1
|
Low HY, Yang CT, Xia B, He T, Lam WWC, Ng DCE. Radiolabeled Liposomes for Nuclear Imaging Probes. Molecules 2023; 28:molecules28093798. [PMID: 37175207 PMCID: PMC10180453 DOI: 10.3390/molecules28093798] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/17/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Quantitative nuclear imaging techniques are in high demand for various disease diagnostics and cancer theranostics. The non-invasive imaging modality requires radiotracing through the radioactive decay emission of the radionuclide. Current preclinical and clinical radiotracers, so-called nuclear imaging probes, are radioisotope-labeled small molecules. Liposomal radiotracers have been rapidly developing as novel nuclear imaging probes. The physicochemical properties and structural characteristics of liposomes have been elucidated to address their long circulation and stability as radiopharmaceuticals. Various radiolabeling methods for synthesizing radionuclides onto liposomes and synthesis strategies have been summarized to render them biocompatible and enable specific targeting. Through a variety of radionuclide labeling methods, radiolabeled liposomes for use as nuclear imaging probes can be obtained for in vivo biodistribution and specific targeting studies. The advantages of radiolabeled liposomes including their use as potential clinical nuclear imaging probes have been highlighted. This review is a comprehensive overview of all recently published liposomal SPECT and PET imaging probes.
Collapse
Affiliation(s)
- Ho Ying Low
- Department of Nuclear Medicine and Molecular Imaging, Radiological Sciences Division, Singapore General Hospital, Outram Road, Singapore 169608, Singapore
| | - Chang-Tong Yang
- Department of Nuclear Medicine and Molecular Imaging, Radiological Sciences Division, Singapore General Hospital, Outram Road, Singapore 169608, Singapore
- Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Bin Xia
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Tao He
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Winnie Wing Chuen Lam
- Department of Nuclear Medicine and Molecular Imaging, Radiological Sciences Division, Singapore General Hospital, Outram Road, Singapore 169608, Singapore
- Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - David Chee Eng Ng
- Department of Nuclear Medicine and Molecular Imaging, Radiological Sciences Division, Singapore General Hospital, Outram Road, Singapore 169608, Singapore
- Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| |
Collapse
|
2
|
Delivery of Corn-Derived Nanoparticles with Anticancer Activity to Tumor Tissues by Modification with Polyethylene Glycol for Cancer Therapy. Pharm Res 2022; 40:917-926. [PMID: 36352200 DOI: 10.1007/s11095-022-03431-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/01/2022] [Indexed: 11/11/2022]
Abstract
PURPOSE We recently reported that intratumoral injection of corn-derived nanoparticles (cNPs) affords anticancer activity in tumor-bearing mice. To increase their applicability in cancer therapy, we examined the tissue distribution of cNPs after intravenous injection in mice, modified their surface with polyethylene glycol (PEG) to improve tumor delivery, and examined tissue distribution and anticancer activity of PEG-cNPs in tumor-bearing mice. METHODS N-(Carbonyl-methoxypolyethyleneglycol2000)-1,2-distearoyl-sn-glycero-3-phosphoethanolamine (DSPE-PEG) was added to cNPs by sonication to obtain PEG-cNPs, and the ratio of DSPE-PEG to cNPs was optimized by evaluating the modification efficiency. cNPs and PEG-cNPs were labeled with fluorescent dyes DiO or DiR, and their tissue distribution was subsequently examined after intravenous administration to mice. Finally, we determined the anticancer activity and toxicity of PEG-cNPs. RESULTS No detectable fluorescence intensity was observed in mouse serum after intravenous DiR-cNP injection. DSPE-PEG was successfully modified into cNPs, and a PEG:cNPs ratio of 50 was determined as optimal for preparing PEG-cNPs, based on their size and zeta potential. DiO-PEG-cNPs exhibited significantly higher serum concentrations and lower liver accumulation than DiO-cNPs. Moreover, DiR-PEG-cNPs accumulated in tumor tissues of colon26 tumor-bearing mice. Repeated intravenous PEG-cNP injections significantly retarded tumor growth, with no significant hepatotoxicity or nephrotoxicity. CONCLUSION Overall, these results indicate that controlling the tissue distribution of cNPs via PEG modification on their surface can be a valuable strategy for developing intravenously injectable cNPs for cancer therapy.
Collapse
|
3
|
Chen X, Niu W, Du Z, Zhang Y, Su D, Gao X. 64Cu radiolabeled nanomaterials for positron emission tomography (PET) imaging. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.02.070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
4
|
Lee W, Il An G, Park H, Sarkar S, Ha YS, Huynh PT, Bhise A, Bhatt N, Ahn H, Pandya DN, Kim JY, Kim S, Jun E, Kim SC, Lee KC, Yoo J. Imaging Strategy that Achieves Ultrahigh Contrast by Utilizing Differential Esterase Activity in Organs: Application in Early Detection of Pancreatic Cancer. ACS NANO 2021; 15:17348-17360. [PMID: 34405675 DOI: 10.1021/acsnano.1c05165] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Most nanoparticles show much higher uptake in mononuclear phagocyte system (MPS) organs than in tumors, which has been a long-lasting dilemma in nanomedicine. Here, we report an imaging strategy that selectively decreases MPS organ uptakes by utilizing the differential esterase activity in tumors and other organs. When an esterase-labile radiotracer loaded liposome was injected into the body, radioactivity was rapidly excreted from the liver and spleen after breakage of the ester bond by esterase. However, the lipophilic radiotracer delivered to the tumor remained in the tumor with minimal bond cleavage. The underlying mechanism was fully characterized in vitro and in vivo in colon tumor models. As a proof of concept, the liposomal radiotracer was further optimized for the early detection of pancreatic cancer. The folate-coated liposomal radiotracer showed highly selective tumor uptake. At 4 h postinjection, a pancreatic tumor a few millimeters in size was unambiguously visualized in orthotopic tumor models by PET imaging. At 24 h, an exceptionally high tumor-to-background ratio was achieved, enabling the visualization of tumors alone with minimal background noise. More than 9% of the total radioactivity was found in the tumor. Utilizing our imaging strategy, various tumor imaging agents can be developed for sensitive detection with ultrahigh contrast.
