1
|
Diaz C, Mehrkhodavandi P. Strategies for the synthesis of block copolymers with biodegradable polyester segments. Polym Chem 2021. [DOI: 10.1039/d0py01534b] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Oxygenated block copolymers with biodegradable polyester segments can be prepared in one-pot through sequential or simultaneous addition of monomers. This review highlights the state of the art in this area.
Collapse
Affiliation(s)
- Carlos Diaz
- University of British Columbia
- Department of Chemistry
- Vancouver
- Canada
| | | |
Collapse
|
2
|
Bikiaris ND, Ainali NM, Christodoulou E, Kostoglou M, Kehagias T, Papasouli E, Koukaras EN, Nanaki SG. Dissolution Enhancement and Controlled Release of Paclitaxel Drug via a Hybrid Nanocarrier Based on mPEG-PCL Amphiphilic Copolymer and Fe-BTC Porous Metal-Organic Framework. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2490. [PMID: 33322372 PMCID: PMC7763675 DOI: 10.3390/nano10122490] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/06/2020] [Accepted: 12/09/2020] [Indexed: 01/12/2023]
Abstract
In the present work, the porous metal-organic framework (MOF) Basolite®F300 (Fe-BTC) was tested as a potential drug-releasing depot to enhance the solubility of the anticancer drug paclitaxel (PTX) and to prepare controlled release formulations after its encapsulation in amphiphilic methoxy poly(ethylene glycol)-poly(ε-caprolactone) (mPEG-PCL) nanoparticles. Investigation revealed that drug adsorption in Fe-BTC reached approximately 40%, a relatively high level, and also led to an overall drug amorphization as confirmed by differential scanning calorimetry (DSC) and X-ray diffraction (XRD). The dissolution rate of PTX-loaded MOF was substantially enhanced achieving a complete (100%) release within four days, while the neat drug only reached a 13% maximum rate (3-4 days). This PTX-Fe-BTC nanocomposite was further encapsulated into a mPEG-PCL matrix, a typical aliphatic amphiphilic copolyester synthesized in our lab, whose biocompatibility was validated by in vitro cytotoxicity tests toward human umbilical vein endothelial cells (HUVEC). Encapsulation was performed according to the solid-in-oil-in-water emulsion/solvent evaporation technique, resulting in nanoparticles of about 143 nm, slightly larger of those prepared without the pre-adsorption of PTX on Fe-BTC (138 nm, respectively). Transmission electron microscopy (TEM) imaging revealed that spherical nanoparticles with embedded PTX-loaded Fe-BTC nanoparticles were indeed fabricated, with sizes ranging from 80 to 150 nm. Regions of the composite Fe-BTC-PTX system in the infrared (IR) spectrum are identified as signatures of the drug-MOF interaction. The dissolution profiles of all nanoparticles showed an initial burst release, attributed to the drug amount located at the nanoparticles surface or close to it, followed by a steadily and controlled release. This is corroborated by computational analysis that reveals that PTX attaches effectively to Fe-BTC building blocks, but its relatively large size limits diffusion through crystalline regions of Fe-BTC. The dissolution behaviour can be described through a bimodal diffusivity model. The nanoparticles studied could serve as potential chemotherapeutic candidates for PTX delivery.
Collapse
Affiliation(s)
- Nikolaos D. Bikiaris
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; (N.D.B.); (N.M.A.); (E.C.)
| | - Nina Maria Ainali
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; (N.D.B.); (N.M.A.); (E.C.)
| | - Evi Christodoulou
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; (N.D.B.); (N.M.A.); (E.C.)
| | - Margaritis Kostoglou
- Laboratory of General and Inorganic Chemical Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece;
| | - Thomas Kehagias
- Laboratory of Electron Microscopy, Department of Physics, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece;
| | - Emilia Papasouli
- Laboratory of Quantum and Computational Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; (E.P.); (E.N.K.)
| | - Emmanuel N. Koukaras
- Laboratory of Quantum and Computational Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; (E.P.); (E.N.K.)
| | - Stavroula G. Nanaki
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; (N.D.B.); (N.M.A.); (E.C.)
| |
Collapse
|
3
|
Tsolou A, Angelou E, Didaskalou S, Bikiaris D, Avgoustakis K, Agianian B, Koffa MD. Folate and Pegylated Aliphatic Polyester Nanoparticles for Targeted Anticancer Drug Delivery. Int J Nanomedicine 2020; 15:4899-4918. [PMID: 32764924 PMCID: PMC7369311 DOI: 10.2147/ijn.s244712] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 05/09/2020] [Indexed: 01/05/2023] Open
Abstract
Purpose The use of chemotherapeutic agents to combat cancer is accompanied by high toxicity due to their inability to discriminate between cancer and normal cells. Therefore, cancer therapy research has focused on the targeted delivery of drugs to cancer cells. Here, we report an in vitro study of folate-poly(ethylene glycol)-poly(propylene succinate) nanoparticles (FA-PPSu-PEG-NPs) as a vehicle for targeted delivery of the anticancer drug paclitaxel in breast and cervical cancer cell lines. Methods Paclitaxel-loaded-FA-PPSu-PEG-NPs characterization was performed by in vitro drug release studies and cytotoxicity assays. The NPs cellular uptake and internalization mechanism were monitored by live-cell imaging in different cancer cell lines. Expression of folate receptor-α (FOLR1) was examined in these cell lines, and specific FOLR1-mediated entry of the FA-PPSu-PEG-NPs was investigated by free folic acid competition. Using inhibitors for other endocytic pathways, alternative, non-FOLR1 dependent routes for NPs uptake were also examined. Results Drug release experiments of Paclitaxel-loaded PPSu-PEG-NPs indicated a prolonged release of Paclitaxel over several days. Cytotoxicity of Paclitaxel-loaded PPSu-PEG-NPs was similar to free drug, as monitored in cancer cell lines. Live imaging of cells treated with either free Paclitaxel or Paclitaxel-loaded PPSu-PEG-NPs demonstrated tubulin-specific cell cycle arrest, with similar kinetics. Folate-conjugated NPs (FA-PPSu-PEG-NPs) targeted the FOLR1 receptor, as shown by free folic acid competition of the FA-PPSu-PEG-NPs cellular uptake in some of the cell lines tested. However, due to the differential expression of FOLR1 in the cancer cell lines, as well as the intrinsic differences between the different endocytic pathways utilized by different cell types, other mechanisms of nanoparticle cellular entry were also used, revealing that dynamin-dependent endocytosis and macropinocytosis pathways mediate, at least partially, cellular entry of the FA-PPSu-PEG NPs. Conclusion Our data provide evidence that Paclitaxel-loaded-FA-PPSu-PEG-NPs can be used for targeted delivery of the drug, FA-PPSu-PEG-NPs can be used as vehicles for other anticancer drugs and their cellular uptake is mediated through a combination of FOLR1 receptor-specific endocytosis, and macropinocytosis. The exploration of the different cellular uptake mechanisms could improve treatment efficacy or allow a decrease in dosage of anticancer drugs.
