1
|
Guo X, Zhang Y, Liu Q, Xu M, Pang J, Yang B, Rong S, Yang X. Progress on liposome delivery systems in the treatment of bladder cancer. RSC Adv 2025; 15:14315-14336. [PMID: 40330044 PMCID: PMC12053965 DOI: 10.1039/d5ra00746a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 04/08/2025] [Indexed: 05/08/2025] Open
Abstract
Bladder cancer (BC) in the urinary system remains one of the most prevalent malignancies with high recurrence rate globally. Current treatment schemes against BC such as surgery, chemotherapy, and radiotherapy have substantial limitations including side effects, drug resistance, and poor tumor targeting. Considering the above-mentioned challenges, nanotechnology has become a current research hotspot, particularly liposome-based drug delivery systems, which offer promising novel therapeutic strategies aimed at reducing systemic toxicity, overcoming drug resistance, and enhancing drug targeting. This review systematically elaborates the current research progress on liposomal drug delivery systems in BC treatment, focusing on their application in chemotherapy, immunotherapy, and gene therapy. Additionally, we provide a comprehensive assessment of the benefits and limitations of liposome nanocarriers used in BC treatment. The advanced targeting strategies and combination treatments via liposomal therapies are also discussed, demonstrating that liposomal formulations have great potential application value in the treatment of BC owing to their superior bioavailability, stability, and targeting and minimal adverse effects.
Collapse
Affiliation(s)
- Xinyu Guo
- Department of Urology Surgery, First Hospital of Shanxi Medical University Taiyuan Shanxi 030001 China
- The First Clinical Medical College of Shanxi Medical University Taiyuan Shanxi 030001 China
| | - Yan Zhang
- School of Optoelectronic Engineering, Xi'an Technological University Xi'an 710021 China
| | - Quanyong Liu
- Department of Urology Surgery, First Hospital of Shanxi Medical University Taiyuan Shanxi 030001 China
- The First Clinical Medical College of Shanxi Medical University Taiyuan Shanxi 030001 China
| | - Mingquan Xu
- Department of Urology Surgery, First Hospital of Shanxi Medical University Taiyuan Shanxi 030001 China
- The First Clinical Medical College of Shanxi Medical University Taiyuan Shanxi 030001 China
| | - Jianzhi Pang
- The First Clinical Medical College of Shanxi Medical University Taiyuan Shanxi 030001 China
| | - Bin Yang
- Department of Urology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital Taiyuan 030032 China
| | - Shuo Rong
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital Taiyuan 030032 China
| | - Xiaofeng Yang
- Department of Urology Surgery, First Hospital of Shanxi Medical University Taiyuan Shanxi 030001 China
- The First Clinical Medical College of Shanxi Medical University Taiyuan Shanxi 030001 China
| |
Collapse
|
2
|
Lee H, Jang H, Kim J, Maeng S, Kim J. Bladder Cancer Medication Bacillus Calmette-Guérin-Cell Wall Skeleton Focusing on Alternatives and Developments to Limitations. J Cancer Prev 2025; 30:1-6. [PMID: 40201027 PMCID: PMC11973459 DOI: 10.15430/jcp.25.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/10/2025] [Accepted: 03/17/2025] [Indexed: 04/10/2025] Open
Abstract
Bacillus Calmette-Guérin (BCG) serves as an anticancer drug for bladder cancer by enhancing the innate immune response and facilitating the expression of beta-defensin-2/-3. BCG is significantly more effective than other treatment modalities; however, it has limitations due to the nonspecific secretion of immune proteins such as interleukin-2 (IL-2) and IFN-γ, necessitating frequent injections that result in toxicity. The newly developed BCG-cell wall skeleton (BCG-CWS) is intended to address the non-specificity and the requirement for repeated treatments associated with BCG. BCG-CWS stimulates antigen-presenting cells by secreting cytokines such as IL-12, using an adjuvant to enhance the immune response and synergize with it to provoke a potent immune reaction. Nevertheless, BCG-CWS encounters issues related to cellular uptake due to the substantial molecular weight of the drug. To meet this challenge, various strategies such as the introduction of R8 protein, the liposome evaporated via an emulsified lipid method, and nanoparticle formulation have been employed which can enhance targeted drug delivery, though issues related to particle size remain unresolved. This paper aims to discuss future perspectives by examining the mechanisms and challenges of BCG-CWS.
Collapse
Affiliation(s)
- Hyejin Lee
- Department of Biopharmaceutical Engineering, Hannam University, Daejeon, Korea
| | - Hyerim Jang
- Department of Biopharmaceutical Engineering, Hannam University, Daejeon, Korea
| | - Jeongyeon Kim
- Department of Biopharmaceutical Engineering, Hannam University, Daejeon, Korea
| | - Seoyeon Maeng
- Department of Biopharmaceutical Engineering, Hannam University, Daejeon, Korea
| | - Jihye Kim
- Department of Biopharmaceutical Engineering, Hannam University, Daejeon, Korea
| |
Collapse
|
3
|
Ruiz-Lorente I, Gimeno L, López-Abad A, López Cubillana P, Fernández Aparicio T, Asensio Egea LJ, Moreno Avilés J, Doñate Iñiguez G, Guzmán Martínez-Valls PL, Server G, Escudero-Bregante JF, Ferri B, Campillo JA, Pons-Fuster E, Martínez Hernández MD, Martínez-Sánchez MV, Ceballos D, Minguela A. Exploring the Immunoresponse in Bladder Cancer Immunotherapy. Cells 2024; 13:1937. [PMID: 39682686 PMCID: PMC11640729 DOI: 10.3390/cells13231937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/11/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
Bladder cancer (BC) represents a wide spectrum of diseases, ranging from recurrent non-invasive tumors to advanced stages that require intensive treatments. BC accounts for an estimated 500,000 new cases and 200,000 deaths worldwide every year. Understanding the biology of BC has changed how this disease is diagnosed and treated. Bladder cancer is highly immunogenic, involving innate and adaptive components of the immune system. Although little is still known of how immune cells respond to BC, immunotherapy with bacillus Calmette-Guérin (BCG) remains the gold standard in high-risk non-muscle invasive BC. For muscle-invasive BC and metastatic stages, immune checkpoint inhibitors targeting CTLA-4, PD-1, and PD-L1 have emerged as potent therapies, enhancing immune surveillance and tumor cell elimination. This review aims to unravel the immune responses involving innate and adaptive immune cells in BC that will contribute to establishing new and promising therapeutic options, while reviewing the immunotherapies currently in use in bladder cancer.
Collapse
Affiliation(s)
- Inmaculada Ruiz-Lorente
- Immunology Service, Virgen de la Arrixaca University Clinical Hospital (HCUVA), Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (I.R.-L.); (L.G.); (J.A.C.); (M.D.M.H.); (M.V.M.-S.); (D.C.)
| | - Lourdes Gimeno
- Immunology Service, Virgen de la Arrixaca University Clinical Hospital (HCUVA), Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (I.R.-L.); (L.G.); (J.A.C.); (M.D.M.H.); (M.V.M.-S.); (D.C.)
- Human Anatomy Department, Universidad de Murcia and Campus Mare Nostrum, 30071 Murcia, Spain;
| | - Alicia López-Abad
- Urology Service, Virgen de la Arrixaca University Clinical Hospital (HCUVA), Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (A.L.-A.); (P.L.C.); (G.S.); (J.F.E.-B.)
| | - Pedro López Cubillana
- Urology Service, Virgen de la Arrixaca University Clinical Hospital (HCUVA), Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (A.L.-A.); (P.L.C.); (G.S.); (J.F.E.-B.)
| | | | | | | | | | | | - Gerardo Server
- Urology Service, Virgen de la Arrixaca University Clinical Hospital (HCUVA), Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (A.L.-A.); (P.L.C.); (G.S.); (J.F.E.-B.)
| | - José Félix Escudero-Bregante
- Urology Service, Virgen de la Arrixaca University Clinical Hospital (HCUVA), Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (A.L.-A.); (P.L.C.); (G.S.); (J.F.E.-B.)
| | - Belén Ferri
- Pathology Service, Virgen de la Arrixaca University Clinical Hospital (HCUVA), Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain;
| | - José Antonio Campillo
- Immunology Service, Virgen de la Arrixaca University Clinical Hospital (HCUVA), Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (I.R.-L.); (L.G.); (J.A.C.); (M.D.M.H.); (M.V.M.-S.); (D.C.)
| | - Eduardo Pons-Fuster
- Human Anatomy Department, Universidad de Murcia and Campus Mare Nostrum, 30071 Murcia, Spain;
| | - María Dolores Martínez Hernández
- Immunology Service, Virgen de la Arrixaca University Clinical Hospital (HCUVA), Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (I.R.-L.); (L.G.); (J.A.C.); (M.D.M.H.); (M.V.M.-S.); (D.C.)
| | - María Victoria Martínez-Sánchez
- Immunology Service, Virgen de la Arrixaca University Clinical Hospital (HCUVA), Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (I.R.-L.); (L.G.); (J.A.C.); (M.D.M.H.); (M.V.M.-S.); (D.C.)
| | - Diana Ceballos
- Immunology Service, Virgen de la Arrixaca University Clinical Hospital (HCUVA), Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (I.R.-L.); (L.G.); (J.A.C.); (M.D.M.H.); (M.V.M.-S.); (D.C.)
| | - Alfredo Minguela
- Immunology Service, Virgen de la Arrixaca University Clinical Hospital (HCUVA), Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (I.R.-L.); (L.G.); (J.A.C.); (M.D.M.H.); (M.V.M.-S.); (D.C.)
| |
Collapse
|
4
|
Winnicka A, Brzeszczyńska J, Saluk J, Wigner-Jeziorska P. Nanomedicine in Bladder Cancer Therapy. Int J Mol Sci 2024; 25:10388. [PMID: 39408718 PMCID: PMC11476791 DOI: 10.3390/ijms251910388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/12/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024] Open
Abstract
Bladder cancer (BC) is one of the most common malignant neoplasms of the genitourinary system. Traditional BC therapies include chemotherapy, targeted therapy, and immunotherapy. However, limitations such as lack of specificity, cytotoxicity, and multidrug resistance pose serious challenges to the benefits of BC therapies. Consequently, current studies focus on the search for new therapeutic solutions. In recent years, there has been a growing interest in using nanotechnology in the treatment of both non-invasive (NMIBC) and invasive bladder cancer (MIBC). Nanotechnology is based on the use of both organic molecules (chitosan, liposomes) and inorganic molecules (superparamagnetic iron oxide nanoparticles) as carriers of active substances. The main aim of such molecules is the targeted transport and prolonged retention of the drug in the target tissue, which increases the therapeutic efficacy of the active substance. This review discusses the numerous types of nanoparticles (including chitosan, polymeric nanoparticles, liposomes, and protein nanoparticles), targeting mechanisms, and approved nanotherapeutics with oncological implications in cancer treatment. We also present nanoformulation applications in phototherapy, gene therapy, and immunotherapy. Moreover, we summarise the current perspectives, advantages, and challenges in clinical translation.
