1
|
Mutalik C, Sharma S, Yougbaré S, Chen CY, Kuo TR. Nanoplasmonic Biosensors: A Comprehensive Overview and Future Prospects. Int J Nanomedicine 2025; 20:5817-5836. [PMID: 40356858 PMCID: PMC12067471 DOI: 10.2147/ijn.s521442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Accepted: 04/16/2025] [Indexed: 05/15/2025] Open
Abstract
Recent nanotechnological advancements have resulted in a paradigm shift in biosensing applications through the advent of nanoplasmonic biosensors. These devices integrate nanomaterials with phenomena like surface plasmon resonance (SPR) and localized SPR (LSPR) to address the critical diagnostic and analytical needs across medicine, food safety, and drug discovery. Leveraging metals like gold and silver, these sensors exhibit enhanced optical and electronic properties, enabling the detection of biomolecules at ultralow concentrations. However, despite their transformative potential, challenges concerning stability, reproducibility, cost-efficiency, and scalability impede widespread implementation. This review offers a rigorous analysis of nanoplasmonic biosensors, emphasizing their underlying operational mechanisms and diverse applications. It also delves into design paradigms, fabrication protocols, and optimization strategies while concurrently examining prevailing challenges and prospective advancements. Furthermore, it highlights emerging trends, such as hybrid plasmonic nanostructures, conferring advantages in miniaturization, automation, and high-throughput analysis, thereby establishing a robust foundation for future innovation in the field.
Collapse
Affiliation(s)
- Chinmaya Mutalik
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
- Center for Airborne Infection & Transmission Science, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Shashwat Sharma
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Sibidou Yougbaré
- Institut de Recherche en Sciences de La Santé/Direction Régionale du Centre Ouest (IRSS/DRCO), Nanoro, BP 21811, Burkina Faso
| | - Chih-Yu Chen
- Department of Orthopedics, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
- School of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
| | - Tsung-Rong Kuo
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
| |
Collapse
|
2
|
Hou X, Zhang H. Research Progress of Hyaluronic Acid-Coated Nanocarriers in Targeted Cancer Therapy. Cancer Biother Radiopharm 2025; 40:231-243. [PMID: 39611654 DOI: 10.1089/cbr.2024.0143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024] Open
Abstract
Background: Hyaluronic acid (HA), as a critical ingredient of extracellular matrix (ECM) and synovial fluid, has attracted extensive attention in targeted tumor thearpy. The superiority of HA is reflected as its great biocompatibility, biodegradability and special binding ability to CD44 receptor. Moreover, CD44 receptor proteins are overexpressed in many kinds of tumor cells and cancer stem cells (CSCs). Therefore, HA is commonly used as ligands for the surface modification of versatile nanocarriers applied in various tumor therapy approaches. Methods: We reviewed the literature and summarized the unique properties of HA, the rationale for the use of HA as tumor-specific carrier for drug delivery, catabolism of HA coated nanocarriers, and research achievements of frequently-used HA-modified organic and inorganic nanocarries. Results: We concluded the significant applications of HA coated nanocarriers in tumor chemotherapy and chemoresistance, combination therapy and cancer theranostics. Conclusion: The application prospect of HA-coated nanocarriers will be more extensive for various targeting combination therapy and theranostics.
Collapse
Affiliation(s)
- Xinxin Hou
- School of Medicine of Henan Polytechnic University, Jiaozuo, P.R. China
| | - Hao Zhang
- Department of Nuclear Medicine, Affiliated Hospital of North Sichuan Medical College North Sichuan Medical College, Sichuan, China
| |
Collapse
|
3
|
Li X, Yang T, Sun G, Lin B, Tang C, Zhao Z. Mapping the formation of gemcitabine-immunoglobulin nanoparticles and the subsequent activity against pancreatic cancer cells. Int J Biol Macromol 2025; 304:140729. [PMID: 39920937 DOI: 10.1016/j.ijbiomac.2025.140729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/17/2025] [Accepted: 02/04/2025] [Indexed: 02/10/2025]
Abstract
This research involved the synthesis of Gemcitabine-immunoglobulin nanoparticles (GIgG NPs) and the exploration of their apoptotic mechanisms in targeting Panc-1 cancer cells. A desolvation technique for synthesis was applied, resulting in the heterogeneous clustering of IgG molecules with several Gemcitabine molecules. The DLE and DEE were determined to be 6.8 ± 0.32 % and 93.28 ± 2.88 %, respectively. Dynamic Light Scattering (DLS) and imaging analysis indicated a size of 122.1 nm, a PDI of 0.21, and a zeta potential of -23.78 mV. Fluorescence spectroscopy revealed a reduction and shift in the intrinsic fluorescence of IgG as the Gemcitabine concentration increased. ITC data showed that the binding sites (n) for IgG were 0.96, suggesting roughly one Gemcitabine binding site per IgG molecule, while for GIgG NPs, the n value was measured at 0.84. The binding constant (Kb) for IgG-Gemcitabine was 2.06 × 105 M-1, while for GIgG NPs, it was 1.26 × 105 M-1. The Gibbs free energy (ΔG°) for IgG-Gemcitabine was -30.41 kJ/mol, while for GIgG NPs it was -29.18 kJ/mol. Moreover, negative ΔH° and positive ΔS° values suggested that hydrogen bonds and hydrophobic interactions could facilitate the formation of the complex. Molecular docking analysis indicated that nonpolar interactions and intermolecular solvation play a role in the binding of Gemcitabine to IgG. The release kinetics aligned closely with the Korsmeyer-Peppas and Higuchi models for the pH-sensitive release of Gemcitabine. The IC50 of Gemcitabine for Panc-1 cancer cells dropped seven-fold when encapsulated in GIgG NPs, demonstrating enhanced cytotoxicity and selective targeting of cancer cells. Mechanisms for inducing apoptosis were evident via increased effectiveness, gene expression alteration, caspase activation, and oxidative stress. These results indicate that GIgG NPs could serve as a potential therapeutic option for the targeted treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Xiaona Li
- Blood Transfusion Department, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao 266000, China
| | - Tao Yang
- The Department of General Surgery, Qingdao Central Hospital,University of Health and Rehabilitation Sciences, Qingdao 266000, China.
| | - Guofeng Sun
- The Department of General Surgery, Qingdao Central Hospital,University of Health and Rehabilitation Sciences, Qingdao 266000, China
| | - Bobin Lin
- The Department of General Surgery, Qingdao Central Hospital,University of Health and Rehabilitation Sciences, Qingdao 266000, China
| | - Chuxian Tang
- The Department of General Surgery, Qingdao Central Hospital,University of Health and Rehabilitation Sciences, Qingdao 266000, China
| | - Zuhao Zhao
- The Department of General Surgery, Qingdao Central Hospital,University of Health and Rehabilitation Sciences, Qingdao 266000, China
| |
Collapse
|
4
|
Jakka SR, Mugesh G. Emerging Role of Noncovalent Interactions and Disulfide Bond Formation in the Cellular Uptake of Small Molecules and Proteins. Chem Asian J 2025; 20:e202401734. [PMID: 39831847 DOI: 10.1002/asia.202401734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/13/2025] [Accepted: 01/20/2025] [Indexed: 01/22/2025]
Abstract
Intracellular delivery of proteins and small molecules is an important barrier in the development of strategies to deliver functional proteins and therapeutics into the cells to realize their full potential in biotechnology, biomedicine, cell-based therapies, and gene editing protein systems. Most of the intracellular protein delivery strategies involve the conjugation of cell penetrating peptides to enable the permeability of plasma membrane of mammalian cells to allow proteins to enter cytosol. The conjugations of small molecules such as (p-methylphenyl) glycine, pyrenebutyrate and cysteines are used for the same purpose. Molecular level interactions are governed mostly by ionic (cationic/anionic), covalent and noncovalent interactions with various molecular entities of glycocalyx matrix on plasma membrane lipid bilayer. Although the role of noncovalent interactions in cellular uptake is not fully understood, several recent advances have focused on the noncovalent interaction-based strategies of intracellular delivery of small molecules and proteins into mammalian cells. These are achieved by simple modification of protein surfaces with chemical moieties which can form noncovalent interactions other than hydrogen bonding. In this review, we describe the recent advances and the mechanistic aspects of intracellular delivery and role of noncovalent interactions in the cellular uptake of proteins and small molecules.
Collapse
Affiliation(s)
- Surendar R Jakka
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560 012, India
| | - Govindasamy Mugesh
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560 012, India
| |
Collapse
|
5
|
Khurshid S, Rasheed S, Falke S, Ahmad MS. Unraveling binding interactions between methasterone and bovine serum albumin (BSA): A spectroscopic and computational study. Steroids 2025; 215:109573. [PMID: 39983858 DOI: 10.1016/j.steroids.2025.109573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/08/2025] [Accepted: 02/12/2025] [Indexed: 02/23/2025]
Abstract
In this study, binding interactions between methasterone and bovine serum albumin (BSA) were analyzed using spectroscopic techniques and molecular docking. UV absorption spectroscopy showed the formation of a ground-state complex between methasterone and bovine serum albumin (BSA). Thermodynamic parameters from fluorometric analysis indicated that the hydrogen bonding and van der Waal forces were the main interacting forces between the complex and the reaction was found to be spontaneous. Molecular docking further validated it. Nano differential scanning fluorimetry showed the protein was found to be more thermally stable in the presence of methasterone. Circular dichroism spectroscopy revealed slight reduction in the helicity after binding with methasterone suggesting conformational changes to promote binding. As no prior information exists on the binding interactions between methasterone and BSA, this study provides insights into methasterone-BSA interactions, which can serve as a foundation for future investigations into its pharmacological properties.
Collapse
Affiliation(s)
- Sahar Khurshid
- Dr. Panjwani Center for Molecular Medicine and Drug Research (PCMD), International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi 75270, Pakistan
| | - Saima Rasheed
- Dr. Panjwani Center for Molecular Medicine and Drug Research (PCMD), International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi 75270, Pakistan
| | - Sven Falke
- Deutsches Elektronen-Synchrotron, Center for Free-Electron Laser Science (CFEL), Notkestraße 85, 22607 Hamburg, Germany
| | - Malik Shoaib Ahmad
- Dr. Panjwani Center for Molecular Medicine and Drug Research (PCMD), International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi 75270, Pakistan; H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi 75270, Pakistan.
| |
Collapse
|
6
|
Sajeevan A, Ramamurthy T, Solomon AP. Vibrio cholerae virulence and its suppression through the quorum-sensing system. Crit Rev Microbiol 2025; 51:22-43. [PMID: 38441045 DOI: 10.1080/1040841x.2024.2320823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 12/21/2023] [Accepted: 02/10/2024] [Indexed: 03/06/2024]
Abstract
Vibrio cholerae is a cholera-causing pathogen known to instigate severe contagious diarrhea that affects millions globally. Survival of vibrios depend on a combination of multicellular responses and adapt to changes that prevail in the environment. This process is achieved through a strong communication at the cellular level, the process has been recognized as quorum sensing (QS). The severity of infection is highly dependent on the QS of vibrios in the gut milieu. The quorum may exist in a low/high cell density (LCD/HCD) state to exert a positive or negative response to control the regulatory pathogenic networks. The impact of this regulation reflects on the transition of pathogenic V. cholerae from the environment to infect humans and cause outbreaks or epidemics of cholera. In this context, the review portrays various regulatory processes and associated virulent pathways, which maneuver and control LCD and HCD states for their survival in the host. Although several treatment options are existing, promotion of therapeutics by exploiting the virulence network may potentiate ineffective antibiotics to manage cholera. In addition, this approach is also useful in resource-limited settings, where the accessibility to antibiotics or conventional therapeutic options is limited.
Collapse
Affiliation(s)
- Anusree Sajeevan
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Thandavarayan Ramamurthy
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Disease, Kolkata, India
| | - Adline Princy Solomon
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| |
Collapse
|
7
|
Ding BW, Sang RX, Li XY, Fan J, Tian Y, Ma Y, Xie CZ, Xu JY, Feng YK. A self-assembled fluorescent nanoprobe recognized by FA1 site for specifically selecting HSA: Its applications in hemin detection, cell imaging and fluorescent tracing drug delivery. Bioorg Chem 2025; 154:108120. [PMID: 39753041 DOI: 10.1016/j.bioorg.2024.108120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/29/2024] [Accepted: 12/30/2024] [Indexed: 01/15/2025]
Abstract
As naturally essential biomacromolecule, HSA has become diagnostic indicators for various diseases and universal carriers for anticancer drug delivery, therefore, fluorescence detection and labeling for HSA possess significant application value in the biomedical field. In this paper, hydrazide Schiff base fluorescent probe NDQC was designed and synthesized, which self-assembled into nanoparticles in aqueous solution system and demonstrated excellent selectivity and sensitivity towards HSA. Through displacement assay and molecular docking simulation, the binding of NDQC with HSA in FA1 site was demonstrated, thereby no obvious fluorescence signal presented for homologous protein BSA due to their structural differences in binding site. Non-toxic probe NDQC is suitable for the fluorescence imaging of HSA in cells, and colocalization fluorescence images showed that NDQC-HSA could illuminate mitochondria. Based on the pH sensitivity of fluorescence emission for NDQC-HSA, discrimination of cancer cells and normal cells could be achieved. For practical applications, NDQC-HSA can be employed to measure the content of hemin. More importantly, NDQC could fluorescently label HSA and therefore NDQC-HSA complex act as the carrier for loading cisplatin. The present findings demonstrate that the probe NDQC has potential in exploring HSA at cellular levels and hold great promise in application of tracking drug-loading nanoparticles.
Collapse
Affiliation(s)
- Bo-Wen Ding
- Pancreas Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China; Department of Breast Oncoplastic and reconstructive Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China
| | - Ruo-Xi Sang
- Department of Chemical Biology and Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Xiao-Yu Li
- Department of Chemical Biology and Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China; State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Guangxi Normal University, Guilin 541004, China
| | - Jing Fan
- Department of Chemical Biology and Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Yu Tian
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Ying Ma
- Department of Chemical Biology and Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Cheng-Zhi Xie
- Department of Chemical Biology and Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China; State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Guangxi Normal University, Guilin 541004, China.
| | - Jing-Yuan Xu
- Department of Chemical Biology and Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China.
| | - Yu-Kuan Feng
- Pancreas Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China.
| |
Collapse
|
8
|
Naikwadi N, Paul M, Biswas S, Chitlange S, Wavhale R. Self-propelling, protein-bound magnetic nanobots for efficient in vitro drug delivery in triple negative breast cancer cells. Sci Rep 2024; 14:31547. [PMID: 39733210 PMCID: PMC11682353 DOI: 10.1038/s41598-024-83393-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 12/13/2024] [Indexed: 12/30/2024] Open
Abstract
The emergence of self-propelling magnetic nanobots represents a significant advancement in the field of drug delivery. These magneto-nanobots offer precise control over drug targeting and possess the capability to navigate deep into tumor tissues, thereby addressing multiple challenges associated with conventional cancer therapies. Here, Fe-GSH-Protein-Dox, a novel self-propelling magnetic nanobot conjugated with a biocompatible protein surface and loaded with doxorubicin for the treatment of triple-negative breast cancer (TNBC), is reported. The self-propulsion of magnetic nanobots occurs due to a catalytic interaction between Fe3O4 nanoparticles and hydrogen peroxide. This interaction results in generation of O2 bubbles and high-speed propulsion in blood serum. Cell entry kinetic studies confirmed higher internalization of the drug into TNBC cells with Fe-GSH-Protein-Dox nanobots, resulting in a lower observed IC50 and higher potential to kill cancer cells compared to free doxorubicin. Moreover, fluorescence imaging studies confirmed an increase in the production of reactive oxygen species, leading to maximum cellular damage. Endocytosis studies elucidate the mechanism of cellular internalization, revealing clathrin-mediated endocytosis, while the cell cycle study demonstrates significant cell cycle arrest in the G2-M phase. Thus, the designed protein-conjugated self-propelling magnetic nanobots have the potential to develop into a novel drug delivery platform for clinical applications.