Collapse
Affiliation(s)
- Avgi Tsolou
- Laboratory of Molecular Cell Biology, Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis 68100, Greece
| | - Eftychia Angelou
- Biomolecular Structure and Function Group, Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis 68100, Greece
| | - Stylianos Didaskalou
- Laboratory of Molecular Cell Biology, Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis 68100, Greece
| | - Dimitrios Bikiaris
- Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Macedonia, Greece
| | | | - Bogos Agianian
- Biomolecular Structure and Function Group, Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis 68100, Greece
| | - Maria D Koffa
- Laboratory of Molecular Cell Biology, Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis 68100, Greece
| |
Collapse
|
4
|
Nerantzaki M, Skoufa E, Adam KV, Nanaki S, Avgeropoulos A, Kostoglou M, Bikiaris D. Amphiphilic Block Copolymer Microspheres Derived from Castor Oil, Poly(ε-carpolactone), and Poly(ethylene glycol): Preparation, Characterization and Application in Naltrexone Drug Delivery. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E1996. [PMID: 30332793 PMCID: PMC6213069 DOI: 10.3390/ma11101996] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/12/2018] [Accepted: 10/12/2018] [Indexed: 11/16/2022]
Abstract
In the present study, the newly synthesized castor oil-derived thioether-containing ω-hydroxyacid (TEHA) block copolymers with polycaprolactone (TEHA-b-PCL), with methoxypoly(ethylene glycol) (mPEG), (TEHA-b-mPEG) and with poly(ethylene glycol) (PEG) (TEHA-b-PEG-b-TEHA), were investigated as polymeric carriers for fabrication of naltrexone (NLX)-loaded microspheres by the single emulsion solvent evaporation technique. These microspheres are appropriate for the long-term treatment of opioid/alcohol dependence. Physical properties of the obtained microspheres were characterized in terms of size, morphology, drug loading capacity, and drug release. A scanning electron microscopy study revealed that the desired NLX-loaded uniform microspheres with a mean particle size of 5⁻10 µm were obtained in all cases. The maximum percentage encapsulation efficiency was found to be about 25.9% for the microspheres obtained from the TEHA-b-PEG-b-TEHA copolymer. Differential scanning calorimetry and X-ray diffractometry analysis confirmed the drug entrapment within microspheres in the amorphous state. In vitro dissolution studies revealed that all NLX-loaded formulations had a similar drug release profile: An initial burst release after 24 h, followed by a sustained and slower drug release for up to 50 days. The analysis of the release kinetic data, which were fitted into the Korsmeyer⁻Peppas release model, indicated that diffusion is the main release mechanism of NLX from TEHA-b-PCL and TEHA-b-mPEG microspheres, while microspheres obtained from TEHA-b-PEG-b-TEHA exhibited a drug release closer to an erosion process.
Collapse
Affiliation(s)
- Maria Nerantzaki
- Physicochemistry Laboratory of Electrolytes and Interfacial Nanosystems (PHENIX), UMR CNRS 8234, Faculty of Science and Engineering, Sorbonne University, 75252 Paris CEDEX 05, France.
- Laboratory of Chemistry and Technology of Polymers and Dyes, Chemistry Department, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Eirini Skoufa
- Laboratory of Polymeric Materials, Department of Materials Science and Engineering, University of Ioannina, Administration Building, University Campus Dourouti, 45110 Ioannina, Greece.
| | - Kyriakos-Vasileios Adam
- Laboratory of Chemistry and Technology of Polymers and Dyes, Chemistry Department, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Stavroula Nanaki
- Laboratory of Chemistry and Technology of Polymers and Dyes, Chemistry Department, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Apostolos Avgeropoulos
- Laboratory of Polymeric Materials, Department of Materials Science and Engineering, University of Ioannina, Administration Building, University Campus Dourouti, 45110 Ioannina, Greece.