Collapse
Affiliation(s)
- Adrianna Winnicka
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-136 Lodz, Poland; (A.W.); (J.B.); (J.S.)
| | - Joanna Brzeszczyńska
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-136 Lodz, Poland; (A.W.); (J.B.); (J.S.)
| | - Joanna Saluk
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-136 Lodz, Poland; (A.W.); (J.B.); (J.S.)
| | - Paulina Wigner-Jeziorska
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-136 Lodz, Poland
| |
Collapse
|
5
|
Lv M, Shang S, Liu K, Wang Y, Xu P, Song H, Zhang J, Sun Z, Yan Y, Zhu Z, Wu H, Li H. Revitalizing Bacillus Calmette-Guérin Immunotherapy for Bladder Cancer: Nanotechnology and Bioengineering Approaches. Pharmaceutics 2024; 16:1067. [PMID: 39204412 PMCID: PMC11359013 DOI: 10.3390/pharmaceutics16081067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/30/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Bacillus Calmette-Guérin (BCG) immunotherapy has been a cornerstone treatment for non-muscle-invasive bladder cancer for decades and still faces challenges, such as severe immune adverse reactions, which reduce its use as a first-line treatment. This review examines BCG therapy's history, mechanisms, and current status, highlighting how nanotechnology and bioengineering are revitalizing its application. We discuss novel nanocarrier systems aimed at enhancing BCG's efficacy while mitigating specific side effects. These approaches promise improved tumor targeting, better drug loading, and an enhanced stimulation of anti-tumor immune responses. Key strategies involve using materials such as liposomes, polymers, and magnetic particles to encapsulate BCG or functional BCG cell wall components. Additionally, co-delivering BCG with chemotherapeutics enhances drug targeting and tumor-killing effects while reducing drug toxicity, with some studies even achieving synergistic effects. While most studies remain experimental, this research direction offers hope for overcoming BCG's limitations and advancing bladder cancer immunotherapy. Further elucidation of BCG's mechanisms and rigorous safety evaluations of new delivery systems will be crucial for translating these innovations into clinical practice.
Collapse
Affiliation(s)
- Maoxin Lv
- Department of Urology, First Affiliated Hospital, Kunming Medical University, Kunming 650000, China;
- School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education, Xi’an Jiaotong University, Xi’an 710061, China
| | - Shihao Shang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (S.S.); (Z.S.)
| | - Kepu Liu
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (S.S.); (Z.S.)
| | - Yuliang Wang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (S.S.); (Z.S.)
| | - Peng Xu
- School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education, Xi’an Jiaotong University, Xi’an 710061, China
- Department of Oncology, The Second Affiliated Hospital, Medical School of Xi’an Jiaotong University, Xi’an 710061, China
| | - Hao Song
- School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education, Xi’an Jiaotong University, Xi’an 710061, China
| | - Jie Zhang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (S.S.); (Z.S.)
| | - Zelong Sun
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (S.S.); (Z.S.)
| | - Yuhao Yan
- Student Brigade of Basic Medicine School, Fourth Military Medical University, Xi’an 710032, China
| | - Zheng Zhu
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (S.S.); (Z.S.)
| | - Hao Wu
- School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education, Xi’an Jiaotong University, Xi’an 710061, China
- Department of Oncology, The Second Affiliated Hospital, Medical School of Xi’an Jiaotong University, Xi’an 710061, China
| | - Hao Li
- Department of Urology, First Affiliated Hospital, Kunming Medical University, Kunming 650000, China;
| |
Collapse
|
6
|
Zeng S, Xing S, Zhang Y, Wang H, Liu Q. Nano-Bacillus Calmette-Guérin immunotherapies for improved bladder cancer treatment. J Zhejiang Univ Sci B 2024; 25:557-567. [PMID: 39011676 PMCID: PMC11254686 DOI: 10.1631/jzus.b2300392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 08/29/2023] [Indexed: 07/13/2024]
Abstract
Cancer immunotherapy has rapidly become the fourth mainstream treatment alternative after surgery, radiotherapy, and chemotherapy, with some promising results. It aims to kill tumor cells by mobilizing or stimulating cytotoxic immune cells. However, the clinical applications of tumor immunotherapies are limited owing to a lack of adequate delivery pathways and high toxicity. Recently, nanomaterials and genetic engineering have shown great potential in overcoming these limitations by protecting the delivery of antigens, activating targeted T cells, modulating the immunosuppressive tumor microenvironment, and improving the treatment efficacy. Bacillus Calmette-Guérin (BCG) is a live attenuated Mycobacterium bovis vaccine used to prevent tuberculosis, which was first reported to have antitumor activity in 1927. BCG therapy can activate the immune system by inducing various cytokines and chemokines, and its specific immune and inflammatory responses exert antitumor effects. BCG was first used during the 1970s as an intravesical treatment agent for bladder cancer, which effectively improved immune antitumor activity and prevented tumor recurrence. More recently, nano-BCG and genetically engineered BCG have been proposed as treatment alternatives for bladder cancer due to their ability to induce stronger and more stable immune responses. In this study, we outline the development of nano-BCG and genetically engineered BCG for bladder cancer immunotherapy and review their potential and associated challenges.
Collapse
Affiliation(s)
- Sheng Zeng
- Department of Urology, Tianjin First Central Hospital, Tianjin 300192, China
| | - Shaoqiang Xing
- Department of Urology, First Central Clinical College, Tianjin Medical University, Tianjin 300192, China
| | - Yifei Zhang
- Department of Urology, First Central Clinical College, Tianjin Medical University, Tianjin 300192, China
| | - Haifeng Wang
- Department of Urology, Tianjin First Central Hospital, Tianjin 300192, China.
| | - Qian Liu
- Department of Urology, Tianjin First Central Hospital, Tianjin 300192, China.
| |
Collapse
|
7
|
Sato Y, Nakamura T, Yamada Y, Harashima H. The impact of, and expectations for, lipid nanoparticle technology: From cellular targeting to organelle targeting. J Control Release 2024; 370:516-527. [PMID: 38718875 DOI: 10.1016/j.jconrel.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/22/2024] [Accepted: 05/04/2024] [Indexed: 05/12/2024]
Abstract
The success of mRNA vaccines against COVID-19 has enhanced the potential of lipid nanoparticles (LNPs) as a system for the delivery of mRNA. In this review, we describe our progress using a lipid library to engineer ionizable lipids and promote LNP technology from the viewpoints of safety, controlled biodistribution, and mRNA vaccines. These advancements in LNP technology are applied to cancer immunology, and a potential nano-DDS is constructed to evaluate immune status that is associated with a cancer-immunity cycle that includes the sub-cycles in tumor microenvironments. We also discuss the importance of the delivery of antigens and adjuvants in enhancing the cancer-immunity cycle. Recent progress in NK cell targeting in cancer immunotherapy is also introduced. Finally, the impact of next-generation DDS technology is explained using the MITO-Porter membrane fusion-based delivery system for the organelle targeting of the mitochondria. We introduce a successful example of the MITO-Porter used in a cell therapeutic strategy to treat cardiomyopathy.
Collapse
Affiliation(s)
- Yusuke Sato
- Faculty of Pharmaceutical Sciences, Hokkaido University, Hokkaido, Japan
| | - Takashi Nakamura
- Faculty of Pharmaceutical Sciences, Hokkaido University, Hokkaido, Japan
| | - Yuma Yamada
- Faculty of Pharmaceutical Sciences, Hokkaido University, Hokkaido, Japan
| | | |
Collapse
|
8
|
Liu K, Peng J, Guo Y, Li Y, Qi X, Duan D, Li T, Li J, Niu Y, Han G, Zhao Y. Expanding the Potential of Neoantigen Vaccines: Harnessing Bacille Calmette-Guérin Cell-Wall-Based Nanoscale Adjuvants for Enhanced Cancer Immunotherapy. ACS NANO 2024; 18:11910-11920. [PMID: 38680054 DOI: 10.1021/acsnano.4c01691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Personalized antitumor immunotherapy utilizing neoantigen vaccines holds great promise. However, the limited immunogenicity of existing recognized neoantigens and the inadequate stimulation of antitumor immune responses by conventional adjuvants pose significant challenges. To address these limitations, we developed a nanovaccine that combines a BCG bacterial cell wall skeleton (BCG-CWS) based nanoscale adjuvant (BCNA) with peptide neoantigens (M27 and M30). This integrated approach provides an efficient translational strategy for cancer immunotherapy. The BCNA nanovaccine, formulated with PLGA as an emulsifier, exhibits excellent biocompatibility and superior antigen presentation compared with conventional BCG-CWS adjuvants. Subcutaneous immunization with the BCNA-based nanovaccine effectively targets lymph nodes, eliciting robust innate and tumor-specific immune responses. Importantly, our findings demonstrate that BCNAs significantly enhance neoantigen immunogenicity while minimizing acute systemic toxicity. Furthermore, when combined with a mouse PD-L1 antibody, our strategy achieves complete tumor elimination in 60% of cases and prevents 25% of tumor growth in a melanoma mouse model. In conclusion, our BCNA-based nanovaccine represents a promising avenue for advancing personalized therapeutic neoantigen vaccines and holds significant implications for enhancing personalized immunotherapy and improving patient outcomes in the field of cancer treatment.
Collapse
Affiliation(s)
- Kangkang Liu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Jing Peng
- Department of Radiology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
- Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, 364 Plantation Street, LRB 806, Worcester, Massachusetts 01605, United States
| | - Yunfei Guo
- Department of Radiology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Yiming Li
- Department of Radiology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Xiang Qi
- Department of Radiology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Dengyi Duan
- Department of Radiology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Taipeng Li
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Jianmin Li
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Yuanjie Niu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Gang Han
- Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, 364 Plantation Street, LRB 806, Worcester, Massachusetts 01605, United States
| | - Yang Zhao
- Department of Radiology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
- Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, 364 Plantation Street, LRB 806, Worcester, Massachusetts 01605, United States
| |
Collapse
|
9
|
Wang G, Wang Y, Ma F. Exploiting bacterial-origin immunostimulants for improved vaccination and immunotherapy: current insights and future directions. Cell Biosci 2024; 14:24. [PMID: 38368397 PMCID: PMC10874560 DOI: 10.1186/s13578-024-01207-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/06/2024] [Indexed: 02/19/2024] Open
Abstract
Vaccination is a valid strategy to prevent and control newly emerging and reemerging infectious diseases in humans and animals. However, synthetic and recombinant antigens are poor immunogenic to stimulate efficient and protective host immune response. Immunostimulants are indispensable factors of vaccines, which can promote to trigger fast, robust, and long-lasting immune responses. Importantly, immunotherapy with immunostimulants is increasing proved to be an effective and promising treatment of cancer, which could enhance the function of the immune system against tumor cells. Pattern recognition receptors (PRRs) play vital roles in inflammation and are central to innate and adaptive immune responses. Toll-like receptors (TLRs)-targeting immunostimulants have become one of the hotspots in adjuvant research and cancer therapy. Bacterial-origin immunoreactive molecules are usually the ligands of PRRs, which could be fast recognized by PRRs and activate immune response to eliminate pathogens. Varieties of bacterial immunoreactive molecules and bacterial component-mimicking molecules have been successfully used in vaccines and clinical therapy so far. This work provides a comprehensive review of the development, current state, mechanisms, and applications of bacterial-origin immunostimulants. The exploration of bacterial immunoreactive molecules, along with their corresponding mechanisms, holds immense significance in deepening our understanding of bacterial pathogenicity and in the development of promising immunostimulants.
Collapse
Affiliation(s)
- Guangyu Wang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, Jiangsu, 210023, China
| | - Yongkang Wang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, Jiangsu, 210023, China
| | - Fang Ma
- Institute of Veterinary Immunology & Engineering, National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China.
