110031, China.
| | - Shu Meng
- Shenyang Institute for Drug Control, Liaoning 110084, China.
| | - Wei Zhang
- Key Laboratory of Reproductive Health, Liaoning Research Institute of Family Planning, Liaoning 110031, China.
| | - Shengnan Meng
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Liaoning 110122, China.
| |
Collapse
|
8
|
Phaechamud T, Setthajindalert O. Antimicrobial in-situ forming gels based on bleached shellac and different solvents. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.05.035] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Owen A, Rannard S. Strengths, weaknesses, opportunities and challenges for long acting injectable therapies: Insights for applications in HIV therapy. Adv Drug Deliv Rev 2016; 103:144-156. [PMID: 26916628 PMCID: PMC4935562 DOI: 10.1016/j.addr.2016.02.003] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 02/10/2016] [Accepted: 02/12/2016] [Indexed: 12/11/2022]
Abstract
Advances in solid drug nanoparticle technologies have resulted in a number of long-acting (LA) formulations with the potential for once monthly or longer administration. Such formulations offer great utility for chronic diseases, particularly when a lack of medication compliance may be detrimental to treatment response. Two such formulations are in clinical development for HIV but the concept of LA delivery has its origins in indications such as schizophrenia and contraception. Many terms have been utilised to describe the LA approach and standardisation would be beneficial. Ultimately, definitions will depend upon specific indications and routes of delivery, but for HIV we propose benchmarks that reflect perceived clinical benefits and available data on patient attitudes. Specifically, we propose dosing intervals of ≥1week, ≥1month or ≥6months, for oral, injectable or implantable strategies, respectively. This review focuses upon the critical importance of potency in achieving the LA outcome for injectable formulations and explores established and emerging technologies that have been employed across indications. Key technological challenges such as the need for consistency and ease of administration for drug combinations, are also discussed. Finally, the review explores the gaps in knowledge regarding the pharmacology of drug release from particulate-based LA injectable suspensions. A number of hypotheses are discussed based upon available data relating to local drug metabolism, active transport systems, the lymphatics, macrophages and patient-specific factors. Greater knowledge of the mechanisms that underpin drug release and protracted exposure will help facilitate further development of this strategy to achieve the promising clinical benefits.
Collapse
Affiliation(s)
- Andrew Owen
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, 70 Pembroke Place, University of Liverpool, Liverpool L693GF, UK
| | - Steve Rannard
- Department of Chemistry, Crown Street, University of Liverpool, L69 3BX, UK
| |
Collapse
|
10
|
Ahmed TA, Alharby YA, El-Helw ARM, Hosny KM, El-Say KM. Depot injectable atorvastatin biodegradable in situ gel: development, optimization, in vitro, and in vivo evaluation. Drug Des Devel Ther 2016; 10:405-15. [PMID: 26855565 PMCID: PMC4725642 DOI: 10.2147/dddt.s98078] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
This study aimed to develop an optimized depot injectable atorvastatin (ATR) biodegradable in situ gel (ISG) system with minimum initial burst using a central composite design. The factors selected were poly (d, l-lactide-co-glycolide) (PLGA) concentration (X1), molecular weight of polyethylene glycol (PEG) (X2), and PEG concentration (X3). The independent variables were the initial burst of ATR after 2 (Y1) and 24 hours (Y2). The optimized formulation was investigated using scanning electron microscopy, Fourier transform infrared spectroscopy, and in vitro drug release in phosphate-buffered saline of pH 7.4 for 72 hours. The in vivo pharmacokinetic study of the optimized ATR-ISG and the corresponding PEG-free ATR-ISG were conducted by intramuscular injection of a single dose (2 mg/kg) of ATR in male New Zealand White rabbits. A double-blind, randomized, parallel design was used in comparison with those of the marketed ATR tablet. Statistical analysis revealed that PLGA concentration and the molecular weight of PEG have pronounced effects on both Y1 and Y2. The optimized formulation was composed of 36.10% PLGA, PEG 6000, and 15.69% PEG, and exhibited characteristic in vitro release pattern with minimal initial burst. Incorporation of PEG in the formulation causes a slight decrease in the glass transition temperature value of PLGA, leading to a slight change in Fourier transform infrared spectroscopy spectrum due to possible interaction. Moreover, scanning electron microscopy photomicrograph showed smooth surface with disappearance of the cracks which characterize the surface of PEG-free formulation. The pharmacokinetic data for the optimized depot injectable ATR-ISG showed a significant (P<0.05) decrease in maximum plasma concentration from 547.62 to 346.84 ng/mL, and increasing time to reach the maximum plasma concentration from 12 to 72 hours in comparison with the marketed tablet. The optimized ATR-ISG formulation has shown minimal initial drug burst which confirms the suitability of the ISG system in the prolongation of drug release in patients with chronic long-term therapy.