| | - Margaritis Kostoglou
- Laboratory of General and Inorganic Chemical Technology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Dimitrios Bikiaris
- Laboratory of Chemistry and Technology of Polymers and Dyes, Chemistry Department, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| |
Collapse
|
5
|
Fabbri M, Guidotti G, Soccio M, Lotti N, Govoni M, Giordano E, Gazzano M, Gamberini R, Rimini B, Munari A. Novel biocompatible PBS-based random copolymers containing PEG-like sequences for biomedical applications: From drug delivery to tissue engineering. Polym Degrad Stab 2018. [DOI: 10.1016/j.polymdegradstab.2018.04.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
6
|
Jäger A, Jäger E, Syrová Z, Mazel T, Kováčik L, Raška I, Höcherl A, Kučka J, Konefal R, Humajova J, Poučková P, Štěpánek P, Hrubý M. Poly(ethylene oxide monomethyl ether)- block-poly(propylene succinate) Nanoparticles: Synthesis and Characterization, Enzymatic and Cellular Degradation, Micellar Solubilization of Paclitaxel, and in Vitro and in Vivo Evaluation. Biomacromolecules 2018; 19:2443-2458. [PMID: 29601729 DOI: 10.1021/acs.biomac.8b00048] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Polyester-based nanostructures are widely studied as drug-delivery systems due to their biocompatibility and biodegradability. They are already used in the clinic. In this work, we describe a new and simple biodegradable and biocompatible system as the Food and Drug Administration approved polyesters (poly-ε-caprolactone, polylactic acid, and poly(lactic- co-glycolic acid)) for the delivery of the anticancer drug paclitaxel (PTX) as a model drug. A hydrophobic polyester, poly(propylene succinate) (PPS), was prepared from a nontoxic alcohol (propylene glycol) and monomer from the Krebs's cycle (succinic acid) in two steps via esterification and melt polycondensation. Furthermore, their amphiphilic block copolyester, poly(ethylene oxide monomethyl ether)- block-poly(propylene succinate) (mPEO- b-PPS), was prepared by three steps via esterification followed by melt polycondensation and the addition of mPEO to the PPS macromolecules. Analysis of the in vitro cellular behavior of the prepared nanoparticle carriers (NPs) (enzymatic degradation, uptake, localization, and fluorescence resonance energy-transfer pair degradation studies) was performed by fluorescence studies. PTX was loaded to the NPs of variable sizes (30, 70, and 150 nm), and their in vitro release was evaluated in different cell models and compared with commercial PTX formulations. The mPEO- b-PPS copolymer analysis displays glass transition temperature < body temperature < melting temperature, lower toxicity (including the toxicity of their degradation products), drug solubilization efficacy, stability against spontaneous hydrolysis during transport in bloodstream, and simultaneous enzymatic degradability after uptake into the cells. The detailed cytotoxicity in vitro and in vivo tumor efficacy studies have shown the superior efficacy of the NPs compared with PTX and PTX commercial formulations.
Collapse
Affiliation(s)
- Alessandro Jäger
- Institute of Macromolecular Chemistry , Heyrovsky Square 2 , 162 06 Prague , Czech Republic
| | - Eliézer Jäger
- Institute of Macromolecular Chemistry , Heyrovsky Square 2 , 162 06 Prague , Czech Republic
| | | | | | | | | | - Anita Höcherl
- Institute of Macromolecular Chemistry , Heyrovsky Square 2 , 162 06 Prague , Czech Republic
| | - Jan Kučka
- Institute of Macromolecular Chemistry , Heyrovsky Square 2 , 162 06 Prague , Czech Republic
| | - Rafal Konefal
- Institute of Macromolecular Chemistry , Heyrovsky Square 2 , 162 06 Prague , Czech Republic
| | - Jana Humajova
- Institute of Biophysics and Informatics, First Faculty of Medicine , Charles University , Salmovska 1 , 120 00 Prague , Czech Republic
| | - Pavla Poučková
- Institute of Biophysics and Informatics, First Faculty of Medicine , Charles University , Salmovska 1 , 120 00 Prague , Czech Republic
| | - Petr Štěpánek
- Institute of Macromolecular Chemistry , Heyrovsky Square 2 , 162 06 Prague , Czech Republic
| | - Martin Hrubý
- Institute of Macromolecular Chemistry , Heyrovsky Square 2 , 162 06 Prague , Czech Republic
| |
Collapse
|
7
|
Tang L, Wei W, Wang X, Qian J, Li J, He A, Yang L, Jiang X, Li X, Wei J. LAPONITE® nanorods regulating degradability, acidic-alkaline microenvironment, apatite mineralization and MC3T3-E1 cells responses to poly(butylene succinate) based bio-nanocomposite scaffolds. RSC Adv 2018; 8:10794-10805. [PMID: 35541558 PMCID: PMC9078889 DOI: 10.1039/c7ra13452e] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 03/10/2018] [Indexed: 01/03/2023] Open
Abstract
Novel bio-nanocomposite scaffolds for bone tissue engineering were prepared by incorporation of LAPONITE® (LAP) nanorods into poly(butylene succinate) (PBSu). The results showed that the scaffolds had well interconnected macroporous structures with macropore size in the range of 200–400 μm and porosity of around 70%. In addition, the water absorption, degradability and apatite mineralization ability of the scaffolds were clearly enhanced with the increase of LAP content. Moreover, the degradation of LAP produced alkaline products, which neutralized the acidic degradable products of PBSu, and formed a weak alkaline microenvironment similar to a biological environment. Furthermore, the adhesion, proliferation and differentiation of MC3T3-E1 cells onto the scaffolds were significantly promoted with the increase of LAP content, in which the scaffold with 30 wt% LAP (sPL30) exhibited the best stimulation effect on the cells responses. The results suggested that the promotion of cells responses could be ascribed to the improvements of surface characteristics (including roughness, hydrophilicity, ions release and apatite formation, etc.) of the scaffolds. The sPL30 scaffold with excellent biocompatibility, bioactivity and degradability had great potential for applications in bone tissue engineering. PBSu/LAP bio-nanocomposite scaffolds were prepared, and the sPL30 scaffolds significantly stimulated cell adhesion and proliferation.![]()
Collapse
Affiliation(s)
- Liangchen Tang
- Key Laboratory for Ultrafine Materials of Ministry of Education
- East China University of Science and Technology
- 130 Meilong Road, Shanghai 200237
- China
| | - Wu Wei
- College of Materials Science & Engineering
- Nanjing Tech University
- Nanjing 210009
- China
| | - Xuehong Wang
- Key Laboratory for Ultrafine Materials of Ministry of Education
- East China University of Science and Technology
- 130 Meilong Road, Shanghai 200237
- China
| | - Jun Qian
- Key Laboratory for Ultrafine Materials of Ministry of Education
- East China University of Science and Technology
- 130 Meilong Road, Shanghai 200237
- China
| | - Jianyou Li
- Huzhou Center Hospital
- Department Orthopedic
- Huzhou 313000