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, 225300, China.
| |
Collapse
|
10
|
Li G, Wu S, Chen W, Duan X, Sun X, Li S, Mai Z, Wu W, Zeng G, Liu H, Chen T. Designing Intelligent Nanomaterials to Achieve Highly Sensitive Diagnoses and Multimodality Therapy of Bladder Cancer. SMALL METHODS 2023; 7:e2201313. [PMID: 36599700 DOI: 10.1002/smtd.202201313] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Bladder cancer (BC) is among the most common malignant tumors of the genitourinary system worldwide. In recent years, the rate of BC incidence has increased, and the recurrence rate is high, resulting in poor quality of life for patients. Therefore, how to develop an effective method to achieve synchronous precise diagnoses and BC therapies is a difficult problem to solve clinically. Previous reports usually focus on the role of nanomaterials as drug delivery carriers, while a summary of the functional design and application of nanomaterials is lacking. Summarizing the application of functional nanomaterials in high-sensitivity diagnosis and multimodality therapy of BC is urgently needed. This review summarizes the application of nanotechnology in BC diagnosis, including the application of nanotechnology in the sensoring of BC biomarkers and their role in monitoring BC. In addition, conventional and combination therapies strategy in potential BC therapy are analyzed. Moreover, different kinds of nanomaterials in BC multimodal therapy according to pathological features of BC are also outlined. The goal of this review is to present an overview of the application of nanomaterials in the theranostics of BC to provide guidance for the application of functional nanomaterials to precisely diagnose and treat BC.
Collapse
Affiliation(s)
- Guanlin Li
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, P. R. China
| | - Sicheng Wu
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, P. R. China
| | - Wenzhe Chen
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, P. R. China
| | - Xiaolu Duan
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, P. R. China
| | - Xinyuan Sun
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, P. R. China
| | - Shujue Li
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, P. R. China
| | - Zanlin Mai
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, P. R. China
| | - Wenzheng Wu
- Department of Urology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, P. R. China
| | - Guohua Zeng
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, P. R. China
| | - Hongxing Liu
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, P. R. China
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510631, P. R. China
| | - Tianfeng Chen
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, P. R. China
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510631, P. R. China
| |
Collapse
|
11
|
Harashima H. Innovative System for Delivering Nucleic Acids/Genes Based on Controlled Intracellular Trafficking as Well as Controlled Biodistribution for Nanomedicines. Biol Pharm Bull 2023; 46:1648-1660. [PMID: 38044089 DOI: 10.1248/bpb.b23-00634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
This review paper summarizes progress that has been made in the new field of "Controlled Intracellular Trafficking." This involves the development of new systems for delivering plasmid DNA (pDNA), small interfering RNA (siRNA), mRNA, proteins, their escape from endosomes, the mechanism for how they enter the nucleus, how they enter mithochondria and how materials subsequently function within a cell. In addition, strategies for delivering these materials to a selective tissue after intravenous administration was also intensively investigated not only to the liver but also to tumors, lungs, adipose tissue and the spleen. In 2020, a new mRNA vaccine was developed against coronavirus disease 2019 (COVID-19), where ionizable cationic lipids were used as a delivery system. Our strategy to identify an efficient ionizable cationic lipids (iCL) based on a lipid library as well as their applications concerning the delivery of siRNA/mRNA/pDNA is also described.
Collapse
Affiliation(s)
- Hideyoshi Harashima
- Laboratory of Innovative Nanomedicine, Faculty of Pharmaceutical Sciences, Hokkaido University
| |
Collapse
|
12
|
Zhang C, Zhao J, Wang W, Geng H, Wang Y, Gao B. Current advances in the application of nanomedicine in bladder cancer. Biomed Pharmacother 2023; 157:114062. [PMID: 36469969 DOI: 10.1016/j.biopha.2022.114062] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/22/2022] [Accepted: 12/01/2022] [Indexed: 12/03/2022] Open
Abstract
Bladder cancer is the most common malignant tumor of the urinary system, however there are several shortcomings in current diagnostic and therapeutic measures. In terms of diagnosis, the diagnostic tools currently available are not sufficiently sensitive and specific, and imaging is poor, leading to misdiagnosis and missed diagnoses, which can delay treatment. In terms of treatment, current treatment options include surgery, chemotherapy, immunotherapy, gene therapy, and other emerging treatments, as well as combination therapies. However, the main reasons for poor efficacy and side effects during treatment are the lack of specificity and targeting, improper dose control of drugs and photosensitizers, damage to normal cells while attacking cancer cells, and difficulty in delivering siRNA to cancer cells. Nanomedicine is an emerging approach. Among the many nanotechnologies applied in the medical field, nanocarrier-assisted drug delivery systems have attracted extensive research interest due to their great translational value. Well-designed nanoparticles can deliver agents or drugs to specific cell types within target organs through active targeting or passive targeting (enhanced permeability and retention), which allows for imaging, diagnosis, as well as treatment of cancer. This paper reviews advances in the application of various nanocarriers and their advantages and drawbacks, with a focus on their use in the diagnosis and treatment of bladder cancer.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Jiang Zhao
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Weihao Wang
- Department of Plastic and Reconstructive Surgery, The First Hospital of Jilin University, Changchun 130021, China
| | - Huanhuan Geng
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Yinzhe Wang
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Baoshan Gao
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
13
|
Shibata T, Takata E, Sakamoto J, Shioya A, Yamada S, Takakura M, Sasagawa T. A retrospective study of immunotherapy using the cell wall skeleton of Mycobacterium bovis Bacillus Calmette-Guérin (BCG-CWS) for cervical cancer. Medicine (Baltimore) 2022; 101:e32481. [PMID: 36595982 PMCID: PMC9803507 DOI: 10.1097/md.0000000000032481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Mycobacterium bovis Bacillus Calmette-Guérin (BCG) has the potential to promote adaptive immunity. We sought to examine the synergistic effect of BCG-CWS vaccination on cervical cancer patients undergoing standard treatments including surgery, chemotherapy, and/or radiation. We retrospectively analyzed 103 patients (13 cases administered with BCG-CWS vaccine and 90 controls without BCG-CWS) who underwent a standard treatment for cervical cancer from 2005 to 2021. The BCG-CWS group underwent repeated intradermal injections of the BCG-CWS vaccine before or immediately after the standard therapy start from 2011 to 2018. The vaccination was repeated weekly for 1 month, and then every 4 weeks thereafter. The effectiveness of the BCG-CWS vaccination on cervical cancer treatment was evaluated by determining the hazard ratios of overall survival between the BCG-CWS group and the control group with multivariate analysis using the Cox model. Hazard ratios between 2 groups were determined after adjustment by clinical parameters including surgery, chemotherapy, radiation, age, clinical stage, presence of human papillomavirus, and pathology. Long-term follow-up revealed a significantly better prognosis (hazard ratio: 0.2108, P = .008 by the Cox model) for patients with cervical cancer in the BCG-CWS group compared to patients in the control group. Among patients with advanced cancer worse than stage IB2, some completely cleared the disease, whereas the others showed long-term survival with recurrence. BCG-CWS therapy appears to be an effective immune adjuvant therapy for cervical cancer, although randomized control studies are needed to confirm this. We also need to clarify the underlying mechanisms slowing the progression of cervical cancer in those receiving this vaccination. This study sheds light on the potential of immunostimulatory drugs such as BCG-CWS and suggests the important role of immunity for cancer elimination in combination therapy.
Collapse
Affiliation(s)
- Takeo Shibata
- Department of Obstetrics and Gynecology, Kanazawa Medical University, Uchinada, Japan
| | - Emi Takata
- Department of Obstetrics and Gynecology, Kanazawa Medical University, Uchinada, Japan
| | - Jinichi Sakamoto
- Department of Obstetrics and Gynecology, Kanazawa Medical University, Uchinada, Japan
| | - Akihiro Shioya
- Department of Pathology and Laboratory Medicine, Kanazawa Medical University, Uchinada, Japan
| | - Sohsuke Yamada
- Department of Pathology and Laboratory Medicine, Kanazawa Medical University, Uchinada, Japan
| | - Masahiro Takakura
- Department of Obstetrics and Gynecology, Kanazawa Medical University, Uchinada, Japan
| | - Toshiyuki Sasagawa
- Department of Obstetrics and Gynecology, Kanazawa Medical University, Uchinada, Japan
- * Correspondence: Toshiyuki Sasagawa, Department of Obstetrics and Gynecology, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa 920-0293, Japan (e-mail: )
| |
Collapse
|
14
|
Kong C, Zhang S, Lei Q, Wu S. State-of-the-Art Advances of Nanomedicine for Diagnosis and Treatment of Bladder Cancer. BIOSENSORS 2022; 12:bios12100796. [PMID: 36290934 PMCID: PMC9599190 DOI: 10.3390/bios12100796] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/17/2022] [Accepted: 09/20/2022] [Indexed: 06/13/2023]
Abstract
Bladder cancer is a common malignant tumor of the urinary system. Cystoscopy, urine cytology, and CT are the routine diagnostic methods. However, there are some problems such as low sensitivity and difficulty in staging, which must be urgently supplemented by novel diagnostic methods. Surgery, intravesical instillation, systemic chemotherapy, and radiotherapy are the main clinical treatments for bladder cancer. It is difficult for conventional treatment to deal with tumor recurrence, progression and drug resistance. In addition, the treatment agents usually have the defects of poor specific distribution ability to target tumor tissues and side effects. The rapid development of nanomedicine has brought hope for the treatment of bladder cancer in reducing side effects, enhancing tumor inhibition effects, and anti-drug resistance. Overall, we review the new progression of nano-platforms in the diagnosis and treatment of bladder cancer.
Collapse
Affiliation(s)
- Chenfan Kong
- Department of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen 518000, China
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shaohua Zhang
- Department of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen 518000, China
- Department of Urology, The Affiliated South China Hospital of Shenzhen University, Shenzhen University, Shenzhen 518000, China
| | - Qifang Lei
- Department of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen 518000, China
- Department of Urology, The Affiliated South China Hospital of Shenzhen University, Shenzhen University, Shenzhen 518000, China
| | - Song Wu
- Department of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen 518000, China
- Department of Urology, The Affiliated South China Hospital of Shenzhen University, Shenzhen University, Shenzhen 518000, China
| |
Collapse
|
15
|
Nica V, Popp RA, Crișan TO, Joosten LAB. The future clinical implications of trained immunity. Expert Rev Clin Immunol 2022; 18:1125-1134. [PMID: 36062825 DOI: 10.1080/1744666x.2022.2120470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Trained Immunity (TI) refers to the long-term modulation of the innate immune response, based on previous interactions with microbes, microbial ligands or endogenous substances. Through metabolic and epigenetic reprogramming, monocytes, macrophages and neutrophils develop an enhanced capacity to mount innate immune responses to subsequent stimuli and this is persistent due to alterations at the myeloid progenitor compartment. AREAS COVERED The purpose of this article is to review the current understanding of the TI process and discuss about its potential clinical implications in the near future. We address the evidence of TI involvement in various diseases, the currently developed new therapy, and discuss how TI may lead to new clinical tools to improve existing standards of care. EXPERT OPINION The state of art in this domain has made considerable progress, linking TI-related mechanisms in multiple immune-mediated pathologies, starting with infections to autoimmune disorders and cancers. As a relatively new area of immunology, it has seen fast progress with many of its applications ready to be investigated in clinical settings.