Collapse
Affiliation(s)
- Woonghee Lee
- Department of Molecular Medicine, Brain Korea 21 four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Gwang Il An
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Hyun Park
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Swarbhanu Sarkar
- Department of Molecular Medicine, Brain Korea 21 four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Yeong Su Ha
- Department of Molecular Medicine, Brain Korea 21 four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Phuong Tu Huynh
- Department of Molecular Medicine, Brain Korea 21 four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Abhinav Bhise
- Department of Molecular Medicine, Brain Korea 21 four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Nikunj Bhatt
- Department of Molecular Medicine, Brain Korea 21 four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Heesu Ahn
- Department of Molecular Medicine, Brain Korea 21 four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Darpan N Pandya
- Department of Molecular Medicine, Brain Korea 21 four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Jung Young Kim
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Seokho Kim
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea
| | - Eunsung Jun
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Asan Medical Center, AMIST, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
- Department of Convergence Medicine, Asan Institute for Life Sciences, University of Ulsan College of Medicine and Asan Medical Center, Seoul 05505, Republic of Korea
| | - Song Cheol Kim
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Asan Medical Center, AMIST, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Kyo Chul Lee
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Jeongsoo Yoo
- Department of Molecular Medicine, Brain Korea 21 four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| |
Collapse
|
5
|
Nakhaei P, Margiana R, Bokov DO, Abdelbasset WK, Jadidi Kouhbanani MA, Varma RS, Marofi F, Jarahian M, Beheshtkhoo N. Liposomes: Structure, Biomedical Applications, and Stability Parameters With Emphasis on Cholesterol. Front Bioeng Biotechnol 2021; 9:705886. [PMID: 34568298 PMCID: PMC8459376 DOI: 10.3389/fbioe.2021.705886] [Citation(s) in RCA: 255] [Impact Index Per Article: 63.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/09/2021] [Indexed: 12/12/2022] Open
Abstract
Liposomes are essentially a subtype of nanoparticles comprising a hydrophobic tail and a hydrophilic head constituting a phospholipid membrane. The spherical or multilayered spherical structures of liposomes are highly rich in lipid contents with numerous criteria for their classification, including structural features, structural parameters, and size, synthesis methods, preparation, and drug loading. Despite various liposomal applications, such as drug, vaccine/gene delivery, biosensors fabrication, diagnosis, and food products applications, their use encounters many limitations due to physico-chemical instability as their stability is vigorously affected by the constituting ingredients wherein cholesterol performs a vital role in the stability of the liposomal membrane. It has well established that cholesterol exerts its impact by controlling fluidity, permeability, membrane strength, elasticity and stiffness, transition temperature (Tm), drug retention, phospholipid packing, and plasma stability. Although the undetermined optimum amount of cholesterol for preparing a stable and controlled release vehicle has been the downside, but researchers are still focused on cholesterol as a promising material for the stability of liposomes necessitating explanation for the stability promotion of liposomes. Herein, the prior art pertaining to the liposomal appliances, especially for drug delivery in cancer therapy, and their stability emphasizing the roles of cholesterol.
Collapse
Affiliation(s)
- Pooria Nakhaei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ria Margiana
- Department of Anatomy, Faculty of Medicine, Universitas Indonesia, Depok, Indonesia
- Cipto Mangunkusumo Hospital, The National Referral Hospital, Central Jakarta, Indonesia
- Master’s Programme Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Depok, Indonesia
| | - Dmitry O. Bokov
- Institute of Pharmacy, Sechenov First Moscow State Medical University, Moscow, Russia
- Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology, and Food Safety, Moscow, Russia
| | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
- Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | - Mohammad Amin Jadidi Kouhbanani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Czechia
| | - Rajender S. Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University in Olomouc, Olomouc, Czechia
| | - Faroogh Marofi
- Department of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mostafa Jarahian
- Toxicology and Chemotherapy Unit (G401), German Cancer Research Center, Heidelberg, Germany
| | - Nasrin Beheshtkhoo
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Czechia
| |
Collapse
|
6
|
Lima PHCD, Butera AP, Cabeça LF, Ribeiro-Viana RM. Liposome surface modification by phospholipid chemical reactions. Chem Phys Lipids 2021; 237:105084. [PMID: 33891960 DOI: 10.1016/j.chemphyslip.2021.105084] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/17/2021] [Accepted: 04/16/2021] [Indexed: 12/13/2022]
Abstract
Liposomal systems are well known for playing an important role as drug carriers, presenting several therapeutic applications in different sectors, such as in drug delivery, diagnosis, and in many other academic areas. A novel class of this nanoparticle is the actively target liposome, which is constructed with the surface modified with appropriated molecules (or ligands) to actively bind a target molecule of certain cells, system, or tissue. There are many ways to functionalize these nanostructures, from non-covalent adsorption to covalent bond formation. In this review, we focus on the strategies of modifying liposomes by glycerophospholipid covalent chemical reaction. The approach used in this text summarizes the main reactions and strategies used in phospholipid modification that can be carried out by chemists and researchers from other areas. The knowledge of these methodologies is of great importance for planning new studies using this material and also for manipulating its properties.
Collapse
Affiliation(s)
- Pedro Henrique Correia de Lima
- Programa de Pós-graduação em Ciências e Engenharia de Materiais (PPGCEM-UTFPR), Universidade Tecnológica Federal do Paraná, UTFPR-Ld, CEP 86036-370, Londrina, PR, Brazil
| | - Anna Paola Butera
- Departamento de Química, Universidade Estadual de Londrina, UEL, CEP 86051-980, Londrina, PR, Brazil
| | - Luis Fernando Cabeça
- Programa de Pós-graduação em Ciências e Engenharia de Materiais (PPGCEM-UTFPR), Universidade Tecnológica Federal do Paraná, UTFPR-Ld, CEP 86036-370, Londrina, PR, Brazil; Departamento Acadêmico de Química, Universidade Tecnológica Federal do Paraná, UTFPR-Ld, CEP 86036-370, Londrina, PR, Brazil
| | - Renato Márcio Ribeiro-Viana
- Programa de Pós-graduação em Ciências e Engenharia de Materiais (PPGCEM-UTFPR), Universidade Tecnológica Federal do Paraná, UTFPR-Ld, CEP 86036-370, Londrina, PR, Brazil; Departamento Acadêmico de Química, Universidade Tecnológica Federal do Paraná, UTFPR-Ld, CEP 86036-370, Londrina, PR, Brazil.
| |
Collapse
|
7
|
Pellico J, Gawne PJ, T M de Rosales R. Radiolabelling of nanomaterials for medical imaging and therapy. Chem Soc Rev 2021; 50:3355-3423. [PMID: 33491714 DOI: 10.1039/d0cs00384k] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nanomaterials offer unique physical, chemical and biological properties of interest for medical imaging and therapy. Over the last two decades, there has been an increasing effort to translate nanomaterial-based medicinal products (so-called nanomedicines) into clinical practice and, although multiple nanoparticle-based formulations are clinically available, there is still a disparity between the number of pre-clinical products and those that reach clinical approval. To facilitate the efficient clinical translation of nanomedicinal-drugs, it is important to study their whole-body biodistribution and pharmacokinetics from the early stages of their development. Integrating this knowledge with that of their therapeutic profile and/or toxicity should provide a powerful combination to efficiently inform nanomedicine trials and allow early selection of the most promising candidates. In this context, radiolabelling nanomaterials allows whole-body and non-invasive in vivo tracking by the sensitive clinical imaging techniques positron emission tomography (PET), and single photon emission computed tomography (SPECT). Furthermore, certain radionuclides with specific nuclear emissions can elicit therapeutic effects by themselves, leading to radionuclide-based therapy. To ensure robust information during the development of nanomaterials for PET/SPECT imaging and/or radionuclide therapy, selection of the most appropriate radiolabelling method and knowledge of its limitations are critical. Different radiolabelling strategies are available depending on the type of material, the radionuclide and/or the final application. In this review we describe the different radiolabelling strategies currently available, with a critical vision over their advantages and disadvantages. The final aim is to review the most relevant and up-to-date knowledge available in this field, and support the efficient clinical translation of future nanomedicinal products for in vivo imaging and/or therapy.