Collapse
Affiliation(s)
- Neha Naikwadi
- Department of Pharmaceutical Chemistry, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, India
| | - Milan Paul
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology &, Science-Pilani, Hyderabad Campus, Medchal, Hyderabad, 500078, Telangana, India
| | - Swati Biswas
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology &, Science-Pilani, Hyderabad Campus, Medchal, Hyderabad, 500078, Telangana, India.
| | - Sohan Chitlange
- Department of Pharmaceutical Chemistry, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, India
| | - Ravindra Wavhale
- Department of Pharmaceutical Chemistry, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, India.
| |
Collapse
|
9
|
Cometta S, Donose BC, Juárez-Saldivar A, Ravichandran A, Xu Y, Bock N, Dargaville TR, Rakić AD, Hutmacher DW. Unravelling the physicochemical and antimicrobial mechanisms of human serum albumin/tannic acid coatings for medical-grade polycaprolactone scaffolds. Bioact Mater 2024; 42:68-84. [PMID: 39280579 PMCID: PMC11399811 DOI: 10.1016/j.bioactmat.2024.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/21/2024] [Accepted: 08/20/2024] [Indexed: 09/18/2024] Open
Abstract
Biofilm-related biomaterial infections are notoriously challenging to treat and can lead to chronic infection and persisting inflammation. To date, a large body of research can be reviewed for coatings which potentially prevent bacterial infection while promoting implant integration. Yet only a very small number has been translated from bench to bedside. This study provides an in-depth analysis of the stability, antibacterial mechanism, and biocompatibility of medical grade polycaprolactone (mPCL), coated with human serum albumin (HSA), the most abundant protein in blood plasma, and tannic acid (TA), a natural polyphenol with antibacterial properties. Molecular docking studies demonstrated that HSA and TA interact mainly through hydrogen-bonding, ionic and hydrophobic interactions, leading to smooth and regular assemblies. In vitro bacteria adhesion testing showed that coated scaffolds maintained their antimicrobial properties over 3 days by significantly reducing S. aureus colonization and biofilm formation. Notably, amplitude modulation-frequency modulation (AMFM) based viscoelasticity mapping and transmission electron microscopy (TEM) data suggested that HSA/TA-coatings cause morphological and mechanical changes on the outer cell membrane of S. aureus leading to membrane disruption and cell death while proving non-toxic to human primary cells. These results support this antibiotic-free approach as an effective and biocompatible strategy to prevent biofilm-related biomaterial infections.
Collapse
Affiliation(s)
- Silvia Cometta
- Faculty of Engineering, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Australian Research Council Training Centre for Multiscale 3D Imaging, Modelling and Manufacturing (M3D Innovation), Queensland University of Technology, Kelvin Grove, QLD, 4059, Australia
- Max Planck Queensland Centre, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Bogdan C Donose
- School of Electrical Engineering and Computer Science, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Alfredo Juárez-Saldivar
- Unidad Académica Multidisciplinaria Reynosa Aztlán, Universidad Autónoma de Tamaulipas, Reynosa, 88740, Mexico
| | - Akhilandeshwari Ravichandran
- Faculty of Engineering, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Yanan Xu
- Central Analytical Research Facility (CARF), Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Nathalie Bock
- Australian Research Council Training Centre for Multiscale 3D Imaging, Modelling and Manufacturing (M3D Innovation), Queensland University of Technology, Kelvin Grove, QLD, 4059, Australia
- Max Planck Queensland Centre, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Translational Research Institute, Woolloongabba, QLD, 4102, Australia
| | - Tim R Dargaville
- Centre for Materials Science, School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Australian Research Council Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology, Brisbane, QLD, 4059, Australia
| | - Aleksandar D Rakić
- School of Electrical Engineering and Computer Science, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Dietmar W Hutmacher
- Faculty of Engineering, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Australian Research Council Training Centre for Multiscale 3D Imaging, Modelling and Manufacturing (M3D Innovation), Queensland University of Technology, Kelvin Grove, QLD, 4059, Australia
- Max Planck Queensland Centre, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Translational Research Institute, Woolloongabba, QLD, 4102, Australia
- Australian Research Council Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology, Brisbane, QLD, 4059, Australia
| |
Collapse
|
10
|
Su X, Júnior GPDO, Marie A, Gregus M, Figueroa‐Navedo A, Ghiran IC, Ivanov AR. Enhanced proteomic profiling of human plasma-derived extracellular vesicles through charge-based fractionation to advance biomarker discovery potential. J Extracell Vesicles 2024; 13:e70024. [PMID: 39641316 PMCID: PMC11621968 DOI: 10.1002/jev2.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 11/23/2024] [Indexed: 12/07/2024] Open
Abstract
The study introduces a charge-based fractionation method for fractionating plasma-derived extracellular vesicles (EVs) into sub-populations aimed at the improved purification from free plasma proteins to enhance the diagnostic potential of EV sub-populations for specific pathophysiological states. Here, we present a novel approach for EV fractionation that leverages EVs' inherent surface charges, differentiating them from other plasma components and, thus, reducing the sample complexity and increasing the purity of EVs. The developed method was optimized and thoroughly evaluated using proteomic analysis, transmission electron microscopy, nanoparticle tracking, and western blotting of isolated EVs from healthy donors. Subsequently, we pilot-tested the developed technique for its applicability to real-world specimens using a small set of clinical prostate cancer samples and matched controls. The presented technique demonstrates the effective isolation and fractionation of EV sub-populations based on their surface charge, which may potentially help enhance EV-based diagnostics, biomarker discovery, and basic biology research. The method is designed to be straightforward, scalable, easy-to-use, and it does not require specialized skills or equipment.
Collapse
Affiliation(s)
- Xianyi Su
- Department of Chemistry and Chemical Biology, Barnett Institute of Chemical and Biological AnalysisNortheastern UniversityBostonMassachusettsUSA
| | - Getúlio Pereira de Oliveira Júnior
- Department of Chemistry and Chemical Biology, Barnett Institute of Chemical and Biological AnalysisNortheastern UniversityBostonMassachusettsUSA
| | - Anne‐Lise Marie
- Department of Chemistry and Chemical Biology, Barnett Institute of Chemical and Biological AnalysisNortheastern UniversityBostonMassachusettsUSA
| | - Michal Gregus
- Department of Chemistry and Chemical Biology, Barnett Institute of Chemical and Biological AnalysisNortheastern UniversityBostonMassachusettsUSA
| | - Amanda Figueroa‐Navedo
- Department of Chemistry and Chemical Biology, Barnett Institute of Chemical and Biological AnalysisNortheastern UniversityBostonMassachusettsUSA
| | - Ionita C. Ghiran
- Department of Anesthesia, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Alexander R. Ivanov
- Department of Chemistry and Chemical Biology, Barnett Institute of Chemical and Biological AnalysisNortheastern UniversityBostonMassachusettsUSA
| |
Collapse
|
11
|
Zvenigorodsky V, Gruenbaum BF, Shelef I, Horev A, Azab AN, Oleshko A, Abu-Rabia M, Negev S, Zlotnik A, Melamed I, Boyko M. Evaluation of Blood-Brain Barrier Disruption Using Low- and High-Molecular-Weight Complexes in a Single Brain Sample in a Rat Traumatic Brain Injury Model: Comparison to an Established Magnetic Resonance Imaging Technique. Int J Mol Sci 2024; 25:11241. [PMID: 39457023 PMCID: PMC11508800 DOI: 10.3390/ijms252011241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Traumatic brain injury (TBI), a major cause of death and disability among young people, leads to significant public health and economic challenges. Despite its frequency, treatment options remain largely unsuitable. However, examination of the blood-brain barrier (BBB) can assist with understanding the mechanisms and dynamics of brain dysfunction, which affects TBI sufferers secondarily to the injury. Here, we present a rat model of TBI focused on two standard BBB assessment markers, high- and low-molecular-weight complexes, in order to understand BBB disruption. In addition, we tested a new technique to evaluate BBB disruption on a single brain set, comparing the new technique with neuroimaging. A total of 100 Sprague-Dawley rats were separated into the following five groups: naive rats (n = 20 rats), control rats with administration (n = 20 rats), and TBI rats (n = 60 rats). Rats were assessed at different time points after the injury to measure BBB disruption using low- and high-molecular-weight complexes. Neurological severity score was evaluated at baseline and at 24 h following TBI. During the neurological exam after TBI, the rats were scanned with magnetic resonance imaging and euthanized for assessment of the BBB permeability. We found that the two markers displayed different examples of BBB disruption in the same set of brain tissues over the period of a week. Our innovative protocol for assessing BBB permeability using high- and low-molecular-weight complexes markers in a single brain set showed appropriate results. Additionally, we determined the lower limit of sensitivity, therefore demonstrating the accuracy of this method.
Collapse
Affiliation(s)
- Vladislav Zvenigorodsky
- Department of Radiology, Soroka University Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84101, Israel; (V.Z.); (I.S.)
| | - Benjamin F. Gruenbaum
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Jacksonville, FL 32224, USA;
| | - Ilan Shelef
- Department of Radiology, Soroka University Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84101, Israel; (V.Z.); (I.S.)
| | - Anat Horev
- Department of Neurology, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer-Sheva 84101, Israel;
| | - Abed N. Azab
- Department of Nursing, Recanati School for Community Health Professions, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84101, Israel;
| | - Anna Oleshko
- Department of Biology and Methods of Teaching Biology, A. S. Makarenko Sumy State Pedagogical University, 40002 Sumy, Ukraine;
| | - Mammduch Abu-Rabia
- Department of Anesthesiology and Critical Care, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer-Sheva 84101, Israel; (M.A.-R.); (S.N.); (A.Z.)
| | - Shahar Negev
- Department of Anesthesiology and Critical Care, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer-Sheva 84101, Israel; (M.A.-R.); (S.N.); (A.Z.)
| | - Alexander Zlotnik
- Department of Anesthesiology and Critical Care, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer-Sheva 84101, Israel; (M.A.-R.); (S.N.); (A.Z.)
| | - Israel Melamed
- Department of Neurosurgery, Soroka University Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84101, Israel;
| | - Matthew Boyko
- Department of Anesthesiology and Critical Care, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer-Sheva 84101, Israel; (M.A.-R.); (S.N.); (A.Z.)
| |
Collapse
|
12
|
Rout D, Upadhyaya AK, Agarwala P, Sharma C, Pal A, Sasmal DK. Drug Binding to Partially Unfolded Serum Albumin: Insights into Nonsteroidal Anti-Inflammatory Drug Naproxen-BSA Interactions from Spectroscopic and MD Simulation Studies. J Phys Chem B 2024; 128:9327-9340. [PMID: 39316707 DOI: 10.1021/acs.jpcb.4c03901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Understanding the binding details of a small-molecule drug to a protein in its partially unfolded state is important for drug delivery as it provides insight into the overall drug-binding ability of the protein, even when the majority of binding pockets in its unfolded state are impaired. The interaction of partially unfolded proteins with drugs remains poorly understood due to a lack of structural information on proteins in their partially unfolded states. Here, we studied the interaction between serum albumin (bovine serum albumin (BSA) as a model system), an abundant protein in blood serum that is an effective carrier for numerous known drugs, and a nonsteroidal anti-inflammatory drug (NSAID) naproxen (NPS) using various spectroscopic and computational methods. Molecular dynamics simulations starting from the drug-unbound state and performed at physiological and higher temperatures revealed novel hydrophobic sites on the BSA surface. We analyzed the BSA-NPS interaction in the presence and absence of the cationic organized assembly CTAB and two oligosaccharides (β-CD and 2-HP-β-CD) at different excitation wavelengths. The solvation dynamics of BSA under NPS-bound conditions became ∼4.6% faster. Oligosaccharides were found to increase the solubility of NPS by providing a hydrophobic environment for the formation of inclusion complexes through host-guest interactions. These findings provide a comprehensive overview and uncover the binding model and mechanism of interaction of NPS with BSA, revealing hydrophobic and electrostatic interactions and hydrogen bonds required for BSA to bind NPS at these noncanonical sites. The molecular-level understanding of the binding mechanism of commonly used NSAIDs like NPS with partially unfolded BSA will be useful in designing pharmaceutically important molecules with efficient loading and delivery properties.
Collapse
Affiliation(s)
- Debasish Rout
- Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur, RJ 342037, India
| | - Arun Kumar Upadhyaya
- Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur, RJ 342037, India
| | - Pratibha Agarwala
- Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur, RJ 342037, India
| | - Chanchal Sharma
- Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur, RJ 342037, India
| | - Arumay Pal
- School of Biosciences, Engineering and Technology, Vellore Institute of Technology, Bhopal 466114, India
| | - Dibyendu K Sasmal
- Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur, RJ 342037, India
| |
Collapse
|
13
|
Zheng L, Zeng Z, Zhao Y, Liu X, Huai Z, Zhang X, Sun Z, Zhang JZH. HSADab: A comprehensive database for human serum albumin. Int J Biol Macromol 2024; 277:134289. [PMID: 39084442 DOI: 10.1016/j.ijbiomac.2024.134289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/27/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024]
Abstract
Human Serum Albumin (HSA), the most abundant protein in human body fluids, plays a crucial role in the transportation, absorption, metabolism, distribution, and excretion of drugs, significantly influencing their therapeutic efficacy. Despite the importance of HSA as a drug target, the available data on its interactions with external agents, such as drug-like molecules and antibodies, are limited, posing challenges for molecular modeling investigations and the development of empirical scoring functions or machine learning predictors for this target. Furthermore, the reported entries in existing databases often contain major inconsistencies due to varied experiments and conditions, raising concerns about data quality. To address these issues, a pioneering database, HSADab, was established through an extensive review of >30,000 scientific publications published between 1987 and 2023. The database encompasses over 5000 affinity data points at multiple temperatures and >130 crystal structures, including both ligand-bound and apo forms. The current HSADab resource (www.hsadab.cn) serves as a reliable foundation for validating molecular simulation protocols, such as traditional virtual screening workflows using docking, end-point, and al-chemical free energy techniques. Additionally, it provides a valuable data source for the implementation of machine learning predictors, including plasma protein binding models and plasma protein-based drug design models.
