1
|
Rodríguez-Gómez FD, Monferrer D, Penon O, Rivera-Gil P. Implementing Horizon Scanning as a tool for the strategic development of regulatory guidelines for nanotechnology-enabled health products. Front Med (Lausanne) 2024; 10:1308047. [PMID: 38298514 PMCID: PMC10829765 DOI: 10.3389/fmed.2023.1308047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/26/2023] [Indexed: 02/02/2024] Open
Abstract
Strategic regulatory development is essential to ensure that new innovations in nanotechnology-enabled health products (NHPs) successfully reach the market and benefit patients. Currently, the lack of specific regulatory guidelines for NHPs is considered one of the primary causes of the so-called "valley of death" in these products, impacting both current and future advancements. In this study, we have implemented a methodology to anticipate key trends in NHP development and compare them with the current regulatory landscape applicable to NHPs. This methodology relies on Horizon Scanning, a tool commonly used by policymakers to foresee future needs and proactively shape a regulatory framework tailored to those needs. Through the application of this methodology, different trends in NHP have been identified, notably NHPs for drug delivery and dental applications. Furthermore, the most disruptive elements involve NHPs that are multicomposite and multifunctional, harnessing nano-scale properties to combine therapeutic and diagnostic purposes within a single product. When compared with the regulatory landscape, current regulations are gradually adapting to accommodate emerging trends, with specific guidelines being developed. However, for the most disruptive elements, multicomposite and multifunctional NHPs, their novelty still poses significant regulatory challenges, requiring a strategic development of guidelines by regulatory agencies to ensure their safe and effective integration into healthcare practices. This study underscores the importance of proactive regulatory planning to bridge the gap between NHP innovation and market implementation.
Collapse
Affiliation(s)
- Francisco D. Rodríguez-Gómez
- Asphalion SL, Barcelona, Spain
- Integrative Biomedical Materials and Nanomedicine Lab, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona Biomedicine Research Park (PRBB), Doctor Aiguader, Barcelona, Spain
| | | | | | - Pilar Rivera-Gil
- Integrative Biomedical Materials and Nanomedicine Lab, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona Biomedicine Research Park (PRBB), Doctor Aiguader, Barcelona, Spain
| |
Collapse
|
2
|
Nifontova G, Tsoi T, Karaulov A, Nabiev I, Sukhanova A. Structure-function relationships in polymeric multilayer capsules designed for cancer drug delivery. Biomater Sci 2022; 10:5092-5115. [PMID: 35894444 DOI: 10.1039/d2bm00829g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The targeted delivery of cancer drugs to tumor-specific molecular targets represents a major challenge in modern personalized cancer medicine. Engineering of micron and submicron polymeric multilayer capsules allows the obtaining of multifunctional theranostic systems serving as controllable stimulus-responsive tools with a high clinical potential to be used in cancer therapy and detection. The functionalities of such theranostic systems are determined by the design and structural properties of the capsules. This review (1) describes the current issues in designing cancer cell-targeting polymeric multilayer capsules, (2) analyzes the effects of the interactions of the capsules with the cellular and molecular constituents of biological fluids, and (3) presents the key structural parameters determining the effectiveness of capsule targeting. The influence of the morphological and physicochemical parameters and the origin of the structural components and surface ligands on the functional activity of polymeric multilayer capsules at the molecular, cellular, and whole-body levels are summarized. The basic structural and functional principles determining the future trends of theranostic capsule development are established and discussed.
Collapse
Affiliation(s)
- Galina Nifontova
- Laboratoire de Recherche en Nanosciences, LRN-EA4682, Université de Reims Champagne-Ardenne, 51100 Reims, France.
| | - Tatiana Tsoi
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow, Russia
| | - Alexander Karaulov
- Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia
| | - Igor Nabiev
- Laboratoire de Recherche en Nanosciences, LRN-EA4682, Université de Reims Champagne-Ardenne, 51100 Reims, France. .,National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow, Russia.,Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia
| | - Alyona Sukhanova
- Laboratoire de Recherche en Nanosciences, LRN-EA4682, Université de Reims Champagne-Ardenne, 51100 Reims, France.
| |
Collapse
|
3
|
Potaś J, Winnicka K. The Potential of Polyelectrolyte Multilayer Films as Drug Delivery Materials. Int J Mol Sci 2022; 23:ijms23073496. [PMID: 35408857 PMCID: PMC8998809 DOI: 10.3390/ijms23073496] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 02/05/2023] Open
Abstract
Polyelectrolyte multilayers (PEMs) represent a group of polyelectrolyte complex (PEC)–based materials widely investigated in the biomedical and pharmaceutical sciences. Despite the unflagging popularity of the aforementioned systems in tissue engineering, only a few updated scientific reports concerning PEM potential in drug administration can be found. In fact, PEM coatings are currently recognized as important tools for functionalizing implantable scaffolds; however, only a small amount of attention has been given to PEMs as drug delivery materials. Scientific reports on PEMs reveal two dominant reasons for the limited usability of multilayers in pharmaceutical technology: complex and expensive preparation techniques as well as high sensitivity of interacting polyelectrolytes to the varieties of internal and external factors. The aim of this work was to analyze the latest approaches, concerning the potential of PEMs in pharmacy, chemical technology, and (primarily) tissue engineering, with special attention given to possible polymer combinations, technological parameters, and physicochemical characteristics, such as hydrophilicity, adhesive and swelling properties, and internal/external structures of the systems formed. Careful recognition of the above factors is crucial in the development of PEM-based drug delivery materials.
Collapse
|
4
|
miRNA Delivery by Nanosystems: State of the Art and Perspectives. Pharmaceutics 2021; 13:pharmaceutics13111901. [PMID: 34834316 PMCID: PMC8619868 DOI: 10.3390/pharmaceutics13111901] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/25/2021] [Accepted: 11/04/2021] [Indexed: 01/09/2023] Open
Abstract
MicroRNAs (miRNAs) are short (~21-23 nucleotides), non-coding endogenous RNA molecules that modulate gene expression at the post-transcriptional level via the endogenous RNA interference machinery of the cell. They have emerged as potential biopharmaceuticals candidates for the treatment of various diseases, including cancer, cardiovascular and metabolic diseases. However, in order to advance miRNAs therapeutics into clinical settings, their delivery remains a major challenge. Different types of vectors have been investigated to allow the delivery of miRNA in the diseased tissue. In particular, non-viral delivery systems have shown important advantages such as versatility, low cost, easy fabrication and low immunogenicity. Here, we present a general overview of the main types of non-viral vectors developed for miRNA delivery, with their advantages, limitations and future perspectives.
Collapse
|
5
|
Yang C, Lin ZI, Chen JA, Xu Z, Gu J, Law WC, Yang JHC, Chen CK. Organic/Inorganic Self-Assembled Hybrid Nano-Architectures for Cancer Therapy Applications. Macromol Biosci 2021; 22:e2100349. [PMID: 34735739 DOI: 10.1002/mabi.202100349] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/25/2021] [Indexed: 12/20/2022]
Abstract
Since the conceptualization of nanomedicine, numerous nanostructure-mediated drug formulations have progressed into clinical trials for treating cancer. However, recent clinical trial results indicate such kind of drug formulations has a limited improvement on the antitumor efficacy. This is due to the biological barriers associated with those formulations, for example, circulation stability, extravasation efficiency in tumor, tumor penetration ability, and developed multi-drug resistance. When employing for nanomedicine formulations, pristine organic-based and inorganic-based nanostructures have their own limitations. Accordingly, organic/inorganic (O/I) hybrids have been developed to integrate the merits of both, and to minimize their intrinsic drawbacks. In this context, the recent development in O/I hybrids resulting from a self-assembly strategy will be introduced. Through such a strategy, organic and inorganic building blocks can be self-assembled via either chemical covalent bonds or physical interactions. Based on the self-assemble procedure, the hybridization of four organic building blocks including liposomes, micelles, dendrimers, and polymeric nanocapsules with five functional inorganic nanoparticles comprising gold nanostructures, magnetic nanoparticles, carbon-based materials, quantum dots, and silica nanoparticles will be highlighted. The recent progress of these O/I hybrids in advanced modalities for combating cancer, such as, therapeutic agent delivery, photothermal therapy, photodynamic therapy, and immunotherapy will be systematically reviewed.
Collapse
Affiliation(s)
- Chengbin Yang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Zheng-Ian Lin
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | - Jian-An Chen
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | - Zhourui Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Jiayu Gu
- Department of Pharmacy, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, 518020, China
| | - Wing-Cheung Law
- Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Jason Hsiao Chun Yang
- Department of Fiber and Composite Materials, Feng Chia University, Taichung, 40724, Taiwan
| | - Chih-Kuang Chen
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| |
Collapse
|
6
|
Ashok B, Peppas NA, Wechsler ME. Lipid- and Polymer-Based Nanoparticle Systems for the Delivery of CRISPR/Cas9. J Drug Deliv Sci Technol 2021; 65:102728. [PMID: 34335878 PMCID: PMC8318345 DOI: 10.1016/j.jddst.2021.102728] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The discovery of clustered regularly interspaced short palindromic repeat (CRISPR)/ CRISPR-associated (Cas) genome editing systems and their applications in human health and medicine has heralded a new era of biotechnology. However, the delivery of CRISPR therapeutics is arguably the most difficult barrier to overcome for translation to in vivo clinical administration. Appropriate delivery methods are required to efficiently and selectively transport all gene editing components to specific target cells and tissues of interest, while minimizing off-target effects. To overcome this challenge, we discuss and critic nanoparticle delivery strategies, focusing on the use of lipid-based and polymeric-based matrices herein.