- China
| | - Axiang He
- Second Mil. Med. Univ
- Changzheng Hosp
- Dep. Orthopaed Surg
- Shanghai 200003
- China
| | - Lili Yang
- Second Mil. Med. Univ
- Changzheng Hosp
- Dep. Orthopaed Surg
- Shanghai 200003
- China
| | - Xuesheng Jiang
- Huzhou Center Hospital
- Department Orthopedic
- Huzhou 313000
- China
| | - Xiongfeng Li
- Huzhou Center Hospital
- Department Orthopedic
- Huzhou 313000
- China
| | - Jie Wei
- Key Laboratory for Ultrafine Materials of Ministry of Education
- East China University of Science and Technology
- 130 Meilong Road, Shanghai 200237
- China
| |
Collapse
|
8
|
Mustafa S, Devi VK, Pai RS. Effect of PEG and water-soluble chitosan coating on moxifloxacin-loaded PLGA long-circulating nanoparticles. Drug Deliv Transl Res 2017; 7:27-36. [PMID: 27576453 DOI: 10.1007/s13346-016-0326-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Moxifloxacin (MOX) is a Mycobacterium tuberculosis DNA gyrase inhibitor. Due to its intense hydrophilicity, MOX is cleared from the body within 24 h and required for repetitive doses which may then result in hepatotoxicity and acquisition of MOX resistant-TB, related with its use. To overcome the aforementioned limitations, the current study aimed to develop PLGA nanoparticles (PLGA NPs), to act as an efficient carrier for controlled delivery of MOX. To achieve a substantial extension in blood circulation, a combined design, affixation of polyethylene glycol (PEG) to MOX-PLGA NPs and adsorption of water-soluble chitosan (WSC) (cationic deacetylated chitin) to particle surface, was rose for surface modification of NPs. Surface modified NPs (MOX-PEG-WSC NPs) were prepared to provide controlled delivery and circulate in the bloodstream for an extended period of time, thus minimizing dosing frequency. In vivo pharmacokinetic and in vivo biodistribution following oral administration were investigated. NP surface charge was closed to neutral +4.76 mV and significantly affected by the WSC coating. MOX-PEG-WSC NPs presented striking prolongation in blood circulation, reduced protein binding, and long-drawn-out the blood circulation half-life with resultant reduced liver sequestration vis-à-vis MOX-PLGA NPs. The studies, therefore, indicate the successful formulation development of MOX-PEG-WSC NPs that showed sustained release behavior from nanoparticles which indicates low frequency of dosing.
Collapse
Affiliation(s)
- Sanaul Mustafa
- Pharmaceutics Division, Faculty of Pharmacy, Al-Ameen College of Pharmacy, Near Lal Bagh Main gate, Hosur Road, Bangalore, Karnataka, 560027, India
| | - V Kusum Devi
- Pharmaceutics Division, Faculty of Pharmacy, Al-Ameen College of Pharmacy, Near Lal Bagh Main gate, Hosur Road, Bangalore, Karnataka, 560027, India.
| | - Roopa S Pai
- Pharmaceutics Division, Faculty of Pharmacy, Al-Ameen College of Pharmacy, Near Lal Bagh Main gate, Hosur Road, Bangalore, Karnataka, 560027, India
| |
Collapse
|
9
|
Kanamycin Sulphate Loaded PLGA-Vitamin-E-TPGS Long Circulating Nanoparticles Using Combined Coating of PEG and Water-Soluble Chitosan. JOURNAL OF DRUG DELIVERY 2017; 2017:1253294. [PMID: 28352475 PMCID: PMC5352902 DOI: 10.1155/2017/1253294] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 11/29/2016] [Accepted: 12/21/2016] [Indexed: 12/02/2022]
Abstract
Kanamycin sulphate (KS) is a Mycobacterium tuberculosis protein synthesis inhibitor. Due to its intense hydrophilicity, KS is cleared from the body within 8 h. KS has a very short plasma half-life (2.5 h). KS is used in high concentrations to reach the therapeutic levels in plasma, which results in serious nephrotoxicity/ototoxicity. To overcome aforementioned limitations, the current study aimed to develop KS loaded PLGA-Vitamin-E-TPGS nanoparticles (KS-PLGA-TPGS NPs), to act as an efficient carrier for controlled delivery of KS. To achieve a substantial extension in blood circulation, a combined design, affixation of polyethylene glycol (PEG) to KS-PLGA-TPGS NPs and adsorption of water-soluble chitosan (WSC) (cationic deacetylated chitin) to particle surface, was raised for surface modification of NPs. Surface modified NPs (KS-PEG-WSC NPs) were prepared to provide controlled delivery and circulate in the bloodstream for an extended period of time, thus minimizing dosing frequency. In vivo pharmacokinetics and in vivo biodistribution following intramuscular administration were investigated. NPs surface charge was close to neutral +3.61 mV and significantly affected by the WSC coating. KS-PEG-WSC NPs presented striking prolongation in blood circulation, reduced protein binding, and long drew-out the blood circulation half-life with resultant reduced kidney sequestration vis-à-vis KS-PLGA-TPGS NPs. The studies, therefore, indicate the successful formulation development of KS-PEG-WSC NPs with reduced frequency of dosing of KS indicating low incidence of nephrotoxicity/ototoxicity.
Collapse
|
10
|
Smart materials on the way to theranostic nanorobots: Molecular machines and nanomotors, advanced biosensors, and intelligent vehicles for drug delivery. Biochim Biophys Acta Gen Subj 2017; 1861:1530-1544. [PMID: 28130158 DOI: 10.1016/j.bbagen.2017.01.027] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 01/19/2017] [Accepted: 01/20/2017] [Indexed: 12/25/2022]
Abstract
BACKGROUND Theranostics, a fusion of two key parts of modern medicine - diagnostics and therapy of the organism's disorders, promises to bring the efficacy of medical treatment to a fundamentally new level and to become the basis of personalized medicine. Extrapolating today's progress in the field of smart materials to the long-run prospect, we can imagine future intelligent agents capable of performing complex analysis of different physiological factors inside the living organism and implementing a built-in program thereby triggering a series of therapeutic actions. These agents, by analogy with their macroscopic counterparts, can be called nanorobots. It is quite obscure what these devices are going to look like but they will be more or less based on today's achievements in nanobiotechnology. SCOPE OF REVIEW The present Review is an attempt to systematize highly diverse nanomaterials, which may potentially serve as modules for theranostic nanorobotics, e.g., nanomotors, sensing units, and payload carriers. MAJOR CONCLUSIONS Biocomputing-based sensing, externally actuated or chemically "fueled" autonomous movement, swarm inter-agent communication behavior are just a few inspiring examples that nanobiotechnology can offer today for construction of truly intelligent drug delivery systems. GENERAL SIGNIFICANCE The progress of smart nanomaterials toward fully autonomous drug delivery nanorobots is an exciting prospect for disease treatment. Synergistic combination of the available approaches and their further development may produce intelligent drugs of unmatched functionality.