Collapse
Affiliation(s)
- Lei Zheng
- NYU-ECNU Center for Computational Chemistry and Shanghai Frontiers Science Center of Artificial Intelligence and Deep Learning, NYU Shanghai, Shanghai 200062, China; Department of Chemistry, New York University, NY NY10003, USA.
| | - Zhaoyi Zeng
- NYU-ECNU Center for Computational Chemistry and Shanghai Frontiers Science Center of Artificial Intelligence and Deep Learning, NYU Shanghai, Shanghai 200062, China.
| | - Yao Zhao
- Department of Cardiovasology, Changhai Hospital, Naval Military Medical University, 168 Changhai Road, Shanghai 200433, China.
| | - Xiao Liu
- School of Mathematics, Physics and Statistics, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Zhe Huai
- Clickmab Biotechnology Research Center, Beijing 100094, China.
| | - Xudong Zhang
- Department of Chemistry, New York University, NY NY10003, USA.
| | - Zhaoxi Sun
- Changping Laboratory, Beijing 102206, China.
| | - John Z H Zhang
- NYU-ECNU Center for Computational Chemistry and Shanghai Frontiers Science Center of Artificial Intelligence and Deep Learning, NYU Shanghai, Shanghai 200062, China; Department of Chemistry, New York University, NY NY10003, USA; Faculty of Synthetic Biology and Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| |
Collapse
|
14
|
Xu X, Ding Y, Dong Y, Yuan H, Xia P, Qu C, Ma J, Wang H, Zhang X, Zhao L, Li Z, Liang Z, Wang J. Nanobody-Engineered Biohybrid Bacteria Targeting Gastrointestinal Cancers Induce Robust STING-Mediated Anti-Tumor Immunity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401905. [PMID: 38888519 PMCID: PMC11336900 DOI: 10.1002/advs.202401905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/22/2024] [Indexed: 06/20/2024]
Abstract
Bacteria can be utilized for cancer therapy owing to their preferential colonization at tumor sites. However, unmodified non-pathogenic bacteria carry potential risks due to their non-specific targeting effects, and their anti-tumor activity is limited when used as monotherapy. In this study, a biohybrid-engineered bacterial system comprising non-pathogenic MG1655 bacteria modified with CDH17 nanobodies on their surface and conjugated with photosensitizer croconium (CR) molecules is developed. The resultant biohybrid bacteria can efficiently home to CDH17-positive tumors, including gastric, pancreatic, and colorectal cancers, and significantly suppress tumor growth upon irradiation. More importantly, biohybrid bacteria-mediated photothermal therapy (PTT) induced abundant macrophage infiltration in a syngeneic murine colorectal model. Further, that the STING pathway is activated in tumor macrophages by the released bacterial nucleic acid after PTT is revealed, leading to the production of type I interferons. The addition of CD47 nanobody but not PD-1 antibody to the PTT regimen can eradicate the tumors and extend survival. This results indicate that bacteria endowed with tumor-specific selectivity and coupled with photothermal payloads can serve as an innovative strategy for low-immunogenicity cancers. This strategy can potentially reprogram the tumor microenvironment by inducing macrophage infiltration and enhancing the efficacy of immunotherapy targeting macrophages.
Collapse
Affiliation(s)
- Xiaolong Xu
- Department of Geriatrics and Shenzhen Clinical Research Centre for Geriatrics, Department of UrologyShenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and TechnologyThe Second Clinical Medical CollegeJinan University)ShenzhenGuangdong518020China
- Integrated Chinese and Western Medicine Postdoctoral Research StationJinan UniversityGuangzhou510632China
| | - Youbin Ding
- Department of Geriatrics and Shenzhen Clinical Research Centre for Geriatrics, Department of UrologyShenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and TechnologyThe Second Clinical Medical CollegeJinan University)ShenzhenGuangdong518020China
- Department of Medical ImagingThe Third Affiliated HospitalSouthern Medical University (Academy of Orthopedics Guangdong Province)Guangzhou510515China
| | - Yafang Dong
- Department of Geriatrics and Shenzhen Clinical Research Centre for Geriatrics, Department of UrologyShenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and TechnologyThe Second Clinical Medical CollegeJinan University)ShenzhenGuangdong518020China
- Department of Medical ImagingThe Third Affiliated HospitalSouthern Medical University (Academy of Orthopedics Guangdong Province)Guangzhou510515China
| | - Haitao Yuan
- Department of Geriatrics and Shenzhen Clinical Research Centre for Geriatrics, Department of UrologyShenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and TechnologyThe Second Clinical Medical CollegeJinan University)ShenzhenGuangdong518020China
| | - Peng Xia
- Department of Hepatobiliary & Pancreatic SurgeryZhongnan Hospital of Wuhan UniversityWuhanHubei430071China
| | - Chengming Qu
- Department of Hepatobiliary & Pancreatic SurgeryZhongnan Hospital of Wuhan UniversityWuhanHubei430071China
| | - Jingbo Ma
- Department of Geriatrics and Shenzhen Clinical Research Centre for Geriatrics, Department of UrologyShenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and TechnologyThe Second Clinical Medical CollegeJinan University)ShenzhenGuangdong518020China
| | - Huifang Wang
- Department of Geriatrics and Shenzhen Clinical Research Centre for Geriatrics, Department of UrologyShenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and TechnologyThe Second Clinical Medical CollegeJinan University)ShenzhenGuangdong518020China
| | - Xiaodong Zhang
- Department of Medical ImagingThe Third Affiliated HospitalSouthern Medical University (Academy of Orthopedics Guangdong Province)Guangzhou510515China
| | - Liang Zhao
- Department of PathologyShunde Hospital, Southern Medical University (The First People's Hospital of Shunde)Foshan528308China
- Department of Pathology & Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Zhijie Li
- Department of Geriatrics and Shenzhen Clinical Research Centre for Geriatrics, Department of UrologyShenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and TechnologyThe Second Clinical Medical CollegeJinan University)ShenzhenGuangdong518020China
| | - Zhen Liang
- Department of Geriatrics and Shenzhen Clinical Research Centre for Geriatrics, Department of UrologyShenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and TechnologyThe Second Clinical Medical CollegeJinan University)ShenzhenGuangdong518020China
| | - Jigang Wang
- Department of Geriatrics and Shenzhen Clinical Research Centre for Geriatrics, Department of UrologyShenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and TechnologyThe Second Clinical Medical CollegeJinan University)ShenzhenGuangdong518020China
- Department of OncologyThe Affiliated Hospital of Southwest Medical UniversityLuzhouSichuan646000China
- Department of Traditional Chinese Medicine and School of Pharmaceutical SciencesSouthern Medical UniversityGuangzhou510515China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao‐di Herbs, Artemisinin Research Center, and Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijing100700China
- State Key Laboratory of Antiviral DrugsSchool of PharmacyHenan UniversityKaifeng475004China
| |
Collapse
|
15
|
Tang B, Xie X, Lu J, Huang W, Yang J, Tian J, Lei L. Designing biomaterials for the treatment of autoimmune diseases. APPLIED MATERIALS TODAY 2024; 39:102278. [DOI: 10.1016/j.apmt.2024.102278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
|
16
|
Fan S, Lu Z, Yan Z, Hu L. Interactions of three berberine mid-chain fatty acid salts with bovine serum albumin (BSA): Spectroscopic analysis and molecular docking. Int J Biol Macromol 2024; 274:133370. [PMID: 38917913 DOI: 10.1016/j.ijbiomac.2024.133370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 06/27/2024]
Abstract
In this paper, the interaction of three berberine mid-chain fatty acid salts ([BBR][FAs]), viz. berberine caproate ([BBR][CAP]), berberine heptylate ([BBR][HEP]) and berberine octoate ([BBR][OCT]), with bovine serum albumin (BSA) was studied by means of UV-visible absorption spectroscopy, fluorescence spectroscopy, fourier transform infrared spectroscopy (FT-IR) and molecular docking techniques. Fluorescence experiments revealed that three berberine salts quench the fluorescence of BSA by static quenching mechanism resulted from a stable [BBR][FAs]-BSA complex formation. The stoichiometric numbers of [BBR][FAs]-BSA complexes were found to be 1:1. Synchronous and three-dimensional fluorescence spectra as well as FT-IR demonstrated that the binding of [BBR][FAs] altered the microenvironment and conformation of BSA. The binding average distance from [BBR][FAs] to BSA (3.2-3.5 nm) was determined according to Förster energy transfer theory. Site probe investigation showed that [BBR][FAs] bound to BSA active site I (sub-domain IIA). The binding promotes the esterase-like activity of BSA. The molecular docking results confirmed the fluorescence competition findings and provided the type of binding forces. Furthermore, the relationship between the anionic chain length of [BBR][FAs] and the interaction was explored, and the positive correlation was found.
Collapse
Affiliation(s)
- Shijiao Fan
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Zechuan Lu
- School of Computer Science, University of Nottingham Ningbo China, Zhejiang 315000, PR China
| | - Zhenning Yan
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, PR China.
| | - Liuyang Hu
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| |
Collapse
|
17
|
Paranamana N, El Rassi Z. Precursor carboxy-silica for functionalization with interactive ligands. IV. Carbodiimide assisted preparation of immobilized antibody stationary phases for high performance immuno-affinity chromatography of human serum. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1239:124131. [PMID: 38663075 DOI: 10.1016/j.jchromb.2024.124131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024]
Abstract
In this Part IV of the article series dealing with the functionalization of the precursor carboxy silica with various chromatographic ligands, immuno affinity (IA) columns were prepared with immobilized anti-apolipoprotein B (AAP B) and anti-haptoglobin (AHP) antibodies for use in immuno affinity chromatography (IAC) in the aim of selectivily capturing their corresponding antigens from healthy and cancer human sera. Diseased human serum with adenocarcinoma cancer was selected as a typical diseased biological fluid. Besides preferentially capturing their corresponding antigens, the AAP B column captured from disease-free and cancer sera, 34 proteins and 33 proteins, respectively, while the AHP column enriched 38 and 47 proteins, respectively. This nonspecific binding can be attributed to the many proteins human serum have, which could mediate protein-protein interactions thus leading to the so-called "sponge effect". This kind of behavior can be exploited positively in the determination of differentially expressed proteins (DEPs) for diseased serum with respect to healthy serum and in turn allow the identification of an array of potential biomarkers for cancer. In fact, For AHP column, 13 upregulated and 22 downregulated proteins were identified whereas for AAP B column the numbers were 23 and 10, respectively. The DEPs identified with both columns match those reported in the literature for other types of cancers. The different expression of proteins in each IAC column can be related to the variability of protein-protein interactions. In addition, an array of a few biomarkers is more indicative of a certain disease than a single biomarker.
Collapse
Affiliation(s)
- Nilushi Paranamana
- Department of Chemistry, Oklahoma State University, Stillwater, OK 74078-3071
| | - Ziad El Rassi
- Department of Chemistry, Oklahoma State University, Stillwater, OK 74078-3071.
| |
Collapse
|
18
|
Nisterenko W, Kułaga D, Woziński M, Singh YR, Judzińska B, Jagiello K, Greber KE, Sawicki W, Ciura K. Evaluation of Physicochemical Properties of Ipsapirone Derivatives Based on Chromatographic and Chemometric Approaches. Molecules 2024; 29:1862. [PMID: 38675682 PMCID: PMC11054528 DOI: 10.3390/molecules29081862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/14/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Drug discovery is a challenging process, with many compounds failing to progress due to unmet pharmacokinetic criteria. Lipophilicity is an important physicochemical parameter that affects various pharmacokinetic processes, including absorption, metabolism, and excretion. This study evaluated the lipophilic properties of a library of ipsapirone derivatives that were previously synthesized to affect dopamine and serotonin receptors. Lipophilicity indices were determined using computational and chromatographic approaches. In addition, the affinity to human serum albumin (HSA) and phospholipids was assessed using biomimetic chromatography protocols. Quantitative Structure-Retention Relationship (QSRR) methodologies were used to determine the impact of theoretical descriptors on experimentally determined properties. A multiple linear regression (MLR) model was calculated to identify the most important features, and genetic algorithms (GAs) were used to assist in the selection of features. The resultant models showed commendable predictive accuracy, minimal error, and good concordance correlation coefficient values of 0.876, 0.149, and 0.930 for the validation group, respectively.
Collapse
Affiliation(s)
- Wiktor Nisterenko
- Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Aleja Generała Józefa Hallera 107, 80-416 Gdańsk, Poland; (W.N.); (M.W.); (K.E.G.); (W.S.)
| | - Damian Kułaga
- Department of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, 24 Warszawska Street, 31-155 Cracow, Poland;
| | - Mateusz Woziński
- Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Aleja Generała Józefa Hallera 107, 80-416 Gdańsk, Poland; (W.N.); (M.W.); (K.E.G.); (W.S.)
| | - Yash Raj Singh
- Department of Pharmaceutical Quality Assurance, LJ Institute of Pharmacy, LJ University, Ahmedabad 382210, India;
| | - Beata Judzińska
- QSAR Lab, Trzy Lipy 3, 80-172 Gdańsk, Poland; (B.J.); (K.J.)
- Laboratory of Environmental Chemoinformatics, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Karolina Jagiello
- QSAR Lab, Trzy Lipy 3, 80-172 Gdańsk, Poland; (B.J.); (K.J.)
- Laboratory of Environmental Chemoinformatics, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Katarzyna Ewa Greber
- Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Aleja Generała Józefa Hallera 107, 80-416 Gdańsk, Poland; (W.N.); (M.W.); (K.E.G.); (W.S.)
| | - Wiesław Sawicki
- Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Aleja Generała Józefa Hallera 107, 80-416 Gdańsk, Poland; (W.N.); (M.W.); (K.E.G.); (W.S.)
| | - Krzesimir Ciura
- Laboratory of Environmental Chemoinformatics, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| |
Collapse
|
19
|
Nazir F, Munir I, Yesiloz G. A Microfluidics-Assisted Double-Barreled Nanobioconjugate Synthesis Introducing Aprotinin as a New Moonlight Nanocarrier Protein: Tested toward Physiologically Relevant 3D-Spheroid Models. ACS APPLIED MATERIALS & INTERFACES 2024; 16:18311-18326. [PMID: 38564228 DOI: 10.1021/acsami.3c16548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Proteins are promising substances for introducing new drug carriers with efficient blood circulation due to low possibilities of clearance by macrophages. However, such natural biopolymers have highly sophisticated molecular structures, preventing them from being assembled into nanoplatforms with manipulable payload release profiles. Here, we report a novel anticancer nanodrug carrier moonlighting protein, Aprotinin, to be used as a newly identified carrier for cytotoxic drugs. The Aprotinin-Doxorubicin (Apr-Dox) nanobioconjugate was prepared via a single-step microfluidics coflow mixing technique, a feasible and simple way to synthesize a carrier-based drug design with a double-barreled approach that can release and actuate two therapeutic agents simultaneously, i.e., Apr-Dox in 1:11 ratio (the antimetastatic carrier drug aprotinin and the chemotherapeutic drug DOX). With a significant stimuli-sensitive (i.e., pH) drug release ability, this nanobioconjugate achieves superior bioperformances, including high cellular uptake, efficient tumor penetration, and accumulation into the acidic tumor microenvironment, besides inhibiting further tumor growth by halting the urokinase plasminogen activator (uPA) involved in metastasis and tumor progression. Distinctly, in healthy human umbilical vein endothelial (HUVEC) cells, drastically lower cellular uptake of nanobioconjugates has been observed and validated compared to the anticancer agent Dox. Our findings demonstrate an enhanced cellular internalization of nanobioconjugates toward breast cancer, prostate cancer, and lung cancer both in vitro and in physiologically relevant biological 3D-spheroid models. Consequently, the designed nanobioconjugate shows a high potential for targeted drug delivery via a natural and biocompatible moonlighting protein, thus opening a new avenue for proving aprotinin in cancer therapy as both an antimetastatic and a drug-carrying agent.