Collapse
Affiliation(s)
- Bhaargavi Ashok
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Nicholas A Peppas
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin TX, USA
- Department of Biomedical Engineering, The University of Texas at Austin, Austin TX, USA
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin TX, USA
- Department of Surgery and Perioperative Care, Dell Medical School, The University of Texas at Austin, Austin TX, USA
| | - Marissa E Wechsler
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, TX, USA
| |
Collapse
|
7
|
Kumar R, Santa Chalarca CF, Bockman MR, Bruggen CV, Grimme CJ, Dalal RJ, Hanson MG, Hexum JK, Reineke TM. Polymeric Delivery of Therapeutic Nucleic Acids. Chem Rev 2021; 121:11527-11652. [PMID: 33939409 DOI: 10.1021/acs.chemrev.0c00997] [Citation(s) in RCA: 199] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The advent of genome editing has transformed the therapeutic landscape for several debilitating diseases, and the clinical outlook for gene therapeutics has never been more promising. The therapeutic potential of nucleic acids has been limited by a reliance on engineered viral vectors for delivery. Chemically defined polymers can remediate technological, regulatory, and clinical challenges associated with viral modes of gene delivery. Because of their scalability, versatility, and exquisite tunability, polymers are ideal biomaterial platforms for delivering nucleic acid payloads efficiently while minimizing immune response and cellular toxicity. While polymeric gene delivery has progressed significantly in the past four decades, clinical translation of polymeric vehicles faces several formidable challenges. The aim of our Account is to illustrate diverse concepts in designing polymeric vectors towards meeting therapeutic goals of in vivo and ex vivo gene therapy. Here, we highlight several classes of polymers employed in gene delivery and summarize the recent work on understanding the contributions of chemical and architectural design parameters. We touch upon characterization methods used to visualize and understand events transpiring at the interfaces between polymer, nucleic acids, and the physiological environment. We conclude that interdisciplinary approaches and methodologies motivated by fundamental questions are key to designing high-performing polymeric vehicles for gene therapy.
Collapse
Affiliation(s)
- Ramya Kumar
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | | | - Matthew R Bockman
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Craig Van Bruggen
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Christian J Grimme
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Rishad J Dalal
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Mckenna G Hanson
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Joseph K Hexum
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Theresa M Reineke
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
8
|
Linnik DS, Tarakanchikova YV, Zyuzin MV, Lepik KV, Aerts JL, Sukhorukov G, Timin AS. Layer-by-Layer technique as a versatile tool for gene delivery applications. Expert Opin Drug Deliv 2021; 18:1047-1066. [DOI: 10.1080/17425247.2021.1879790] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Dmitrii S. Linnik
- Laboratory of Micro-Encapsulation and Targeted Delivery of Biologically Active Compounds, Peter The Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| | - Yana V. Tarakanchikova
- Laboratory of Micro-Encapsulation and Targeted Delivery of Biologically Active Compounds, Peter The Great St. Petersburg Polytechnic University, St. Petersburg, Russia
- Nanobiotechnology Laboratory, St. Petersburg Academic University, St. Petersburg, Russia
| | - Mikhail V. Zyuzin
- Department of Physics and Engineering, ITMO University, St. Petersburg, Russia
| | - Kirill V. Lepik
- Department of Hematology, Transfusion, and Transplantation, First I. P. Pavlov State Medical University of St. Petersburg, Saint-Petersburg, Russia
| | - Joeri L. Aerts
- Laboratory of Micro-Encapsulation and Targeted Delivery of Biologically Active Compounds, Peter The Great St. Petersburg Polytechnic University, St. Petersburg, Russia
- Neuro-Aging & Viro-Immunotherapy Lab (NAVI), Vrije Universiteit Brussel, Brussels, Belgium
| | - Gleb Sukhorukov
- Laboratory of Micro-Encapsulation and Targeted Delivery of Biologically Active Compounds, Peter The Great St. Petersburg Polytechnic University, St. Petersburg, Russia
- School of Engineering and Material Science, Queen Mary University of London, London, UK
- Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Moscow, Russia
| | - Alexander S. Timin
- Laboratory of Micro-Encapsulation and Targeted Delivery of Biologically Active Compounds, Peter The Great St. Petersburg Polytechnic University, St. Petersburg, Russia
- Research School of Chemical and Biomedical Engineering, National Research Tomsk Polytechnic University, Tomsk, Russia
| |
Collapse
|
9
|
Tang H, Zhao X, Jiang X. Synthetic multi-layer nanoparticles for CRISPR-Cas9 genome editing. Adv Drug Deliv Rev 2021; 168:55-78. [PMID: 32147450 DOI: 10.1016/j.addr.2020.03.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 02/23/2020] [Accepted: 03/04/2020] [Indexed: 12/14/2022]
Abstract
The clustered regularly interspaced short palindromic repeat (CRISPR) has great potential to revolutionize biomedical research and disease therapy. The specific and efficient genome editing strongly depends on high efficiency of delivery of the CRISPR payloads. However, optimization of CRISPR delivery vehicles still remains a major obstacle. Recently, various non-viral vectors have been utilized to deliver CRISPR tools. Many of these vectors have multi-layer structures assembled. In this review, we will introduce the development of CRISPR-Cas9 systems and their general therapeutic applications by summarizing current CRISPR-Cas9 based clinical trials. We will highlight the multi-layer nanoparticles (NPs) that have been developed to deliver CRISPR cargos in vitro and in vivo for various purposes, as well the potential building blocks of multi-layer NPs. We will also discuss the challenges in making the CRISPR tools into viable pharmaceutical products and provide potential solutions on efficiency and biosafety issues.
Collapse
|
10
|
Peng H, Ji W, Zhao R, Lu Z, Yang J, Li Y, Zhang X. pH-sensitive zwitterionic polycarboxybetaine as a potential non-viral vector for small interfering RNA delivery. RSC Adv 2020; 10:45059-45066. [PMID: 35516239 PMCID: PMC9058814 DOI: 10.1039/d0ra09359a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/01/2020] [Indexed: 11/21/2022] Open
Abstract
Small interfering RNA (siRNA) has great potential for the treatment of various diseases. However, its intrinsic deficiencies seriously limit its application. Herein, pH-sensitive zwitterionic polymer polycarboxybetaine (PCB) was developed as a non-viral vector for siRNA. The PCB could be protonated in an acidic environment and become positively charged from a cancer site. After protonation, PCB could complex siRNA via electrostatic interaction, and its loading ability was enhanced with a decrease of pH value. Compared with the PEI 10k, PCB50 with a similar molecular weight had comparable siRNA loading ability and lower cytotoxicity. Besides, siRNA loaded by PCB50 could escape from endosomes and reduce the loss of drugs, and based on the excellent uptake and obvious apoptotic effect on HeLa cells, the pH-sensitive PCB with low cytotoxicity could be used as a non-viral vector for safe siRNA delivery for cancer treatment. pH-sensitive zwitterionic polycarboxybetaine could complex siRNA in an acidic environment and could be used as a non-viral vector for safe siRNA delivery.![]()
Collapse
Affiliation(s)
- Huan Peng
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 China .,University of Chinese Academy of Sciences Beijing 100049 China
| | - Weihong Ji
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 China .,University of Chinese Academy of Sciences Beijing 100049 China
| | - Ruichen Zhao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 China .,University of Chinese Academy of Sciences Beijing 100049 China
| | - Zhiguo Lu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 China .,University of Chinese Academy of Sciences Beijing 100049 China
| | - Jun Yang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 China
| | - Yan Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 China
| | - Xin Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
11
|
Ullah A, Qazi J, Rahman L, Kanaras AG, Khan WS, Hussain I, Rehman A. Nanoparticles-assisted delivery of antiviral-siRNA as inhalable treatment for human respiratory viruses: A candidate approach against SARS-COV-2. NANO SELECT 2020; 1:612-621. [PMID: 34485978 PMCID: PMC7675679 DOI: 10.1002/nano.202000125] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 09/25/2020] [Indexed: 12/13/2022] Open
Abstract
The current pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has challenged healthcare structures across the globe. Although a few therapies are approved by FDA, the search for better treatment options is continuously on rise. Clinical management includes infection prevention and supportive care such as supplemental oxygen and mechanical ventilatory support. Given the urgent nature of the pandemic and the number of companies and researchers developing COVID-19 related therapies, FDA has created an emergency program to move potential treatments with already approved drugs to patients as quickly as possible in parallel to the development of new drugs that must first pass the clinical trials. In this manuscript, we have reviewed the available literature on the use of sequence-specific degradation of viral genome using short-interfering RNA (siRNA) suggesting it as a possible treatment against SARS-CoV-2. Delivery of siRNA can be promoted by the use of FDA approved lipids, polymers or lipid-polymer hybrids. These nanoparticulate systems can be engineered to exhibit increased targetability and formulated as inhalable aerosols.
Collapse
Affiliation(s)
- Ata Ullah
- National Institute for Biotechnology and Genetic EngineeringFaisalabadPakistan
| | - Javaria Qazi
- Department of BiotechnologyQuaid‐i‐Azam UniversityIslamabadPakistan
| | - Lutfur Rahman
- National Institute for Biotechnology and Genetic EngineeringFaisalabadPakistan
| | - Antonios G. Kanaras
- Physics and AstronomyInstitute for Life SciencesUniversity of SouthamptonSouthamptonSO171BJUK
| | - Waheed S. Khan
- National Institute for Biotechnology and Genetic EngineeringFaisalabadPakistan
| | - Irshad Hussain
- Department of Chemistry and Chemical EngineeringSBA School of Science & Engineering (SBASSE)Lahore University of Management Sciences (LUMS)LahorePakistan
| | - Asma Rehman
- National Institute for Biotechnology and Genetic EngineeringFaisalabadPakistan
| |
Collapse
|
12
|
Brkovic N, Zhang L, Peters JN, Kleine-Doepke S, Parak WJ, Zhu D. Quantitative Assessment of Endosomal Escape of Various Endocytosed Polymer-Encapsulated Molecular Cargos upon Photothermal Heating. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2003639. [PMID: 33108047 DOI: 10.1002/smll.202003639] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/09/2020] [Indexed: 06/11/2023]
Abstract
Encapsulated molecular cargos are efficiently endocytosed by cells. For cytosolic delivery, understanding the dynamic process of cargos release from the carrier vehicles used for encapsulation and the lysosomes where the carrier vehicles are trapped (which in general is the bottleneck), followed by diffusion in the cytosol is important for improving drug/gene delivery strategies. A methodology is reported to image this process on a millisecond scale and to quantitatively analyze the data. Polyelectrolyte capsules with embedded gold nanostars to encapsulate 43 fluorescent molecular cargos with diverse properties, ranging from small fluorophores to fluorescently labeled proteins, siRNA, etc., are used. By short laser irradiation intracellular release of the molecular cargos from endocytosed capsules into the cytosol is triggered, and their intracellular spreading is imaged. Most of the released molecular cargos evenly distribute inside the entire cell, while others are enriched in certain cell compartments. The time the different molecular cargos take to distribute within cells, i.e., the spreading time, is used as a quantifier. Quantitative analysis reveals that intracellular spread cannot be described by free diffusion, but is determined by interaction of the molecular cargo with intracellular components.