Collapse
Affiliation(s)
- Juan Pellico
- School of Biomedical Engineering & Imaging Sciences, King's College London, St. Thomas' Hospital, London SE1 7EH, UK.
| | | | | |
Collapse
|
8
|
Radiolabeled liposomes and lipoproteins as lipidic nanoparticles for imaging and therapy. Chem Phys Lipids 2020; 230:104934. [PMID: 32562666 DOI: 10.1016/j.chemphyslip.2020.104934] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/09/2020] [Accepted: 06/15/2020] [Indexed: 02/06/2023]
Abstract
Radiolabeled lipidic nanoparticles, particularly liposomes and lipoproteins, are of great interest as agents for imaging and therapy, due not only to their peculiar physicochemical and biological properties, but also to their great versatility and the ability to manipulate them to obtain the desired properties. This review provides an overview of radionuclide labeling strategies for preparing diagnostic and therapeutic nanoparticles based on liposomes and lipoproteins that have been developed to date, as well as the main quality control methods and in vivo applications.
Collapse
|
9
|
Man F, Gawne PJ, T M de Rosales R. Nuclear imaging of liposomal drug delivery systems: A critical review of radiolabelling methods and applications in nanomedicine. Adv Drug Deliv Rev 2019; 143:134-160. [PMID: 31170428 PMCID: PMC6866902 DOI: 10.1016/j.addr.2019.05.012] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/25/2019] [Accepted: 05/29/2019] [Indexed: 12/14/2022]
Abstract
The integration of nuclear imaging with nanomedicine is a powerful tool for efficient development and clinical translation of liposomal drug delivery systems. Furthermore, it may allow highly efficient imaging-guided personalised treatments. In this article, we critically review methods available for radiolabelling liposomes. We discuss the influence that the radiolabelling methods can have on their biodistribution and highlight the often-overlooked possibility of misinterpretation of results due to decomposition in vivo. We stress the need for knowing the biodistribution/pharmacokinetics of both the radiolabelled liposomal components and free radionuclides in order to confidently evaluate the images, as they often share excretion pathways with intact liposomes (e.g. phospholipids, metallic radionuclides) and even show significant tumour uptake by themselves (e.g. some radionuclides). Finally, we describe preclinical and clinical studies using radiolabelled liposomes and discuss their impact in supporting liposomal drug development and clinical translation in several diseases, including personalised nanomedicine approaches.
Collapse
Affiliation(s)
- Francis Man
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London SE1 7EH, United Kingdom
| | - Peter J Gawne
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London SE1 7EH, United Kingdom
| | - Rafael T M de Rosales
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London SE1 7EH, United Kingdom; London Centre for Nanotechnology, King's College London, Strand Campus, London WC2R 2LS, United Kingdom.
| |
Collapse
|
10
|
Lamichhane N, Udayakumar TS, D'Souza WD, Simone CB, Raghavan SR, Polf J, Mahmood J. Liposomes: Clinical Applications and Potential for Image-Guided Drug Delivery. Molecules 2018; 23:molecules23020288. [PMID: 29385755 PMCID: PMC6017282 DOI: 10.3390/molecules23020288] [Citation(s) in RCA: 181] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 01/22/2018] [Accepted: 01/26/2018] [Indexed: 01/16/2023] Open
Abstract
Liposomes have been extensively studied and are used in the treatment of several diseases. Liposomes improve the therapeutic efficacy by enhancing drug absorption while avoiding or minimizing rapid degradation and side effects, prolonging the biological half-life and reducing toxicity. The unique feature of liposomes is that they are biocompatible and biodegradable lipids, and are inert and non-immunogenic. Liposomes can compartmentalize and solubilize both hydrophilic and hydrophobic materials. All these properties of liposomes and their flexibility for surface modification to add targeting moieties make liposomes more attractive candidates for use as drug delivery vehicles. There are many novel liposomal formulations that are in various stages of development, to enhance therapeutic effectiveness of new and established drugs that are in preclinical and clinical trials. Recent developments in multimodality imaging to better diagnose disease and monitor treatments embarked on using liposomes as diagnostic tool. Conjugating liposomes with different labeling probes enables precise localization of these liposomal formulations using various modalities such as PET, SPECT, and MRI. In this review, we will briefly review the clinical applications of liposomal formulation and their potential imaging properties.
Collapse
Affiliation(s)
- Narottam Lamichhane
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | | | - Warren D D'Souza
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Charles B Simone
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Srinivasa R Raghavan
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA.
| | - Jerimy Polf
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Javed Mahmood
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
11
|
Luo Y, Wu H, Feng C, Xiao K, Yang X, Liu Q, Lin TY, Zhang H, Walton JH, Ajena Y, Hu Y, Lam KS, Li Y. "One-Pot" Fabrication of Highly Versatile and Biocompatible Poly(vinyl alcohol)-porphyrin-based Nanotheranostics. Am J Cancer Res 2017; 7:3901-3914. [PMID: 29109786 PMCID: PMC5667413 DOI: 10.7150/thno.20190] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 07/07/2017] [Indexed: 02/05/2023] Open
Abstract
Nanoparticle-based theranostic agents have emerged as a new paradigm in nanomedicine field for integration of multimodal imaging and therapeutic functions within a single platform. However, the clinical translation of these agents is severely limited by the complexity of fabrication, long-term toxicity of the materials, and unfavorable biodistributions. Here we report an extremely simple and robust approach to develop highly versatile and biocompatible theranostic poly(vinyl alcohol)-porphyrin nanoparticles (PPNs). Through a “one-pot” fabrication process, including the chelation of metal ions and encapsulation of hydrophobic drugs, monodispersenanoparticle could be formed by self-assembly of a very simple and biocompatible building block (poly(vinyl alcohol)-porphyrin conjugate). Using this approach, we could conveniently produce multifunctional PPNs that integrate optical imaging, positron emission tomography (PET), photodynamic therapy (PDT), photothermal therapy (PTT) and drug delivery functions in one formulation. PPNs exhibited unique architecture-dependent fluorescence self-quenching, as well as photodynamic- and photothermal- properties. Near-infrared fluorescence could be amplified upon PPN dissociation, providing feasibility of low-background fluorescence imaging. Doxorubicin (DOX)-loaded PPNs achieved 53 times longer half-life in blood circulation than free DOX. Upon irradiation by near infrared light at a single excitation wavelength, PPNs could be activated to release reactive oxygen species, heat and drugs simultaneously at the tumor sites in mice bearing tumor xenograft, resulting in complete eradication of tumors. Due to their organic compositions, PPNs showed no obvious cytotoxicity in mice via intravenous administration during therapeutic studies. This highly versatile and multifunctional PPN theranostic nanoplatform showed great potential for the integration of multimodal imaging and therapeutic functions towards personalized nanomedicine against cancers.