Collapse
Affiliation(s)
- Faiqa Nazir
- National Nanotechnology Research Center (UNAM)- Bilkent University, 06800 Cankaya-Ankara, Türkiye
- Institute of Material Science and Nanotechnology, Bilkent University, 06800 Cankaya-Ankara, Türkiye
| | - Iqra Munir
- National Nanotechnology Research Center (UNAM)- Bilkent University, 06800 Cankaya-Ankara, Türkiye
| | - Gurkan Yesiloz
- National Nanotechnology Research Center (UNAM)- Bilkent University, 06800 Cankaya-Ankara, Türkiye
- Institute of Material Science and Nanotechnology, Bilkent University, 06800 Cankaya-Ankara, Türkiye
| |
Collapse
|
20
|
Adebayo MA, Kolawole AN, Falese BA, Kolawole AO. Spectroscopic and in silico evaluation of hesperetin, aglycone flavanone, as a prospective regulatory ligand for human salivary α-amylase. J Biomol Struct Dyn 2024; 42:3177-3192. [PMID: 37382217 DOI: 10.1080/07391102.2023.2225621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 05/01/2023] [Indexed: 06/30/2023]
Abstract
The insight into the binding mechanism of hesperetin, an aglycone flavanone, with human salivary α-amylase (HSAA), simulated under physiological salivary condition, was explored using various spectroscopic approaches and in silico method. Hesperetin effectively quenched the intrinsic fluorescence of HSAA and the quenching was mixed quenching mechanism. The interaction perturbed the HSAA intrinsic fluorophore microenvironment and the enzyme global surface hydrophobicity. The negative values of ΔG for thermodynamic parameters and in silico study revealed the spontaneity of HSAA-hesperetin complex while the positive values of enthalpy change (ΔH) and entropy change (ΔS) showed noticeable involvement of hydrophobic bonding in the stabilization of the complex. Hesperetin was a mixed inhibitor for HSAA with a KI of 44.60 ± 1.63 μM and having apparent inhibition coefficient (α) of 0.26. Macromolecular crowding, given rise to microviscosity and anomalous diffusion, regulated the interaction. Sodium ion (Na+) created high ionic strength, also, modulated the interaction. The in silico study proposed the preferential binding of hesperetin at the active cleft domain of HSAA with the least energy of -8.0 kcal/mol. This work gives a novel insight on the potentials of hesperetin as a future prospective medicinal candidate in the management of postprandial hyperglycemic condition.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Masaudat A Adebayo
- Department of Science Laboratory Technology (Biochemistry Option), School of Science and Technology, Federal Polytechnic, Ede, Osun State, Nigeria
| | - Adejoke N Kolawole
- Biomolecular Structure and Dynamics Unit, Department of Biochemistry, The Federal University of Technology, Akure, Nigeria
| | - Babatunde A Falese
- Biomolecular Structure and Dynamics Unit, Department of Biochemistry, The Federal University of Technology, Akure, Nigeria
| | - Ayodele O Kolawole
- Biomolecular Structure and Dynamics Unit, Department of Biochemistry, The Federal University of Technology, Akure, Nigeria
| |
Collapse
|
21
|
Yadav AK, Maharjan Shrestha R, Yadav PN. Anticancer mechanism of coumarin-based derivatives. Eur J Med Chem 2024; 267:116179. [PMID: 38340509 DOI: 10.1016/j.ejmech.2024.116179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/13/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024]
Abstract
The structural motif of coumarins is related with various biological activities and pharmacological properties. Both natural coumarin extracted from various plants or a new coumarin derivative synthesized by modification of the basic structure of coumarin, in vitro experiments showed that coumarins are a promising class of anti-tumor agents with high selectivity. Cancer is a complex and multifaceted group of diseases characterized by the uncontrolled and abnormal growth of cells in the body. This review focuses on the anticancer mechanism of various coumarins synthesized and isolated in more than a decade. Isopentenyloxycoumarins inhibit angiogenesis by reducing CCl2 chemokine levels. Ferulin C is a potent colchicine-binding agent that destabilizes microtubules, exhibiting antiproliferative and anti-metastatic effects in breast cancer cells through PAK1 and PAK2-mediated signaling. Trimers of triphenylethylene-coumarin hybrids demonstrated significant proliferation inhibition in HeLa, A549, K562, and MCF-7 cell lines. Platinum(IV) complexes with 4-hydroxycoumarin have the potential for high genotoxicity against tumor cells, inducing apoptosis in SKOV-3 cells by up-regulating caspase 3 and caspase 9 expression. Derivatives of 3-benzyl coumarin seco-B-ring induce apoptosis, mediated through the PI3K/Akt/mTOR signaling pathway. Sesquiterpene coumarins inhibit the efflux pump of multidrug resistance-associated protein. Coumarin imidazolyl derivatives inhibit the aromatase enzyme, a major contributor to estrogen overproduction in estrogen-dependent breast cancer.
Collapse
Affiliation(s)
- Anand Kumar Yadav
- Central Department of Chemistry, Tribhuvan University, Kathmandu, Nepal
| | | | - Paras Nath Yadav
- Central Department of Chemistry, Tribhuvan University, Kathmandu, Nepal.
| |
Collapse
|
22
|
Minayoshi Y, Maeda H, Hamasaki K, Nagasaki T, Takano M, Fukuda R, Mizuta Y, Tanaka M, Sasaki Y, Otagiri M, Watanabe H, Maruyama T. Mouse Type-I Interferon-Mannosylated Albumin Fusion Protein for the Treatment of Chronic Hepatitis. Pharmaceuticals (Basel) 2024; 17:260. [PMID: 38399475 PMCID: PMC10893114 DOI: 10.3390/ph17020260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/03/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Although a lot of effort has been put into creating drugs and combination therapies against chronic hepatitis, no effective treatment has been established. Type-I interferon is a promising therapeutic for chronic hepatitis due to its excellent anti-inflammatory effects through interferon receptors on hepatic macrophages. To develop a type-I IFN equipped with the ability to target hepatic macrophages through the macrophage mannose receptor, the present study designed a mouse type-I interferon-mannosylated albumin fusion protein using site-specific mutagenesis and albumin fusion technology. This fusion protein exhibited the induction of anti-inflammatory molecules, such as IL-10, IL-1Ra, and PD-1, in RAW264.7 cells, or hepatoprotective effects on carbon tetrachloride-induced chronic hepatitis mice. As expected, such biological and hepatoprotective actions were significantly superior to those of human fusion proteins. Furthermore, the repeated administration of mouse fusion protein to carbon tetrachloride-induced chronic hepatitis mice clearly suppressed the area of liver fibrosis and hepatic hydroxyproline contents, not only with a reduction in the levels of inflammatory cytokine (TNF-α) and fibrosis-related genes (TGF-β, Fibronectin, Snail, and Collagen 1α2), but also with a shift in the hepatic macrophage phenotype from inflammatory to anti-inflammatory. Therefore, type-I interferon-mannosylated albumin fusion protein has the potential as a new therapeutic agent for chronic hepatitis.
Collapse
Affiliation(s)
- Yuki Minayoshi
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (Y.M.); (K.H.); (T.N.); (M.T.); (R.F.); (Y.M.); (H.W.)
| | - Hitoshi Maeda
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (Y.M.); (K.H.); (T.N.); (M.T.); (R.F.); (Y.M.); (H.W.)
| | - Keisuke Hamasaki
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (Y.M.); (K.H.); (T.N.); (M.T.); (R.F.); (Y.M.); (H.W.)
| | - Taisei Nagasaki
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (Y.M.); (K.H.); (T.N.); (M.T.); (R.F.); (Y.M.); (H.W.)
| | - Mei Takano
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (Y.M.); (K.H.); (T.N.); (M.T.); (R.F.); (Y.M.); (H.W.)
| | - Ryo Fukuda
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (Y.M.); (K.H.); (T.N.); (M.T.); (R.F.); (Y.M.); (H.W.)
| | - Yuki Mizuta
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (Y.M.); (K.H.); (T.N.); (M.T.); (R.F.); (Y.M.); (H.W.)
| | - Motohiko Tanaka
- Department of Gastroenterology and Hepatology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan; (M.T.); (Y.S.)
- Public Health and Welfare Bureau, 5-1-1 Oe, Chuo-ku, Kumamoto 862-0971, Japan
| | - Yutaka Sasaki
- Department of Gastroenterology and Hepatology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan; (M.T.); (Y.S.)
- Osaka Central Hospital, 3-3-30 Umeda, Kita-ku, Osaka 530-0001, Japan
| | - Masaki Otagiri
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan;
- DDS Research Institute, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Hiroshi Watanabe
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (Y.M.); (K.H.); (T.N.); (M.T.); (R.F.); (Y.M.); (H.W.)
| | - Toru Maruyama
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (Y.M.); (K.H.); (T.N.); (M.T.); (R.F.); (Y.M.); (H.W.)
| |
Collapse
|
23
|
Woziński M, Greber KE, Pastewska M, Kolasiński P, Hewelt-Belka W, Żołnowska B, Sławiński J, Szulczyk D, Sawicki W, Ciura K. Modification of gradient HPLC method for determination of small molecules' affinity to human serum albumin under column safety conditions: Robustness and chemometrics study. J Pharm Biomed Anal 2024; 239:115916. [PMID: 38134704 DOI: 10.1016/j.jpba.2023.115916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/19/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023]
Abstract
In the early stages of drug discovery, beyond the biological activity screening, determining the physicochemical properties that affect the distribution of molecules in the human body is an essential step. Plasma protein binding (PPB) is one of the most important investigated endpoints. Nevertheless, the methodology for measuring %PPB is significantly less popular and standardized than other physicochemical properties, like lipophilicity. Here, we proposed how to modify protocols presented by Valko into column safety conditions and evaluated their robustness using fractional factorial design. For robustness testing, four factors were selected: column temperature, mobile phase flow rate, maximum isopropanol concentration in the mobile phase, and buffer pH. Elaborate methods have been applied for the analysis of HSA affinity for three groups of antibiotic-oriented substances that vary in chemical structure: fluoroquinolones, sulfonamides, and tetrazole derivatives. Furthermore, based on the reversed-phase chromatography the workflow of pilot studies was proposed to select molecules that have high affinity to HSA and can not be eluted from the HSA column using the concentration of organic modifier recommended by the column manufacturer.
Collapse
Affiliation(s)
- Mateusz Woziński
- Department of Physical Chemistry, Medical University of Gdańsk, Al. Gen. Hallera 107, 80-416 Gdańsk, Poland
| | - Katarzyna Ewa Greber
- Department of Physical Chemistry, Medical University of Gdańsk, Al. Gen. Hallera 107, 80-416 Gdańsk, Poland
| | - Monika Pastewska
- Department of Physical Chemistry, Medical University of Gdańsk, Al. Gen. Hallera 107, 80-416 Gdańsk, Poland
| | - Piotr Kolasiński
- Department of Physical Chemistry, Medical University of Gdańsk, Al. Gen. Hallera 107, 80-416 Gdańsk, Poland
| | - Weronika Hewelt-Belka
- Department of Analytical Chemistry, Chemical Faculty, Gdańsk University of Technology, G. Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Beata Żołnowska
- Department of Organic Chemistry, Medical University of Gdańsk, Al. Gen. Hallera 107, 80-416 Gdańsk, Poland
| | - Jarosław Sławiński
- Department of Organic Chemistry, Medical University of Gdańsk, Al. Gen. Hallera 107, 80-416 Gdańsk, Poland
| | - Daniel Szulczyk
- Chair and Department of Biochemistry, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Wiesław Sawicki
- Department of Physical Chemistry, Medical University of Gdańsk, Al. Gen. Hallera 107, 80-416 Gdańsk, Poland
| | - Krzesimir Ciura
- Department of Physical Chemistry, Medical University of Gdańsk, Al. Gen. Hallera 107, 80-416 Gdańsk, Poland; QSAR Lab Ltd., Trzy Lipy 3 St. Gdańsk, 80-172, Poland.
| |
Collapse
|
24
|
Shi J, Xie L, Gong W, Bai H, Wang W, Wang A, Cao W, Tong H, Wang H. Insight into the anti-proliferation activity and photoinduced NO release of four nitrosylruthenium isomeric complexes and their HSA complex adducts. Metallomics 2024; 16:mfae005. [PMID: 38263542 DOI: 10.1093/mtomcs/mfae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/19/2024] [Indexed: 01/25/2024]
Abstract
Four Ru(II)-centered isomeric complexes [RuCl(5cqn)(Val)(NO)] (1-4) were synthesized with 5cqn (5-chloro-8-hydroxyquinoline) and chiral Val (Val = L- or D-valine) as co-ligand, and their structures were confirmed using the X-ray diffraction method. The cytotoxicity and photodynamic activity of the isomeric complexes and their human serum albumin (HSA) complex adducts were evaluated. Both the isomeric complexes and their HSA complex adducts significantly affected HeLa cell proliferation, with an IC50 value in the range of 0.3-0.5 μM. The photo-controlled release of nitric oxide (NO) in solution was confirmed using time-resolved Fourier transform infrared and electron paramagnetic resonance spectroscopy techniques. Furthermore, photoinduced NO release in living cells was observed using a selective fluorescent probe for NO. Moreover, the binding constants (Kb) of the complexes with HSA were calculated to be 0.17-1.98 × 104 M-1 and the average number of binding sites (n) was found to be close to 1, it can serve as a crucial carrier for delivering metal complexes. The crystal structure of the HSA complex adduct revealed that one [RuCl(H2O)(NO)(Val)]+ molecule binds to a pocket in domain I. This study provides insight into possible mechanism of metabolism and potential applications for nitrosylruthenium complexes.