Collapse
Affiliation(s)
- Nico Brkovic
- Center for Hybrid Nanostructures (CHyN) and Fachbereich Physik, Universitat Hamburg, Hamburg, 20146, Germany
| | - Li Zhang
- Center for Hybrid Nanostructures (CHyN) and Fachbereich Physik, Universitat Hamburg, Hamburg, 20146, Germany
| | - Jan N Peters
- Center for Hybrid Nanostructures (CHyN) and Fachbereich Physik, Universitat Hamburg, Hamburg, 20146, Germany
| | - Stephan Kleine-Doepke
- Center for Hybrid Nanostructures (CHyN) and Fachbereich Physik, Universitat Hamburg, Hamburg, 20146, Germany
| | - Wolfgang J Parak
- Center for Hybrid Nanostructures (CHyN) and Fachbereich Physik, Universitat Hamburg, Hamburg, 20146, Germany
| | - Dingcheng Zhu
- Center for Hybrid Nanostructures (CHyN) and Fachbereich Physik, Universitat Hamburg, Hamburg, 20146, Germany
| |
Collapse
|
13
|
Zyuzin MV, Zhu D, Parak WJ, Feliu N, Escudero A. Development of Silica-Based Biodegradable Submicrometric Carriers and Investigating Their Characteristics as in Vitro Delivery Vehicles. Int J Mol Sci 2020; 21:E7563. [PMID: 33066289 PMCID: PMC7590072 DOI: 10.3390/ijms21207563] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/24/2020] [Accepted: 10/03/2020] [Indexed: 12/11/2022] Open
Abstract
Nanostructured silica (SiO2)-based materials are attractive carriers for the delivery of bioactive compounds into cells. In this study, we developed hollow submicrometric particles composed of SiO2 capsules that were separately loaded with various bioactive molecules such as dextran, proteins, and nucleic acids. The structural characterization of the reported carriers was conducted using transmission and scanning electron microscopies (TEM/SEM), confocal laser scanning microscopy (CLSM), and dynamic light scattering (DLS). Moreover, the interaction of the developed carriers with cell lines was studied using standard viability, proliferation, and uptake assays. The submicrometric SiO2-based capsules loaded with DNA plasmid encoding green fluorescence proteins (GFP) were used to transfect cell lines. The obtained results were compared with studies made with similar capsules composed of polymers and show that SiO2-based capsules provide better transfection rates on the costs of higher toxicity.
Collapse
Affiliation(s)
- Mikhail V. Zyuzin
- Department of Physics and Engineering, ITMO University, Lomonosova 9, St. Petersburg 191002, Russia;
| | - Dingcheng Zhu
- Center for Hybrid Nanostructures (CHyN), Universität Hamburg, 22607 Hamburg, Germany; (D.Z.); (W.J.P.)
| | - Wolfgang J. Parak
- Center for Hybrid Nanostructures (CHyN), Universität Hamburg, 22607 Hamburg, Germany; (D.Z.); (W.J.P.)
| | - Neus Feliu
- Center for Hybrid Nanostructures (CHyN), Universität Hamburg, 22607 Hamburg, Germany; (D.Z.); (W.J.P.)
- Fraunhofer Center for Applied Nanotechnology (CAN), 20146 Hamburg, Germany
| | - Alberto Escudero
- Departamento de Química Inorgánica. Facultad de Química, Universidad de Sevilla, Calle Profesor García González 1, E–41012 Seville, Spain
- Instituto de Investigaciones Químicas (IIQ), Universidad de Sevilla–CSIC, Calle Américo Vespucio 49, E–41092 Seville, Spain
| |
Collapse
|
14
|
Roy S, Zhu D, Parak WJ, Feliu N. Lysosomal Proton Buffering of Poly(ethylenimine) Measured In Situ by Fluorescent pH-Sensor Microcapsules. ACS NANO 2020; 14:8012-8023. [PMID: 32568521 DOI: 10.1021/acsnano.9b10219] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Poly(ethylenimine) (PEI) is frequently used as transfection agent for delivery of nucleic acids to the cytosol. After endocytosis of complexes of PEI and nucleic acids, a fraction of them can escape endosomes/lysosomes and reach the cytosol. One proposed mechanism is the so-called proton sponge effect, which involves buffering of the lysosomal pH by PEI. There are however also reports that report the absence of such buffering. In this work, the buffering capacity of PEI of the lysosomal pH was investigated in situ by combining PEI and pH-sensing ratiometric fluorophores in a single carrier particle. As carrier particles, hereby capsules were used, which were composed of polyelectrolyte walls based on layer-by-layer assembly, with the pH sensors located inside the capsule cavities. In this way, the local pH around individual particles could be monitored during the whole process of endocytosis. Results demonstrate the pH-buffering capability of PEI, which prevents the strong acidification of lysosomes containing PEI. This effect was related to the presence of PEI and was not related to the overall charge of the carrier particles. In case PEI was added in molecular form, no buffering of pH could be observed by endocytosed encapsulated pH-sensing ratiometric fluorophores. Co-localization experiments demonstrated that this was due to the fact that internalized free PEI and the encapsulated pH-sensing ratiometric fluorophores were not located in the same lysosomes. Missing co-localization might explain why also in other studies no pH buffering was found; in the case of co-delivery of PEI, the pH sensors could be clearly observed.
Collapse
Affiliation(s)
- Sathi Roy
- Center for Hybrid Nanostructures (CHyN), Universität Hamburg, Luruper Chaussee 149, 22607 Hamburg, Germany
| | - Dingcheng Zhu
- Center for Hybrid Nanostructures (CHyN), Universität Hamburg, Luruper Chaussee 149, 22607 Hamburg, Germany
| | - Wolfgang J Parak
- Center for Hybrid Nanostructures (CHyN), Universität Hamburg, Luruper Chaussee 149, 22607 Hamburg, Germany
- CIC Biomagune, Miramon Pasealekua 182, 20014 San Sebastian, Spain
| | - Neus Feliu
- Center for Hybrid Nanostructures (CHyN), Universität Hamburg, Luruper Chaussee 149, 22607 Hamburg, Germany
| |
Collapse
|
15
|
Moraes FC, Antunes JC, Forero Ramirez LM, Aprile P, Franck G, Chauvierre C, Chaubet F, Letourneur D. Synthesis of cationic quaternized pullulan derivatives for miRNA delivery. Int J Pharm 2020; 577:119041. [PMID: 31978463 DOI: 10.1016/j.ijpharm.2020.119041] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/05/2020] [Accepted: 01/11/2020] [Indexed: 12/31/2022]
Abstract
Pullulan is a natural polysaccharide of potential interest for biomedical applications due to its non-toxic, non-immunogenic and biodegradable properties. The aim of this work was to synthesize cationic pullulan derivatives able to form complexes with microRNAs (miRNAs) driven by electrostatic interaction (polyplexes). Quaternized ammonium groups were linked to pullulan backbone by adding the reactive glycidyltrimethylammonium chloride (GTMAC). The presence of these cationic groups within the pullulan was confirmed by elemental analysis, Fourier-transform infrared spectroscopy (FTIR) and proton nuclear magnetic resonance (1H NMR). The alkylated pullulan was able to interact with miRNA and form stable polyplexes that were characterized regarding size, zeta potential and morphology. The presence of miRNA was confirmed by agarose gel electrophoresis and UV spectrophotometry. In vitro tests on human umbilical vein endothelial cells did not show any cytotoxicity after 1 day of incubation with nanosized polyplexes up to 200 µg/mL. QA-pullulan was able to promote miRNA delivery inside cells as demonstrated by fluorescence microscopy images of labelled miRNA. In conclusion, the formation of polyplexes using cationic derivatives of pullulan with miRNA provided an easy and versatile method for polysaccharide nanoparticle production in aqueous media and could be a new promising platform for gene delivery.
Collapse
Affiliation(s)
- Fernanda C Moraes
- INSERM, U1148, Laboratory for Vascular Translational Science, X. Bichat Hospital, 46 rue Henri Huchard, 75018, Paris, France; Université de Paris, Université Sorbonne Paris Nord, Paris, France.
| | - Joana C Antunes
- Universidade do Minho, 2C2T, Campus de Azurém, 4800-058 Guimarães, Portugal.
| | - Laura Marcela Forero Ramirez
- INSERM, U1148, Laboratory for Vascular Translational Science, X. Bichat Hospital, 46 rue Henri Huchard, 75018, Paris, France; Université de Paris, Université Sorbonne Paris Nord, Paris, France.
| | - Paola Aprile
- INSERM, U1148, Laboratory for Vascular Translational Science, X. Bichat Hospital, 46 rue Henri Huchard, 75018, Paris, France; Université de Paris, Université Sorbonne Paris Nord, Paris, France.
| | - Gregory Franck
- INSERM, U1148, Laboratory for Vascular Translational Science, X. Bichat Hospital, 46 rue Henri Huchard, 75018, Paris, France; Université de Paris, Université Sorbonne Paris Nord, Paris, France.
| | - Cédric Chauvierre
- INSERM, U1148, Laboratory for Vascular Translational Science, X. Bichat Hospital, 46 rue Henri Huchard, 75018, Paris, France; Université de Paris, Université Sorbonne Paris Nord, Paris, France.
| | - Frédéric Chaubet
- INSERM, U1148, Laboratory for Vascular Translational Science, X. Bichat Hospital, 46 rue Henri Huchard, 75018, Paris, France; Université de Paris, Université Sorbonne Paris Nord, Paris, France.
| | - Didier Letourneur
- INSERM, U1148, Laboratory for Vascular Translational Science, X. Bichat Hospital, 46 rue Henri Huchard, 75018, Paris, France.
| |
Collapse
|
16
|
Tarakanchikova Y, Alzubi J, Pennucci V, Follo M, Kochergin B, Muslimov A, Skovorodkin I, Vainio S, Antipina MN, Atkin V, Popov A, Meglinski I, Cathomen T, Cornu TI, Gorin DA, Sukhorukov GB, Nazarenko I. Biodegradable Nanocarriers Resembling Extracellular Vesicles Deliver Genetic Material with the Highest Efficiency to Various Cell Types. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1904880. [PMID: 31840408 DOI: 10.1002/smll.201904880] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/31/2019] [Indexed: 05/11/2023]
Abstract
Efficient delivery of genetic material to primary cells remains challenging. Here, efficient transfer of genetic material is presented using synthetic biodegradable nanocarriers, resembling extracellular vesicles in their biomechanical properties. This is based on two main technological achievements: generation of soft biodegradable polyelectrolyte capsules in nanosize and efficient application of the nanocapsules for co-transfer of different RNAs to tumor cell lines and primary cells, including hematopoietic progenitor cells and primary T cells. Near to 100% efficiency is reached using only 2.5 × 10-4 pmol of siRNA, and 1 × 10-3 nmol of mRNA per cell, which is several magnitude orders below the amounts reported for any of methods published so far. The data show that biodegradable nanocapsules represent a universal and highly efficient biomimetic platform for the transfer of genetic material with the utmost potential to revolutionize gene transfer technology in vitro and in vivo.