Collapse
Affiliation(s)
- Tarek A Ahmed
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Yasser A Alharby
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdel-Rahim M El-Helw
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khaled M Hosny
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni Suef University, Beni Suef, Egypt
| | - Khalid M El-Say
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
11
|
Hong X, Wei L, Wu F, Wu Z, Chen L, Liu Z, Yuan W. Dissolving and biodegradable microneedle technologies for transdermal sustained delivery of drug and vaccine. DRUG DESIGN DEVELOPMENT AND THERAPY 2013; 7:945-52. [PMID: 24039404 PMCID: PMC3771849 DOI: 10.2147/dddt.s44401] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Microneedles were first conceptualized for drug delivery many decades ago, overcoming the shortages and preserving the advantages of hypodermic needle and conventional transdermal drug-delivery systems to some extent. Dissolving and biodegradable microneedle technologies have been used for transdermal sustained deliveries of different drugs and vaccines. This review describes microneedle geometry and the representative dissolving and biodegradable microneedle delivery methods via the skin, followed by the fabricating methods. Finally, this review puts forward some perspectives that require further investigation.
Collapse
Affiliation(s)
- Xiaoyun Hong
- Department of Neurology, Xinhua Hospital, Shanghai JiaoTong University School of Medicine, 1665 Kongjiang Road, Shanghai, People’s Republic of China
| | | | | | | | | | | | | |
Collapse
|
12
|
Ahmed TA, Ibrahim HM, Ibrahim F, Samy AM, Kaseem A, H. Nutan MT, Hussain MD. Development of biodegradable in situ implant and microparticle injectable formulations for sustained delivery of haloperidol. J Pharm Sci 2012; 101:3753-62. [DOI: 10.1002/jps.23250] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 05/29/2012] [Accepted: 06/11/2012] [Indexed: 11/09/2022]
|
13
|
Wang L, Wang A, Zhao X, Liu X, Wang D, Sun F, Li Y. Design of a long-term antipsychotic in situ forming implant and its release control method and mechanism. Int J Pharm 2012; 427:284-92. [DOI: 10.1016/j.ijpharm.2012.02.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 01/18/2012] [Accepted: 02/09/2012] [Indexed: 01/18/2023]
|
14
|
Camargo JA, Sapin A, Nouvel C, Daloz D, Leonard M, Bonneaux F, Six JL, Maincent P. Injectable PLA-based in situ forming implants for controlled release of Ivermectin a BCS Class II drug: solvent selection based on physico-chemical characterization. Drug Dev Ind Pharm 2012; 39:146-55. [PMID: 22397675 DOI: 10.3109/03639045.2012.660952] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In situ forming implants (ISI) prepared from biodegradable polymers such as poly(D,L-lactide) (PLA) and biocompatible solvents can be used to obtain sustained drug release after parenteral administration. The aim of this work was to study the effect of several biocompatible solvents with different physico-chemical properties on the release of ivermectin (IVM), an antiparasitic BCS II drug, from in situ forming PLA-based implants. The solvents evaluated were N-methyl-2-pyrrolidone (NMP), 2-pyrrolidone (2P), triacetine (TA) and benzyl benzoate (BB). Hansen's solubility parameters of solvents were used to explain polymer/solvent interactions leading to different rheological behaviours. The stability of the polymer and drug in the solvents were also evaluated by size exclusion and high performance liquid chromatography, respectively. The two major factors determining the rate of IVM release from ISI were miscibility of the solvent with water and the viscosity of the polymer solutions. In general, the release rate increased with increasing water miscibility of the solvent and decreasing viscosity in the following order NMP>2P>TA>BB. Scanning electron microscopy revealed a relationship between the rate of IVM release and the surface porosity of the implants, release being higher as implant porosity increased. Finally, drug and polymer stability in the solvents followed the same trends, increasing when polymer-solvent affinities and water content in solvents decreased. IVM degradation was accelerated by the acid environment generated by the degradation of the polymer but the drug did not affect PLA stability.
Collapse
Affiliation(s)
- J A Camargo
- Faculty of Pharmacy, Laboratory of Pharmaceutical Technology, Nancy University, EA 3452 Nancy Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Chaudhari KR, Shah N, Patel H, Murthy R. Preparation of porous PLGA microspheres with thermoreversible gel to modulate drug release profile of water-soluble drug: bleomycin sulphate. J Microencapsul 2010; 27:303-13. [PMID: 20128747 DOI: 10.3109/02652040903191818] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Bleomycin sulphate-loaded porous microspheres were prepared using modified solvent evaporation method (w/o/w) using PLGA50:50 as a polymeric system. The prepared microspheres were incorporated in pluronic (F127) based thermoreversible gel to develop a depot formulation. Various process parameters as solvent evaporation temperature and formulation parameters such as surfactant concentration, volume of internal and external phase and drug-to-polymer ratio were optimized for enhancing percentage drug entrapment, percentage drug loading and desired release profile by controlling size and porosity of the microspheres. Microspheres were characterized for particle size, zeta potential, surface morphology, percentage drug loading and in vitro drug release study after incorporated in gel. The formulated microspheres were porous in nature and showed biphasic in vitro drug release profile. The microspheres incorporated in pluronic (F127) gel showed sustained release up to 1 week and may be useful for treatment of squamous cell carcinoma with better therapeutic effect.
Collapse
Affiliation(s)
- Kiran R Chaudhari
- Maharaja Sayajirao University of Baroda, Drug Delivery Research Laboratory, Ctr Relevance and Excellence NDDS, Department of Pharmaceutics, Baroda, India
| | | | | | | |
Collapse
|