Collapse
Affiliation(s)
- Jia Shi
- Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry and Key Laboratory of Energy Conversion and Storage Materials of Shanxi Provence, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
- Department of Medical Laboratory, Fenyang College of Shanxi Medical University, Fenyang 032200, China
| | - Leilei Xie
- Experimental Management Center, Shanxi University of Chinese Medicine, Jinzhong 030619, China
| | - Wenjun Gong
- Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry and Key Laboratory of Energy Conversion and Storage Materials of Shanxi Provence, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Hehe Bai
- Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry and Key Laboratory of Energy Conversion and Storage Materials of Shanxi Provence, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Wenming Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry and Key Laboratory of Energy Conversion and Storage Materials of Shanxi Provence, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Ai Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry and Key Laboratory of Energy Conversion and Storage Materials of Shanxi Provence, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Wei Cao
- Experimental Center and Institute of Applied Chemistry, Shanxi University, Taiyuan 030006, China
| | - Hongbo Tong
- Experimental Center and Institute of Applied Chemistry, Shanxi University, Taiyuan 030006, China
| | - Hongfei Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry and Key Laboratory of Energy Conversion and Storage Materials of Shanxi Provence, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
25
|
Misra R, Sivaranjani A, Saleem S, Dash BR. Copper Nanoclusters as Novel Podium for Cancer Detection, Imaging, and Therapy Applications. Crit Rev Ther Drug Carrier Syst 2024; 41:51-80. [PMID: 37938190 DOI: 10.1615/critrevtherdrugcarriersyst.2023044994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Nanoclusters (NCs) are meticulously small, kinetically stable, crystalline materials which hold immense potential as multifaceted catalysts for a broad range of biomedical applications. Metal NCs are atomically precise and exist within the range of Fermi wavelength of electrons. They are highly advantageous as functional materials as their physicochemical properties can be customized to meet specific requirements. Copper NCs (CuNCs) are emerging as an efficient substitute to the other existing metal NCs. The synthesis of CuNCs is highly methodical, fast, cost effective and does not involve any complicated manipulation. On the contrary to gold and silver NCs, copper is a vital trace element for humans that can be excreted easily out the body. Further, the relatively inexpensiveness and easy availability of copper aids in potential nanotechnological applications in large quantity. As such, CuNCs have attracted great interest among the research community recently. The modern developments in the strategy, synthesis, surface modifications, and use of CuNCs in diagnosis of disease, imaging and treatment have been discussed in the present review. Approaches to regulate and augment the emission of CuNCs, challenges and drawbacks have also been considered. This review brings to light the multifarious applications of CuNCs and their potential as emerging theranostic agents. It is anticipated that the visions and directions for translating existing developments in CuNCs from the laboratory to the clinic can be further improved and enhanced.
Collapse
Affiliation(s)
- Ranjita Misra
- Department of Biotechnology, School of Sciences, Jain University, Bangalore, Karnataka, India
| | - A Sivaranjani
- Advanced Institute for Wildlife Conservation, Chennai, Tamil Nadu, India
| | - Suraiya Saleem
- Department of Biotechnology, Indian Institute of Technology, Madras, Chennai 600036, Tamil Nadu, India
| | - Bignya Rani Dash
- Department of Chemistry, Indian Institute of Technology, Madras, Chennai 600036, Tamil Nadu, India
| |
Collapse
|
26
|
Lee C. Albumin hydrogels for repeated capture of drugs from the bloodstream and release into the tumor. J Control Release 2024; 365:384-397. [PMID: 38007193 DOI: 10.1016/j.jconrel.2023.11.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/12/2023] [Accepted: 11/14/2023] [Indexed: 11/27/2023]
Abstract
Despite the efficacy of hydrogels for consistently delivering drugs to targeted areas (primarily tumors), these systems face challenges such as initial burst release, non-refillable drugs, and a lack of dosage control. To address these issues, a novel strategy has been developed to capture and release drugs from the bloodstream, thereby overcoming the limitations of traditional hydrogels. In this study, an innovative albumin hydrogel system was developed through a bioorthogonal reaction using azide-modified albumin and 4-arm PEG-DBCO. This system can repeatedly capture and release drugs over prolonged periods. Inspired by albumin-drug binding in vivo, this hydrogel can be injected intratumorally and acts as a reservoir for capturing drugs circulating in the bloodstream. Drugs captured in hydrogels are released slowly and effectively delivered to tumors through a "capture and release process." Both the in vitro and in vivo results indicated that the hydrogel effectively captured and released drugs, such as indocyanine green and doxorubicin, over repeated cycles without compromising the activity of the drugs. Moreover, implanting the hydrogel at surgical sites successfully inhibited tumor recurrence through its drug capture-release capability. These findings establish the albumin hydrogel system as a promising capture-release platform that leverages drug-binding affinity to effectively deliver drugs to tumors, offering potential advancements in cancer treatment and post-surgery recurrence prevention.
Collapse
Affiliation(s)
- Changkyu Lee
- Department of Biopharmaceutical Engineering, Division of Chemistry and Biotechnology, Dongguk University, Gyeongju 38066, Republic of Korea.
| |
Collapse
|
27
|
Actis Dato AB, Martinez VR, Velez Rueda JO, Portiansky EL, De Giusti V, Ferrer EG, Williams PAM. Improvement of the cardiovascular effect of methyldopa by complexation with Zn(II): Synthesis, characterization and mechanism of action. J Trace Elem Med Biol 2024; 81:127327. [PMID: 37890445 DOI: 10.1016/j.jtemb.2023.127327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/03/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023]
Abstract
BACKGROUND the antihypertensive drug α-methyldopa (MD) stands as one of the extensively used medications for managing hypertension during pregnancy. Zinc deprivation has been associated with many diseases. In this context, the synthesis of a Zn coordination complex [Zn(MD)(OH)(H2O)2]·H2O (ZnMD) provide a promising alternative pathway to improve the biological properties of MD. METHODS ZnMD was synthesized and physicochemically characterized. Fluorescence spectral studies were conducted to examine the binding of both, the ligand and the metal with bovine serum albumin (BSA). MD, ZnMD, and ZnCl2 were administered to spontaneous hypertensive rats (SHR) rats during 8 weeks and blood pressure and echocardiographic parameters were determined. Ex vivo assays were conducted to evaluate levels of reactive oxygen species (ROS), thiobarbituric acid reactive substances (TBARS), and nitric oxide (NO). Cross-sectional area (CSA) and collagen levels of left ventricular cardiomyocytes were also assessed. Furthermore, the expression of NAD(P)H oxidase subunits (gp91phox and p47phox) and Superoxide Dismutase 1 (SOD1) was quantified through western blot analysis. RESULTS The complex exhibited a moderate affinity for binding with BSA showing a spontaneous interaction (indicated by negative ΔG values) and moderate affinity (determined by affinity constant values). The binding process involved the formation of Van der Waals forces and hydrogen bonds. Upon treatment with MD and ZnMD, a reduction in the systolic blood pressure in SHR was observed, being ZnMD more effective than MD (122 ± 8.1 mmHg and 145 ± 5.6 mmHg, at 8th week of treatment, respectively). The ZnMD treatment prevented myocardial hypertrophy, improved the heart function and reduced the cardiac fibrosis, as evidenced by parameters such as left ventricular mass, fractional shortening, and histological studies. In contrast, MD did not show noticeable differences in these parameters. ZnMD regulates negatively the oxidative damage by reducing levels of ROS and lipid peroxidation, as well as the cardiac NAD(P)H oxidase, and increasing SOD1 expression, while MD did not show significant effect. Moreover, cardiac nitric oxide levels were greater in the ZnMD therapy compared to MD treatment. CONCLUSION Both MD and ZnMD have the potential to be transported by albumin. Our findings provide important evidence suggesting that this complex could be a potential therapeutic drug for the treatment of hypertension and cardiac hypertrophy and dysfunction.
Collapse
Affiliation(s)
- Agustin B Actis Dato
- CEQUINOR-CONICET-CICPBA-UNLP, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Bv. 120 N◦ 1465, 1900 La Plata, Argentina
| | - Valeria R Martinez
- CIC-CONICET-UNLP, Facultad de Médicas, Universidad Nacional de La Plata, 60 y 120, 1900 La Plata, Argentina.
| | - Jorge O Velez Rueda
- CIC-CONICET-UNLP, Facultad de Médicas, Universidad Nacional de La Plata, 60 y 120, 1900 La Plata, Argentina
| | - Enrique L Portiansky
- Laboratorio de Análisis de Imágenes, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, 60 y 118, 1900 La Plata, Argentina
| | - Verónica De Giusti
- CIC-CONICET-UNLP, Facultad de Médicas, Universidad Nacional de La Plata, 60 y 120, 1900 La Plata, Argentina
| | - Evelina G Ferrer
- CEQUINOR-CONICET-CICPBA-UNLP, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Bv. 120 N◦ 1465, 1900 La Plata, Argentina
| | - Patricia A M Williams
- CEQUINOR-CONICET-CICPBA-UNLP, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Bv. 120 N◦ 1465, 1900 La Plata, Argentina.
| |
Collapse
|
28
|
Cini JK, Dexter S, Rezac DJ, McAndrew SJ, Hedou G, Brody R, Eraslan RN, Kenney RT, Mohan P. SON-1210 - a novel bifunctional IL-12 / IL-15 fusion protein that improves cytokine half-life, targets tumors, and enhances therapeutic efficacy. Front Immunol 2023; 14:1326927. [PMID: 38250068 PMCID: PMC10798159 DOI: 10.3389/fimmu.2023.1326927] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/05/2023] [Indexed: 01/23/2024] Open
Abstract
Background The potential synergy between interleukin-12 (IL-12) and IL-15 holds promise for more effective solid tumor immunotherapy. Nevertheless, previous clinical trials involving therapeutic cytokines have encountered obstacles such as short pharmacokinetics, limited tumor microenvironment (TME) targeting, and substantial systemic toxicity. Methods To address these challenges, we fused single-chain human IL-12 and native human IL-15 in cis onto a fully human albumin binding (FHAB) domain single-chain antibody fragment (scFv). This novel fusion protein, IL12-FHAB-IL15 (SON-1210), is anticipated to amplify the therapeutic impact of interleukins and combination immunotherapies in human TME. The molecule was studied in vitro and in animal models to assess its pharmacokinetics, potency, functional characteristics, safety, immune response, and efficacy. Results SON-1210 demonstrated robust binding affinity to albumin and exhibited the anticipated in vitro activity and tumor model efficacy that might be expected based on decades of research on native IL-12 and IL-15. Notably, in the B16F10 melanoma model (a non-immunogenic, relatively "cold" tumor), the murine counterpart of the construct, which had mouse (m) and human (h) cytokine sequences for the respective payloads (mIL12-FHAB-hIL15), outperformed equimolar doses of the co-administered native cytokines in a dose-dependent manner. A single dose caused a marked reduction in tumor growth that was concomitant with increased IFNγ levels; increased Th1, CTL, and activated NK cells; a shift in macrophages from the M2 to M1 phenotype; and a reduction in Treg cells. In addition, a repeat-dose non-human primate (NHP) toxicology study displayed excellent tolerability up to 62.5 µg/kg of SON-1210 administered three times, which was accompanied by the anticipated increases in IFNγ levels. Toxicokinetic analyses showed sustained serum levels of SON-1210, using a sandwich ELISA with anti-IL-15 for capture and biotinylated anti-IL-12 for detection, along with sustained IFNγ levels, indicating prolonged kinetics and biological activity. Conclusion Collectively, these findings support the suitability of SON-1210 for patient trials in terms of activity, efficacy, and safety, offering a promising opportunity for solid tumor immunotherapy. Linking cytokine payloads to a fully human albumin binding domain provides an indirect opportunity to target the TME using potent cytokines in cis that can redirect the immune response and control tumor growth.
Collapse
Affiliation(s)
- John K. Cini
- Sonnet BioTherapeutics, Inc., Princeton, NJ, United States
| | - Susan Dexter
- Sonnet BioTherapeutics, Inc., Princeton, NJ, United States
| | | | | | - Gael Hedou
- Sonnet BioTherapeutics, CH S.A., Geneva, GE, Switzerland
| | - Rich Brody
- InfinixBio, Inc., Athens, OH, United States
| | | | | | - Pankaj Mohan
- Sonnet BioTherapeutics, Inc., Princeton, NJ, United States
| |
Collapse
|
29
|
Ashraf S, Qaiser H, Tariq S, Khalid A, Makeen HA, Alhazmi HA, Ul-Haq Z. Unraveling the versatility of human serum albumin - A comprehensive review of its biological significance and therapeutic potential. Curr Res Struct Biol 2023; 6:100114. [PMID: 38111902 PMCID: PMC10726258 DOI: 10.1016/j.crstbi.2023.100114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/20/2023] Open
Abstract
Human serum albumin (HSA) is a multi-domain macromolecule with diverse ligand binding capability because of its ability to allow allosteric modulation despite being a monomeric protein. Physiologically, HSA act as the primary carrier for various exogenous and endogenous compounds and fatty acids, and alter the pharmacokinetic properties of several drugs. It has antioxidant properties and is utilized therapeutically to improve the drug delivery of pharmacological agents for the treatment of several disorders. The flexibility of albumin in holding various types of drugs coupled with a variety of modifications makes this protein a versatile drug carrier with incalculable potential in therapeutics. This review provides a brief outline of the different structural properties of HSA, and its various binding sites, moreover, an overview of the genetic, biomedical, and allosteric modulation of drugs and drug delivery aspects of HSA is also included, which may be helpful in guiding advanced clinical applications and further research on the therapeutic potential of this extraordinary protein.
Collapse
Affiliation(s)
- Sajda Ashraf
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75210, Pakistan
| | - Hina Qaiser
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75210, Pakistan
| | - Sumayya Tariq
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75210, Pakistan
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University, P.O. Box: 114, Jazan, Saudi Arabia
- Medicinal and Aromatic Plants Research Institute, National Center for Research, P.O. Box: 2424, Khartoum, 11111, Sudan
| | - Hafiz A. Makeen
- Pharmacy Practice Research Unit, Clinical Pharmacy Department, Faculty of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Hassan A. Alhazmi
- Substance Abuse and Toxicology Research Center, Jazan University, P.O. Box: 114, Jazan, Saudi Arabia
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, P.O. Box 114, 45142, Jazan, Saudi Arabia
| | - Zaheer Ul-Haq
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75210, Pakistan
| |
Collapse
|
30
|
Bobrowska K, Sadowska K, Stolarczyk K, Prześniak-Welenc M, Golec P, Bilewicz R. Bovine Serum Albumin - Hydroxyapatite Nanoflowers as Potential Local Drug Delivery System of Ciprofloxacin. Int J Nanomedicine 2023; 18:6449-6467. [PMID: 38026518 PMCID: PMC10640833 DOI: 10.2147/ijn.s427258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/05/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Hybrid nanoflowers are structures consisting of organic (enzymes, proteins, nucleic acids) and inorganic components (mostly metal phosphates) with a flower-like hierarchical structure. Novel hybrid nanoflowers based on bovine serum albumin (BSA) and hydroxyapatite (HA) were obtained and characterized. Study on BSA-HA nanoflowers as potential drug delivery system is reported for the first time. Methods Embedding ciprofloxacin in the structure of hybrid nanoflowers was confirmed by ATR-FTIR and thermogravimetric analysis. The inorganic phase of the nanoflowers was determined by X-ray diffraction. UV‒Vis spectroscopy was used to evaluate the release profiles of ciprofloxacin from nanoflowers in buffer solutions at pH 7.4 and 5. The agar disk diffusion method was used to study the antibacterial activity of the synthesized nanoflowers against Staphylococcus aureus and Pseudomonas aeruginosa. Results Bovine serum albumin - hydroxyapatite nanoflowers were obtained with diameters of ca. 1-2 µm. The kinetics of ciprofloxacin release from nanoflowers were described by the Korsmeyer-Peppas model. The antibacterial activity of the synthesized nanoflowers was demonstrated against S. aureus and P. aeruginosa, two main pathogens found in osteomyelitis. Conclusion The formulated nanoflowers may act as an efficient local antibiotic delivery system. Due to the use of nonhazardous, biodegradable components and benign synthesis, hybrid nanoflowers are very promising drug delivery systems that could be applied in the treatment of skeletal system infections.