Collapse
Affiliation(s)
- Yana Tarakanchikova
- Institute for Infection Prevention and Hospital Epidemiology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
- Opto-Electronics and Measurement Techniques Research Unit, P.O. Box 4500, University of Oulu, Oulu, 90014, Finland
- Nanobiotechnology Laboratory, St. Petersburg Academic University, St. Petersburg, 194021, Russia
- RASA center in St. Petersburg, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 195251, Russia
| | - Jamal Alzubi
- Institute for Transfusion Medicine and Gene Therapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
- Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
| | - Valentina Pennucci
- Institute for Transfusion Medicine and Gene Therapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
- Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
| | - Marie Follo
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, 153000, Germany
| | - Boris Kochergin
- Institute for Infection Prevention and Hospital Epidemiology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
- Department of Inorganic Chemistry, Ivanovo State University of Chemistry and Technology, Sheremetievskiy Avenue 7, 153000, Ivanovo, Russia
| | - Albert Muslimov
- Nanobiotechnology Laboratory, St. Petersburg Academic University, St. Petersburg, 194021, Russia
| | - Ilya Skovorodkin
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, Laboratory of Developmental Biology, Infotech Oulu, University of Oulu, Borealis Biobank of Northern Finland, 138634, Oulu, Finland
| | - Seppo Vainio
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, Laboratory of Developmental Biology, Infotech Oulu, University of Oulu, Borealis Biobank of Northern Finland, 138634, Oulu, Finland
| | - Maria N Antipina
- Institute of Materials Research and Engineering, A*STAR, Singapore, 138634, Singapore
| | - Vsevolod Atkin
- Educational Research Institute of Nanostructures and Biosystems, Saratov State University, Saratov, Astrakhanskaya 83, 410012, Saratov, Russia
| | - Alexey Popov
- Opto-Electronics and Measurement Techniques Research Unit, P.O. Box 4500, University of Oulu, Oulu, 90014, Finland
| | - Igor Meglinski
- Opto-Electronics and Measurement Techniques Research Unit, P.O. Box 4500, University of Oulu, Oulu, 90014, Finland
- Aston Institute of Materials Research, School of Engineering and Applied Science, Aston University, Birmingham, B4 7ET, UK
- School of Life and Health Sciences, Aston University, Birmingham, B4 7ET, UK
| | - Toni Cathomen
- Institute for Transfusion Medicine and Gene Therapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
- Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
| | - Tatjana I Cornu
- Institute for Transfusion Medicine and Gene Therapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
- Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
| | - Dmitry A Gorin
- Skoltech center of Photonics & Quantum Materials, Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Building 3, Moscow, 143026, Russia
| | - Gleb B Sukhorukov
- Educational Research Institute of Nanostructures and Biosystems, Saratov State University, Saratov, Astrakhanskaya 83, 410012, Saratov, Russia
- School of Engineering and Material Science, Queen Mary University of London, London, B47ET, UK
| | - Irina Nazarenko
- Institute for Infection Prevention and Hospital Epidemiology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, B47ET, Germany
| |
Collapse
|
17
|
Patil S, Gao YG, Lin X, Li Y, Dang K, Tian Y, Zhang WJ, Jiang SF, Qadir A, Qian AR. The Development of Functional Non-Viral Vectors for Gene Delivery. Int J Mol Sci 2019; 20:E5491. [PMID: 31690044 PMCID: PMC6862238 DOI: 10.3390/ijms20215491] [Citation(s) in RCA: 164] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 10/22/2019] [Accepted: 11/01/2019] [Indexed: 01/06/2023] Open
Abstract
Gene therapy is manipulation in/of gene expression in specific cells/tissue to treat diseases. This manipulation is carried out by introducing exogenous nucleic acids, such as DNA or RNA, into the cell. Because of their negative charge and considerable larger size, the delivery of these molecules, in general, should be mediated by gene vectors. Non-viral vectors, as promising delivery systems, have received considerable attention due to their low cytotoxicity and non-immunogenicity. As research continued, more and more functional non-viral vectors have emerged. They not only have the ability to deliver a gene into the cells but also have other functions, such as the performance of fluorescence imaging, which aids in monitoring their progress, targeted delivery, and biodegradation. Recently, many reviews related to non-viral vectors, such as polymers and cationic lipids, have been reported. However, there are few reviews regarding functional non-viral vectors. This review summarizes the common functional non-viral vectors developed in the last ten years and their potential applications in the future. The transfection efficiency and the transport mechanism of these materials were also discussed in detail. We hope that this review can help researchers design more new high-efficiency and low-toxicity multifunctional non-viral vectors, and further accelerate the progress of gene therapy.
Collapse
Affiliation(s)
- Suryaji Patil
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University Xi'an 710072, China.
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Yong-Guang Gao
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University Xi'an 710072, China.
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Xiao Lin
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University Xi'an 710072, China.
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Yu Li
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University Xi'an 710072, China.
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Kai Dang
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University Xi'an 710072, China.
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Ye Tian
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University Xi'an 710072, China.
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Wen-Juan Zhang
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University Xi'an 710072, China.
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Shan-Feng Jiang
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University Xi'an 710072, China.
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Abdul Qadir
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University Xi'an 710072, China.
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Ai-Rong Qian
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University Xi'an 710072, China.
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
| |
Collapse
|
18
|
Hao F, Li Y, Zhu J, Sun J, Marshall B, Lee RJ, Teng L, Yang Z, Xie J. Polyethylenimine-based Formulations for Delivery of Oligonucleotides. Curr Med Chem 2019; 26:2264-2284. [PMID: 30378483 DOI: 10.2174/0929867325666181031094759] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 04/05/2018] [Accepted: 05/31/2018] [Indexed: 11/22/2022]
Abstract
Polyethyleneimine (PEI) is well-known as a non-viral gene delivery vector, especially for oligonucleotide delivery. However, its clinical applications are significantly limited due to its high cationic charge, lack of specificity, and interaction with the proteins and nontarget cells in the biological fluids, resulting in high cytotoxicity, poor stability and low transfection efficiency for oligonucleotides transporting. It has been shown that the molecular weight (MW) of PEI, degree of branching, N/P ratio, buffer capacity, oligonucleotide structure, culture medium pH, serum, presence or absence of and method of preparation make a significant difference in the cytoxicity, stability, and transfection efficiency for the PEI-based oligonucleotides delivery systems. Ligands, hydrophobic, hydrophilic, and amphiphilic modification of PEI have been investigated to reduce the cytoxicity and improve the stability, the transfection efficiency, and therapeutic effect. Moreover, various intelligent modifications of PEI, such as pH-responsive (hydrazone bond) and redox sensitive linkers (disulfide bond) can control oligonucleotides release and have attracted much attention. In general, more efficient oligonucleotide delivery can be achieved by the introduction of modifications to PEI and by optimization of parameters of PEI or PEI-based formulations.
Collapse
Affiliation(s)
- Fei Hao
- School of Life Science, Jilin University, Changchun, 130012, China
| | - Yuhuan Li
- School of Life Science, Jilin University, Changchun, 130012, China
| | - Jing Zhu
- Division of Pharmaceutics, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| | - Jingyao Sun
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Brian Marshall
- Department of Chemical & Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, United States
| | - Robert J Lee
- Division of Pharmaceutics, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| | - Lesheng Teng
- School of Life Science, Jilin University, Changchun, 130012, China
| | - Zhaogang Yang
- Department of Chemical & Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, United States
| | - Jing Xie
- School of Life Science, Jilin University, Changchun, 130012, China
| |
Collapse
|
19
|
Parakhonskiy BV, Parak WJ, Volodkin D, Skirtach AG. Hybrids of Polymeric Capsules, Lipids, and Nanoparticles: Thermodynamics and Temperature Rise at the Nanoscale and Emerging Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:8574-8583. [PMID: 30964686 DOI: 10.1021/acs.langmuir.8b04331] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The importance of thermodynamics does not need to be emphasized. Indeed, elevated temperature processes govern not only industrial scale production but also self-assembly, chemical reaction, interaction between molecules, etc. Not surprisingly, biological processes typically take place at a specific temperature. Here, we look at possibilities to raise the localized temperature by a laser around noble-metal nanoparticles incorporated into shells of layer-by-layer polyelectrolyte microcapsules-freely suspended delivery vehicles in an aqueous solution, developed in the Department of Interfaces, Max Planck Institute of Colloids and Interfaces, headed by Helmuth Möhwald. Understanding the mechanisms of localized temperature rise is essential, that is why we analyze the influence of incident intensity, nanoparticle size, their distribution and aggregation state, as well as thermodynamics at the nanoscale. This leads us to scrutinize "global" (used for thermal encapsulation) versus "local" (used for release of encapsulated materials) temperature rise. Similar analysis is extended to planar polymeric coatings, the lipid membrane system of vesicles and cells, on which nanoparticles are adsorbed. Insights are provided into the mechanisms of physicochemical and biological effects, the nature of which has always been profoundly, interactively, and engagingly discussed in the Department of Interfaces. This analysis is combined with recent developments providing outlook and highlighting a broad range of emerging applications.