Collapse
|
11
|
Washington KE, Kularatne RN, Karmegam V, Biewer MC, Stefan MC. Recent advances in aliphatic polyesters for drug delivery applications. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2016; 9. [DOI: 10.1002/wnan.1446] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 09/30/2016] [Accepted: 10/31/2016] [Indexed: 01/24/2023]
Affiliation(s)
| | | | - Vasanthy Karmegam
- Department of Chemistry University of Texas at Dallas Richardson TX USA
| | - Michael C. Biewer
- Department of Chemistry University of Texas at Dallas Richardson TX USA
| | - Mihaela C. Stefan
- Department of Chemistry University of Texas at Dallas Richardson TX USA
| |
Collapse
|
12
|
Siafaka PI, Üstündağ Okur N, Karavas E, Bikiaris DN. Surface Modified Multifunctional and Stimuli Responsive Nanoparticles for Drug Targeting: Current Status and Uses. Int J Mol Sci 2016; 17:E1440. [PMID: 27589733 PMCID: PMC5037719 DOI: 10.3390/ijms17091440] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/09/2016] [Accepted: 08/19/2016] [Indexed: 02/07/2023] Open
Abstract
Nanocarriers, due to their unique features, are of increased interest among researchers working with pharmaceutical formulations. Polymeric nanoparticles and nanocapsules, involving non-toxic biodegradable polymers, liposomes, solid lipid nanoparticles, and inorganic-organic nanomaterials, are among the most used carriers for drugs for a broad spectrum of targeted diseases. In fact, oral, injectable, transdermal-dermal and ocular formulations mainly consist of the aforementioned nanomaterials demonstrating promising characteristics such as long circulation, specific targeting, high drug loading capacity, enhanced intracellular penetration, and so on. Over the last decade, huge advances in the development of novel, safer and less toxic nanocarriers with amended properties have been made. In addition, multifunctional nanocarriers combining chemical substances, vitamins and peptides via coupling chemistry, inorganic particles coated by biocompatible materials seem to play a key role considering that functionalization can enhance characteristics such as biocompatibility, targetability, environmental friendliness, and intracellular penetration while also have limited side effects. This review aims to summarize the "state of the art" of drug delivery carriers in nanosize, paying attention to their surface functionalization with ligands and other small or polymeric compounds so as to upgrade active and passive targeting, different release patterns as well as cell targeting and stimuli responsibility. Lastly, future aspects and potential uses of nanoparticulated drug systems are outlined.
Collapse
Affiliation(s)
- Panoraia I Siafaka
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Macedonia, Greece.
| | - Neslihan Üstündağ Okur
- Department of Pharmaceutical Technology, School of Pharmacy, Istanbul Medipol University, Beykoz 34810, Istanbul, Turkey.
| | | | - Dimitrios N Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Macedonia, Greece.
| |
Collapse
|
13
|
Wang M, Xu Y, Wang J, Liu M, Yuan Z, Chen K, Li L, Prud’homme RK, Guo X. Biocompatible Nanoparticle Based on Dextran-b-Poly(L-lactide) Block Copolymer Formed by Flash Nanoprecipitation. CHEM LETT 2015. [DOI: 10.1246/cl.150800] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Mingwei Wang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology
| | - Yisheng Xu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology
| | - Jie Wang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology
| | - Miaomiao Liu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology
| | - Zhenyu Yuan
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology
| | - Kai Chen
- School of Chemistry and Chemical Engineering, Shihezi University
| | - Li Li
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology
| | | | - Xuhong Guo
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology
- School of Chemistry and Chemical Engineering, Shihezi University
| |
Collapse
|
14
|
Siafaka P, Betsiou M, Tsolou A, Angelou E, Agianian B, Koffa M, Chaitidou S, Karavas E, Avgoustakis K, Bikiaris D. Synthesis of folate- pegylated polyester nanoparticles encapsulating ixabepilone for targeting folate receptor overexpressing breast cancer cells. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2015; 26:275. [PMID: 26543021 DOI: 10.1007/s10856-015-5609-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 10/24/2015] [Indexed: 06/05/2023]
Abstract
The aim of this study was the preparation of novel polyester nanoparticles based on folic acid (FA)-functionalized poly(ethylene glycol)-poly(propylene succinate) (PEG-PPSu) copolymer and loaded with the new anticancer drug ixabepilone (IXA). These nanoparticles may serve as a more selective (targeted) treatment of breast cancer tumors overexpressing the folate receptor. The synthesized materials were characterized by (1)H-NMR, FTIR, XRD and DSC. The nanoparticles were prepared by a double emulsification and solvent evaporation method and characterized with regard to their morphology by scanning electron microscopy, drug loading with HPLC-UV and size by dynamic light scattering. An average size of 195 nm and satisfactory drug loading efficiency (3.5%) were observed. XRD data indicated that IXA was incorporated into nanoparticles in amorphous form. The nanoparticles exhibited sustained drug release properties in vitro. Based on in vitro cytotoxicity studies, the blank FA-PEG-PPSu nanoparticles were found to be non-toxic to the cells. Fluorescent nanoparticles were prepared by conjugating Rhodanine B to PEG-PPSu, and live cell, fluorescence, confocal microscopy was applied in order to demonstrate the ability of FA-PEG-PPSu nanoparticles to enter into human breast cancer cells expressing the folate receptor.