Collapse
Affiliation(s)
- Valentin Nica
- Department of Medical Genetics, "Iuliu Hațieganu" University of Medicine and Pharmacy, Str. Pasteur nr. 6, 400349, Cluj-Napoca, Romania
| | - Radu A Popp
- Department of Medical Genetics, "Iuliu Hațieganu" University of Medicine and Pharmacy, Str. Pasteur nr. 6, 400349, Cluj-Napoca, Romania
| | - Tania O Crișan
- Department of Medical Genetics, "Iuliu Hațieganu" University of Medicine and Pharmacy, Str. Pasteur nr. 6, 400349, Cluj-Napoca, Romania
| | - Leo A B Joosten
- Department of Medical Genetics, "Iuliu Hațieganu" University of Medicine and Pharmacy, Str. Pasteur nr. 6, 400349, Cluj-Napoca, Romania.,Department of Internal Medicine and Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, The Netherlands
| |
Collapse
|
16
|
Nakamura T, Sato Y, Yamada Y, Abd Elwakil MM, Kimura S, Younis MA, Harashima H. Extrahepatic targeting of lipid nanoparticles in vivo with intracellular targeting for future nanomedicines. Adv Drug Deliv Rev 2022; 188:114417. [PMID: 35787389 DOI: 10.1016/j.addr.2022.114417] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/02/2022] [Accepted: 06/28/2022] [Indexed: 12/15/2022]
Abstract
A new era of nanomedicines that involve nucleic acids/gene therapy has been opened after two decades in 21st century and new types of more efficient drug delivery systems (DDS) are highly expected and will include extrahepatic delivery. In this review, we summarize the possibility and expectations for the extrahepatic delivery of small interfering RNA/messenger RNA/plasmid DNA/genome editing to the spleen, lung, tumor, lymph nodes as well as the liver based on our studies as well as reported information. Passive targeting and active targeting are discussed in in vivo delivery and the importance of controlled intracellular trafficking for successful therapeutic results are also discussed. In addition, mitochondrial delivery as a novel strategy for nucleic acids/gene therapy is introduced to expand the therapeutic dimension of nucleic acids/gene therapy in the liver as well as the heart, kidney and brain.
Collapse
Affiliation(s)
- Takashi Nakamura
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Yusuke Sato
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Yuma Yamada
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Mahmoud M Abd Elwakil
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Seigo Kimura
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Mahmoud A Younis
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan; Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Hideyoshi Harashima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan.
| |
Collapse
|
17
|
Lu Y, Wang S, Wang Y, Li M, Liu Y, Xue D. Current Researches on Nanodrug Delivery Systems in Bladder Cancer Intravesical Chemotherapy. Front Oncol 2022; 12:879828. [PMID: 35720013 PMCID: PMC9202556 DOI: 10.3389/fonc.2022.879828] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/21/2022] [Indexed: 11/15/2022] Open
Abstract
Bladder cancer is one of the most common malignant tumors in urinary system. Intravesical chemotherapy is a common adjuvant therapy after transurethral resection of bladder tumors. However, it has several disadvantages such as low drug penetration rate, short residence time, unsustainable action and inability to release slowly, thus new drug delivery and new modalities in delivery carriers need to be continuously explored. Nano-drug delivery system is a novel way in treatment for bladder cancer that can increase the absorption rate and prolong the duration of drug, as well as sustain the action by controlling drug release. Currently, nano-drug delivery carriers mainly included liposomes, polymers, and inorganic materials. In this paper, we reveal current researches in nano-drug delivery system in bladder cancer intravesical chemotherapy by describing the applications and defects of liposomes, polymers and inorganic material nanocarriers, and provide a basis for the improvement of intravesical chemotherapy drugs in bladder cancer.
Collapse
Affiliation(s)
- Yilei Lu
- Department of Urology, The Forth Hospital of China Medical University, Shenyang, China
| | - Siqi Wang
- Department of Urology, The Forth Hospital of China Medical University, Shenyang, China
| | - Yuhang Wang
- Department of Urology, The Forth Hospital of China Medical University, Shenyang, China
| | - Mingshan Li
- Department of Urology, The Forth Hospital of China Medical University, Shenyang, China
| | - Yili Liu
- Department of Urology, The Forth Hospital of China Medical University, Shenyang, China
| | - Dongwei Xue
- Department of Urology, The Forth Hospital of China Medical University, Shenyang, China
| |
Collapse
|
18
|
Yamada Y, Sato Y, Nakamura T, Harashima H. Innovative cancer nanomedicine based on immunology, gene editing, intracellular trafficking control. J Control Release 2022; 348:357-369. [PMID: 35623492 DOI: 10.1016/j.jconrel.2022.05.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/12/2022] [Accepted: 05/20/2022] [Indexed: 11/17/2022]
Abstract
The recent rapid progress in the area of drug delivery systems (DDS) has opened a new era in medicine with a strong linkage to understanding the molecular mechanisms associated with cancer survival. In this review, we summarize new cancer strategies that have recently been developed based on our DDS technology. Cancer immunotherapy will be improved based on the concept of the cancer immunity cycle, which focuses on dynamic interactions between various types of cancer and immune cells in our body. The new technology of genome editing will also be discussed with reference to how these new DDS technologies can be used to introduce therapeutic cargoes into our body. Lastly, a new organelle, mitochondria will be the focus of creating a new cancer treatment strategy by a MITO-Porter which can deliver macromolecules directly to mitochondria of cancer cells via a membrane fusion approach and the impact of controlled intracellular trafficking will be discussed.
Collapse
Affiliation(s)
- Yuma Yamada
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan; Japan Science and Technology Agency (JST) Fusion Oriented REsearch for disruptive Science and Technology (FOREST) Program, Japan
| | - Yusuke Sato
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Takashi Nakamura
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Hideyoshi Harashima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan.
| |
Collapse
|
19
|
Zoqlam R, Lazauskaite S, Glickman S, Zaitseva L, Ilie PC, Qi S. Emerging molecular mechanisms and genetic targets for developing novel therapeutic strategies for treating bladder diseases. Eur J Pharm Sci 2022; 173:106167. [PMID: 35304859 DOI: 10.1016/j.ejps.2022.106167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/18/2022] [Accepted: 03/13/2022] [Indexed: 11/03/2022]
Abstract
Bladder diseases affect millions of patients worldwide and compromise their quality of life with a substantial economic impact. The not fully understood aetiologies of bladder diseases limit the current diagnosis and therapeutic options to primarily symptomatic treatment. In addition, bladder targeted drug delivery is challenging due to its unique anatomical features and its natural physiological function of urine storage and frequent voiding. Therefore, current treatment options often fail to provide a highly effective, precisely targeted and long-lasting treatment. With the growing maturity of gene therapy, comprehensive studies are needed to provide a better understanding of the molecular mechanisms underpinning bladder diseases and help to identify novel gene therapeutic targets and biomarkers for treating bladder diseases. In this review, molecular mechanisms involved in pathology of bladder cancer, interstitial cystitis and overactive bladder syndrome are reviewed, with focus on establishing potential novel treatment options. Proposed novel therapies, including gene therapy combined with nanotechnology, localised drug delivery by nanoparticles, and probiotics, are discussed in regard to their safety profiles, efficacy, treatment lenght, precise targeting, and in comparison to conventional treatment methods.
Collapse
Affiliation(s)
- Randa Zoqlam
- School of Pharmacy, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Sandra Lazauskaite
- School of Pharmacy, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | | | | | - Petre-Cristian Ilie
- The Queen Elizabeth Hospital King's Lynn NHS Foundation Trust, King's Lynn PE30 4ET, United Kingdom
| | - Sheng Qi
- School of Pharmacy, University of East Anglia, Norwich NR4 7TJ, United Kingdom.
| |
Collapse
|
20
|
Nakamura T, Kawakami K, Nomura M, Sato Y, Hyodo M, Hatakeyama H, Hayakawa Y, Harashima H. Combined nano cancer immunotherapy based on immune status in a tumor microenvironment. J Control Release 2022; 345:200-213. [DOI: 10.1016/j.jconrel.2022.03.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/24/2022] [Accepted: 03/14/2022] [Indexed: 02/08/2023]
|
21
|
Strategies for fighting pandemic virus infections: Integration of virology and drug delivery. J Control Release 2022; 343:361-378. [PMID: 35122872 PMCID: PMC8810279 DOI: 10.1016/j.jconrel.2022.01.046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/24/2022] [Accepted: 01/28/2022] [Indexed: 02/07/2023]
Abstract
Respiratory viruses have sometimes resulted in worldwide pandemics, with the influenza virus and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) being major participants. Long-term efforts have made it possible to control the influenza virus, but seasonal influenza continues to take many lives each year, and a pandemic influenza virus sometimes emerges. Although vaccines for coronavirus disease 2019 (COVID-19) have been developed, we are not yet able to coexist with the SARS-CoV-2. To overcome such viruses, it is necessary to obtain knowledge about international surveillance systems, virology, ecology and to determine that immune responses are effective. The information must then be transferred to drugs. Delivery systems would be expected to contribute to the rational development of drugs. In this review, virologist and drug delivery system (DDS) researchers discuss drug delivery strategies, especially the use of lipid-based nanocarriers, for fighting to respiratory virus infections.
Collapse
|
22
|
Xu Y, Luo C, Wang J, Chen L, Chen J, Chen T, Zeng Q. Application of nanotechnology in the diagnosis and treatment of bladder cancer. J Nanobiotechnology 2021; 19:393. [PMID: 34838048 PMCID: PMC8626998 DOI: 10.1186/s12951-021-01104-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/26/2021] [Indexed: 01/03/2023] Open
Abstract
Bladder cancer (BC) is a common malignancy in the genitourinary system and the current theranostic approaches are unsatisfactory. Sensitivity and specificity of current diagnosis methods are not ideal and high recurrence and progression rates after initial treatment indicate the urgent need for management improvements in clinic. Nanotechnology has been proposed as an effective method to improve theranosis efficiency for both non-muscle invasive bladder cancer (NMIBC) and muscle invasive bladder cancer (MIBC). For example, gold nanoparticles (AuNPs) have been developed for simple, fast and sensitive urinary sample test for bladder cancer diagnosis. Nanoparticles targeting bladder cancers can facilitate to distinguish the normal and abnormal bladder tissues during cystoscopy and thus help with the complete removal of malignant lesions. Both intravenous and intravesical agents can be modified by nanotechnology for targeted delivery, high anti-tumor efficiency and excellent tolerability, exhibiting encouraging potential in bladder cancer treatment. Photosensitizers and biological agents can also be delivered by nanotechnology, intermediating phototherapy and targeted therapy. The management of bladder cancer remained almost unchanged for decades with unsatisfactory effect. However, it is likely to change with the fast-developed nanotechnology. Herein we summarized the current utility of nanotechnology in bladder cancer diagnosis and treatment, providing insights for the future designing and discovering novel nanoparticles for bladder cancer management. ![]()
Collapse
Affiliation(s)
- Yadong Xu
- Department of Urology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Cheng Luo
- Department of Urology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Jieqiong Wang
- Department of Urology, Guangzhou First People's Hospital, Guangzhou, China
| | - Lingwu Chen
- Department of Urology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Junxing Chen
- Department of Urology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Tianfeng Chen
- Department of Chemistry, Jinan University, Guangzhou, 510632, China.
| | - Qinsong Zeng
- Department of Urology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China.
| |
Collapse
|
23
|
Liu Z, Xu N, Zhao L, Yu J, Zhang P. Bifunctional lipids in tumor vaccines: An outstanding delivery carrier and promising immune stimulator. Int J Pharm 2021; 608:121078. [PMID: 34500059 DOI: 10.1016/j.ijpharm.2021.121078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/28/2021] [Accepted: 09/02/2021] [Indexed: 12/18/2022]
Abstract
Cancer is still a major threat for human life, and the cancer immunotherapy can be more optimized to prolong life. However, the effect of immunotherapy is not encouraging. In order to achieve outstanding immune effect, it is necessary to strengthen antigens uptake of antigen presenting cells. Adjuvants were added to vaccines to achieve this purpose, which could be divided into two types: as an immunostimulatory molecule, the innate immunities of the body were triggered; or as a delivery carrier, and antigens were cross-delivery through the "cytoplasmic pathway" and released at a specific location. This paper reviewed the relevant research status of tumor vaccine immune adjuvants in recent years. Among the review, the function, combination strategies and derivatives of lipid A were discussed in detail. In addition, some suggestions on the existing problems and research direction of lipids as tumor vaccine adjuvants were put forward.