Collapse
|
12
|
Dearling JL, Packard AB. Molecular imaging in nanomedicine – A developmental tool and a clinical necessity. J Control Release 2017. [DOI: 10.1016/j.jconrel.2017.06.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
13
|
Edmonds S, Volpe A, Shmeeda H, Parente-Pereira AC, Radia R, Baguña-Torres J, Szanda I, Severin GW, Livieratos L, Blower PJ, Maher J, Fruhwirth GO, Gabizon A, T. M. de Rosales R. Exploiting the Metal-Chelating Properties of the Drug Cargo for In Vivo Positron Emission Tomography Imaging of Liposomal Nanomedicines. ACS NANO 2016; 10:10294-10307. [PMID: 27781436 PMCID: PMC5121927 DOI: 10.1021/acsnano.6b05935] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 10/12/2016] [Indexed: 05/22/2023]
Abstract
The clinical value of current and future nanomedicines can be improved by introducing patient selection strategies based on noninvasive sensitive whole-body imaging techniques such as positron emission tomography (PET). Thus, a broad method to radiolabel and track preformed nanomedicines such as liposomal drugs with PET radionuclides will have a wide impact in nanomedicine. Here, we introduce a simple and efficient PET radiolabeling method that exploits the metal-chelating properties of certain drugs (e.g., bisphosphonates such as alendronate and anthracyclines such as doxorubicin) and widely used ionophores to achieve excellent radiolabeling yields, purities, and stabilities with 89Zr, 52Mn, and 64Cu, and without the requirement of modification of the nanomedicine components. In a model of metastatic breast cancer, we demonstrate that this technique allows quantification of the biodistribution of a radiolabeled stealth liposomal nanomedicine containing alendronate that shows high uptake in primary tumors and metastatic organs. The versatility, efficiency, simplicity, and GMP compatibility of this method may enable submicrodosing imaging studies of liposomal nanomedicines containing chelating drugs in humans and may have clinical impact by facilitating the introduction of image-guided therapeutic strategies in current and future nanomedicine clinical studies.
Collapse
Affiliation(s)
- Scott Edmonds
- Division
of Imaging Sciences & Biomedical Engineering, King’s College London, London SE1 7EH, United
Kingdom
| | - Alessia Volpe
- Division
of Imaging Sciences & Biomedical Engineering, King’s College London, London SE1 7EH, United
Kingdom
| | - Hilary Shmeeda
- Oncology
Institute, Shaare Zedek Medical Center and
Hebrew University−School of Medicine, Jerusalem 9103102, Israel
| | | | - Riya Radia
- Division
of Imaging Sciences & Biomedical Engineering, King’s College London, London SE1 7EH, United
Kingdom
- Department
of Chemistry, King’s College London, London SE1 1DB, United Kingdom
| | - Julia Baguña-Torres
- Division
of Imaging Sciences & Biomedical Engineering, King’s College London, London SE1 7EH, United
Kingdom
| | - Istvan Szanda
- Division
of Imaging Sciences & Biomedical Engineering, King’s College London, London SE1 7EH, United
Kingdom
| | | | - Lefteris Livieratos
- Division
of Imaging Sciences & Biomedical Engineering, King’s College London, London SE1 7EH, United
Kingdom
| | - Philip J. Blower
- Division
of Imaging Sciences & Biomedical Engineering, King’s College London, London SE1 7EH, United
Kingdom
| | - John Maher
- Division
of Cancer Studies, King’s College
London, London SE1 1UL, United Kingdom
| | - Gilbert O. Fruhwirth
- Division
of Imaging Sciences & Biomedical Engineering, King’s College London, London SE1 7EH, United
Kingdom
| | - Alberto Gabizon
- Oncology
Institute, Shaare Zedek Medical Center and
Hebrew University−School of Medicine, Jerusalem 9103102, Israel
| | - Rafael T. M. de Rosales
- Division
of Imaging Sciences & Biomedical Engineering, King’s College London, London SE1 7EH, United
Kingdom
| |
Collapse
|
14
|
Duan Y, Wei L, Petryk J, Ruddy TD. Formulation, characterization and tissue distribution of a novel pH-sensitive long-circulating liposome-based theranostic suitable for molecular imaging and drug delivery. Int J Nanomedicine 2016; 11:5697-5708. [PMID: 27843312 PMCID: PMC5098928 DOI: 10.2147/ijn.s111274] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Purpose When designing liposome formulas for treatment and diagnostic purposes, two of the most common challenges are 1) the lack of a specific release mechanism for the encapsulated contents and 2) a short circulation time due to poor resistance to biological fluids. This study aimed to create a liposome formula with prolonged in vivo longevity and pH-sensitivity for cytoplasmic drug delivery. Materials and methods Liposomal particles were generated using hydrogenated soy (HS) phosphatidylcholine, cholesteryl hemisuccinate (CHEM), polyethylene glycol (PEG) and diethylenetriaminepentaacetic acid-modified phosphatidylethanolamine with film hydration and extrusion methods. The physicochemical properties of the different formulas were characterized. pH-sensitivity was evaluated through monitoring release of encapsulated calcein. Stability of the radiolabeled liposomes was assessed in vitro through incubation with human serum. The best formula was selected and injected into healthy rats to assess tissue uptake and pharmacokinetics. Results Liposomal particles were between 88 and 102 nm in diameter and negatively charged on the surface. Radiolabeling of all formulas with indium-111 was successful with good efficiency. 1%PEG-HS-CHEM not only responded to acidification very quickly but also underwent heavy degradation with serum. The 4%PEG-HS-CHEM, which exhibited both comparatively good pH-sensitivity (up to 20% release) and satisfactory stability (stability >70% after 24 h), was considered the best candidate for in vivo evaluation. Tissue distribution of 4%PEG-HS-CHEM was comparable to that of 4%PEG-HS-Chol, a long-circulating but pH-insensitive control, showing major accumulation in liver, spleen, intestine and kidneys. Analysis of blood clearance showed favorable half-life values: 0.6 and 14 h in fast and slow clearance phases, respectively. Conclusion 4%PEG-HS-CHEM showed promising results in pH-sensitivity, serum stability, tissue uptake and kinetics and is a novel liposome formulation for multifunctional theranostic applications.
Collapse
Affiliation(s)
- Yin Duan
- Nordion Inc.; Cardiac Positron Emission Tomography (PET) Radiochemistry Research Core Laboratory, Canadian Molecular Imaging Center of Excellence, University of Ottawa Heart Institute
| | - Lihui Wei
- Nordion Inc.; Cardiac Positron Emission Tomography (PET) Radiochemistry Research Core Laboratory, Canadian Molecular Imaging Center of Excellence, University of Ottawa Heart Institute; Division of Cardiology, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Julia Petryk
- Cardiac Positron Emission Tomography (PET) Radiochemistry Research Core Laboratory, Canadian Molecular Imaging Center of Excellence, University of Ottawa Heart Institute; Division of Cardiology, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Terrence D Ruddy
- Cardiac Positron Emission Tomography (PET) Radiochemistry Research Core Laboratory, Canadian Molecular Imaging Center of Excellence, University of Ottawa Heart Institute; Division of Cardiology, University of Ottawa Heart Institute, Ottawa, ON, Canada
| |
Collapse
|
15
|
Kaul A, Chaturvedi S, Attri A, Kalra M, Mishra AK. Targeted theranostic liposomes: rifampicin and ofloxacin loaded pegylated liposomes for theranostic application in mycobacterial infections. RSC Adv 2016. [DOI: 10.1039/c6ra01135g] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Theranostic liposomes as effective drug delivery systems for the management of infections.