Collapse
Affiliation(s)
- P Siafaka
- Department of Chemistry, Aristotle University of Thessaloniki, 54 124, Thessaloniki, Macedonia, Greece
| | - M Betsiou
- Department of Chemistry, Aristotle University of Thessaloniki, 54 124, Thessaloniki, Macedonia, Greece
| | - A Tsolou
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Xanthi, Greece
| | - E Angelou
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Xanthi, Greece
| | - B Agianian
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Xanthi, Greece
| | - M Koffa
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Xanthi, Greece
| | - S Chaitidou
- Pharmathen S.A, Pharmaceutical Industry, Dervenakion Str6, 153 51, Attiki, Greece
| | - E Karavas
- Pharmathen S.A, Pharmaceutical Industry, Dervenakion Str6, 153 51, Attiki, Greece
| | - K Avgoustakis
- Department of Pharmacy, University of Patras, 26500, Patras, Greece
| | - D Bikiaris
- Department of Chemistry, Aristotle University of Thessaloniki, 54 124, Thessaloniki, Macedonia, Greece.
| |
Collapse
|
15
|
Jia YG, Zhu XX. Thermo- and pH-Responsive Copolymers Bearing Cholic Acid and Oligo(ethylene glycol) Pendants: Self-Assembly and pH-Controlled Release. ACS APPLIED MATERIALS & INTERFACES 2015; 7:24649-24655. [PMID: 26479835 DOI: 10.1021/acsami.5b06909] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A family of block and random copolymers of norbornene derivatives bearing cholic acid and oligo(ethylene glycol) pendants were prepared in the presence of Grubbs' catalyst. The phase transition temperature of the copolymers in aqueous solutions may be tuned by the variation of comonomer ratios and pH values. Both types of copolymers formed micellar nanostructures with a hydrophilic poly(ethylene glycol) shell and a hydrophobic core containing cholic acid residues. The micellar size increased gradually with increasing pH due to the deprotonation of the carboxylic acid groups. These micelles were capable of encapsulating hydrophobic compounds such as Nile Red (NR). A higher hydrophobicity/hydrophilicity ratio in both copolymers resulted in a higher loading capacity for NR. With similar molecular weights and monomer compositions, the block copolymers showed a higher loading capacity for NR than the random copolymers. The NR-loaded micelles exhibited a pH-triggered release behavior. At pH 7.4 within 96 h, the micelles formed by the block and random of copolymers released 56 and 97% NR, respectively. Therefore, these micelles may have promise for use as therapeutic nanocarriers in drug delivery systems.
Collapse
Affiliation(s)
- Yong-Guang Jia
- Département de Chimie, Université de Montréal , C.P. 6128, Succursale Centre-ville, Montréal, QC H3C 3J7, Canada
| | - X X Zhu
- Département de Chimie, Université de Montréal , C.P. 6128, Succursale Centre-ville, Montréal, QC H3C 3J7, Canada
| |
Collapse
|
16
|
|
17
|
Karavelidis V, Bikiaris D, Avgoustakis K. New thermosensitive nanoparticles prepared by biocompatible pegylated aliphatic polyester block copolymers for local cancer treatment. J Pharm Pharmacol 2014; 67:215-30. [DOI: 10.1111/jphp.12337] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Accepted: 08/24/2014] [Indexed: 12/24/2022]
Abstract
Abstract
Objective
New pegylated thermosensitive polymers were developed to study them as drug vehicles in targeting release nanoparticulate systems of anticancer drugs.
Methods
The drug vehicles were prepared in the form of core-shell nanoparticles using novel polymeric materials synthesized by copolymerization of poly(propylene adipate) (PPAd) and methoxy-polyethylene glycol (mPEG) with different molecular weights. The physical and chemical properties of the synthesized mPEG-PPAd copolymers were studied using several techniques, and their cytocompatibility was evaluated. For drug nanoencapsulation, a water in oil (W/O) emulsification and solvent evaporation technique was used and the prepared nanoparticles were studied for their physical properties, morphology, drug release and anticancer efficacy against cancer cell lines.
Key findings
The size of the nanoparticles lied in a range suitable for tumour targeting. Drug release was affected by the composition of polymer, the temperature and pH of the release medium. The release results obtained indicate that judicious selection of nanoparticles composition may allow for enhanced drug delivery to the tumours following application of local hyperthermia.
Conclusions
The paclitaxel-loaded mPEG-PPAd nanoparticles were found to be cytotoxic against to the human hepatoma HepG2) and the human epithelial (HeLa) cancer cell lines. Enhanced cytotoxicity against the HeLa cells was observed at elevated temperature (42°C compared with 37°C), providing support for the potential usefulness of the mPEG-PPAd nanoparticles for the development of thermo-sensitive anticancer drug delivery systems.
Collapse
Affiliation(s)
- Vassilios Karavelidis
- Laboratory of Polymer Chemistry and Technology, Chemistry Department, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Pharmathen S.A., Pharmaceutical Industry, Pallini, Attiki, Greece
| | - Dimitrios Bikiaris
- Laboratory of Polymer Chemistry and Technology, Chemistry Department, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | |
Collapse
|
18
|
Carraro TCMM, Khalil NM, Mainardes RM. Amphotericin B-loaded polymeric nanoparticles: formulation optimization by factorial design. Pharm Dev Technol 2014; 21:140-6. [PMID: 25384838 DOI: 10.3109/10837450.2014.979942] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In this study, PLGA or PLGA-PEG blend nanoparticles were developed loading amphotericin B (AmB), an antifungal agent broadly used in therapy. A 2(2) × 3(1) factorial experimental design was conducted to indicate an optimal formulation of nanoparticles containing AmB and demonstrate the influence of the interactions of components on the mean particle size and drug encapsulation efficiency. The independent variables analyzed were polymer amount (two levels) and organic phase (three factors in one level). The parameters methanol as cosolvent and higher polymer amount originated from the higher AmB encapsulation, but with the larger particle size. The selected optimized parameters were set as the lower polymer amount and ethyl acetate as cosolvent in organic phase, for both PLGA and PLGA-PEG nanoparticles. These parameters originated from nanoparticles with the size of 189.5 ± 90 nm and 169 ± 6.9 nm and AmB encapsulation efficiency of 94.0 ± 1.3% and 92.8 ± 2.9% for PLGA and PLGA-PEG nanoparticles, respectively. Additionally, these formulations showed a narrow size distribution indicating homogeneity in the particle size. PLGA and PLGA-PEG nanoparticles are potential carrier for AmB delivery and the factorial design presented an important tool in optimizing nanoparticles formulations.