Collapse
Affiliation(s)
- Bogdan V Parakhonskiy
- Nano-BioTechnology Group, Department of Biotechnology, Faculty of Bioscience Engineering , Ghent University , 9000 Ghent , Belgium
| | - Wolfgang J Parak
- Center for Hybrid Nanostructures (CHyN), Fachberich Physik , University of Hamburg , D-22761 Hamburg , Germany
| | - Dmitry Volodkin
- School Science & Technology , Nottingham Trent University , Clifton Lane, Nottingham NG11 8NS , United Kingdom
| | - Andre G Skirtach
- Nano-BioTechnology Group, Department of Biotechnology, Faculty of Bioscience Engineering , Ghent University , 9000 Ghent , Belgium
| |
Collapse
|
20
|
Zhao S, Caruso F, Dähne L, Decher G, De Geest BG, Fan J, Feliu N, Gogotsi Y, Hammond PT, Hersam MC, Khademhosseini A, Kotov N, Leporatti S, Li Y, Lisdat F, Liz-Marzán LM, Moya S, Mulvaney P, Rogach AL, Roy S, Shchukin DG, Skirtach AG, Stevens MM, Sukhorukov GB, Weiss PS, Yue Z, Zhu D, Parak WJ. The Future of Layer-by-Layer Assembly: A Tribute to ACS Nano Associate Editor Helmuth Möhwald. ACS NANO 2019; 13:6151-6169. [PMID: 31124656 DOI: 10.1021/acsnano.9b03326] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Layer-by-layer (LbL) assembly is a widely used tool for engineering materials and coatings. In this Perspective, dedicated to the memory of ACS Nano associate editor Prof. Dr. Helmuth Möhwald, we discuss the developments and applications that are to come in LbL assembly, focusing on coatings, bulk materials, membranes, nanocomposites, and delivery vehicles.
Collapse
Affiliation(s)
- Shuang Zhao
- Fachbereich Physik, CHyN , Universität Hamburg , 22607 Hamburg , Germany
| | - Frank Caruso
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering , The University of Melbourne , Parkville , Victoria 3010 , Australia
| | - Lars Dähne
- Surflay Nanotec GmbH , 12489 Berlin , Germany
| | - Gero Decher
- CNRS Institut Charles Sadron, Faculté de Chimie , Université de Strasbourg, Int. Center for Frontier Research in Chemistry , Strasbourg F-67034 , France
- Int. Center for Materials Nanoarchitectonics , Ibaraki 305-0044 , Japan
| | - Bruno G De Geest
- Department of Pharmaceutics , Ghent University , 9000 Ghent , Belgium
| | - Jinchen Fan
- Department of Chemical Engineering and Biointerfaces Institute , University of Michigan , Ann Arbor , Michigan 48105 , United States
| | - Neus Feliu
- Fachbereich Physik, CHyN , Universität Hamburg , 22607 Hamburg , Germany
| | - Yury Gogotsi
- Department of Materials Science and Engineering and A. J. Drexel Nanomaterials Institute , Drexel University , Philadelphia , Pennsylvania 19104 , United States
| | - Paula T Hammond
- Department of Chemical Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02459 , United States
| | - Mark C Hersam
- Department of Materials Science and Engineering , Northwestern University , Evanston , Illinois 60208-3108 , United States
| | - Ali Khademhosseini
- Department of Bioengineering, Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute (CNSI) , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Nicholas Kotov
- Department of Chemical Engineering and Biointerfaces Institute , University of Michigan , Ann Arbor , Michigan 48105 , United States
- Michigan Institute for Translational Nanotechnology , Ypsilanti , Michigan 48198 , United States
| | - Stefano Leporatti
- CNR Nanotec-Istituto di Nanotecnologia , Italian National Research Council , Lecce 73100 , Italy
| | - Yan Li
- College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Fred Lisdat
- Biosystems Technology, Institute for Applied Life Sciences , Technical University , D-15745 Wildau , Germany
| | - Luis M Liz-Marzán
- CIC biomaGUNE , San Sebastian 20009 , Spain
- Ikerbasque, Basque Foundation for Science , Bilbao 48013 , Spain
| | | | - Paul Mulvaney
- ARC Centre of Excellence in Exciton Science, School of Chemistry , University of Melbourne , Parkville , Victoria 3010 , Australia
| | - Andrey L Rogach
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP) , City University of Hong Kong , Kowloon Tong , Hong Kong SAR
| | - Sathi Roy
- Fachbereich Physik, CHyN , Universität Hamburg , 22607 Hamburg , Germany
| | - Dmitry G Shchukin
- Stephenson Institute for Renewable Energy, Department of Chemistry , University of Liverpool , Liverpool L69 7ZF , United Kingdom
| | - Andre G Skirtach
- Nano-BioTechnology group, Department of Biotechnology, Faculty of Bioscience Engineering , Ghent University , 9000 Ghent , Belgium
| | - Molly M Stevens
- Department of Materials, Department of Bioengineering and Institute for Biomedical Engineering , Imperial College London , London SW7 2AZ , United Kingdom
| | - Gleb B Sukhorukov
- School of Engineering and Materials Science , Queen Mary University of London , London E1 4NS , United Kingdom
| | - Paul S Weiss
- Department of Bioengineering, Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute (CNSI) , University of California, Los Angeles , Los Angeles , California 90095 , United States
- Department of Chemistry and Biochemistry and Department of Materials Science and Engineering , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Zhao Yue
- Department of Microelectronics , Nankai University , Tianjin 300350 , China
| | - Dingcheng Zhu
- Fachbereich Physik, CHyN , Universität Hamburg , 22607 Hamburg , Germany
| | - Wolfgang J Parak
- Fachbereich Physik, CHyN , Universität Hamburg , 22607 Hamburg , Germany
- CIC biomaGUNE , San Sebastian 20009 , Spain
| |
Collapse
|
21
|
Roy S, Elbaz NM, Parak WJ, Feliu N. Biodegradable Alginate Polyelectrolyte Capsules As Plausible Biocompatible Delivery Carriers. ACS APPLIED BIO MATERIALS 2019; 2:3245-3256. [DOI: 10.1021/acsabm.9b00203] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Sathi Roy
- Faculty of Physics, Center for Hybrid Nanostructures (CHyN), Universität Hamburg, Hamburg, Germany
| | - Nancy M. Elbaz
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, United Kingdom
| | - Wolfgang J. Parak
- Faculty of Physics, Center for Hybrid Nanostructures (CHyN), Universität Hamburg, Hamburg, Germany
| | - Neus Feliu
- Faculty of Physics, Center for Hybrid Nanostructures (CHyN), Universität Hamburg, Hamburg, Germany
| |
Collapse
|
22
|
Zyuzin MV, Timin AS, Sukhorukov GB. Multilayer Capsules Inside Biological Systems: State-of-the-Art and Open Challenges. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:4747-4762. [PMID: 30840473 DOI: 10.1021/acs.langmuir.8b04280] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
There are many reports about the interaction of multilayer capsules with biological systems in the literature. A majority of them are devoted to the in vitro study with two-dimensional cell cultures. Multilayer capsule fabrication had been under intensive investigation from 1990s and 2000s by Prof. Helmuth Möhwald, and many of his followers further developed their own research directions, focusing on capsule implementation in various fields of biology and medicine. The aim of this future article is to consistently consider the most recent advances in cell-capsule interactions for different biomedical applications, including functionalization of clinically relevant cells, nonviral gene delivery, magnetization of cells to control their movement, and in vivo drug delivery. Finally, the description and discussion of the new trends and perspectives for improved functionalities of capsules in design and functionalization of cell-assisted drug vehicles are the major topics of this work.
Collapse
Affiliation(s)
- Mikhail V Zyuzin
- Faculty of Physics and Engineering , ITMO University , Lomonosova 9 , 191002 St. Petersburg , Russia
| | - Alexander S Timin
- National Research Tomsk Polytechnic University , Lenin Avenue, 30 , 634050 Tomsk , Russian Federation
- First I. P. Pavlov State Medical University of St. Petersburg , Lev Tolstoy Street, 6/8 , 197022 St. Petersburg , Russian Federation
| | - Gleb B Sukhorukov
- National Research Tomsk Polytechnic University , Lenin Avenue, 30 , 634050 Tomsk , Russian Federation
- School of Engineering and Materials Science , Queen Mary University of London , Mile End Road , E1 4NS London , U.K
| |
Collapse
|
23
|
Chandela A, Ueno Y. Systemic Delivery of Small Interfering RNA Therapeutics: Obstacles and Advances. ACTA ACUST UNITED AC 2019. [DOI: 10.7831/ras.7.10] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Akash Chandela
- United Graduate School of Agricultural Science, Gifu University
| | - Yoshihito Ueno
- United Graduate School of Agricultural Science, Gifu University
- Course of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University
| |
Collapse
|
24
|
Luo D, Poston RN, Gould DJ, Sukhorukov GB. Magnetically targetable microcapsules display subtle changes in permeability and drug release in response to a biologically compatible low frequency alternating magnetic field. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 94:647-655. [DOI: 10.1016/j.msec.2018.10.031] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 08/15/2018] [Accepted: 10/05/2018] [Indexed: 01/08/2023]
|
25
|
Long RM, Dai QL, Zhou X, Cai DH, Hong YZ, Wang SB, Liu YG. Bacterial magnetosomes-based nanocarriers for co-delivery of cancer therapeutics in vitro. Int J Nanomedicine 2018; 13:8269-8279. [PMID: 30584299 PMCID: PMC6289231 DOI: 10.2147/ijn.s180503] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In recent times, co-delivery of therapeutics has emerged as a promising strategy for treating dreadful diseases such as cancer. MATERIALS AND METHODS In this study, we developed a novel nanocarrier based on bacterial magnetosomes (BMs) that co-loaded with siRNA and doxorubicin (DOX) using polyethyleneimine (PEI) as a cross-linker (BMs/DP/siRNA). The delivery efficiency of siRNA as well as the pH-responsive release of DOX, and synergistic efficacy of these therapeutics in vitro were systematically investigated. RESULTS The structure of DOX-PEI (DP) conjugates that synthesized via hydrazone bond formation was confirmed by 1H nuclear magnetic resonance (NMR). The in vitro release experiments showed that the DP conjugate (DOX-loading efficiency - 5.77%±0.08%) exhibited the long-term release behavior. Furthermore, the optimal BMs/DP/siRNA particle size of 107.2 nm and the zeta potential value of 31.1±1.0 mV facilitated enhanced cellular internalization efficiency. Moreover, the agarose gel electrophoresis showed that the co-delivery system could protect siRNA from degradation in serum and RNase A. In addition, the cytotoxicity assay showed that BMs/DP/siRNA could achieve an excellent synergistic effect compared to that of siRNA delivery alone. The acridine orange (AO)/ethidium bromide (EB) double staining assay also showed that BMs/DP/siRNA complex could induce cells in a stage of late apoptosis and nanocomplex located in the proximity of the nucleus. CONCLUSION The combination of gene and chemotherapeutic drug using BMs is highly efficient, and the BMs/DP/siRNA would be a promising therapeutic strategy for the future therapeutics.