Collapse
Affiliation(s)
- Ankur Kaul
- Division of Cyclotron and Radiopharmaceutical Sciences
- Institute of Nuclear Medicine and Allied Sciences
- Delhi 110054
- India
| | - Shubhra Chaturvedi
- Division of Cyclotron and Radiopharmaceutical Sciences
- Institute of Nuclear Medicine and Allied Sciences
- Delhi 110054
- India
| | - Asha Attri
- Ram Gopal College of Pharmacy
- Gurgaon
- India
| | | | - A. K. Mishra
- Division of Cyclotron and Radiopharmaceutical Sciences
- Institute of Nuclear Medicine and Allied Sciences
- Delhi 110054
- India
| |
Collapse
|
16
|
Comparison of three remote radiolabelling methods for long-circulating liposomes. J Control Release 2015; 220:239-244. [DOI: 10.1016/j.jconrel.2015.10.043] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 10/23/2015] [Accepted: 10/24/2015] [Indexed: 01/03/2023]
|
17
|
Wong AW, Fite BZ, Liu Y, Kheirolomoom A, Seo JW, Watson KD, Mahakian LM, Tam SM, Zhang H, Foiret J, Borowsky AD, Ferrara KW. Ultrasound ablation enhances drug accumulation and survival in mammary carcinoma models. J Clin Invest 2015; 126:99-111. [PMID: 26595815 DOI: 10.1172/jci83312] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 10/09/2015] [Indexed: 01/08/2023] Open
Abstract
Magnetic resonance-guided focused ultrasound (MRgFUS) facilitates noninvasive image-guided conformal thermal therapy of cancer. Yet in many scenarios, the sensitive tissues surrounding the tumor constrain the margins of ablation; therefore, augmentation of MRgFUS with chemotherapy may be required to destroy remaining tumor. Here, we used 64Cu-PET-CT, MRI, autoradiography, and fluorescence imaging to track the kinetics of long-circulating liposomes in immunocompetent mammary carcinoma-bearing FVB/n and BALB/c mice. We observed a 5-fold and 50-fold enhancement of liposome and drug concentration, respectively, within MRgFUS thermal ablation-treated tumors along with dense accumulation within the surrounding tissue rim. Ultrasound-enhanced drug accumulation was rapid and durable and greatly increased total tumor drug exposure over time. In addition, we found that the small molecule gadoteridol accumulates around and within ablated tissue. We further demonstrated that dilated vasculature, loss of vascular integrity resulting in extravasation of blood cells, stromal inflammation, and loss of cell-cell adhesion and tissue architecture all contribute to the enhanced accumulation of the liposomes and small molecule probe. The locally enhanced liposome accumulation was preserved even after a multiweek protocol of doxorubicin-loaded liposomes and partial ablation. Finally, by supplementing ablation with concurrent liposomal drug therapy, a complete and durable response was obtained using protocols for which a sub-mm rim of tumor remained after ablation.
Collapse
|
18
|
Henriksen JR, Petersen AL, Hansen AE, Frankær CG, Harris P, Elema DR, Kristensen AT, Kjær A, Andresen TL. Remote Loading of (64)Cu(2+) into Liposomes without the Use of Ion Transport Enhancers. ACS APPLIED MATERIALS & INTERFACES 2015; 7:22796-22806. [PMID: 26426093 DOI: 10.1021/acsami.5b04612] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Due to low ion permeability of lipid bilayers, it has been and still is common practice to use transporter molecules such as ionophores or lipophilic chelators to increase transmembrane diffusion rates and loading efficiencies of radionuclides into liposomes. Here, we report a novel and very simple method for loading the positron emitter (64)Cu(2+) into liposomes, which is important for in vivo positron emission tomography (PET) imaging. By this approach, copper is added to liposomes entrapping a chelator, which causes spontaneous diffusion of copper across the lipid bilayer where it is trapped. Using this method, we achieve highly efficient (64)Cu(2+) loading (>95%), high radionuclide retention (>95%), and favorable loading kinetics, excluding the use of transporter molecule additives. Therefore, clinically relevant activities of 200-400 MBq/patient can be loaded fast (60-75 min) and efficiently into preformed stealth liposomes avoiding subsequent purification steps. We investigate the molecular coordination of entrapped copper using X-ray absorption spectroscopy and demonstrate high adaptability of the loading method to pegylated, nonpegylated, gel- or fluid-like, cholesterol rich or cholesterol depleted, cationic, anionic, and zwitterionic lipid compositions. We demonstrate high in vivo stability of (64)Cu-liposomes in a large canine model observing a blood circulation half-life of 24 h and show a tumor accumulation of 6% ID/g in FaDu xenograft mice using PET imaging. With this work, it is demonstrated that copper ions are capable of crossing a lipid membrane unassisted. This method is highly valuable for characterizing the in vivo performance of liposome-based nanomedicine with great potential in diagnostic imaging applications.
Collapse
Affiliation(s)
- Jonas R Henriksen
- Department of Chemistry, Technical University of Denmark , Building 206, 2800 Lyngby, Denmark
- Center for Nanomedicine and Theranostics, Technical University of Denmark , 2800 Lyngby, Denmark
| | - Anncatrine L Petersen
- Department of Micro- and Nanotechnology, Technical University of Denmark , Building 423, 2800 Lyngby, Denmark
- Center for Nanomedicine and Theranostics, Technical University of Denmark , 2800 Lyngby, Denmark
| | - Anders E Hansen
- Department of Micro- and Nanotechnology, Technical University of Denmark , Building 423, 2800 Lyngby, Denmark
- Department of Clinical Physiology, Nuclear Medicine & PET, Faculty of Health Sciences and Cluster for Molecular Imaging, Rigshospitalet, University of Copenhagen , Blegdamsvej 3, 2200 Copenhagen N, Denmark
- Center for Nanomedicine and Theranostics, Technical University of Denmark , 2800 Lyngby, Denmark
| | - Christian G Frankær
- Department of Chemistry, Technical University of Denmark , Building 206, 2800 Lyngby, Denmark
| | - Pernille Harris
- Department of Chemistry, Technical University of Denmark , Building 206, 2800 Lyngby, Denmark
| | - Dennis R Elema
- DTU Nutech, Hevesy Laboratory, Technical University of Denmark , Frederiksborgvej 399, 4000 Roskilde, Denmark
- Center for Nanomedicine and Theranostics, Technical University of Denmark , 2800 Lyngby, Denmark
| | - Annemarie T Kristensen
- Department of Veterinary Clinical and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen , Dyrlægevej 16, 1870 Frederiksberg C, Denmark
| | - Andreas Kjær
- Department of Clinical Physiology, Nuclear Medicine & PET, Faculty of Health Sciences and Cluster for Molecular Imaging, Rigshospitalet, University of Copenhagen , Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Thomas L Andresen
- Department of Micro- and Nanotechnology, Technical University of Denmark , Building 423, 2800 Lyngby, Denmark
- Center for Nanomedicine and Theranostics, Technical University of Denmark , 2800 Lyngby, Denmark
| |
Collapse
|
19
|
Hansen AE, Petersen AL, Henriksen JR, Boerresen B, Rasmussen P, Elema DR, af Rosenschöld PM, Kristensen AT, Kjær A, Andresen TL. Positron Emission Tomography Based Elucidation of the Enhanced Permeability and Retention Effect in Dogs with Cancer Using Copper-64 Liposomes. ACS NANO 2015; 9:6985-6995. [PMID: 26022907 DOI: 10.1021/acsnano.5b01324] [Citation(s) in RCA: 208] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Since the first report of the enhanced permeability and retention (EPR) effect, the research in nanocarrier based antitumor drugs has been intense. The field has been devoted to treatment of cancer by exploiting EPR-based accumulation of nanocarriers in solid tumors, which for many years was considered to be a ubiquitous phenomenon. However, the understanding of differences in the EPR-effect between tumor types, heterogeneities within each patient group, and dependency on tumor development stage in humans is sparse. It is therefore important to enhance our understanding of the EPR-effect in large animals and humans with spontaneously developed cancer. In the present paper, we describe a novel loading method of copper-64 into PEGylated liposomes and use these liposomes to evaluate the EPR-effect in 11 canine cancer patients with spontaneous solid tumors by PET/CT imaging. We thereby provide the first high-resolution analysis of EPR-based tumor accumulation in large animals. We find that the EPR-effect is strong in some tumor types but cannot be considered a general feature of solid malignant tumors since we observed a high degree of accumulation heterogeneity between tumors. Six of seven included carcinomas displayed high uptake levels of liposomes, whereas one of four sarcomas displayed signs of liposome retention. We conclude that nanocarrier-radiotracers could be important in identifying cancer patients that will benefit from nanocarrier-based therapeutics in clinical practice.