Collapse
Affiliation(s)
| | - Najeh Maissar Khalil
- a Department of Pharmacy , Universidade Estadual do Centro-Oeste , Guarapuava , PR , Brazil
| | - Rubiana Mara Mainardes
- a Department of Pharmacy , Universidade Estadual do Centro-Oeste , Guarapuava , PR , Brazil
| |
Collapse
|
19
|
Zheng S, Xie Y, Li Y, Li L, Tian N, Zhu W, Yan G, Wu C, Hu H. Development of high drug-loading nanomicelles targeting steroids to the brain. Int J Nanomedicine 2013; 9:55-66. [PMID: 24379663 PMCID: PMC3872275 DOI: 10.2147/ijn.s52576] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The objective of this research was to develop and evaluate high drug-loading ligand-modified nanomicelles to deliver a steroidal compound to the brain. YC1 (5α-cholestane-24-methylene-3β, 5α, 6β, 19-tetraol), with poor solubility and limited access to the brain, for the first time, has been proved to be an effective neuroprotective steroid by our previous studies. Based on the principle of ‘like dissolves like’, cholesterol, which shares the same steroidal parent nucleus with YC1, was selected to react with sodium alginate, producing amphiphilic sodium alginate– cholesterol derivatives (SACDs). To increase the grafting ratio and drug loading, cholesterol was converted to cholesteryl chloroformate, for the first time, before reacting with sodium alginate. Further, lactoferrin was conjugated on SACDs to provide lactoferrin-SACDs (Lf-SACD), which was established by immune electron microscopy (IEM) and self-assembled into brain-targeting nanomicelles. These nanomicelles were negatively charged and spherical in nature, with an average size of <200 nm. The YC1 drug loading was increased due to the cholesteryl inner cores of the nanomicelles, and the higher the grafting ratio was, the lower the critical micelle concentration (CMC) value of SACD, and the higher drug loading. The in vitro drug release, studied by bulk-equilibrium dialysis in 20 mL of 6% hydroxypropyl-β-cyclodextrin solution at 37°C, indicated a prolonged release profile. The YC1 concentration in mouse brain delivered by lactoferrin-modified nanomicelles was higher than in those delivered by non-modified nanomicelles and YC1 solution. The unique brain-targeting nanomicelle system may provide a promising carrier to deliver hydrophobic drugs across the blood–brain barrier for the treatment of brain diseases.
Collapse
Affiliation(s)
- Sijia Zheng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yanqi Xie
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yuan Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Ling Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Ning Tian
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Wenbo Zhu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Guangmei Yan
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Chuanbin Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Haiyan Hu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| |
Collapse
|
20
|
Filippousi M, Papadimitriou SA, Bikiaris DN, Pavlidou E, Angelakeris M, Zamboulis D, Tian H, Van Tendeloo G. Novel core–shell magnetic nanoparticles for Taxol encapsulation in biodegradable and biocompatible block copolymers: Preparation, characterization and release properties. Int J Pharm 2013; 448:221-30. [DOI: 10.1016/j.ijpharm.2013.03.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 03/12/2013] [Accepted: 03/13/2013] [Indexed: 11/29/2022]
|
21
|
Aloisio C, Gomes de Oliveira A, Longhi M. Characterization, inclusion mode, phase-solubility andin vitrorelease studies of inclusion binary complexes with cyclodextrins and meglumine using sulfamerazine as model drug. Drug Dev Ind Pharm 2013; 40:919-28. [DOI: 10.3109/03639045.2013.790408] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
22
|
Mattheolabakis G, Rigas B, Constantinides PP. Nanodelivery strategies in cancer chemotherapy: biological rationale and pharmaceutical perspectives. Nanomedicine (Lond) 2013; 7:1577-90. [PMID: 23148540 DOI: 10.2217/nnm.12.128] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Nanotechnology is revolutionizing our approach to drug delivery, a key determinant of drug efficacy. Here, we present cancer drug delivery strategies that exploit nanotechnology, providing first an overview of tumor biology aspects that critically affect the design of drug delivery carriers, namely the enhanced permeability and retention effect, the lower tumor extracellular pH and tumor-specific antigens. In general, nanoscience-based approaches have circumvented limitations in the delivery of cancer therapeutics, related to their poor aqueous solubility and toxicity issues with conventional vehicles and resulted in improved pharmacokinetics and biodistribution. Included in the discussion are promising examples and pharmaceutical perspectives on liposomes, nanoemulsions, solid lipid nanoparticles, polymeric nanoparticles, dendrimers, carbon nanotubes and magnetic nanoparticles. As the cardinal features of the ideal multifunctional cancer drug nanocarrier are becoming clear, and drug development challenges are proactively addressed, we anticipate that future advances will enhance therapeutic outcomes by refining the delivery and targeting of complex payloads.
Collapse
Affiliation(s)
- George Mattheolabakis
- Division of Cancer Prevention, Department of Medicine, Stony Brook University, Stony Brook, NY, USA
| | | | | |
Collapse
|
23
|
Vasileiou AA, Papageorgiou GZ, Kontopoulou M, Docoslis A, Bikiaris D. Covalently bonded poly(ethylene succinate)/SiO2 nanocomposites prepared by in situ polymerisation. POLYMER 2013. [DOI: 10.1016/j.polymer.2012.12.036] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
24
|
Li B, Wang Q, Wang X, Wang C, Jiang X. Preparation, drug release and cellular uptake of doxorubicin-loaded dextran-b-poly(ɛ-caprolactone) nanoparticles. Carbohydr Polym 2013; 93:430-7. [PMID: 23499079 DOI: 10.1016/j.carbpol.2012.12.051] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 12/06/2012] [Accepted: 12/12/2012] [Indexed: 11/17/2022]
Abstract
Amphiphilic dextran-b-poly(ɛ-caprolactone) diblock copolymers were synthesized with the purpose of preparing nanocarriers for doxorubicin (DOX), an anticancer drug. The Dex-b-PCL diblock copolymers were synthesized by end-to-end coupling of amino-terminated dextran and aldehyde-terminated poly(ɛ-caprolactone) and characterized by (1)H NMR spectra and gel permeation chromatography. The DOX-loaded Dex-b-PCL nanoparticles were prepared by a modified nanoprecipitation method and characterized by transmission electron microscopy and dynamic light scattering. In vitro release of DOX from DOX-Dex-b-PCL nanoparticles showed a sustained release manner with certain amount of burst release in the first 9h. In vitro cytotoxicity test of DOX-Dex-b-PCL nanoparticles against SH-SY5Y cells showed that DOX is still pharmacologically active after drug loading. The fluorescence imaging results showed that DOX-Dex-b-PCL nanoparticles could be easily uptaken by SH-SY5Y cells. These results indicate that DOX-Dex-b-PCL nanoparticles may be a promising nanocarrier for DOX.