Collapse
Affiliation(s)
- Zhiling Liu
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Na Xu
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Lin Zhao
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Jia Yu
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| | - Peng Zhang
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
24
|
Akkın S, Varan G, Bilensoy E. A Review on Cancer Immunotherapy and Applications of Nanotechnology to Chemoimmunotherapy of Different Cancers. Molecules 2021; 26:3382. [PMID: 34205019 PMCID: PMC8199882 DOI: 10.3390/molecules26113382] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 05/30/2021] [Accepted: 06/01/2021] [Indexed: 12/19/2022] Open
Abstract
Clinically, different approaches are adopted worldwide for the treatment of cancer, which still ranks second among all causes of death. Immunotherapy for cancer treatment has been the focus of attention in recent years, aiming for an eventual antitumoral effect through the immune system response to cancer cells both prophylactically and therapeutically. The application of nanoparticulate delivery systems for cancer immunotherapy, which is defined as the use of immune system features in cancer treatment, is currently the focus of research. Nanomedicines and nanoparticulate macromolecule delivery for cancer therapy is believed to facilitate selective cytotoxicity based on passive or active targeting to tumors resulting in improved therapeutic efficacy and reduced side effects. Today, with more than 55 different nanomedicines in the market, it is possible to provide more effective cancer diagnosis and treatment by using nanotechnology. Cancer immunotherapy uses the body's immune system to respond to cancer cells; however, this may lead to increased immune response and immunogenicity. Selectivity and targeting to cancer cells and tumors may lead the way to safer immunotherapy and nanotechnology-based delivery approaches that can help achieve the desired success in cancer treatment.
Collapse
Affiliation(s)
- Safiye Akkın
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, 06100 Ankara, Turkey;
| | - Gamze Varan
- Department of Vaccine Technology, Hacettepe University Vaccine Institute, 06100 Ankara, Turkey;
| | - Erem Bilensoy
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, 06100 Ankara, Turkey;
| |
Collapse
|
25
|
Sato Y, Nakamura T, Yamada Y, Harashima H. The nanomedicine rush: New strategies for unmet medical needs based on innovative nano DDS. J Control Release 2021; 330:305-316. [DOI: 10.1016/j.jconrel.2020.12.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 12/17/2020] [Accepted: 12/17/2020] [Indexed: 12/13/2022]
|
26
|
Liposome-Encapsulated Bacillus Calmette-Guérin Cell Wall Skeleton Enhances Antitumor Efficiency for Bladder Cancer In Vitro and In Vivo via Induction of AMP-Activated Protein Kinase. Cancers (Basel) 2020; 12:cancers12123679. [PMID: 33302414 PMCID: PMC7762541 DOI: 10.3390/cancers12123679] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 11/17/2022] Open
Abstract
Simple Summary We engineered novel nanoparticles consisting of liposome-encapsulated Bacillus Calmette–Guérin cell well skeleton (BCG-CWS) for intravesical instillation in bladder cancer. The liposome-encapsulated BCG-CWS nanoparticles had antitumoral effects in an orthotopic bladder cancer mouse model, and the BCG-CWS nanoparticles can be further developed as a non-toxic substitute for live BCG with improved dispensability, stability, and size compatibility. This is significant because we succeeded in the intravesical delivery of BCG-CWS through the intravesical route using a catheter in an orthotopic bladder cancer mouse model to specifically target tumor cells. This is the first study on the BCG-CWS-induced activation of AMPK in urothelial carcinoma cells, suggesting that AMPK-mediated reactive oxygen species (ROS) production and ER stress is a cellular signaling pathway in tumors sensitive to BCG-CWS. These results have the potential for significant ramifications in targeted therapy using a predictive marker for bladder cancer. Abstract The Mycobacterium Bacillus Calmette-Guérin cell wall skeleton (BCG-CWS), the main immune active center of BCG, is a potent candidate non-infectious immunotherapeutic drug and an alternative to live BCG for use against urothelial carcinoma. However, its application in anticancer therapy is limited, as BCG-CWS tends to aggregate in both aqueous and non-aqueous solvents. To improve the internalization of BCG-CWS into bladder cancer cells without aggregation, BCG-CWS was nanoparticulated at a 180 nm size in methylene chloride and subsequently encapsulated with conventional liposomes (CWS-Nano-CL) using an emulsified lipid (LEEL) method. In vitro cell proliferation assays showed that CWS-Nano-CL was more effective at suppressing bladder cancer cell growth compared to nonenveloped BCG-CWS. In an orthotopic implantation model of luciferase-tagged MBT2 bladder cancer cells, encapsulated BCG-CWS nanoparticles could enhance the delivery of BCG-CWS into the bladder and suppress tumor growth. Treatment with CWS-Nano-CL induced the inhibition of the mammalian target of rapamycin (mTOR) pathway and the activation of AMP-activated protein kinase (AMPK) phosphorylation, leading to apoptosis, both in vitro and in vivo. Furthermore, the antitumor activity of CWS-Nano-CL was mediated predominantly by reactive oxygen species (ROS) generation and AMPK activation, which induced endoplasmic reticulum (ER) stress, followed by c-Jun N-terminal kinase (JNK) signaling-mediated apoptosis. Therefore, our data suggest that the intravesical instillation of liposome-encapsulated BCG-CWS nanoparticles can facilitate BCG-CW cellular endocytosis and provide a promising drug-delivery system as a therapeutic strategy for BCG-mediated bladder cancer treatment.
Collapse
|
27
|
Kremenovic M, Schenk M, Lee DJ. Clinical and molecular insights into BCG immunotherapy for melanoma. J Intern Med 2020; 288:625-640. [PMID: 32128919 DOI: 10.1111/joim.13037] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/23/2019] [Accepted: 01/24/2020] [Indexed: 01/25/2023]
Abstract
The incidence of cutaneous melanoma and the mortality rate of advanced melanoma patients continue to rise globally. Despite the recent success of immunotherapy including ipilimumab and pembrolizumab checkpoint inhibitors, a large proportion of patients are refractory to such treatment modalities. The application of mycobacteria such as Bacillus Calmette-Guérin (BCG) in the treatment of various malignancies, including cutaneous melanoma, has been clearly demonstrated after almost a century of observations and experimentation. Intralesional BCG (IL-BCG) immunotherapy is a highly efficient and cost-effective treatment option for inoperable stage III in-transit melanoma, as recommended in the National Comprehensive Cancer Network Guidelines. IL-BCG has shown great efficacy in the regression of directly injected metastatic melanoma lesions, as well as distal noninjected nodules in immunocompetent patients. Clinical and preclinical studies have shown that BCG serves as a strong immune modulator, inducing the recruitment of various immune cells that contribute to antitumour immunity. However, the specific mechanism of BCG-mediated tumour immunity remains poorly understood. Comparative genome analyses have revealed that different BCG strains exhibit distinct immunological activity and virulence, which might impact the therapeutic response and clinical outcome of patients. In this review, we discuss the immunostimulatory potential of different BCG substrains and highlight clinical studies utilizing BCG immunotherapy for the treatment of cutaneous melanoma. Furthermore, the review focuses on the cellular and molecular mechanisms of the BCG-induced immune responses of both the innate and adaptive arms of the immune system. Furthermore, the review discussed the administration of BCG as a monotherapy or in combination with other immunotherapeutic or chemotherapeutic agents.
Collapse
Affiliation(s)
- M Kremenovic
- From the, Institute of Pathology, Experimental Pathology, Universitat Bern, Bern, Switzerland
| | - M Schenk
- From the, Institute of Pathology, Experimental Pathology, Universitat Bern, Bern, Switzerland
| | - D J Lee
- Division of Dermatology, Department of Medicine, The Lundquist Institute, Los Angeles, CA, USA
- David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
28
|
Yamada Y, Sato Y, Nakamura T, Harashima H. Evolution of drug delivery system from viewpoint of controlled intracellular trafficking and selective tissue targeting toward future nanomedicine. J Control Release 2020; 327:533-545. [PMID: 32916227 PMCID: PMC7477636 DOI: 10.1016/j.jconrel.2020.09.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/01/2020] [Accepted: 09/03/2020] [Indexed: 02/06/2023]
Abstract
Due to the rapid changes that have occurred in the field of drug discovery and the recent developments in the early 21st century, the role of drug delivery systems (DDS) has become increasingly more important. For the past 20 years, our laboratory has been developing gene delivery systems based on lipid-based delivery systems. One of our efforts has been directed toward developing a multifunctional envelope-type nano device (MEND) by modifying the particle surface with octaarginine, which resulted in a remarkably enhanced cellular uptake and improved intracellular trafficking of plasmid DNA (pDNA). When we moved to in vivo applications, however, we were faced with the PEG-dilemma and we shifted our strategy to the incorporation of ionizable cationic lipids into our system. This resulted in some dramatic improvements over our original design and this can be attributed to the development of a new lipid library. We have also developed a mitochondrial targeting system based on a membrane fusion mechanism using a MITO-Porter, which can deliver nucleic acids/pDNA into the matrix of mitochondria. After the appearance of antibody medicines, Opdivo, an immune checkpoint inhibitor, has established cancer immunology as the 4th strategy in cancer therapy. Our DDS technologies can also be applied to this new field of cancer therapy to cure cancer by controlling our immune mechanisms. The latest studies are summarized in this review article.
Collapse
Affiliation(s)
- Yuma Yamada
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Yusuke Sato
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Takashi Nakamura
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Hideyoshi Harashima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan.
| |
Collapse
|
29
|
Han J, Gu X, Li Y, Wu Q. Mechanisms of BCG in the treatment of bladder cancer-current understanding and the prospect. Biomed Pharmacother 2020; 129:110393. [PMID: 32559616 DOI: 10.1016/j.biopha.2020.110393] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/02/2020] [Accepted: 06/09/2020] [Indexed: 01/02/2023] Open
Abstract
Over 30 years' successful application of Bacillus Calmette Guerin (BCG) to the clinical treatment of bladder cancer has proved it one of the most promising immunotherapies for cancer. However, the applications and achievements have failed to uncover the mechanism of BCG works on bladder cancer fully. Clinically, the administration of BCG on patients results in no effect, or apparent resistance, and even severe adverse reactions, which are inexplicable. At present, the widely confirmed and accepted immunity mechanism of BCG fall in the processes of the absorption after the instillation of BCG, the internalization of BCG, cytokine release induced by a series of signal transduction pathways, and the effect stage of innate and acquired immune responses. Nonetheless, the limited ascertainments of the mechanism of BCG action cannot fully explain the clinical phenomenon caused by BCG. Therefore, the other mechanisms of BCG action have remained the research hotspot aiming to explore more targeted treatments or to initiate new therapeutic methods avoiding harm. By summarizing the recent research achievements of the mechanism of BCG works on bladder cancer, this review aims to provide clues for researchers to quest more valuable ideas.
Collapse
Affiliation(s)
- Jiansong Han
- Department of Urology, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin, China
| | - Xinquan Gu
- Department of Urology, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin, China.
| | - Yang Li
- Department of Urology, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin, China
| | - Qiaoli Wu
- Tianjin Cerebral Vascular and Neural Degenerative Disease Key Laboratory, Tianjin Neurosurgery Institute, Tianjin Huan Hu Hospital, Tianjin 300350, China.
| |
Collapse
|
30
|
Masuda H, Nakamura T, Harashima H. Distribution of BCG-CWS-Loaded Nanoparticles in the Spleen After Intravenous Injection Affects Cytotoxic T Lymphocyte Activity. J Pharm Sci 2020; 109:1943-1950. [PMID: 32070704 DOI: 10.1016/j.xphs.2020.02.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/31/2020] [Accepted: 02/11/2020] [Indexed: 01/06/2023]
Abstract
Interest has developed in the bacillus Calmette-Guerin (BCG) cell wall skeleton (BCG-CWS) as a noninfectious adjuvant. Although BCG-CWS readily undergoes aggregation, in a previous study, we applied it to cancer immunotherapy via intravenous administration by encapsulating the BCG-CWS into nanoparticles (CWS-NPs). The CWS-NPs were taken up by major histocompatibility complex (MHC) class II+ (MHC-II+) cells and induced antigen-specific cytotoxic T lymphocyte (CTL) activity. However, the nature of the contribution of MHC-II+ cells to the CTL response continues to be unclear. In this study, we investigated the relationship between the distribution of CWS-NPs in the spleen and CTL activity. The main MHC-II+ cells that internalized the CWS-NPs were B cells. Decreasing the level of polyethylene glycol modification increased the uptake of CWS-NPs by B cells, leading to an increased CTL activity. A comparison of CWS-NPs with different uptake efficiencies into dendritic cells and B cells suggested that the DCs with internalized CWS-NPs may contribute to CTL activation compared with B cells. We succeeded in enhancing CTL activity by the CWS-NPs, and the findings reported herein should provide important information regarding target cells for the development of CWS-NP.