Collapse
Affiliation(s)
- Anders E Hansen
- †Center for Nanomedicine and Theranostics, DTU Nanotech, Technical University of Denmark, Building 423, DK-2800 Lyngby, Denmark
| | - Anncatrine L Petersen
- †Center for Nanomedicine and Theranostics, DTU Nanotech, Technical University of Denmark, Building 423, DK-2800 Lyngby, Denmark
| | - Jonas R Henriksen
- †Center for Nanomedicine and Theranostics, DTU Nanotech, Technical University of Denmark, Building 423, DK-2800 Lyngby, Denmark
- §DTU Chemistry, Technical University of Denmark, Building 206, DK-2800 Lyngby, Denmark
| | - Betina Boerresen
- ∥Department of Veterinary Clinical and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Dyrlaegevej 16, DK-1870 Frederiksberg, Denmark
| | - Palle Rasmussen
- †Center for Nanomedicine and Theranostics, DTU Nanotech, Technical University of Denmark, Building 423, DK-2800 Lyngby, Denmark
- ⊥DTU Nutech, Hevesy Laboratory, Technical University of Denmark, Frederiksborgvej 399, DK-4000 Roskilde, Denmark
| | - Dennis R Elema
- †Center for Nanomedicine and Theranostics, DTU Nanotech, Technical University of Denmark, Building 423, DK-2800 Lyngby, Denmark
- ⊥DTU Nutech, Hevesy Laboratory, Technical University of Denmark, Frederiksborgvej 399, DK-4000 Roskilde, Denmark
| | - Per Munck af Rosenschöld
- #Radiation Medicine Research Center, Department of Radiation Oncology, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
| | - Annemarie T Kristensen
- ∥Department of Veterinary Clinical and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Dyrlaegevej 16, DK-1870 Frederiksberg, Denmark
| | | | - Thomas L Andresen
- †Center for Nanomedicine and Theranostics, DTU Nanotech, Technical University of Denmark, Building 423, DK-2800 Lyngby, Denmark
| |
Collapse
|
20
|
Radiolabeled γ-polyglutamic acid complex as a nano-platform for sentinel lymph node imaging. J Control Release 2014; 194:310-5. [DOI: 10.1016/j.jconrel.2014.08.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 08/26/2014] [Indexed: 02/01/2023]
|
21
|
Seo JW, Mahakian LM, Tam S, Qin S, Ingham ES, Meares CF, Ferrara KW. The pharmacokinetics of Zr-89 labeled liposomes over extended periods in a murine tumor model. Nucl Med Biol 2014; 42:155-63. [PMID: 25451215 DOI: 10.1016/j.nucmedbio.2014.09.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Revised: 08/31/2014] [Accepted: 09/02/2014] [Indexed: 01/07/2023]
Abstract
(89)Zr (t1/2=78.4h), a positron-emitting metal, has been exploited for PET studies of antibodies because of its relatively long decay time and facile labeling procedures. Here, we used (89)Zr to evaluate the pharmacokinetics of long-circulating liposomes over 168h (1week). We first developed a liposomal-labeling method using p-isothiocyanatobenzyl-desferrioxamine (df-Bz-NCS) and df-PEG1k-DSPE. Df-Bz-NCS was conjugated to 1mol% amino- and amino-PEG2k-DSPE, where the 1mol% df-PEG1k-DSPE was incorporated when the liposomes were formulated. Incubation of (89)Zr with df, df-PEG1k, and df-PEG2k liposomes for one hour resulted in greater than 68% decay-corrected yield. The loss of the (89)Zr label from liposomes after incubation in 50% human serum for 48h ranged from ~1 to 3% across the three formulations. Tail vein administration of the three liposomal formulations in NDL tumor-bearing mice showed that the (89)Zr label at the end of the PEG2k brush was retained in the tumor, liver, spleen and whole body for a longer time interval than (89)Zr labels located under the PEG2k brush. The blood clearance rate of all three liposomal formulations was similar. Overall, the results indicate that the location of the (89)Zr label altered the clearance rate of intracellularly-trapped radioactivity and that df-PEG1k-DSPE provides a stable chelation site for liposomal or lipid-based particle studies over extended periods of time.
Collapse
Affiliation(s)
- Jai Woong Seo
- Department of Biomedical Engineering, University of California, Davis, CA 95616, USA.
| | - Lisa M Mahakian
- Department of Biomedical Engineering, University of California, Davis, CA 95616, USA
| | - Sarah Tam
- Department of Biomedical Engineering, University of California, Davis, CA 95616, USA
| | - Shengping Qin
- Department of Biomedical Engineering, University of California, Davis, CA 95616, USA
| | - Elizabeth S Ingham
- Department of Biomedical Engineering, University of California, Davis, CA 95616, USA
| | - Claude F Meares
- Department of Chemistry, University of California, Davis, CA 95616, USA
| | - Katherine W Ferrara
- Department of Biomedical Engineering, University of California, Davis, CA 95616, USA.
| |
Collapse
|
22
|
Dube N, Seo JW, Dong H, Shu J, Lund R, Mahakian LM, Ferrara KW, Xu T. Effect of alkyl length of peptide-polymer amphiphile on cargo encapsulation stability and pharmacokinetics of 3-helix micelles. Biomacromolecules 2014; 15:2963-70. [PMID: 24988250 PMCID: PMC4130244 DOI: 10.1021/bm5005788] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 07/01/2014] [Indexed: 02/01/2023]
Abstract
3-Helix micelles have demonstrated excellent in vitro and in vivo stability. Previous studies showed that the unique design of the peptide-polymer conjugate based on protein tertiary structure as the headgroup is the main design factor to achieve high kinetic stability. In this contribution, using amphiphiles with different alkyl tails, namely, C16 and C18, we quantified the effect of alkyl length on the stability of 3-helix micelles to delineate the contribution of the micellar core and shell on the micelle stability. Both amphiphiles form well-defined micelles, <20 nm in size, and show good stability, which can be attributed to the headgroup design. C18-micelles exhibit slightly higher kinetic stability in the presence of serum proteins at 37 °C, where the rate constant of subunit exchange is 0.20 h(-1) for C18-micelles vs 0.22 h(-1) for C16-micelles. The diffusion constant for drug release from C18-micelles is approximately half of that for C16-micelles. The differences between the two micelles are significantly more pronounced in terms of in vivo stability and extent of tumor accumulation. C18-micelles exhibit significantly longer blood circulation time of 29.5 h, whereas C16-micelles have a circulation time of 16.1 h. The extent of tumor accumulation at 48 h after injection is ∼43% higher for C18-micelles. The present studies underscore the importance of core composition on the biological behavior of 3-helix micelles. The quantification of the effect of this key design parameter on the stability of 3-helix micelles provides important guidelines for carrier selection and use in complex environment.