Collapse
Affiliation(s)
- Kornelia Bobrowska
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - Kamila Sadowska
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | | | - Marta Prześniak-Welenc
- Institute of Nanotechnology and Materials Engineering, and Advanced Materials Centre, Gdansk University of Technology, Gdansk, Poland
| | - Piotr Golec
- Department of Molecular Virology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | | |
Collapse
|
31
|
Tincu (Iurciuc) CE, Andrițoiu CV, Popa M, Ochiuz L. Recent Advancements and Strategies for Overcoming the Blood-Brain Barrier Using Albumin-Based Drug Delivery Systems to Treat Brain Cancer, with a Focus on Glioblastoma. Polymers (Basel) 2023; 15:3969. [PMID: 37836018 PMCID: PMC10575401 DOI: 10.3390/polym15193969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a highly aggressive malignant tumor, and the most prevalent primary malignant tumor affecting the brain and central nervous system. Recent research indicates that the genetic profile of GBM makes it resistant to drugs and radiation. However, the main obstacle in treating GBM is transporting drugs through the blood-brain barrier (BBB). Albumin is a versatile biomaterial for the synthesis of nanoparticles. The efficiency of albumin-based delivery systems is determined by their ability to improve tumor targeting and accumulation. In this review, we will discuss the prevalence of human glioblastoma and the currently adopted treatment, as well as the structure and some essential functions of the BBB, to transport drugs through this barrier. We will also mention some aspects related to the blood-tumor brain barrier (BTBB) that lead to poor treatment efficacy. The properties and structure of serum albumin were highlighted, such as its role in targeting brain tumors, as well as the progress made until now regarding the techniques for obtaining albumin nanoparticles and their functionalization, in order to overcome the BBB and treat cancer, especially human glioblastoma. The albumin drug delivery nanosystems mentioned in this paper have improved properties and can overcome the BBB to target brain tumors.
Collapse
Affiliation(s)
- Camelia-Elena Tincu (Iurciuc)
- Department of Natural and Synthetic Polymers, “Cristofor Simionescu” Faculty of Chemical Engineering and Protection of the Environment, “Gheorghe Asachi” Technical University, 73, Prof. Dimitrie Mangeron Street, 700050 Iasi, Romania;
- Department of Pharmaceutical Technology, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16, University Street, 700115 Iasi, Romania;
| | - Călin Vasile Andrițoiu
- Apitherapy Medical Center, Balanesti, Nr. 336-337, 217036 Gorj, Romania;
- Specialization of Nutrition and Dietetics, Faculty of Pharmacy, Vasile Goldis Western University of Arad, Liviu Rebreanu Street, 86, 310045 Arad, Romania
| | - Marcel Popa
- Department of Natural and Synthetic Polymers, “Cristofor Simionescu” Faculty of Chemical Engineering and Protection of the Environment, “Gheorghe Asachi” Technical University, 73, Prof. Dimitrie Mangeron Street, 700050 Iasi, Romania;
- Faculty of Dental Medicine, “Apollonia” University of Iasi, 11, Pacurari Street, 700511 Iasi, Romania
- Academy of Romanian Scientists, 3 Ilfov Street, 050045 Bucharest, Romania
| | - Lăcrămioara Ochiuz
- Department of Pharmaceutical Technology, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16, University Street, 700115 Iasi, Romania;
| |
Collapse
|
32
|
Péraudeau E, Renoux B, Emambux S, Poinot P, Châtre R, Thoreau F, Riss Yaw B, Tougeron D, Clarhaut J, Papot S. Combination of Targeted Therapies for Colorectal Cancer Treatment. Mol Pharm 2023; 20:4537-4545. [PMID: 37579031 DOI: 10.1021/acs.molpharmaceut.3c00224] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
The design of innovative therapeutic strategies enabling the selective destruction of tumor cells while sparing healthy tissues remains highly challenging in cancer therapy. Here, we show that the combination of two targeted therapies, including bevacizumab (Bev), and a β-glucuronidase-responsive albumin-binding prodrug of monomethyl auristatin E (MMAE), is efficient for the treatment of colorectal cancer implanted in mice. This combined therapy produces a therapeutic activity superior to that of the association of FOLFOX and Bev currently used to treat patients with this pathology. The increased anticancer efficacy is due to either a synergistic or an additive effect between Bev and MMAE selectively released from the glucuronide prodrug in the tumor microenvironment. Since numerous drug delivery systems such as antibody-drug conjugates employ MMAE as a cytotoxic payload, this finding may be of great interest for improving their therapeutic index by combining them with Bev, particularly for the therapy of colorectal cancer.
Collapse
Affiliation(s)
- Elodie Péraudeau
- Equipe Labellisée Ligue Contre le Cancer, Université de Poitiers, UMR CNRS 7285, Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), 4 rue Michel-Brunet, TSA 51106, 86073 Poitiers, Cedex 9, France
- CHU de Poitiers, 86021 Poitiers, France
| | - Brigitte Renoux
- Equipe Labellisée Ligue Contre le Cancer, Université de Poitiers, UMR CNRS 7285, Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), 4 rue Michel-Brunet, TSA 51106, 86073 Poitiers, Cedex 9, France
| | - Sheik Emambux
- CHU de Poitiers, 86021 Poitiers, France
- Department of Medical Oncology, Poitiers University Hospital, 86021 Poitiers, France
| | - Pauline Poinot
- Equipe Labellisée Ligue Contre le Cancer, Université de Poitiers, UMR CNRS 7285, Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), 4 rue Michel-Brunet, TSA 51106, 86073 Poitiers, Cedex 9, France
| | - Rémi Châtre
- Equipe Labellisée Ligue Contre le Cancer, Université de Poitiers, UMR CNRS 7285, Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), 4 rue Michel-Brunet, TSA 51106, 86073 Poitiers, Cedex 9, France
| | - Fabien Thoreau
- Equipe Labellisée Ligue Contre le Cancer, Université de Poitiers, UMR CNRS 7285, Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), 4 rue Michel-Brunet, TSA 51106, 86073 Poitiers, Cedex 9, France
| | - Benjamin Riss Yaw
- Equipe Labellisée Ligue Contre le Cancer, Université de Poitiers, UMR CNRS 7285, Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), 4 rue Michel-Brunet, TSA 51106, 86073 Poitiers, Cedex 9, France
| | - David Tougeron
- CHU de Poitiers, 86021 Poitiers, France
- Department of Gastroenterology and Hepatology, Poitiers University Hospital, 86021 Poitiers, France
| | - Jonathan Clarhaut
- Equipe Labellisée Ligue Contre le Cancer, Université de Poitiers, UMR CNRS 7285, Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), 4 rue Michel-Brunet, TSA 51106, 86073 Poitiers, Cedex 9, France
- CHU de Poitiers, 86021 Poitiers, France
| | - Sébastien Papot
- Equipe Labellisée Ligue Contre le Cancer, Université de Poitiers, UMR CNRS 7285, Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), 4 rue Michel-Brunet, TSA 51106, 86073 Poitiers, Cedex 9, France
| |
Collapse
|
33
|
Khan I, Gril B, Paranjape AN, Robinson CM, Difilippantonio S, Biernat W, Bieńkowski M, Pęksa R, Duchnowska R, Jassem J, Brastianos PK, Metellus P, Bialecki E, Woodroofe CC, Wu H, Swenson RE, Steeg PS. Comparison of Three Transcytotic Pathways for Distribution to Brain Metastases of Breast Cancer. Mol Cancer Ther 2023; 22:646-658. [PMID: 36912773 PMCID: PMC10164055 DOI: 10.1158/1535-7163.mct-22-0815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/07/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023]
Abstract
Advances in drug treatments for brain metastases of breast cancer have improved progression-free survival but new, more efficacious strategies are needed. Most chemotherapeutic drugs infiltrate brain metastases by moving between brain capillary endothelial cells, paracellular distribution, resulting in heterogeneous distribution, lower than that of systemic metastases. Herein, we tested three well-known transcytotic pathways through brain capillary endothelial cells as potential avenues for drug access: transferrin receptor (TfR) peptide, low-density lipoprotein receptor 1 (LRP1) peptide, albumin. Each was far-red labeled, injected into two hematogenous models of brain metastases, circulated for two different times, and their uptake quantified in metastases and uninvolved (nonmetastatic) brain. Surprisingly, all three pathways demonstrated distinct distribution patterns in vivo. Two were suboptimal: TfR distributed to uninvolved brain but poorly in metastases, while LRP1 was poorly distributed. Albumin distributed to virtually all metastases in both model systems, significantly greater than in uninvolved brain (P < 0.0001). Further experiments revealed that albumin entered both macrometastases and micrometastases, the targets of treatment and prevention translational strategies. Albumin uptake into brain metastases was not correlated with the uptake of a paracellular probe (biocytin). We identified a novel mechanism of albumin endocytosis through the endothelia of brain metastases consistent with clathrin-independent endocytosis (CIE), involving the neonatal Fc receptor, galectin-3, and glycosphingolipids. Components of the CIE process were found on metastatic endothelial cells in human craniotomies. The data suggest a reconsideration of albumin as a translational mechanism for improved drug delivery to brain metastases and possibly other central nervous system (CNS) cancers.In conclusion, drug therapy for brain metastasis needs improvement. We surveyed three transcytotic pathways as potential delivery systems in brain-tropic models and found that albumin has optimal properties. Albumin used a novel endocytic mechanism.
Collapse
Affiliation(s)
- Imran Khan
- Women’s Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Brunilde Gril
- Women’s Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Anurag N. Paranjape
- Women’s Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Christina M. Robinson
- Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research (FNLCR), Frederick, MD
| | - Simone Difilippantonio
- Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research (FNLCR), Frederick, MD
| | | | | | - Rafał Pęksa
- Department of Pathology, Medical University of Gdańsk, Poland
| | - Renata Duchnowska
- Department of Oncology, Military Institute of Medicine, Warsaw, Poland
| | - Jacek Jassem
- Department of Oncology and Radiotherapy, Medical University of Gdańsk, Poland
| | - Priscilla K. Brastianos
- Division of Neuro-Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA
| | - Philippe Metellus
- Ramsay Général de Santé, Hôpital Privé Clairval, Département de Neurochirurgie and Aix-Marseille Université, Institut de Neurophysiopathologie – UMR 7051, Marseille, France
| | - Emilie Bialecki
- Ramsay Général de Santé, Hôpital Privé Clairval, Département de Neurochirurgie and Aix-Marseille Université, Institut de Neurophysiopathologie – UMR 7051, Marseille, France
| | - Carolyn C. Woodroofe
- Chemistry and Synthesis Center, National Heart, Lung and Blood Institute, NIH, Bethesda, MD
| | - Haitao Wu
- Chemistry and Synthesis Center, National Heart, Lung and Blood Institute, NIH, Bethesda, MD
| | - Rolf E. Swenson
- Chemistry and Synthesis Center, National Heart, Lung and Blood Institute, NIH, Bethesda, MD
| | - Patricia S. Steeg
- Women’s Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| |
Collapse
|
34
|
Label-free biosensing of lignans for therapeutics using engineered model surfaces. Int J Biol Macromol 2023; 233:123528. [PMID: 36736979 DOI: 10.1016/j.ijbiomac.2023.123528] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/24/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023]
Abstract
The label-free interaction analysis of macromolecules and small molecules has increasing importance nowadays, both in diagnostics and therapeutics. In the blood vascular system, human serum albumin (HSA) is a vital globular transport protein with potential multiple ligand binding sites. Characterizing the binding affinity of compounds to HSA is essential in pharmaceutics and in developing new compounds for clinical application. Aryltetralin lignans from the roots of Anthriscus sylvestris are potential antitumor therapeutic candidates, but their molecular scale interactions with specific biomolecules are unrevealed. Here, we applied the label-free grating-coupled interferometry (GCI) biosensing method with a polycarboxylate-based hydrogel layer with immobilized HSA on top of it. With this engineered model surface, we could determine the binding parameters of two novel aryltetralin lignans, deoxypodophyllotoxin (DPT), and angeloyl podophyllotoxin (APT) to HSA. Exploiting the multi-channel referencing ability, the unique surface sensitivity, and the throughput of GCI, we first revealed the specific biomolecular interactions. Traditional label-free kinetic measurements were also compared with a novel, fast way of measuring affinity kinetics using less sample material (repeated analyte pulses of increasing duration (RAPID)). Experiments with well-characterized molecular interactions (furosemide to carbonic-anhydrase (CAII) and warfarin, norfloxacin to HSA) were performed to prove the reliability of the RAPID method. In all investigated cases, the RAPID and traditional measurement gave similar affinity values. In the case of DPT, the measurements and relevant modeling suggested two binding sites on HSA, with dissociation constant values of Kd1 = 1.8 ± 0.01 μM, Kd2 = 3 ± 0.02 μM. In the case of APT, the experiments resulted in Kd1 = 9 ± 1.7 μM, Kd2 = 28 ± 0.3 μM. The obtained binding values might suggest the potential medical application of DPT and APT without further optimization of their binding affinity to HSA. These results could be also adapted to other biomolecules and applications where sample consumption and the rapidity of the measurements are critical.
Collapse
|
35
|
Spectroscopic studies on binding of ibuprofen and drotaverine with bovine serum albumin. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
36
|
Chen L, Ye T, Wang X, Han L, Wang T, Qi D, Cheng X. The Mechanisms Underlying the Pharmacological Effects of GuiPi Decoction on Major Depressive Disorder based on Network Pharmacology and Molecular Docking. Comb Chem High Throughput Screen 2023; 26:1701-1728. [PMID: 36045534 DOI: 10.2174/1386207325666220831152959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/12/2022] [Accepted: 07/16/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND AIM Major Depressive Disorder (MDD) is a common affective disorder. GuiPi decoction (GPD) is used to treat depression in China, Japan, and Korea. However, its effective ingredients and antidepressant mechanisms remain unclear. We attempted to reveal the potential mechanisms of GPD in the treatment of MDD by network pharmacology and molecular docking. In addition, we conducted an enzymatic activity assay to validate the results of molecular docking. METHODS GPD-related compounds and targets, and MDD-related targets were retrieved from databases and literature. The herb-compound-target network was constructed by Cytoscape. The protein- protein interaction network was built using the STRING database to find key targets of GPD on MDD. Enrichment analysis of shared targets was analyzed by MetaCore database to obtain the potential pathway and biological process of GPD on MDD. The main active compounds treating MDD were screened by molecular docking. The PDE4s inhibitors were screened and verified by an enzyme activity assay. RESULTS GPD contained 1222 ingredients and 190 potential targets for anti-MDD. Possible biological processes regulated by GPD were neurophysiological processes, blood vessel morphogenesis, Camp Responsive Element Modulator (CREM) pathway, and Androgen Receptor (AR) signaling crosstalk in MDD. Potential pathways in MDD associated with GPD include neurotransmission, cell differentiation, androgen signaling, and estrogen signaling. Fumarine, m-cresol, quercetin, betasitosterol, fumarine, taraxasterol, and lupeol in GPD may be the targets of SLC6A4, monoamine oxidase A (MAOA), DRD2, OPRM1, HTR3A, Albumin (ALB), and NTRK1, respectively. The IC50 values of trifolin targeting Phosphodiesterase (PDE) 4A and girinimbine targeting PDE4B1 were 73.79 μM and 31.86 μM, respectively. The IC50 values of girinimbine and benzo[a]carbazole on PDE4B2 were 51.62 μM and 94.61 μM, respectively. CONCLUSION Different compounds in GPD may target the same protein, and the same component in GPD can target multiple targets. These results suggest that the effects of GPD on MDD are holistic and systematic, unlike the pattern of one drug-one target.