Collapse
Affiliation(s)
- Hideyuki Masuda
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Takashi Nakamura
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan.
| | - Hideyoshi Harashima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan.
| |
Collapse
|
31
|
Yoon HY, Yang HM, Kim CH, Goo YT, Hwang GY, Chang IH, Whang YM, Choi YW. Enhanced Intracellular Delivery of BCG Cell Wall Skeleton into Bladder Cancer Cells Using Liposomes Functionalized with Folic Acid and Pep-1 Peptide. Pharmaceutics 2019; 11:pharmaceutics11120652. [PMID: 31817179 PMCID: PMC6970232 DOI: 10.3390/pharmaceutics11120652] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 11/28/2019] [Accepted: 12/02/2019] [Indexed: 02/07/2023] Open
Abstract
Although bacillus Calmette–Guérin cell wall skeleton (BCG-CWS) might function as a potential substitute for live BCG, its use in the treatment of bladder cancer remains limited owing to issues such as insolubility and micrometer-size following exposure to an aqueous environment. Thus, to develop a novel nanoparticulate system for efficient BCG-CWS delivery, liposomal encapsulation was carried out using a modified emulsification-solvent evaporation method (targets: Size, <200 nm; encapsulation efficiency, ~60%). Further, the liposomal surface was functionalized with specific ligands, folic acid (FA), and Pep-1 peptide (Pep1), as targeting and cell-penetrating moieties, respectively. Functionalized liposomes greatly increased the intracellular uptake of BCG-CWS in the bladder cancer cell lines, 5637 and MBT2. The immunoactivity was verified through elevated cytokine production and a THP-1 migration assay. In vivo antitumor efficacy revealed that the BCG-CWS-loaded liposomes effectively inhibited tumor growth in mice bearing MBT2 tumors. Dual ligand-functionalized liposome was also superior to single ligand-functionalized liposomes. Immunohistochemistry supported the enhanced antitumor effect of BCG-CWS, with IL-6 production and CD4 infiltration. Thus, we conclude that FA- and Pep1-modified liposomes encapsulating BCG-CWS might be a good candidate for bladder cancer treatment with high target selectivity.
Collapse
Affiliation(s)
- Ho Yub Yoon
- Drug Delivery Research Lab, College of Pharmacy, Chung-Ang University, 84, Heukseok-ro, Dongjak-gu, Seoul 06974, Korea; (H.Y.Y.); (H.M.Y.); (C.H.K.); (Y.T.G.)
| | - Hee Mang Yang
- Drug Delivery Research Lab, College of Pharmacy, Chung-Ang University, 84, Heukseok-ro, Dongjak-gu, Seoul 06974, Korea; (H.Y.Y.); (H.M.Y.); (C.H.K.); (Y.T.G.)
| | - Chang Hyun Kim
- Drug Delivery Research Lab, College of Pharmacy, Chung-Ang University, 84, Heukseok-ro, Dongjak-gu, Seoul 06974, Korea; (H.Y.Y.); (H.M.Y.); (C.H.K.); (Y.T.G.)
| | - Yoon Tae Goo
- Drug Delivery Research Lab, College of Pharmacy, Chung-Ang University, 84, Heukseok-ro, Dongjak-gu, Seoul 06974, Korea; (H.Y.Y.); (H.M.Y.); (C.H.K.); (Y.T.G.)
| | - Gwang Yong Hwang
- Department of Urology, College of Medicine, Chung-Ang University, 84, Heukseok-ro, Dongjak-gu, Seoul 06974, Korea (I.H.C.)
| | - In Ho Chang
- Department of Urology, College of Medicine, Chung-Ang University, 84, Heukseok-ro, Dongjak-gu, Seoul 06974, Korea (I.H.C.)
| | - Young Mi Whang
- Department of Internal Medicine, Seoul National University Hospital 101, Daehak-ro, Jongno-gu, Seoul 03080, Korea;
| | - Young Wook Choi
- Drug Delivery Research Lab, College of Pharmacy, Chung-Ang University, 84, Heukseok-ro, Dongjak-gu, Seoul 06974, Korea; (H.Y.Y.); (H.M.Y.); (C.H.K.); (Y.T.G.)
- Correspondence: ; Tel.: +82-2-820-5609
| |
Collapse
|
32
|
Nakamura T, Yamada Y, Sato Y, Khalil IA, Harashima H. Innovative nanotechnologies for enhancing nucleic acids/gene therapy: Controlling intracellular trafficking to targeted biodistribution. Biomaterials 2019; 218:119329. [DOI: 10.1016/j.biomaterials.2019.119329] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/13/2019] [Accepted: 07/01/2019] [Indexed: 12/18/2022]
|
33
|
Buss JH, Begnini KR, Bruinsmann FA, Ceolin T, Sonego MS, Pohlmann AR, Guterres SS, Collares T, Seixas FK. Lapatinib-Loaded Nanocapsules Enhances Antitumoral Effect in Human Bladder Cancer Cell. Front Oncol 2019; 9:203. [PMID: 31024833 PMCID: PMC6465636 DOI: 10.3389/fonc.2019.00203] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 03/11/2019] [Indexed: 12/12/2022] Open
Abstract
Transitional cell carcinoma (TCC) represents the most frequent type of bladder cancer. Recently, studies have focused on molecular tumor classifications in order to diagnose tumor subtypes and predict future clinical behavior. Increased expression of HER1 and HER2 receptors in TTC is related to advanced stage tumors. Lapatinib is an important alternative to treat tumors that presents this phenotype due to its ability to inhibit tyrosine kinase residues associated with HER1 and HER2 receptors. This study evaluated the cytotoxicity induced by LAP-loaded nanocapsules (NC-LAP) compared to LAP in HER-positive bladder cancer cell. The cytotoxicity induced by NC-LAP was evaluated through flow cytometry, clonogenic assay and RT-PCR. NC-LAP at 5 μM reduced the cell viability and was able to induce G0/G1 cell cycle arrest with up-regulation of p21. Moreover, NC-LAP treatment presented significantly higher apoptotic rates than untreated cells and cells incubated with drug-unloaded nanocapsules (NC) and an increase in Bax/Bcl-2 ratio was observed in T24 cell line. Furthermore, clonogenic assay demonstrated that NC-LAP treatment eliminated almost all cells with clonogenic capacity. In conclusion, NC-LAP demonstrate antitumoral effect in HER-positive bladder cells by inducing cell cycle arrest and apoptosis exhibiting better effects compared to the non-encapsulated lapatinib. Our work suggests that the LAP loaded in nanoformulations could be a promising approach to treat tumors that presents EGFR overexpression phenotype.
Collapse
Affiliation(s)
- Julieti Huch Buss
- Molecular and Cellular Oncology Research Group, Laboratory of Cancer Biotechnology, Technology Development Center, Federal University of Pelotas, Pelotas, Brazil
| | - Karine Rech Begnini
- Molecular and Cellular Oncology Research Group, Laboratory of Cancer Biotechnology, Technology Development Center, Federal University of Pelotas, Pelotas, Brazil
| | | | - Taíse Ceolin
- Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Mariana Souza Sonego
- Molecular and Cellular Oncology Research Group, Laboratory of Cancer Biotechnology, Technology Development Center, Federal University of Pelotas, Pelotas, Brazil.,Postgraduate Program in Biotechnology, Technology Development Center, Federal University of Pelotas, Pelotas, Brazil
| | - Adriana Raffin Pohlmann
- Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,Institute of Chemistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Tiago Collares
- Molecular and Cellular Oncology Research Group, Laboratory of Cancer Biotechnology, Technology Development Center, Federal University of Pelotas, Pelotas, Brazil.,Postgraduate Program in Biotechnology, Technology Development Center, Federal University of Pelotas, Pelotas, Brazil
| | - Fabiana Kömmling Seixas
- Molecular and Cellular Oncology Research Group, Laboratory of Cancer Biotechnology, Technology Development Center, Federal University of Pelotas, Pelotas, Brazil.,Postgraduate Program in Biotechnology, Technology Development Center, Federal University of Pelotas, Pelotas, Brazil
| |
Collapse
|
34
|
Back YW, Choi S, Choi HG, Shin KW, Son YJ, Paik TH, Kim HJ. Cell wall skeleton of Mycobacterium bovis BCG enhances the vaccine potential of antigen 85B against tuberculosis by inducing Th1 and Th17 responses. PLoS One 2019; 14:e0213536. [PMID: 30849108 PMCID: PMC6407753 DOI: 10.1371/journal.pone.0213536] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 02/22/2019] [Indexed: 11/18/2022] Open
Abstract
A safe and effective adjuvant is necessary to induce reliable protective efficacy of the protein-based vaccines against tuberculosis (TB). Mycobacterial components, such as synthetic cord factor and arabinogalactan, have been used as one of the adjuvant components. Mycobacterium bovis bacillus Calmette- Guérin cell-wall skeleton (BCG-CWS) has been used as an effective immune-stimulator. However, it is not proven whether BCG-CWS can be an effective adjuvant for the subunit protein vaccine of TB. In this study, we demonstrated that the BCG-CWS effectively coupled with Ag85B and enhanced the conjugated Ag85B activity on the maturation of dendritic cells (DCs). Ag85B-BCG-CWS-matured DCs induced significant Th1 and Th17 responses when compared to BCG-CWS or Ag85B alone. In addition, significant Ag85B-specific Th1 and Th17 responses were induced in Ag85B-BCG-CWS-immunized mice before infection with M. tuberculosis and maintained after infection. Moreover, Ag85B-BCG-CWS showed significant protective effect comparable to live BCG at 6 weeks after infection and maintained its protective efficacy at 32 weeks post-challenge, whereas live BCG did not. These results suggest that the BCG-CWS may be an effective adjuvant candidate for a protein-based vaccine against TB.
Collapse
Affiliation(s)
- Yong Woo Back
- Department of Microbiology, and Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Seunga Choi
- Department of Microbiology, and Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Han-Gyu Choi
- Department of Microbiology, and Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Ki-Won Shin
- Department of Microbiology, and Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Yeo-Jin Son
- Department of Microbiology, and Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Tae-Hyun Paik
- Department of Microbiology, and Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Hwa-Jung Kim
- Department of Microbiology, and Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
- * E-mail:
| |
Collapse
|
35
|
Nakamura T. [Development of a Nano DDS for Cancer Immunotherapy Based on Llipid Nanoparticles]. YAKUGAKU ZASSHI 2019; 138:1443-1449. [PMID: 30504656 DOI: 10.1248/yakushi.18-00162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The appearance of immune checkpoint inhibitors has been a major turning point in cancer therapy. The success of immune checkpoint therapy has revolutionized the field of cancer therapy, and immunotherapy has joined the cancer treatment ranks as a pillar. To induce effective anti-tumor immune responses, it is necessary both to enhance the activity of immune cells and to block immune suppression by tumor cells. Carrier type drug delivery systems based on nanobiotechnology (nano DDS) represent a potentially useful technology for efficiently achieving both: enhancement of the activity of immune cells and blocking immune suppression. It has become clear that nano DDS can improve the practical utility of a wide variety of immune functional molecules and thus regulate drug kinetics and intracellular dynamics to improve drug efficacy and reduce side effects. We have been in the process of developing a nano DDS for the enhancement of cancer immunotherapy. A nano DDS encapsulating an agonist of a simulated interferon gene pathway greatly enhanced the activity of the agent's antitumor immune response. To block immune suppression, we successfully developed a small interfering RNA loaded into a nano DDS which regulates gene expression in immune cells. In this review, we summarize our recent efforts regarding cancer immunotherapy using nano DDS.