Collapse
Affiliation(s)
- Nikhil Dube
- Department of Materials Science & Engineering and Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Jai W. Seo
- Department
of Biomedical Engineering, University of
California, Davis, California 95616, United States
| | - He Dong
- Department of Materials Science & Engineering and Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Jessica
Y. Shu
- Department of Materials Science & Engineering and Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Reidar Lund
- Department of Materials Science & Engineering and Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Lisa M. Mahakian
- Department
of Biomedical Engineering, University of
California, Davis, California 95616, United States
| | - Katherine W. Ferrara
- Department
of Biomedical Engineering, University of
California, Davis, California 95616, United States
| | - Ting Xu
- Department of Materials Science & Engineering and Department of Chemistry, University of California, Berkeley, California 94720, United States
- Materials
Science Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
23
|
Chakravarty R, Hong H, Cai W. Positron emission tomography image-guided drug delivery: current status and future perspectives. Mol Pharm 2014; 11:3777-97. [PMID: 24865108 PMCID: PMC4218872 DOI: 10.1021/mp500173s] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
![]()
Positron
emission tomography (PET) is an important modality in
the field of molecular imaging, which is gradually impacting patient
care by providing safe, fast, and reliable techniques that help to
alter the course of patient care by revealing invasive, de facto procedures
to be unnecessary or rendering them obsolete. Also, PET provides a
key connection between the molecular mechanisms involved in the pathophysiology
of disease and the according targeted therapies. Recently, PET imaging
is also gaining ground in the field of drug delivery. Current drug
delivery research is focused on developing novel drug delivery systems
with emphasis on precise targeting, accurate dose delivery, and minimal
toxicity in order to achieve maximum therapeutic efficacy. At the
intersection between PET imaging and controlled drug delivery, interest
has grown in combining both these paradigms into clinically effective
formulations. PET image-guided drug delivery has great potential to
revolutionize patient care by in vivo assessment
of drug biodistribution and accumulation at the target site and real-time
monitoring of the therapeutic outcome. The expected end point of this
approach is to provide fundamental support for the optimization of
innovative diagnostic and therapeutic strategies that could contribute
to emerging concepts in the field of “personalized medicine”.
This review focuses on the recent developments in PET image-guided
drug delivery and discusses intriguing opportunities for future development.
The preclinical data reported to date are quite promising, and it
is evident that such strategies in cancer management hold promise
for clinically translatable advances that can positively impact the
overall diagnostic and therapeutic processes and result in enhanced
quality of life for cancer patients.
Collapse
Affiliation(s)
- Rubel Chakravarty
- Department of Radiology, University of Wisconsin-Madison , Madison, Wisconsin 53705-2275, United States
| | | | | |
Collapse
|
24
|
Abstract
Nuclear imaging techniques that include positron emission tomography (PET) and single-photon computed tomography have found great success in the clinic because of their inherent high sensitivity. Radionuclide imaging is the most popular form of imaging to be used for molecular imaging in oncology. While many types of molecules have been used for radionuclide-based molecular imaging, there has been a great interest in developing newer nanomaterials for use in clinic, especially for cancer diagnosis and treatment. Nanomaterials have unique physical properties which allow them to be used as imaging probes to locate and identify cancerous lesions. Over the past decade, a great number of nanoparticles have been developed for radionuclide imaging of cancer. This chapter reviews the different kinds of nanomaterials, both organic and inorganic, which are currently being researched for as potential agents for nuclear imaging of variety of cancers. Several radiolabeled multifunctional nanocarriers have been extremely successful for the detection of cancer in preclinical models. So far, significant progress has been achieved in nanoparticle structure design, in vitro/in vivo trafficking, and in vivo fate mapping by using PET. There is a great need for the development of newer nanoparticles, which improve active targeting and quantify new biomarkers for early disease detection and possible prevention of cancer.
Collapse
|
25
|
Kang CM, Koo HJ, Lee S, Lee KC, Oh YK, Choe YS. 64Cu-Labeled tetraiodothyroacetic acid-conjugated liposomes for PET imaging of tumor angiogenesis. Nucl Med Biol 2013; 40:1018-24. [DOI: 10.1016/j.nucmedbio.2013.08.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 08/01/2013] [Accepted: 08/04/2013] [Indexed: 10/26/2022]
|
26
|
Mitchell N, Kalber TL, Cooper MS, Sunassee K, Chalker SL, Shaw KP, Ordidge KL, Badar A, Janes SM, Blower PJ, Lythgoe MF, Hailes HC, Tabor AB. Incorporation of paramagnetic, fluorescent and PET/SPECT contrast agents into liposomes for multimodal imaging. Biomaterials 2013; 34:1179-92. [PMID: 23131536 PMCID: PMC3520009 DOI: 10.1016/j.biomaterials.2012.09.070] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 09/28/2012] [Indexed: 12/20/2022]
Abstract
A series of metal-chelating lipid conjugates has been designed and synthesized. Each member of the series bears a 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) macrocycle attached to the lipid head group, using short n-ethylene glycol (n-EG) spacers of varying length. Liposomes incorporating these lipids, chelated to Gd(3+), (64)Cu(2+), or (111)In(3+), and also incorporating fluorescent lipids, have been prepared, and their application in optical, magnetic resonance (MR) and single-photon emission tomography (SPECT) imaging of cellular uptake and distribution investigated in vitro and in vivo. We have shown that these multimodal liposomes can be used as functional MR contrast agents as well as radionuclide tracers for SPECT, and that they can be optimized for each application. When shielded liposomes were formulated incorporating 50% of a lipid with a short n-EG spacer, to give nanoparticles with a shallow but even coverage of n-EG, they showed good cellular internalization in a range of tumour cells, compared to the limited cellular uptake of conventional shielded liposomes formulated with 7% 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[carboxy(polyethyleneglycol)(2000)] (DSPE-PEG2000). Moreover, by matching the depth of n-EG coverage to the length of the n-EG spacers of the DOTA lipids, we have shown that similar distributions and blood half lives to DSPE-PEG2000-stabilized liposomes can be achieved. The ability to tune the imaging properties and distribution of these liposomes allows for the future development of a flexible tri-modal imaging agent.