Collapse
Affiliation(s)
- Bengang Li
- College of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, PR China
| | | | | | | | | |
Collapse
|
25
|
Filippousi M, Altantzis T, Stefanou G, Betsiou M, Bikiaris DN, Angelakeris M, Pavlidou E, Zamboulis D, Van Tendeloo G. Polyhedral iron oxide core–shell nanoparticles in a biodegradable polymeric matrix: preparation, characterization and application in magnetic particle hyperthermia and drug delivery. RSC Adv 2013. [DOI: 10.1039/c3ra43747g] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
26
|
Wang X, Chai Z, Ma R, Zhao L, Zhang Z, An Y, Shi L. Enhancement of the photostability and photoactivity of metallo-meso-5,10,15,20-tetrakis-(4-sulfonatophenyl)porphyrins by polymeric micelles. J Colloid Interface Sci 2012; 388:80-5. [DOI: 10.1016/j.jcis.2012.08.045] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Revised: 08/19/2012] [Accepted: 08/21/2012] [Indexed: 11/30/2022]
|
27
|
Yang C, Sun Y, Zhang L. Dissipative Particle Dynamics Study on Aggregation of MPEG-PAE-PLA Block Polymer Micelles Loading Doxorubicine. CHINESE J CHEM 2012. [DOI: 10.1002/cjoc.201200629] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
28
|
A review on comb-shaped amphiphilic polymers for hydrophobic drug solubilization. Ther Deliv 2012; 3:59-79. [PMID: 22833933 DOI: 10.4155/tde.11.130] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Comb-shaped amphiphilic polymers are rapidly emerging as an alternative approach to amphiphilic block copolymers for hydrophobic drug solubilization. These polymers consist of a homopolymer or copolymer backbone to which hydrophobic and hydrophilic pendant groups can be grafted resulting in a comb-like architecture. The hydrophobic pendants may consist of homopolymers, copolymers and other low-molecular weight hydrophobic structures. In this review, we focus on hydrophobically modified preformed homopolymers. Comb-shaped amphiphilic polymers possess reduced critical aggregation concentration values compared with traditional surfactant micelles indicating increased stability with decreased disruption experienced on dilution. They have been fabricated with diverse architectures and multifunctional properties such as site-specific targeting and external stimuli-responsive nature. The application of comb-shaped amphiphilic polymers is expanding; here we report on the progress achieved so far in hydrophobic drug solubilization for both intravenous and oral delivery.
Collapse
|
29
|
Gulfam M, Kim JE, Lee JM, Ku B, Chung BH, Chung BG. Anticancer drug-loaded gliadin nanoparticles induce apoptosis in breast cancer cells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:8216-8223. [PMID: 22568862 DOI: 10.1021/la300691n] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Nanoscale drug carriers play an important role in regulating the delivery, permeability, and retention of the drugs. Although various carriers have been used to encapsulate anticancer drugs, natural biomaterials are of great benefit for delivery and controlled release of drugs. We used the electrospray deposition system to synthesize gliadin and gliadin-gelatin composite nanoparticles for delivery and controlled release of an anticancer drug (e.g., cyclophosphamide). The size profile and synthesis of nanoparticles was characterized by dynamic light scattering and X-ray diffractometry. Cyclophosphamide was gradually released from the gliadin nanoparticles for 48 h. In contrast, the gliadin-gelatin composite nanoparticles released cyclophosphamide in a rapid manner. Furthermore, we demonstrated that breast cancer cells cultured with cyclophosphamide-loaded 7% gliadin nanoparticles for 24 h became apoptotic, confirmed by Western blotting analysis. Therefore, the gliadin-based nanoparticle could be a powerful tool for delivery and controlled release of anticancer drugs.
Collapse
Affiliation(s)
- Muhammad Gulfam
- Department of Bionano Engineering, Hanyang University, Ansan, Korea
| | | | | | | | | | | |
Collapse
|
30
|
Karavelidis V, Karavas E, Giliopoulos D, Papadimitriou S, Bikiaris D. Evaluating the effects of crystallinity in new biocompatible polyester nanocarriers on drug release behavior. Int J Nanomedicine 2011; 6:3021-32. [PMID: 22162659 PMCID: PMC3230569 DOI: 10.2147/ijn.s26016] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Four new polyesters based on 1,3-propanediol and different aliphatic dicarboxylic acids were used to prepare ropinirole HCl-loaded nanoparticles. The novelty of this study lies in the use of polyesters with similar melting points but different degrees of crystallinity, varying from 29.8% to 67.5%, as drug nanocarriers. Based on their toxicity to human umbilical vein endothelial cells, these aliphatic polyesters were found to have cytotoxicity similar to that of polylactic acid and so may be considered as prominent drug nanocarriers. Drug encapsulation in polyesters was performed via an emulsification/solvent evaporation method. The mean particle size of drug-loaded nanoparticles was 164–228 nm, and the drug loading content was 16%–23%. Wide angle X-ray diffraction patterns showed that ropinirole HCl existed in an amorphous state within the nanoparticle polymer matrices. Drug release diagrams revealed a burst effect for ropinirole HCl in the first 6 hours, probably due to release of drug located on the nanoparticle surface, followed by slower release. The degree of crystallinity of the host polymer matrix seemed to be an important parameter, because higher drug release rates were observed in polyesters with a low degree of crystallinity.
Collapse
Affiliation(s)
- Vassilios Karavelidis
- Laboratory of Polymer Chemistry and Technology, Chemistry Department, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | | | | | | |
Collapse
|