Collapse
Affiliation(s)
- Liyuan Chen
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Tianyuan Ye
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xiaolong Wang
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Lu Han
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Tongxing Wang
- GeneNet Pharmaceuticals Co. Ltd., Tianjin 300410, China
| | - Dongmei Qi
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xiaorui Cheng
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| |
Collapse
|
37
|
Alanazi AM, Bakheit AH, Attwa MW, Abdelhameed AS. Spectroscopic, molecular docking and dynamic simulation studies of binding between the new anticancer agent olmutinib and human serum albumin. J Biomol Struct Dyn 2022; 40:14236-14246. [PMID: 34766879 DOI: 10.1080/07391102.2021.2001380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In this study, the interaction between human serum albumin (HSA), which is the key bio-distributor of exogenous and endogenous compounds in the human bloodstream, and HM61713 (Olmutinib; OMB), which is used as an anticancer drug, is examined by multiple spectroscopic techniques (steady-state fluorescence, UV spectrophotometry, synchronous, and 3 D fluorescence) combined with molecular docking and molecular dynamic simulation investigations. The fluorescence results clearly demonstrated quenching in HSA fluorescence in the existence of OMB indicating the formation of complex and have also shown that the interaction is static. Fluorescence spectroscopy was used to obtain the binding constant values that revealed a strong interaction between the HSA and OMB at 298 K with a binding constant of 7.39x104 M-1 suggesting strong interaction. OMB binds to HSA at site I (IIA). Electrostatic forces and H-bonding were the main binding forces of main bonding between HSA and OMB as revealed by docking and thermodynamic results.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Amer M Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed H Bakheit
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed W Attwa
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ali Saber Abdelhameed
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
38
|
Yu X, Ruan M, Wang Y, Nguyen A, Xiao W, Ajena Y, Solano LN, Liu R, Lam KS. Site-Specific Albumin-Selective Ligation to Human Serum Albumin under Physiological Conditions. Bioconjug Chem 2022; 33:2332-2340. [PMID: 36350013 PMCID: PMC9782315 DOI: 10.1021/acs.bioconjchem.2c00361] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Human serum albumin (HSA) is the most abundant protein in human blood plasma. It plays a critical role in the native transportation of numerous drugs, metabolites, nutrients, and small molecules. HSA has been successfully used clinically as a noncovalent carrier for insulin (e.g., Levemir), GLP-1 (e.g., Liraglutide), and paclitaxel (e.g., Abraxane). Site-specific bioconjugation strategies for HSA only would greatly expand its role as the biocompatible, non-toxic platform for theranostics purposes. Using the enabling one-bead one-compound (OBOC) technology, we generated combinatorial peptide libraries containing myristic acid, a well-known binder to HSA at Sudlow I and II binding pockets, and an acrylamide. We then used HSA as a probe to screen the OBOC myristylated peptide libraries for reactive affinity elements (RAEs) that can specifically and covalently ligate to the lysine residue at the proximity of these pockets. Several RAEs have been identified and confirmed to be able to conjugate to HSA covalently. The conjugation can occur at physiological pH and proceed with a high yield within 1 h at room temperature. Tryptic peptide profiling of derivatized HSA has revealed two lysine residues (K225 and K414) as the conjugation sites, which is much more specific than the conventional lysine labeling strategy with N-hydroxysuccinimide ester. The RAE-driven site-specific ligation to HSA was found to occur even in the presence of other prevalent blood proteins such as immunoglobulin or whole serum. Furthermore, these RAEs are orthogonal to the maleimide-based conjugation strategy for Cys34 of HSA. Together, these attributes make the RAEs the promising leads to further develop in vitro and in vivo HSA bioconjugation strategies for numerous biomedical applications.
Collapse
Affiliation(s)
- Xingjian Yu
- Department
of Chemistry, University of California Davis, Davis, 95616California, United States,Department
of Biochemistry & Molecular Medicine, School of Medicine, University of California Davis, Sacramento, California95817, United States
| | - Ming Ruan
- Department
of Biochemistry & Molecular Medicine, School of Medicine, University of California Davis, Sacramento, California95817, United States,School
of Food Science, Nanjing Xiaozhuang University, Nanjing, 211171, Jiangsu, China
| | - Yongheng Wang
- Department
of Biochemistry & Molecular Medicine, School of Medicine, University of California Davis, Sacramento, California95817, United States,Department
of Biomedical Engineering, University of
California Davis, Davis, California95616, United States
| | - Audrey Nguyen
- Department
of Biochemistry & Molecular Medicine, School of Medicine, University of California Davis, Sacramento, California95817, United States
| | - Wenwu Xiao
- Department
of Biochemistry & Molecular Medicine, School of Medicine, University of California Davis, Sacramento, California95817, United States
| | - Yousif Ajena
- Department
of Biochemistry & Molecular Medicine, School of Medicine, University of California Davis, Sacramento, California95817, United States
| | - Lucas N. Solano
- Department
of Biochemistry & Molecular Medicine, School of Medicine, University of California Davis, Sacramento, California95817, United States
| | - Ruiwu Liu
- Department
of Biochemistry & Molecular Medicine, School of Medicine, University of California Davis, Sacramento, California95817, United States,
| | - Kit S Lam
- Department
of Biochemistry & Molecular Medicine, School of Medicine, University of California Davis, Sacramento, California95817, United States,
| |
Collapse
|
39
|
Hamdy A. The role of albumin in compound transport: new possibilities by intravital imaging. EXCLI JOURNAL 2022; 21:1352-1353. [PMID: 36540674 PMCID: PMC9755509 DOI: 10.17179/excli2022-5641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 12/08/2022] [Indexed: 01/25/2023]
Affiliation(s)
- Amira Hamdy
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt,*To whom correspondence should be addressed: Amira Hamdy, Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt, E-mail:
| |
Collapse
|
40
|
Liu Y, Wang ZK, Liu CZ, Liu YY, Li Q, Wang H, Cui F, Zhang DW, Li ZT. Supramolecular Organic Frameworks as Adsorbents for Efficient Removal of Excess Bilirubin in Hemoperfusion. ACS APPLIED MATERIALS & INTERFACES 2022; 14:47397-47408. [PMID: 36223402 DOI: 10.1021/acsami.2c11458] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Excess bilirubin accumulates in the bodies of patients suffering from acute liver failure (ALF) to cause much irreversible damage and bring about serious clinical symptoms such as kernicterus, hepatic coma, or even death. Hemoperfusion is a widely used method for removing bilirubin from the blood, but clinically used adsorbents have unsatisfactory adsorption capacity and kinetics. In this study, we prepared four supramolecular organic framework microcrystals SOF-1-4 via slow evaporation of their aqueous solutions under infrared light. SOF-1-4 possess good regularity and excellent stability. We demonstrate that all the four SOFs could serve as adsorbents for bilirubin with fast adsorption kinetics within 20 min and ultrahigh adsorption capacity of 609.1 mg g-1, driven by electrostatic interaction and hydrophobicity. The superior adsorption performance of the SOFs outperformed most of the reported bilirubin adsorbents. Remarkably, SOF-3 could remove about 90% of bilirubin in the presence of 40 g L-1 BSA with a minimal loss of albumin and was thus further processed to a bead-shaped composite with a diameter of 2 mm with poly(ether sulfone) (PES). This PES-loaded SOF could efficiently adsorb bilirubin to the normal level from human plasma with an adsorption equilibrium concentration of 7.8 mg L-1 in 6 h through a dynamic hemoperfusion process. This work provides a new vitality for the development of novel bilirubin adsorbents for hemoperfusion therapy.
Collapse
Affiliation(s)
- Yamin Liu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai200438, China
| | - Ze-Kun Wang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai200438, China
| | - Chuan-Zhi Liu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai200438, China
| | - Yue-Yang Liu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai200438, China
| | - Qian Li
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai200438, China
| | - Hui Wang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai200438, China
| | - Fengchao Cui
- Department of Chemistry, Northeast Normal University, Changchun130024, China
| | - Dan-Wei Zhang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai200438, China
| | - Zhan-Ting Li
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai200438, China
| |
Collapse
|
41
|
Paul M, Itoo AM, Ghosh B, Biswas S. Current trends in the use of human serum albumin for drug delivery in cancer. Expert Opin Drug Deliv 2022; 19:1449-1470. [PMID: 36253957 DOI: 10.1080/17425247.2022.2134341] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Human serum albumin is the most abundant transport protein in plasma, which has recently been extensively utilized to form nanoparticles for drug delivery in cancer. The primary reason for selecting albumin protein as drug delivery cargo is its excellent biocompatibility, biodegradability, and non-immunogenicity. Moreover, the albumin structure containing three homologous domains constituted of a single polypeptide (585 amino acid) incorporates various hydrophobic drugs by non-covalent interactions. Albumin shows active tumor targeting via their interaction with gp60 and SPARC proteins abundant in the tumor-associated endothelial cells and the tumor microenvironment. AREAS COVERED The review discusses the importance of albumin as a drug-carrier system, general procedures to prepare albumin NPs, and the current trends in using albumin-based nanomedicines to deliver various chemotherapeutic agents. The various applications of albumin in the nanomedicines, such as NPs surface modifier and fabrication of hybrid/active-tumor targeted NPs, are delineated based on current trends. EXPERT OPINION Nanomedicines have the potential to revolutionize cancer treatment. However, clinical translation is limited majorly due to the lack of suitable nanomaterials offering systemic stability, optimum drug encapsulation, tumor-targeted delivery, sustained drug release, and biocompatibility. The potential of albumin could be explored in nanomedicines fabrication for superior treatment outcomes in cancer.
Collapse
Affiliation(s)
- Milan Paul
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad-500078, India
| | - Asif Mohd Itoo
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad-500078, India
| | - Balaram Ghosh
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad-500078, India
| | - Swati Biswas
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad-500078, India
| |
Collapse
|
42
|
Riisom M, Eade L, Tremlett WDJ, Hartinger CG. The aqueous stability and interactions of organoruthenium compounds with serum proteins, cell culture medium, and human serum. Metallomics 2022; 14:mfac043. [PMID: 35751650 PMCID: PMC9314723 DOI: 10.1093/mtomcs/mfac043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/26/2022] [Indexed: 11/12/2022]
Abstract
Metal complexes bind to a wide variety of biomolecules and the control of the reactivity is essential when designing anticancer metallodrugs with a specific mode of action in mind. In this study, we used the highly cytotoxic compound [RuII(cym)(8-HQ)Cl] (cym = η6-p-cymene, 8-HQ = 8-hydroxyquinoline), the more inert derivative [RuII(cym)(8-HQ)(PTA)](SO3CF3) (PTA = 1,3,5-triaza-7-phosphaadamantane), and [RuII(cym)(PCA)Cl]Cl (PCA = pyridinecarbothioamide) as a complex with a different coordination environment about the Ru center and investigated their stability, interactions with proteins, and behavior in medium (αMEM) and human serum by capillary zone electrophoresis. The developed method was found to be robust and provides a quick and low-cost technique to monitor the interactions of such complexes with biomolecules. Each complex was found to behave very differently, emphasizing the importance of the choice of ligands and demonstrating the applicability of the developed method. Additionally, the human serum albumin binding site preference of [RuII(cym)(8-HQ)Cl] was investigated through displacement studies, revealing that the compound was able to bind to both sites I and site II, and the type of adducts formed with transferrin was determined by mass spectrometry.
Collapse
Affiliation(s)
- Mie Riisom
- School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand
| | - Liam Eade
- School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand
| | - William D J Tremlett
- School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand
| | - Christian G Hartinger
- School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand
| |
Collapse
|
43
|
Doxorubicin-Based Hybrid Compounds as Potential Anticancer Agents: A Review. Molecules 2022; 27:molecules27144478. [PMID: 35889350 PMCID: PMC9318127 DOI: 10.3390/molecules27144478] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 02/04/2023] Open
Abstract
The scarcity of novel and effective therapeutics for the treatment of cancer is a pressing and alarming issue that needs to be prioritized. The number of cancer cases and deaths are increasing at a rapid rate worldwide. Doxorubicin, an anticancer agent, is currently used to treat several types of cancer. It disrupts myriad processes such as histone eviction, ceramide overproduction, DNA-adduct formation, reactive oxygen species generation, Ca2+, and iron hemostasis regulation. However, its use is limited by factors such as drug resistance, toxicity, and congestive heart failure reported in some patients. The combination of doxorubicin with other chemotherapeutic agents has been reported as an effective treatment option for cancer with few side effects. Thus, the hybridization of doxorubicin and other chemotherapeutic drugs is regarded as a promising approach that can lead to effective anticancer agents. This review gives an update on hybrid compounds containing the scaffolds of doxorubicin and its derivatives with potent chemotherapeutic effects.
Collapse
|
44
|
Altered peripheral factors affecting the absorption, distribution, metabolism, and excretion of oral medicines in Alzheimer's disease. Adv Drug Deliv Rev 2022; 185:114282. [PMID: 35421522 DOI: 10.1016/j.addr.2022.114282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/23/2022] [Accepted: 04/06/2022] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) has traditionally been considered solely a neurological condition. Therefore, numerous studies have been conducted to identify the existence of pathophysiological changes affecting the brain and the blood-brain barrier in individuals with AD. Such studies have provided invaluable insight into possible changes to the central nervous system exposure of drugs prescribed to individuals with AD. However, there is now increasing recognition that extra-neurological systems may also be affected in AD, such as the small intestine, liver, and kidneys. Examination of these peripheral pathophysiological changes is now a burgeoning area of scientific research, owing to the potential impact of these changes on the absorption, distribution, metabolism, and excretion (ADME) of drugs used for both AD and other concomitant conditions in this population. The purpose of this review is to identify and summarise available literature reporting alterations to key organs influencing the pharmacokinetics of drugs, with any changes to the small intestine, liver, kidney, and circulatory system on the ADME of drugs described. By assessing studies in both rodent models of AD and samples from humans with AD, this review highlights possible dosage adjustment requirements for both AD and non-AD drugs so as to ensure the achievement of optimum pharmacotherapy in individuals with AD.