Collapse
Affiliation(s)
- Takashi Nakamura
- Laboratory for Molecular Design of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University
| |
Collapse
|
36
|
Yoshino T, Miyazaki J, Kojima T, Kandori S, Shiga M, Kawahara T, Kimura T, Naka T, Kiyohara H, Watanabe M, Yamasaki S, Akaza H, Yano I, Nishiyama H. Cationized liposomal keto-mycolic acids isolated from Mycobacterium bovis bacillus Calmette-Guérin induce antitumor immunity in a syngeneic murine bladder cancer model. PLoS One 2019; 14:e0209196. [PMID: 30608942 PMCID: PMC6319727 DOI: 10.1371/journal.pone.0209196] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 11/30/2018] [Indexed: 01/18/2023] Open
Abstract
Intravesical therapy using Mycobacterium bovis bacillus Calmette-Guérin (BCG) is the most established cancer immunotherapy for bladder cancer. However, its underlying mechanisms are unknown. Mycolic acid (MA), the most abundant lipid of the BCG cell wall, is suspected to be one of the essential active components of this immunogenicity. Here, we developed cationic liposomes incorporating three subclasses (α, keto, and methoxy) of MA purified separately from BCG, using the dendron-bearing lipid D22. The cationic liposomes using D22 were efficiently taken up by the murine bladder cancer cell line MB49 in vitro, but the non-cationic liposomes were not. Lip-kMA, a cationic liposome containing keto-MA, presented strong antitumor activity in two murine syngeneic graft models using the murine bladder cancer cell lines MB49 and MBT-2 in comparison to both Lip-aMA and Lip-mMA, which contained α-MA and methoxy-MA, respectively. Interestingly, Lip-kMA(D12), which was made of D12 instead of D22, did not exhibit antitumor activity in the murine syngeneic graft model using MB49 cells, although it was successfully taken up by MB49 cells in vitro. Histologically, compared to the number of infiltrating CD4 lymphocytes, the number of CD8 lymphocytes was higher in the tumors treated with Lip-kMA. Antitumor effects of Lip-kMA were not observed in nude mice, whereas weak but significant effects were observed in beige mice with natural killer activity deficiency. Thus, a cationized liposome containing keto-MA derived from BCG induced in vivo antitumor immunity. These findings will provide new insights into lipid immunogenicity and the underlying mechanisms of BCG immunotherapy.
Collapse
Affiliation(s)
- Takayuki Yoshino
- Department of Urology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Jun Miyazaki
- Department of Urology, International University of Health and Welfare, Chiba, Japan
- * E-mail:
| | - Takahiro Kojima
- Department of Urology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Shuya Kandori
- Department of Urology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Masanobu Shiga
- Department of Urology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Takashi Kawahara
- Department of Urology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Tomokazu Kimura
- Department of Urology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Takashi Naka
- Department of Food and Nutrition, Faculty of Contemporary Human Life Science, Tezukayama University, Nara, Japan
| | | | - Miyuki Watanabe
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Division of Molecular Immunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Sho Yamasaki
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Division of Molecular Immunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
- Department of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Hideyuki Akaza
- Strategic Investigation on Comprehensive Cancer Network, University of Tokyo, Tokyo, Japan
| | | | - Hiroyuki Nishiyama
- Department of Urology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
37
|
Roche KC, Medik YB, Rodgers Z, Warner S, Wang AZ. Cancer Nanotherapeutics Administered by Non-conventional Routes. Bioanalysis 2019. [DOI: 10.1007/978-3-030-01775-0_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
38
|
Masuda H, Nakamura T, Noma Y, Harashima H. Application of BCG-CWS as a Systemic Adjuvant by Using Nanoparticulation Technology. Mol Pharm 2018; 15:5762-5771. [PMID: 30380885 DOI: 10.1021/acs.molpharmaceut.8b00919] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The intravesical instillation of live Bacillus Calmette-Guerin (BCG) for treating bladder cancer is a powerful cancer immunotherapy. The BCG cell wall skeleton (BCG-CWS) is the main component of the adjuvant, leading to the induction of antitumor immunity. However, the use of live BCG and BCG-CWS is currently limited to local administration because of the infectiousness of live BCG and the insolubility of BCG-CWS. We previously developed a water-dispersible nanoparticle (NP) formulation of BCG-CWS (CWS-NP), which could be used to apply BCG components for use as a systemically injected adjuvant for the treatment of cancers other than bladder cancer. In the present study, we examined the possible use of CWS-NP for cancer immunotherapy, when intravenously administered. The CWS-NP was a highly uniform dispersion and showed no aggregation in serum. The intravenously injected CWS-NP accumulated in the spleen and was efficiently taken up by dendritic cells, leading to their maturation. The coadministration of CWS-NP and ovalbumin (OVA) loaded NP resulted in the generation of OVA-specific cytotoxic T cells and inhibited the growth of E.G7-OVA tumors. These results represent the first findings related to the use of systemically injected CWS-NP as an adjuvant for cancer immunotherapy.
Collapse
Affiliation(s)
- Hideyuki Masuda
- Faculty of Pharmaceutical Sciences , Hokkaido University , Kita-12, Nishi-6 , Kita-ku, Sapporo , Hokkaido 060-0812 , Japan
| | - Takashi Nakamura
- Faculty of Pharmaceutical Sciences , Hokkaido University , Kita-12, Nishi-6 , Kita-ku, Sapporo , Hokkaido 060-0812 , Japan
| | - Yosuke Noma
- Faculty of Pharmaceutical Sciences , Hokkaido University , Kita-12, Nishi-6 , Kita-ku, Sapporo , Hokkaido 060-0812 , Japan
| | - Hideyoshi Harashima
- Faculty of Pharmaceutical Sciences , Hokkaido University , Kita-12, Nishi-6 , Kita-ku, Sapporo , Hokkaido 060-0812 , Japan
| |
Collapse
|
39
|
Li S, Feng X, Wang J, He L, Wang C, Ding J, Chen X. Polymer nanoparticles as adjuvants in cancer immunotherapy. NANO RESEARCH 2018; 11:5769-5786. [DOI: 10.1007/s12274-018-2124-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/03/2018] [Accepted: 06/06/2018] [Indexed: 10/14/2024]
|
40
|
He MH, Chen L, Zheng T, Tu Y, He Q, Fu HL, Lin JC, Zhang W, Shu G, He L, Yuan ZX. Potential Applications of Nanotechnology in Urological Cancer. Front Pharmacol 2018; 9:745. [PMID: 30038573 PMCID: PMC6046453 DOI: 10.3389/fphar.2018.00745] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 06/19/2018] [Indexed: 01/16/2023] Open
Abstract
Nowadays, the potential scope of nanotechnology in uro-oncology (cancers of the prostate, bladder, and kidney) is broad, ranging from drug delivery, prevention, and diagnosis to treatment. Novel drug delivery methods using magnetic nanoparticles, gold nanoparticles, and polymeric nanoparticles have been investigated in prostate cancer. Additionally, renal cancer treatment may be profoundly influenced by applications of nanotechnology principles. Various nanoparticle-based strategies for kidney cancer therapy have been proposed. Partly due to the dilution of drug concentrations by urine production, causing inadequate drug delivery to tumor cells in the treatment of bladder cancer, various multifunctional bladder-targeted nanoparticles have been developed to enhance therapeutic efficiency. In each of these cancer research fields, nanotechnology has shown several advantages over widely used traditional methods. Different types of nanoparticles improve the solubility of poorly soluble drugs, and multifunctional nanoparticles have good specificity toward prostate, renal, and bladder cancer. Moreover, nanotechnology can also combine with other novel technologies to further enhance effectivity. As our understanding of nanotechnologies grows, additional opportunities to improve the diagnosis and treatment of urological cancer are excepted to arise. In this review, we focus on nanotechnologies with potential applications in urological cancer therapy and highlight clinical areas that would benefit from nanoparticle therapy.
Collapse
Affiliation(s)
- Ming-Hui He
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Li Chen
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ting Zheng
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yu Tu
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qian He
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Hua-Lin Fu
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ju-Chun Lin
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Wei Zhang
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Gang Shu
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lili He
- College of Pharmacy, Southwest Minzu University, Chengdu, China
| | - Zhi-Xiang Yuan
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
41
|
Abstract
Immune checkpoint therapy represents a new, revolutionary type of cancer therapy, but emerging evidence indicates that only a minority of patients will benefit from it. The issue of how to improve and widen the clinical response is a pivotal issue, and combining other types of therapy with immune checkpoint inhibitors is currently under development. A nanotechnology-based drug-delivery system (nano DDS) could be an important contribution to the development of an effective combination therapy. In this document, we review recent findings in the field of tumor immunology, which provide a strategy for an efficient combination therapy, and discuss nano DDS that are associated with cancer immunotherapy and nano DDS strategies based on the immune status in tumor microenvironments.
Collapse
|
42
|
Guo H, Li F, Xu W, Chen J, Hou Y, Wang C, Ding J, Chen X. Mucoadhesive Cationic Polypeptide Nanogel with Enhanced Penetration for Efficient Intravesical Chemotherapy of Bladder Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1800004. [PMID: 29938183 PMCID: PMC6010003 DOI: 10.1002/advs.201800004] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 02/08/2018] [Indexed: 05/28/2023]
Abstract
Initially, chemotherapy is effective for treatment of bladder cancer after transurethral resection of the bladder. However, certain patients progressively become unresponsive after multiple treatment cycles, which results from the rapid and almost complete excretion of clinically used formulations of antineoplastic agents with urinary voiding. Improving the mucoadhesiveness and penetrability of chemotherapeutic drugs are key factors in treatment of advanced bladder cancer. Here, a smart disulfide-crosslinked polypeptide nanogel of poly(l-lysine)-poly(l-phenylalanine-co-l-cystine) (PLL-P(LP-co-LC)) is developed to deliver 10-hydroxycamptothecin (HCPT) for treatment of orthotopic bladder cancer. The positively charged PLL-P(LP-co-LC) can significantly prolong the retention period and enhance the tissue permeability of HCPT within the bladder wall of rat. Moreover, the reduction-responsive polypeptide nanogel (i.e., NG/HCPT) possesses the capability to accurately and rapidly deliver HCPT in bladder cancer cells. NG/HCPT can significantly inhibit proliferation of human bladder cancer 5637 cells in vitro and enhance antitumor activity toward an orthotopic rat bladder cancer model in vivo. This work demonstrates that the smart polypeptide nanogel may function as a promising drug-delivery system for local chemotherapy of bladder cancer with unprecedented clinical benefits.