Collapse
Affiliation(s)
- Rui-Min Long
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China,
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, China,
| | - Qing-Lei Dai
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China,
| | - Xia Zhou
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China,
| | - Duan-Hua Cai
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China,
| | - Ya-Zhen Hong
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China,
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, China,
- Institute of Pharmaceutical Engineering, Huaqiao University, Xiamen 361021, China,
| | - Shi-Bin Wang
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China,
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, China,
- Institute of Pharmaceutical Engineering, Huaqiao University, Xiamen 361021, China,
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, China
| | - Yuan-Gang Liu
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China,
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, China,
- Institute of Pharmaceutical Engineering, Huaqiao University, Xiamen 361021, China,
| |
Collapse
|
26
|
Shi X, Ye Y, Wang H, Liu F, Wang Z. Designing pH-Responsive Biodegradable Polymer Coatings for Controlled Drug Release via Vapor-Based Route. ACS APPLIED MATERIALS & INTERFACES 2018; 10:38449-38458. [PMID: 30360069 DOI: 10.1021/acsami.8b14016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We present the design of a novel pH-responsive drug release system that is achieved by solventless encapsulation of drugs within a microporous membrane using a thin capping layer of biodegradable poly(methacrylic anhydride) (PMAH) coating. The coating was synthesized via a mild vapor polymerization process, namely, initiated chemical vapor deposition, which allowed perfect retention of the anhydride groups during deposition. The synthesized polyanhydride underwent degradation upon exposure to aqueous buffers, resulting in soluble poly(methacrylic acid). The degradation behavior of PMAH is highly pH-dependent, and the degradation rate under pH 10 is 15 times faster than that under pH 1. The release profile of a model drug rifampicin clearly exhibited two stages: the initial stage when the coatings were being degraded but the drugs were well stored and the second stage when drugs were gradually exposed to the medium and released. The drug release also showed strong pH responsiveness where the duration of the initial stage under pH 1 was more than 7 and 3 times longer than that under pH 10 and 7.4, respectively, and the release rates at pH 7.4 and 10 were significantly faster than that at pH 1. The pH-dependent degradation of the encapsulant thus enabled good preservation of drugs under low-pH environment but high drug release efficiency under neutral and alkaline environment, suggesting potential applications in site-specific drug delivery systems.
Collapse
Affiliation(s)
- Xiao Shi
- Department of Materials Science and Engineering, Faculty of Materials Science and Chemical Engineering , Ningbo University , Ningbo 315211 , China
| | - Yumin Ye
- Department of Materials Science and Engineering, Faculty of Materials Science and Chemical Engineering , Ningbo University , Ningbo 315211 , China
- State Key Laboratory of Silicon Materials , Zhejiang University , Hangzhou 310027 , China
| | - Hui Wang
- Key Laboratory of Marine Materials and Related Technologies , Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences , Ningbo 315211 , China
| | - Fu Liu
- Key Laboratory of Marine Materials and Related Technologies , Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences , Ningbo 315211 , China
| | - Zhijie Wang
- Key Laboratory of Semiconductor Materials Science, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices , Institute of Semiconductors, Chinese Academy of Sciences , Beijing 100083 , China
| |
Collapse
|
27
|
Givens BE, Naguib YW, Geary SM, Devor EJ, Salem AK. Nanoparticle-Based Delivery of CRISPR/Cas9 Genome-Editing Therapeutics. AAPS J 2018; 20:108. [PMID: 30306365 PMCID: PMC6398936 DOI: 10.1208/s12248-018-0267-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/18/2018] [Indexed: 12/17/2022] Open
Abstract
The recent progress in harnessing the efficient and precise method of DNA editing provided by CRISPR/Cas9 is one of the most promising major advances in the field of gene therapy. However, the development of safe and optimally efficient delivery systems for CRISPR/Cas9 elements capable of achieving specific targeting of gene therapy to the location of interest without off-target effects is a primary challenge for clinical therapeutics. Nanoparticles (NPs) provide a promising means to meet such challenges. In this review, we present the most recent advances in developing innovative NP-based delivery systems that efficiently deliver CRISPR/Cas9 constructs and maximize their effectiveness.
Collapse
Affiliation(s)
- Brittany E Givens
- Division of Pharmaceutics and Translational Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa, 52242, USA
- Department of Chemical and Biochemical Engineering, College of Engineering, University of Iowa, Iowa City, Iowa, 52242, USA
| | - Youssef W Naguib
- Division of Pharmaceutics and Translational Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa, 52242, USA
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
| | - Sean M Geary
- Division of Pharmaceutics and Translational Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa, 52242, USA
| | - Eric J Devor
- Department of Obstetrics and Gynecology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, 52242, USA
| | - Aliasger K Salem
- Division of Pharmaceutics and Translational Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa, 52242, USA.
- Department of Chemical and Biochemical Engineering, College of Engineering, University of Iowa, Iowa City, Iowa, 52242, USA.
| |
Collapse
|
28
|
Wang P, Kankala RK, Fan J, Long R, Liu Y, Wang S. Poly-L-ornithine/fucoidan-coated calcium carbonate microparticles by layer-by-layer self-assembly technique for cancer theranostics. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2018; 29:68. [PMID: 29748879 DOI: 10.1007/s10856-018-6075-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 04/21/2018] [Indexed: 06/08/2023]
Abstract
Recently, the layer-by-layer (LbL) self-assembly technology has attracted the enormous interest of researchers in synthesizing various pharmaceutical dosage forms. Herewith, we designed a biocompatible drug delivery system containing the calcium carbonate microparticles (CaCO3 MPs) that coated with the alternatively charged polyelectrolytes, i.e., poly-L-ornithine (PLO)/fucoidan by LbL self-assembly process (LbL MPs). Upon coating with the polyelectrolytes, the mean particle size of MPs obtained from SEM observations increased from 1.91 to 2.03 μm, and the surface of LbL MPs was smoothened compared to naked CaCO3 MPs. In addition, the reversible zeta potential changes have confirmed the accomplishment of layer upon a layer assembly. To evaluate the efficiency of cancer therapeutics, we loaded doxorubicin (Dox) in the LbL MPs, which resulted in high (69.7%) drug encapsulation efficiency. The controlled release of Dox resulted in the significant antiproliferative efficiency in breast cancer cell line (MCF-7 cells), demonstrating the potential of applying this innovative drug delivery system in the biomedical field.
Collapse
Affiliation(s)
- Pei Wang
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, China
- College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Ranjith Kumar Kankala
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, China
- Institute of Pharmaceutical Engineering, Huaqiao University, Xiamen, 361021, China
- Fujian Provincial Key Laboratory of Biochemical Technology, Xiamen, 361021, China
| | - Jingqian Fan
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, China
| | - Ruimin Long
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, China
- Institute of Pharmaceutical Engineering, Huaqiao University, Xiamen, 361021, China
- Fujian Provincial Key Laboratory of Biochemical Technology, Xiamen, 361021, China
| | - Yuangang Liu
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, China.
- Institute of Pharmaceutical Engineering, Huaqiao University, Xiamen, 361021, China.
- Fujian Provincial Key Laboratory of Biochemical Technology, Xiamen, 361021, China.
| | - Shibin Wang
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, China.
- College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China.
- Institute of Pharmaceutical Engineering, Huaqiao University, Xiamen, 361021, China.
- Fujian Provincial Key Laboratory of Biochemical Technology, Xiamen, 361021, China.
| |
Collapse
|
29
|
Zhi D, Bai Y, Yang J, Cui S, Zhao Y, Chen H, Zhang S. A review on cationic lipids with different linkers for gene delivery. Adv Colloid Interface Sci 2018; 253:117-140. [PMID: 29454463 DOI: 10.1016/j.cis.2017.12.006] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 12/19/2017] [Accepted: 12/19/2017] [Indexed: 01/05/2023]
Abstract
Cationic lipids have become known as one of the most versatile tools for the delivery of DNA, RNA and many other therapeutic molecules, and are especially attractive because they can be easily designed, synthesized and characterized. Most of cationic lipids share the common structure of cationic head groups and hydrophobic portions with linker bonds between both domains. The linker bond is an important determinant of the chemical stability and biodegradability of cationic lipid, and further governs its transfection efficiency and cytotoxicity. Based on the structures of linker bonds, they can be grouped into many types, such as ether, ester, amide, carbamate, disulfide, urea, acylhydrazone, phosphate, and other unusual types (carnitine, vinyl ether, ketal, glutamic acid, aspartic acid, malonic acid diamide and dihydroxybenzene). This review summarizes some research results concerning the nature (such as the structure and orientation of linker groups) and density (such as the spacing and the number of linker groups) of linker bond for improving the chemical stability, biodegradability, transfection efficiency and cytotoxicity of cationic lipid to overcome the critical barriers of in vitro and in vivo transfection.
Collapse
|
30
|
Zhu D, Yan H, Zhou Z, Tang J, Liu X, Hartmann R, Parak WJ, Feliu N, Shen Y. Detailed investigation on how the protein corona modulates the physicochemical properties and gene delivery of polyethylenimine (PEI) polyplexes. Biomater Sci 2018; 6:1800-1817. [DOI: 10.1039/c8bm00128f] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Given the various cationic polymers developed as non-viral gene delivery vectors, polyethylenimine (PEI) has been/is frequently used in in vitro transfection.