Collapse
Key Words
- dota-lipid
- liposome
- mri (magnetic resonance imaging)
- peg (poly(ethylene)glycol)
- spect (single-photon emission tomography)
- dcc, n,n-dicyclohexylcarbodiimide
- deg1sl, dioleylethyleneglycol-1-succidimidyl linker
- deg3sl, dioleylethyleneglycol-3-succidimidyl linker
- deg6sl, dioleylethyleneglycol-6-succidimidyl linker
- dodeg4, dioleyldimethyl ethylene glycol 4
- dope, 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine
- dota, 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid
- dotma, n-[1-(2,3-dioleyloxy)propyl]-n,n,n-trimethylammonium chloride
- dspe-peg2000, 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-n-[carboxy(polyethyleneglycol)2000]
- dtpa, diethylenetriamine pentacetic acid
- n-eg, n-ethylene glycol
- epr, enhanced permeability and retention effect
- fl-dhpe, n-(fluorescein-5-thiocarbamoyl)-1,2-dihexa-decanoyl-sn-glycero-3-phosphoethanolamine
- hbtu, o-(benzotriazol-1-yl)-n,n,n′,n′-tetramethyluronium hexafluorophosphate
- itlc, instant thin layer chromatography
- mr, magnetic resonance
- peg, polyethylene glycol
- pet, positron emission tomography
- res, reticuloendothelial system
- spect, single-photon emission tomography
Collapse
Affiliation(s)
- Nick Mitchell
- Department of Chemistry, University College London, Christopher Ingold Laboratories, 20 Gordon St, London WC1H 0AJ, UK
| | - Tammy L. Kalber
- Centre of Advanced Biomedical Imaging, Division of Medicine and Institute of Child Health, University College London, 72 Huntley Street, WC1E 6DD, UK
- Centre for Respiratory Research, University College London, Rayne Building, 5 University Street, WC1E 6JJ, UK
| | - Margaret S. Cooper
- King's College London, St. Thomas' Hospital, Division of Imaging Sciences and Biomedical Engineering, 4th Floor, Lambeth Wing, St Thomas' Hospital, London SE1 7EH, UK
| | - Kavitha Sunassee
- King's College London, St. Thomas' Hospital, Division of Imaging Sciences and Biomedical Engineering, 4th Floor, Lambeth Wing, St Thomas' Hospital, London SE1 7EH, UK
| | - Samantha L. Chalker
- Department of Chemistry, University College London, Christopher Ingold Laboratories, 20 Gordon St, London WC1H 0AJ, UK
- Royal Institution of Great Britain, Davy Faraday Research Laboratories, 21 Albemarle Street, London W1S 4BS, UK
| | - Karen P. Shaw
- Centre for Respiratory Research, University College London, Rayne Building, 5 University Street, WC1E 6JJ, UK
| | - Katherine L. Ordidge
- Centre of Advanced Biomedical Imaging, Division of Medicine and Institute of Child Health, University College London, 72 Huntley Street, WC1E 6DD, UK
- Centre for Respiratory Research, University College London, Rayne Building, 5 University Street, WC1E 6JJ, UK
| | - Adam Badar
- Centre of Advanced Biomedical Imaging, Division of Medicine and Institute of Child Health, University College London, 72 Huntley Street, WC1E 6DD, UK
| | - Samuel M. Janes
- Centre for Respiratory Research, University College London, Rayne Building, 5 University Street, WC1E 6JJ, UK
| | - Philip J. Blower
- King's College London, St. Thomas' Hospital, Division of Imaging Sciences and Biomedical Engineering, 4th Floor, Lambeth Wing, St Thomas' Hospital, London SE1 7EH, UK
- King's College London, Division of Chemistry, Hodgkin Building, Guy's Campus, London SE1 1UL, UK
| | - Mark F. Lythgoe
- Centre of Advanced Biomedical Imaging, Division of Medicine and Institute of Child Health, University College London, 72 Huntley Street, WC1E 6DD, UK
| | - Helen C. Hailes
- Department of Chemistry, University College London, Christopher Ingold Laboratories, 20 Gordon St, London WC1H 0AJ, UK
| | - Alethea B. Tabor
- Department of Chemistry, University College London, Christopher Ingold Laboratories, 20 Gordon St, London WC1H 0AJ, UK
| |
Collapse
|
27
|
Petersen AL, Hansen AE, Gabizon A, Andresen TL. Liposome imaging agents in personalized medicine. Adv Drug Deliv Rev 2012; 64:1417-35. [PMID: 22982406 DOI: 10.1016/j.addr.2012.09.003] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 09/02/2012] [Accepted: 09/03/2012] [Indexed: 12/20/2022]
Abstract
In recent years the importance of molecular and diagnostic imaging has increased dramatically in the treatment planning of many diseases and in particular in cancer therapy. Within nanomedicine there are particularly interesting possibilities for combining imaging and therapy. Engineered liposomes that selectively localize in tumor tissue can transport both drugs and imaging agents, which allows for a theranostic approach with great potential in personalized medicine. Radiolabeling of liposomes have for many years been used in preclinical studies for evaluating liposome in vivo performance and has been an important tool in the development of liposomal drugs. However, advanced imaging systems now provide new possibilities for non-invasive monitoring of liposome biodistribution in humans. Thus, advances in imaging and developments in liposome radiolabeling techniques allow us to enter a new arena where we start to consider how to use imaging for patient selection and treatment monitoring in connection to nanocarrier based medicines. Nanocarrier imaging agents could furthermore have interesting properties for disease diagnostics and staging. Here, we review the major advances in the development of radiolabeled liposomes for imaging as a tool in personalized medicine.
Collapse
Affiliation(s)
- Anncatrine L Petersen
- Department of Micro- and Nanotechnology, Center for Nanomedicine and Theranostics, Technical University of Denmark, Produktionstorvet 423, 2800 Lyngby, Denmark
| | | | | | | |
Collapse
|
28
|
Silindir M, Özer AY, Erdoğan S. The use and importance of liposomes in positron emission tomography. Drug Deliv 2012; 19:68-80. [PMID: 22211758 DOI: 10.3109/10717544.2011.635721] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Among different imaging modalities, Positron Emission Tomography (PET) gained importance in routine hospital practice depending on ability to diagnose diseases in early stages and tracing of therapy by obtaining metabolic information. The combination of PET with Computed Tomography (CT) forms hybrid imaging modality that gives chance to obtain better images having higher resolution by fusing both functional and anatomical images in the same imaging modality at the same time. Therefore, better contrast agents are essentially needed. The advance in research about developing drug delivery systems as specific nanosized targeted systems gained an additional importance for obtaining better diagnosis and therapy of different diseases. Liposomes appear to be more attractive drug delivery systems in delivering either drugs or imaging ligands to target tissue or organ of diseases with higher accumulation by producing in nano-scale, long circulating by stealth effect and specific targeting by modifying with specific ligands or markers. The combination of positron emitting radionuclides with liposomes are commonly in research level nowadays and there is no commercially available liposome formulation for PET imaging. However by conjugating positron emitter radionuclide with liposomes can form promising diagnostic agents for improved diagnosis and following up treatments by increasing image signal/contrast in the target tissue in lower concentrations by specific targeting as the most important advantage of liposomes. More accurate and earlier diagnosis of several diseases can be obtained even in molecular level with the use of stable and effectively radiolabeled molecular target specific nano sized liposomes with longer half-lived positron emitting radionuclides.
Collapse
Affiliation(s)
- Mine Silindir
- Department of Radiopharmacy, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | | | | |
Collapse
|
29
|
Jensen ATI, Binderup T, Andresen TL, Kjær A, Rasmussen PH. PET imaging of liposomes labeled with an [18F]-fluorocholesteryl ether probe prepared by automated radiosynthesis. J Liposome Res 2012; 22:295-305. [DOI: 10.3109/08982104.2012.698418] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|