Collapse
|
45
|
Waseem R, Shamsi A, Khan T, Hassan MI, Kazim SN, Shahid M, Islam A. Unraveling the Binding Mechanism of Alzheimer's Drugs with Irisin: Spectroscopic, Calorimetric, and Computational Approaches. Int J Mol Sci 2022; 23:ijms23115965. [PMID: 35682643 PMCID: PMC9180407 DOI: 10.3390/ijms23115965] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/13/2022] [Accepted: 05/23/2022] [Indexed: 12/19/2022] Open
Abstract
The prevalence of Alzheimer’s disease (AD) has been a major health concern for a long time. Despite recent progress, there is still a strong need to develop effective disease-modifying therapies. Several drugs have already been approved to retard the progression of AD-related symptoms; however, there is a need to develop an effective carrier system for the delivery of drugs to combat such diseases. In recent years, various biological macromolecules, including proteins, have been used as carriers for drug delivery. Irisin is a beneficial hormone in such diseases, including AD and related pathologies. Herein, the interaction mechanism of irisin with AD drugs such as memantine, galantamine, and fluoxetine is investigated. Fluorescence studies revealed that the above drugs bind to irisin with significant affinity, with fluoxetine having the highest binding affinity. Isothermal titration calorimetry (ITC) complemented the spontaneous binding of these drugs with irisin, delineating various associated thermodynamic and binding parameters. Molecular docking further validated the fluorescence and ITC results and unfolded the mechanism that hydrogen bonding governs the binding of fluoxetine to irisin with a significant binding score, i.e., −6.3 kcal/mol. We believe that these findings provide a promising solution to fight against AD as well as a platform for further research to utilize irisin in the drug-delivery system for an effective therapeutic strategy.
Collapse
Affiliation(s)
- Rashid Waseem
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India; (R.W.); (A.S.); (T.K.); (M.I.H.); (S.N.K.)
| | - Anas Shamsi
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India; (R.W.); (A.S.); (T.K.); (M.I.H.); (S.N.K.)
| | - Tanzeel Khan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India; (R.W.); (A.S.); (T.K.); (M.I.H.); (S.N.K.)
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India; (R.W.); (A.S.); (T.K.); (M.I.H.); (S.N.K.)
| | - Syed Naqui Kazim
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India; (R.W.); (A.S.); (T.K.); (M.I.H.); (S.N.K.)
| | - Mohammad Shahid
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India; (R.W.); (A.S.); (T.K.); (M.I.H.); (S.N.K.)
- Correspondence:
| |
Collapse
|
46
|
Marquês JT, Frazão De Faria C, Reis M, Machado D, Santos S, Santos MDS, Viveiros M, Martins F, De Almeida RFM. In vitro Evaluation of Isoniazid Derivatives as Potential Agents Against Drug-Resistant Tuberculosis. Front Pharmacol 2022; 13:868545. [PMID: 35600870 PMCID: PMC9114799 DOI: 10.3389/fphar.2022.868545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/08/2022] [Indexed: 11/13/2022] Open
Abstract
The upsurge of multidrug-resistant tuberculosis has toughened the challenge to put an end to this epidemic by 2030. In 2020 the number of deaths attributed to tuberculosis increased as compared to 2019 and newly identified multidrug-resistant tuberculosis cases have been stably close to 3%. Such a context stimulated the search for new and more efficient antitubercular compounds, which culminated in the QSAR-oriented design and synthesis of a series of isoniazid derivatives active against Mycobacterium tuberculosis. From these, some prospective isonicotinoyl hydrazones and isonicotinoyl hydrazides are studied in this work. To evaluate if the chemical derivatizations are generating compounds with a good performance concerning several in vitro assays, their cytotoxicity against human liver HepG2 cells was determined and their ability to bind human serum albumin was thoroughly investigated. For the two new derivatives presented in this study, we also determined their lipophilicity and activity against both the wild type and an isoniazid-resistant strain of Mycobacterium tuberculosis carrying the most prevalent mutation on the katG gene, S315T. All compounds were less cytotoxic than many drugs in clinical use with IC50 values after a 72 h challenge always higher than 25 µM. Additionally, all isoniazid derivatives studied exhibited stronger binding to human serum albumin than isoniazid itself, with dissociation constants in the order of 10−4–10−5 M as opposed to 10−3 M, respectively. This suggests that their transport and half-life in the blood stream are likely improved when compared to the parent compound. Furthermore, our results are a strong indication that the N′ = C bond of the hydrazone derivatives of INH tested is essential for their enhanced activity against the mutant strain of M. tuberculosis in comparison to both their reduced counterparts and INH.
Collapse
Affiliation(s)
- Joaquim Trigo Marquês
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Catarina Frazão De Faria
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Marina Reis
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Instituto Superior de Educação e Ciências (ISEC Lisboa), Lisboa, Portugal
| | - Diana Machado
- Unidade de Microbiologia Medica, Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Susana Santos
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Maria da Soledade Santos
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Miguel Viveiros
- Unidade de Microbiologia Medica, Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Filomena Martins
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- *Correspondence: Filomena Martins, ; Rodrigo F. M. De Almeida,
| | - Rodrigo F. M. De Almeida
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- *Correspondence: Filomena Martins, ; Rodrigo F. M. De Almeida,
| |
Collapse
|
47
|
Jarockyte G, Poderys V, Barzda V, Karabanovas V, Rotomskis R. Blood Plasma Stabilized Gold Nanoclusters for Personalized Tumor Theranostics. Cancers (Basel) 2022; 14:cancers14081887. [PMID: 35454798 PMCID: PMC9030650 DOI: 10.3390/cancers14081887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/01/2022] [Accepted: 04/06/2022] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Cancer is a disease that has a high fatality rate over the world. Nanotechnology is one of the most promising current approaches for developing novel diagnostic and treatment methods in accomplishing more personalized medicine. Personalized gold nanoclusters have potential to be used in cancer theranostics. We demonstrate that biocompatible gold nanoclusters could be synthesized directly in human blood plasma. Such gold nanoclusters have a wide photoluminescence band in the optical tissue window and generate reactive oxygen species under irradiation with visible light, thus are suitable for cancer theranostics. Abstract Personalized cancer theranostics has a potential to increase efficiency of early cancer diagnostics and treatment, and to reduce negative side-effects. Protein-stabilized gold nanoclusters may serve as theranostic agents. To make gold nanoclusters personalized and highly biocompatible, the clusters were stabilized with human plasma proteins. Optical properties of synthesized nanoclusters were investigated spectroscopically, and possible biomedical application was evaluated using standard cell biology methods. The spectroscopic investigations of human plasma proteins stabilized gold nanoclusters revealed that a wide photoluminescence band in the optical tissue window is suitable for cancer diagnostics. High-capacity generation of singlet oxygen and other reactive oxygen species was also observed. Furthermore, the cluster accumulation in cancer cells and the photodynamic effect were evaluated. The results demonstrate that plasma proteins stabilized gold nanoclusters that accumulate in breast cancer cells and are non-toxic in the dark, while appear phototoxic under irradiation with visible light. The results positively confirm the utility of plasma protein stabilized gold nanoclusters for the use in cancer diagnostics and treatment.
Collapse
Affiliation(s)
- Greta Jarockyte
- Biomedical Physics Laboratory, National Cancer Institute, LT-08406 Vilnius, Lithuania; (G.J.); (V.P.); (R.R.)
- Life Science Center, Vilnius University, LT-10257 Vilnius, Lithuania
- Laser Research Center, Faculty of Physics, Vilnius University, LT-10223 Vilnius, Lithuania;
| | - Vilius Poderys
- Biomedical Physics Laboratory, National Cancer Institute, LT-08406 Vilnius, Lithuania; (G.J.); (V.P.); (R.R.)
| | - Virginijus Barzda
- Laser Research Center, Faculty of Physics, Vilnius University, LT-10223 Vilnius, Lithuania;
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Toronto, ON L5L 1C6, Canada
- Department of Physics, University of Toronto, Toronto, ON M5S 1A7, Canada
| | - Vitalijus Karabanovas
- Biomedical Physics Laboratory, National Cancer Institute, LT-08406 Vilnius, Lithuania; (G.J.); (V.P.); (R.R.)
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, LT-10223 Vilnius, Lithuania
- Correspondence:
| | - Ricardas Rotomskis
- Biomedical Physics Laboratory, National Cancer Institute, LT-08406 Vilnius, Lithuania; (G.J.); (V.P.); (R.R.)
- Laser Research Center, Faculty of Physics, Vilnius University, LT-10223 Vilnius, Lithuania;
| |
Collapse
|
48
|
Kuncewicz K, Battin C, Węgrzyn K, Sieradzan A, Wardowska A, Sikorska E, Giedrojć I, Smardz P, Pikuła M, Steinberger P, Rodziewicz-Motowidło S, Spodzieja M. Targeting the HVEM protein using a fragment of glycoprotein D to inhibit formation of the BTLA/HVEM complex. Bioorg Chem 2022; 122:105748. [PMID: 35325694 DOI: 10.1016/j.bioorg.2022.105748] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/26/2022] [Accepted: 03/17/2022] [Indexed: 02/07/2023]
Abstract
Cancer immunotherapy using blockade of immune checkpoints is mainly based on monoclonal antibodies. Despite the tremendous success achieved by using those molecules to block immune checkpoint proteins, antibodies possess some weaknesses, which means that there is still a need to search for new compounds as alternatives to antibodies. Many current approaches are focused on use of peptides/peptidomimetics to destroy receptor/ligand interactions. Our studies concern blockade of the BTLA/HVEM complex, which generates an inhibitory effect on the immune response resulting in tolerance to cancer cells. To design inhibitors of such proteins binding we based our work on the amino acid sequence and structure of a ligand of HVEM protein, namely glycoprotein D, which possesses the same binding site on HVEM as BTLA protein. To disrupt the BTLA and HVEM interaction we designed several peptides, all fragments of glycoprotein D, and tested their binding to HVEM using SPR and their ability to inhibit the BTLA/HVEM complex formation using ELISA tests and cellular reporter platforms. That led to identification of two peptides, namely gD(1-36)(K10C-D30C) and gD(1-36)(A12C-L25C), which interact with HVEM and possess blocking capacities. Both peptides are not cytotoxic to human PBMCs, and show stability in human plasma. We also studied the 3D structure of the gD(1-36)(K10C-D30C) peptide using NMR and molecular modeling methods. The obtained data reveal that it possesses an unstructured conformation and binds to HVEM in the same location as gD and BTLA. All these results suggest that peptides based on the binding fragment of gD protein represent promising immunomodulation agents for future cancer immunotherapy.
Collapse
Affiliation(s)
| | - Claire Battin
- Medical University of Vienna, Institute of Immunology, Division of Immune Receptors and T cell Activation, 1090 Vienna, Austria
| | - Katarzyna Węgrzyn
- University of Gdańsk, Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, 80-307 Gdańsk, Poland
| | - Adam Sieradzan
- University of Gdańsk, Faculty of Chemistry, 80-308 Gdańsk, Poland
| | - Anna Wardowska
- Medical University of Gdańsk, Department of Physiopathology, 80-210 Gdańsk, Poland
| | - Emilia Sikorska
- University of Gdańsk, Faculty of Chemistry, 80-308 Gdańsk, Poland
| | - Irma Giedrojć
- University of Gdańsk, Faculty of Chemistry, 80-308 Gdańsk, Poland
| | - Pamela Smardz
- University of Gdańsk, Faculty of Chemistry, 80-308 Gdańsk, Poland
| | - Michał Pikuła
- Medical University of Gdańsk, Department of Embryology, Laboratory of Tissue Engineering and Regenerative Medicine, 80-210 Gdańsk, Poland
| | - Peter Steinberger
- Medical University of Vienna, Institute of Immunology, Division of Immune Receptors and T cell Activation, 1090 Vienna, Austria
| | | | - Marta Spodzieja
- University of Gdańsk, Faculty of Chemistry, 80-308 Gdańsk, Poland.
| |
Collapse
|
49
|
Disruption of Membrane Integrity as a Molecular Initiating Event Determines the Toxicity of Polyhexamethylene Guanidine Phosphate Depending on the Routes of Exposure. Int J Mol Sci 2022; 23:ijms23063289. [PMID: 35328708 PMCID: PMC8955148 DOI: 10.3390/ijms23063289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/17/2022] [Accepted: 03/17/2022] [Indexed: 02/01/2023] Open
Abstract
Polyhexamethylene guanidine phosphate (PHMG-P), a cationic biocide, is widely used in household products due to its strong bactericidal activity and low toxicity. However, it causes fatal lung damage when inhaled. In this study, we investigated why PHMG-P causes fatal lung injury when inhaled, and demonstrated that the disruption of membrane integrity through ionic interaction—a molecular initiating event of PHMG-P—determines toxicity. Mice were injected intravenously with 0.9 or 7.2 mg/kg PHMG-P (IV group), or instilled intratracheally with 0.9 mg/kg PHMG-P (ITI group); they were euthanatized at 4 h and on days 1 and 7 after treatment. Increased total BAL cell count and proinflammatory cytokine production, along with fibrotic changes in the lungs, were detected in the ITI group only. Levels of hepatic enzymes and hepatic serum amyloid A mRNA expression were markedly upregulated in the 7.2 mg/kg IV and ITI groups at 4 h or day 1 after treatment, but returned to baseline. No pathological findings were detected in the heart, liver, or kidneys. To simulate the IV injection, A549, THP-1, and HepG2 cells were treated with PHMG-P in cell culture media supplemented with different serum concentrations. Increased serum concentration was associated with an increase in cell viability. These results support the idea that direct contact between PHMG-P and cell membranes is necessary for PHMG-induced toxicity.
Collapse
|
50
|
Habibi N, Mauser A, Ko Y, Lahann J. Protein Nanoparticles: Uniting the Power of Proteins with Engineering Design Approaches. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104012. [PMID: 35077010 PMCID: PMC8922121 DOI: 10.1002/advs.202104012] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/12/2021] [Indexed: 05/16/2023]
Abstract
Protein nanoparticles, PNPs, have played a long-standing role in food and industrial applications. More recently, their potential in nanomedicine has been more widely pursued. This review summarizes recent trends related to the preparation, application, and chemical construction of nanoparticles that use proteins as major building blocks. A particular focus has been given to emerging trends related to applications in nanomedicine, an area of research where PNPs are poised for major breakthroughs as drug delivery carriers, particle-based therapeutics or for non-viral gene therapy.
Collapse
Affiliation(s)
- Nahal Habibi
- Biointerfaces InstituteDepartment of Chemical EngineeringUniversity of MichiganAnn ArborMI48109USA
| | - Ava Mauser
- Biointerfaces InstituteDepartment of Biomedical EngineeringUniversity of MichiganAnn ArborMI48109USA
| | - Yeongun Ko
- Biointerfaces InstituteDepartment of Chemical EngineeringUniversity of MichiganAnn ArborMI48109USA
| | - Joerg Lahann
- Biointerfaces InstituteDepartments of Chemical EngineeringMaterial Science and EngineeringBiomedical Engineeringand Macromolecular Science and EngineeringUniversity of MichiganAnn ArborMI48109USA
| |
Collapse
|