Collapse
Affiliation(s)
- Dingcheng Zhu
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education
- College of Chemical and Biological Engineering
- Zhejiang University
- China
- Fachbereich Physik
| | - Huijie Yan
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education
- College of Chemical and Biological Engineering
- Zhejiang University
- China
- Fachbereich Physik
| | - Zhuxian Zhou
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education
- College of Chemical and Biological Engineering
- Zhejiang University
- China
| | - Jianbin Tang
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education
- College of Chemical and Biological Engineering
- Zhejiang University
- China
| | - Xiangrui Liu
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education
- College of Chemical and Biological Engineering
- Zhejiang University
- China
| | | | - Wolfgang J. Parak
- Fachbereich Physik
- Philipps Universität Marburg
- Germany
- Fachbereich Physik und Chemie and CHyN
- Universität Hamburg
| | - Neus Feliu
- Fachbereich Physik
- Philipps Universität Marburg
- Germany
- Fachbereich Physik und Chemie and CHyN
- Universität Hamburg
| | - Youqing Shen
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education
- College of Chemical and Biological Engineering
- Zhejiang University
- China
| |
Collapse
|
31
|
Efficient gene editing via non-viral delivery of CRISPR–Cas9 system using polymeric and hybrid microcarriers. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:97-108. [DOI: 10.1016/j.nano.2017.09.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 08/13/2017] [Accepted: 09/07/2017] [Indexed: 11/21/2022]
|
32
|
Petrova-Brodskaya AV, Bondarenko AB, Timin AS, Plotnikova MA, Afanas'Ev MV, Semenova AA, Lebedev KI, Gorshkov AN, Gorshkova MY, Egorov VV, Klotchenko SA, Vasin AV. COMPARISON OF INFLUENZA A VIRUS INHIBITION IN VITRO BY SIRNA COMPLEXES WITH CHITOSAN DERIVATIVES, POLYETHYLENEIMINE AND HYBRID POLYARGININE-INORGANIC MICROCAPSULES. Vopr Virusol 2017; 62:259-265. [PMID: 36494957 DOI: 10.18821/0507-4088-2017-62-6-259-265] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Indexed: 12/13/2022]
Abstract
Anti-influenza drugs and vaccines have a limited effect due to the high mutation rate of virus genome. The direct impact on the conservative virus genome regions should significantly improve therapeutic effectiveness. The RNA interference mechanism (RNAi) is one of the modern approaches used to solve this problem. In this work, we have investigated the antiviral activity of small interfering RNA (siRNA) against the influenza A/PR/8/34 (H1N1), targeting conserved regions of NP and PA. Polycations were used for intracellular siRNA delivery: chitosan's derivatives (methylglycol and quaternized chitosan), polyethyleneimine, lipofectamine, and hybrid organic/non-organic microcapsules. A comparative study of these delivery systems with fluorescent labeled siRNA was conducted. The antiviral activity of three small interfering RNAs targeting the NP (NP-717, NP-1496) and PA (PA-1630) influenza A viruses genes was demonstrated, depending on the chosen carrier. The most effective intracellular delivery and antiviral activity were observed for hybrid microcapsules.
Collapse
Affiliation(s)
- A V Petrova-Brodskaya
- Research Institute of Influenza.,Peter the Great St. Petersburg Polytechnic University
| | - A B Bondarenko
- Research Institute of Influenza.,St. Petersburg State University
| | - A S Timin
- Peter the Great St. Petersburg Polytechnic University.,National Research Tomsk Polytechnic University
| | | | - M V Afanas'Ev
- Research Institute of Influenza.,St. Petersburg State University
| | - A A Semenova
- St. Petersburg State Chemical Pharmaceutical Academy
| | | | - A N Gorshkov
- Research Institute of Influenza.,Institute of Cytology
| | | | | | | | - A V Vasin
- Research Institute of Influenza.,Peter the Great St. Petersburg Polytechnic University
| |
Collapse
|
33
|
Dai Q, Long R, Wang S, Kankala RK, Wang J, Jiang W, Liu Y. Bacterial magnetosomes as an efficient gene delivery platform for cancer theranostics. Microb Cell Fact 2017; 16:216. [PMID: 29183380 PMCID: PMC5704436 DOI: 10.1186/s12934-017-0830-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 11/20/2017] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Gene therapy has gained an increasing interest in its anti-tumor efficiency. However, numerous efforts are required to promote them to clinics. In this study, a novel and efficient delivery platform based on bacterial magnetosomes (BMs) were developed, and the efficiency of BMs in delivering small interfering ribonucleic acid (siRNA) as well as antiproliferative effects in vitro were investigated. RESULTS Initially, we optimized the nitrogen/phosphate ratio and the BMs/siRNA mass ratio as 20 and 1:2, respectively, to prepare the BMs-PEI-siRNA composites. Furthermore, the prepared nanoconjugates were systematically characterized. The dynamic light scattering measurements indicated that the particle size and the zeta potential of BMs-PEI-siRNA are 196.5 nm and 49.5 ± 3.77 mV, respectively, which are optimum for cell internalization. Moreover, the confocal laser scanning microscope observations showed that these composites were at a proximity to the nucleus and led to an effective silencing effect. BMs-PEI-siRNA composites efficiently inhibited the growth of HeLa cells in a dose-as well as time-dependent manner. Eventually, a dual stain assay using acridine orange/ethidium bromide, revealed that these nanocomposites induced late apoptosis in cancer cells. CONCLUSIONS A novel and efficient gene delivery system based on BMs was successfully produced for cancer therapy, and these innovative carriers will potentially find widespread applications in the pharmaceutical field.
Collapse
Affiliation(s)
- Qinglei Dai
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021 People’s Republic of China
| | - Ruimin Long
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021 People’s Republic of China
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, 361021 People’s Republic of China
| | - Shibin Wang
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021 People’s Republic of China
- Institute of Pharmaceutical Engineering, Huaqiao University, Xiamen, 361021 People’s Republic of China
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, 361021 People’s Republic of China
| | - Ranjith Kumar Kankala
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021 People’s Republic of China
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, 361021 People’s Republic of China
| | - Jiaojiao Wang
- State Key Laboratories for Agrobiotechnology and College of Biological Sciences, China Agricultural University, Beijing, 100094 People’s Republic of China
| | - Wei Jiang
- State Key Laboratories for Agrobiotechnology and College of Biological Sciences, China Agricultural University, Beijing, 100094 People’s Republic of China
| | - Yuangang Liu
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021 People’s Republic of China
- Institute of Pharmaceutical Engineering, Huaqiao University, Xiamen, 361021 People’s Republic of China
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, 361021 People’s Republic of China
| |
Collapse
|
34
|
Multifunctional nanoparticles co-delivering EZH2 siRNA and etoposide for synergistic therapy of orthotopic non-small-cell lung tumor. J Control Release 2017; 268:198-211. [PMID: 29061511 DOI: 10.1016/j.jconrel.2017.10.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 05/17/2017] [Accepted: 10/14/2017] [Indexed: 12/29/2022]
Abstract
Malignant proliferation and metastasis in non-small cell lung carcinoma (NSCLC) are great challenges for effective clinical treatment through conventional chemotherapy. The combinational therapy strategy of RNA interfering (RNAi) technology and chemotherapeutic agents have been reported to be promising for effective cancer therapy. In this study, based on multifunctional nanoparticles (NPs), the simultaneous delivery of etoposide (ETP) and anti-Enhancer of Zeste Homologue 2 (EZH2) siRNA for the effective treatment of orthotopic lung tumor was achieved. The NPs exhibited pH/redox dual sensitivity verified by particle size changes, morphological changes, and in vitro release of drugs. Confocal microscopy analysis confirmed that the NPs exhibited endosomal escape property and on-demand intracellular drug release behavior, which can protect siRNA from degradation and facilitate the chemotherapeutic effect respectively. In vitro tumor cell motility study demonstrated that EZH2 siRNA loaded in NPs can decrease the migration and invasion capabilities of tumor cells by downregulating the expression of EZH2 mRNA and protein. In particular, an antiproliferation study revealed that the co-delivery of siRNA and ETP in the multifunctional NPs can induce a synergistic therapeutic effect on NSCLC. In vivo targeting evaluation showed that cRGDyC-PEG modification on NPs exhibited a low distribution in normal organs and an obvious accumulation in orthotopic lung tumor. Furthermore, targeted NPs co-delivering siRNA and ETP showed superior inhibition on tumor growth and metastasis and produced minimal systemic toxicity. These findings indicated that multifunctional NPs can be utilized as a co-delivery system, and that the combination of EZH2 siRNA and ETP can effectively treat NSCLC.
Collapse
|
35
|
Muslimov AR, Timin AS, Petrova AV, Epifanovskaya OS, Shakirova AI, Lepik KV, Gorshkov A, Il'inskaja EV, Vasin AV, Afanasyev BV, Fehse B, Sukhorukov GB. Mesenchymal Stem Cells Engineering: Microcapsules-Assisted Gene Transfection and Magnetic Cell Separation. ACS Biomater Sci Eng 2017; 3:2314-2324. [PMID: 33445290 DOI: 10.1021/acsbiomaterials.7b00482] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Stem cell engineering-the manipulation and functionalization of stem cells involving genetic modification-can significantly expand their applicability for cell therapy in humans. Toward this aim, reliable, standardized, and cost-effective methods for cell manipulation are required. Here we explore the potential of magnetic multilayer capsules to serve as a universal platform for nonviral gene transfer, stem cell magnetization, and magnetic cell separation to improve gene transfer efficiency. In particular, the following experiments were performed: (i) a study of the process of internalization of magnetic capsules into stem cells, including capsule co-localization with established markers of endo-lysosomal pathway; (ii) characterization and quantification of capsule uptake with confocal microscopy, electron microscopy, and flow cytometry; (iii) intracellular delivery of messenger RNA and separation of gene-modified cells by magnetic cell sorting (MACS); and (iv) analysis of the influence of capsules on cell proliferation potential. Importantly, based on the internalization of magnetic capsules, transfected cells became susceptible to external magnetic fields, which made it easy to enrich gene-modified cells using MACS (purity ∼95%), and also to influence their migration behavior. In summary, our results underline the high potential of magnetic capsules in stem cell functionalization, namely (i) to increase gene-transfer efficiency and (ii) to facilitate enrichment and targeting of transfected cells. Finally, we did not observe a negative impact of the capsules used on the proliferative capacity of stem cells, proving their high biocompatibility.