Collapse
Affiliation(s)
- Hui Guo
- Department of Urinary Surgerythe First Hospital of Jilin UniversityChangchun130021P. R. China
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022P. R. China
| | - Faping Li
- Department of Urinary Surgerythe First Hospital of Jilin UniversityChangchun130021P. R. China
| | - Weiguo Xu
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022P. R. China
| | - Jinjin Chen
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022P. R. China
| | - Yuchuan Hou
- Department of Urinary Surgerythe First Hospital of Jilin UniversityChangchun130021P. R. China
| | - Chunxi Wang
- Department of Urinary Surgerythe First Hospital of Jilin UniversityChangchun130021P. R. China
| | - Jianxun Ding
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022P. R. China
| |
Collapse
|
43
|
Miyazaki J, Onozawa M, Takaoka E, Yano I. Bacillus Calmette-Guérin strain differences as the basis for immunotherapies against bladder cancer. Int J Urol 2018; 25:405-413. [DOI: 10.1111/iju.13538] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/16/2018] [Indexed: 12/29/2022]
Affiliation(s)
- Jun Miyazaki
- Department of Urology; School of Medicine; International University of Health and Welfare; Chiba Japan
| | - Mizuki Onozawa
- Department of Urology; School of Medicine; International University of Health and Welfare; Chiba Japan
| | - Eiichiro Takaoka
- Department of Urology; School of Medicine; International University of Health and Welfare; Chiba Japan
| | - Ikuya Yano
- Faculty of Medicine; Osaka City University Graduate School of Medicine; Osaka Japan
| |
Collapse
|
44
|
Butt SUR, Malik L. Role of immunotherapy in bladder cancer: past, present and future. Cancer Chemother Pharmacol 2018; 81:629-645. [PMID: 29368051 DOI: 10.1007/s00280-018-3518-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/08/2018] [Indexed: 02/06/2023]
Abstract
As research focus in oncology has recently shifted from oral targeted therapy to immunomodulation, the era of successful drug development in bladder cancer has just begun. This has led to unprecedented approval of five immunotherapeutic agents by regulatory agencies for metastatic bladder cancer within a span of 12 months. With an initial triumph of anti-programmed cell death-1 (anti-PD-1) and anti-programmed cell death ligand-1 (anti-PDL-1) drugs, ongoing efforts are aimed at identification and validation of new druggable immune targets to consolidate the initial gains. In this paper, we review the role of immunotherapy in the treatment of bladder cancer as well as the various emerging immunotherapeutic agents and their possible use in bladder cancer.
Collapse
Affiliation(s)
- Sabeeh-Ur-Rehman Butt
- Department of Medical Oncology, The Canberra Hospital, Garran, ACT, 2605, Australia.
| | - Laeeq Malik
- Department of Medical Oncology, The Canberra Hospital, Garran, ACT, 2605, Australia
- ANU Medical School, Australian National University, Acton, ACT, Australia
| |
Collapse
|
45
|
Buss JH, Begnini KR, Bender CB, Pohlmann AR, Guterres SS, Collares T, Seixas FK. Nano-BCG: A Promising Delivery System for Treatment of Human Bladder Cancer. Front Pharmacol 2018; 8:977. [PMID: 29379438 PMCID: PMC5770893 DOI: 10.3389/fphar.2017.00977] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Accepted: 12/21/2017] [Indexed: 01/06/2023] Open
Abstract
Mycobacterium bovis bacillus Calmette–Guerin (BCG) remains at the forefront of immunotherapy for treating bladder cancer patients. However, the incidence of recurrence and progression to invasive cancer is commonly observed. There are no established effective intravesical therapies available for patients, whose tumors recur following BCG treatment, representing an important unmet clinical need. In addition, there are very limited options for patients who do not respond to or tolerate chemotherapy due to toxicities, resulting in poor overall treatment outcomes. Within this context, nanotechnology is an emergent and promising tool for: (1) controlling drug release for extended time frames, (2) combination therapies due to the ability to encapsulate multiple drugs simultaneously, (3) reducing systemic side effects, (4) increasing bioavailability, (5) and increasing the viability of various routes of administration. Moreover, bladder cancer is often characterized by high mutation rates and over expression of tumor antigens on the tumor cell surface. Therapeutic targeting of these biomolecules may be improved by nanotechnology strategies. In this mini-review, we discuss how nanotechnology can help overcome current obstacles in bladder cancer treatment, and how nanotechnology can facilitate combination chemotherapeutic and BCG immunotherapies for the treatment of non-muscle invasive urothelial bladder cancer.
Collapse
Affiliation(s)
- Julieti Huch Buss
- Laboratory of Cancer Biotechnology, Biotechnology Graduate Program, Technology Development Center, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Karine Rech Begnini
- Laboratory of Cancer Biotechnology, Biotechnology Graduate Program, Technology Development Center, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Camila Bonemann Bender
- Laboratory of Cancer Biotechnology, Biotechnology Graduate Program, Technology Development Center, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Adriana R Pohlmann
- Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Institute of Chemistry, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Silvia S Guterres
- Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Tiago Collares
- Laboratory of Cancer Biotechnology, Biotechnology Graduate Program, Technology Development Center, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Fabiana Kömmling Seixas
- Laboratory of Cancer Biotechnology, Biotechnology Graduate Program, Technology Development Center, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| |
Collapse
|
46
|
Lojk J, Bregar VB, Strojan K, Hudoklin S, Veranič P, Pavlin M, Kreft ME. Increased endocytosis of magnetic nanoparticles into cancerous urothelial cells versus normal urothelial cells. Histochem Cell Biol 2017; 149:45-59. [PMID: 28821965 DOI: 10.1007/s00418-017-1605-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2017] [Indexed: 11/28/2022]
Abstract
The blood-urine barrier is the tightest and most impermeable barrier in the body and as such represents a problem for intravesical drug delivery applications. Differentiation-dependent low endocytotic rate of urothelial cells has already been noted; however, the differences in endocytosis of normal and cancer urothelial cells have not been exploited yet. Here we analysed the endocytosis of rhodamine B isothiocyanate-labelled polyacrylic acid-coated cobalt ferrite nanoparticles (NPs) in biomimetic urothelial in vitro models, i.e., in highly and partially differentiated normal urothelial cells, and in cancer cells of the papillary and invasive urothelial neoplasm. We demonstrated that NPs enter papillary and invasive urothelial neoplasm cells by ruffling of the plasma membrane and engulfment of NP aggregates by macropinocytotic mechanism. Transmission electron microscopy (TEM) and spectrophotometric analyses showed that the efficacy of NPs delivery into normal urothelial cells and intercellular space is largely restricted, while it is significantly higher in cancer urothelial cells. Moreover, we showed that the quantification of fluorescent NP internalization in cells or tissues based on fluorescence detection could be misleading and overestimated without TEM analysis. Our findings contribute to the understanding of endocytosis-mediated cellular uptake of NPs in cancer urothelial cells and reveal a highly selective mechanism to distinguish cancer and normal urothelial cells.
Collapse
Affiliation(s)
- Jasna Lojk
- Group for Nano and Biotechnological Applications, Faculty of Electrical Engineering, University of Ljubljana, Trzaska cesta 25, 1000, Ljubljana, Slovenia.,Faculty of Medicine, Institute of Cell Biology, University of Ljubljana, Vrazov trg 2, 1000, Ljubljana, Slovenia
| | - Vladimir Boštjan Bregar
- Group for Nano and Biotechnological Applications, Faculty of Electrical Engineering, University of Ljubljana, Trzaska cesta 25, 1000, Ljubljana, Slovenia
| | - Klemen Strojan
- Group for Nano and Biotechnological Applications, Faculty of Electrical Engineering, University of Ljubljana, Trzaska cesta 25, 1000, Ljubljana, Slovenia
| | - Samo Hudoklin
- Faculty of Medicine, Institute of Cell Biology, University of Ljubljana, Vrazov trg 2, 1000, Ljubljana, Slovenia
| | - Peter Veranič
- Faculty of Medicine, Institute of Cell Biology, University of Ljubljana, Vrazov trg 2, 1000, Ljubljana, Slovenia
| | - Mojca Pavlin
- Group for Nano and Biotechnological Applications, Faculty of Electrical Engineering, University of Ljubljana, Trzaska cesta 25, 1000, Ljubljana, Slovenia. .,Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, Ljubljana, Slovenia.
| | - Mateja Erdani Kreft
- Faculty of Medicine, Institute of Cell Biology, University of Ljubljana, Vrazov trg 2, 1000, Ljubljana, Slovenia.
| |
Collapse
|
47
|
Guo H, Xu W, Chen J, Yan L, Ding J, Hou Y, Chen X. Positively charged polypeptide nanogel enhances mucoadhesion and penetrability of 10-hydroxycamptothecin in orthotopic bladder carcinoma. J Control Release 2017; 259:136-148. [PMID: 28062300 DOI: 10.1016/j.jconrel.2016.12.041] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 12/21/2016] [Accepted: 12/30/2016] [Indexed: 02/06/2023]
|
48
|
Wang LH, Shang L, Shan DY, Che X. Long-term floating control-released intravesical preparation of 5-fluorouracil for the local treatment of bladder cancer. Drug Dev Ind Pharm 2017; 43:1343-1350. [PMID: 28402146 DOI: 10.1080/03639045.2017.1318898] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Li Hong Wang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Lei Shang
- College of Basic Medical Sciences, Shenyang Medical College, Shenyang, PR China
| | - Dong Yuan Shan
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Xin Che
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, PR China
| |
Collapse
|
49
|
Oliveira MB, Villa Nova M, Bruschi ML. A review of recent developments on micro/nanostructured pharmaceutical systems for intravesical therapy of the bladder cancer. Pharm Dev Technol 2017; 23:1-12. [DOI: 10.1080/10837450.2017.1312441] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Marcela Brito Oliveira
- Postgraduate Program in Pharmaceutical Sciences, Laboratory of Research and Development of Drug Delivery Systems, Department of Pharmacy, State University of Maringa, Maringa, Brazil
| | - Mônica Villa Nova
- Postgraduate Program in Pharmaceutical Sciences, Laboratory of Research and Development of Drug Delivery Systems, Department of Pharmacy, State University of Maringa, Maringa, Brazil
| | - Marcos Luciano Bruschi
- Postgraduate Program in Pharmaceutical Sciences, Laboratory of Research and Development of Drug Delivery Systems, Department of Pharmacy, State University of Maringa, Maringa, Brazil
| |
Collapse
|
50
|
Nakamura T. Development of a Drug Delivery System for Cancer Immunotherapy. YAKUGAKU ZASSHI 2017; 136:1477-1484. [PMID: 27803478 DOI: 10.1248/yakushi.16-00187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Delivery systems are a powerful technology for enhancing the effect of cancer immunotherapy. We have been in the process of developing lipid-based delivery systems for controlling the physical properties and dynamics of immunofunctional molecules such as antigens and adjuvants. The lipid nanoparticulation of these molecules improves their physical properties, resulting in a good water dispensability, greater stability, and small size. The cell wall skeleton of bacille Calmette-Guerin (BCG-CWS) could be used to replace live BCG as a drug for treating bladder cancer, but problems associated with the physical properties of BCG-CWS have prevented its use. To overcome such problems, we developed a novel packaging method that permits BCG-CWS to be encapsulated into lipid nanoparticles, which induce antitumor responses against bladder cancer. Lipid nanoparticulation also improves the intracellular trafficking and biodistribution of immunofunctional molecules. Cyclic di-GMP (c-di-GMP) is an adjuvant that is recognized by the cytosolic sensor. However, c-di-GMP cannot pass through the cell membrane. We encapsulated c-di-GMP into lipid nanoparticles containing a pH-responsive lipid that was developed in our laboratory and achieved efficient cytosolic delivery and the induction of antitumor immunity. Furthermore, we are attempting to control the functions of immune cells by RNA interference. We have recently succeeded in the efficient delivery of small interfering RNA into mouse dendritic cells (DCs), which led to the enhancement of antitumor activity of DCs. In this review, our recent efforts regarding cancer immunotherapy using lipid-based nanoparticles are reviewed.
Collapse
Affiliation(s)
- Takashi Nakamura
- Laboratory for Molecular Design of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University
| |
Collapse
|