Collapse
Affiliation(s)
- Albert R Muslimov
- First Pavlov State Medical University of St. Petersburg, Lev Tolstoy str., 6/8, 197022 St. Petersburg, Russian Federation.,Research Institute of Influenza, Popova str., 15/17, 197376 Saint-Petersburg, Russian Federation.,RASA center in St. Petersburg, Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya, 29, 195251 St. Petersburg, Russian Federation
| | - Alexander S Timin
- First Pavlov State Medical University of St. Petersburg, Lev Tolstoy str., 6/8, 197022 St. Petersburg, Russian Federation.,RASA Center in Tomsk, Tomsk Polytechnic University, pros. Lenina, 30, 634050 Tomsk, Russian Federation
| | - Aleksandra V Petrova
- Research Institute of Influenza, Popova str., 15/17, 197376 Saint-Petersburg, Russian Federation.,Department of Molecular Biology, Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya, 29, 195251 St. Petersburg, Russian Federation
| | - Olga S Epifanovskaya
- First Pavlov State Medical University of St. Petersburg, Lev Tolstoy str., 6/8, 197022 St. Petersburg, Russian Federation
| | - Alena I Shakirova
- First Pavlov State Medical University of St. Petersburg, Lev Tolstoy str., 6/8, 197022 St. Petersburg, Russian Federation
| | - Kirill V Lepik
- First Pavlov State Medical University of St. Petersburg, Lev Tolstoy str., 6/8, 197022 St. Petersburg, Russian Federation.,RASA center in St. Petersburg, Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya, 29, 195251 St. Petersburg, Russian Federation
| | - Andrey Gorshkov
- Research Institute of Influenza, Popova str., 15/17, 197376 Saint-Petersburg, Russian Federation
| | - Eugenia V Il'inskaja
- Research Institute of Influenza, Popova str., 15/17, 197376 Saint-Petersburg, Russian Federation
| | - Andrey V Vasin
- Research Institute of Influenza, Popova str., 15/17, 197376 Saint-Petersburg, Russian Federation.,Department of Molecular Biology, Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya, 29, 195251 St. Petersburg, Russian Federation
| | - Boris V Afanasyev
- First Pavlov State Medical University of St. Petersburg, Lev Tolstoy str., 6/8, 197022 St. Petersburg, Russian Federation
| | - Boris Fehse
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, 20246, Martinistraße 52, 20251 Hamburg, Germany
| | - Gleb B Sukhorukov
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| |
Collapse
|
36
|
Chiarappa G, Abrami M, Dapas B, Farra R, Trebez F, Musiani F, Grassi G, Grassi M. Mathematical Modeling of Drug Release from Natural Polysaccharides Based Matrices. Nat Prod Commun 2017; 12. [DOI: 10.1177/1934578x1701200610] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025] Open
Abstract
The new concept of personalized medicine and the affirmation of Nucleic Acid Based Drugs (NABDs), an emerging class of bio-drugs constituted by short sequences of either DNA or RNA, represent a new challenge for the mathematical modelling in the drug delivery and adsorption field. Indeed, whether patient uniqueness asks for the use of theoretical tools enabling a rational approach adapting to each patient, NABDs delivery brings to our attention new aspects of drug delivery due to the NABDs fragile nature and way of action. This review aims to present and discuss the mathematical modelling of drug release from natural polysaccharides matrices with particular care to the description of the chemical and physical phenomena ruling drug delivery.
Collapse
Affiliation(s)
- Gianluca Chiarappa
- Department of Engineering and Architecture, Trieste University, via Valerio 6/A, Trieste, Italy I-34127
| | - Michela Abrami
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, Trieste, Italy I-34149 Trieste
| | - Barbara Dapas
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, Trieste, Italy I-34149 Trieste
| | - Rossella Farra
- Department of Engineering and Architecture, Trieste University, via Valerio 6/A, Trieste, Italy I-34127
| | - Fabio Trebez
- PROTOS Research Institute, Via del Follatoio 12, Trieste, Italy, I-34148, Trieste
| | - Francesco Musiani
- Department of Pharmacy and Biotechnology, Laboratory of Bioinorganic Chemistry, University of Bologna, Bologna, Italy, I-40127
| | - Gabriele Grassi
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, Trieste, Italy I-34149 Trieste
| | - Mario Grassi
- Department of Engineering and Architecture, Trieste University, via Valerio 6/A, Trieste, Italy I-34127
| |
Collapse
|
37
|
Timin AS, Muslimov AR, Petrova AV, Lepik KV, Okilova MV, Vasin AV, Afanasyev BV, Sukhorukov GB. Hybrid inorganic-organic capsules for efficient intracellular delivery of novel siRNAs against influenza A (H1N1) virus infection. Sci Rep 2017; 7:102. [PMID: 28273907 PMCID: PMC5427965 DOI: 10.1038/s41598-017-00200-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 02/14/2017] [Indexed: 12/17/2022] Open
Abstract
The implementation of RNAi technology into the clinical practice has been significantly postponing due to the issues regarding to the delivery of naked siRNA predominantly to target cells. Here we report the approach to enhance the efficiency of siRNA delivery by encapsulating the siRNA into new carrier systems which are obtained via the combination of widely used layer-by-layer technique and in situ modification by sol-gel chemistry. We used three types of siRNAs (NP-717, NP-1155 and NP-1496) in encapsulated form as new therapeutic agents against H1N1 influenza virus infection. By employing the hybrid microcontainers for the siRNA encapsulation we demonstrate the reduction of viral nucleoprotein (NP) level and inhibition of influenza virus production in infected cell lines (MDCK and A549). The obtained hybrid carriers based on assembled biodegradable polyelectrolytes and sol-gel coating possess several advantages such as a high cell uptake efficiency, low toxicity, efficient intracellular delivery of siRNAs and the protection of siRNAs from premature degradation before reaching the target cells. These findings underpin a great potential of versatile microencapsulation technology for the development of anti-viral RNAi delivery systems against influenza virus infection.
Collapse
Affiliation(s)
- Alexander S Timin
- RASA center in Tomsk, Tomsk Polytechnic University, Lenin Avenue, 30, 634050, Tomsk, Russian Federation.
| | - Albert R Muslimov
- First I. P. Pavlov State Medical University of St. Petersburg, Lev Tolstoy str., 6/8, 197022, Saint-Petersburg, Russian Federation
- RASA center in St. Petersburg, Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya, 29, 195251, St. Petersburg, Russian Federation
| | - Aleksandra V Petrova
- Research Institute of Influenza, Popova str., 15/17, 197376, Saint-Petersburg, Russian Federation
| | - Kirill V Lepik
- First I. P. Pavlov State Medical University of St. Petersburg, Lev Tolstoy str., 6/8, 197022, Saint-Petersburg, Russian Federation
| | - Maria V Okilova
- First I. P. Pavlov State Medical University of St. Petersburg, Lev Tolstoy str., 6/8, 197022, Saint-Petersburg, Russian Federation
| | - Andrey V Vasin
- Research Institute of Influenza, Popova str., 15/17, 197376, Saint-Petersburg, Russian Federation
- Department of Molecular Biology, Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya, 29, 195251, St. Petersburg, Russian Federation
| | - Boris V Afanasyev
- First I. P. Pavlov State Medical University of St. Petersburg, Lev Tolstoy str., 6/8, 197022, Saint-Petersburg, Russian Federation
| | - Gleb B Sukhorukov
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, E1 4NS, London, UK.
| |
Collapse
|
38
|
Zyuzin MV, Díez P, Goldsmith M, Carregal-Romero S, Teodosio C, Rejman J, Feliu N, Escudero A, Almendral MJ, Linne U, Peer D, Fuentes M, Parak WJ. Comprehensive and Systematic Analysis of the Immunocompatibility of Polyelectrolyte Capsules. Bioconjug Chem 2017; 28:556-564. [DOI: 10.1021/acs.bioconjchem.6b00657] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | | | - Meir Goldsmith
- Laboratory
of PrecisonNanoMedicine, Department of Cell Research and Immunology,
George S. Wise Faculty of Life Sciences, Department of Materials Science
and Engineering, The Iby and Aladar Fleischman Faculty of Engineering,
Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel
| | | | | | | | | | - Alberto Escudero
- Instituto
de Ciencia de Materiales de Sevilla, CSIC − Universidad de Sevilla, C. Américo Vespucio 49, E-41092, Seville, Spain
| | - María Jesús Almendral
- Department
of Analytical Chemistry, Nutrition and Food Science, Faculty of Chemistry, University of Salamanca, 37008 Salamanca, Spain
| | | | - Dan Peer
- Laboratory
of PrecisonNanoMedicine, Department of Cell Research and Immunology,
George S. Wise Faculty of Life Sciences, Department of Materials Science
and Engineering, The Iby and Aladar Fleischman Faculty of Engineering,
Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel
| | | | - Wolfgang J. Parak
- CIC biomaGUNE, Paseo de Miramón
182, 20014 Donostia
− San Sebastián, Spain
| |
Collapse
|
39
|
Kunz-Schughart LA, Dubrovska A, Peitzsch C, Ewe A, Aigner A, Schellenburg S, Muders MH, Hampel S, Cirillo G, Iemma F, Tietze R, Alexiou C, Stephan H, Zarschler K, Vittorio O, Kavallaris M, Parak WJ, Mädler L, Pokhrel S. Nanoparticles for radiooncology: Mission, vision, challenges. Biomaterials 2016; 120:155-184. [PMID: 28063356 DOI: 10.1016/j.biomaterials.2016.12.010] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/08/2016] [Accepted: 12/09/2016] [Indexed: 12/29/2022]
Abstract
Cancer is one of the leading non-communicable diseases with highest mortality rates worldwide. About half of all cancer patients receive radiation treatment in the course of their disease. However, treatment outcome and curative potential of radiotherapy is often impeded by genetically and/or environmentally driven mechanisms of tumor radioresistance and normal tissue radiotoxicity. While nanomedicine-based tools for imaging, dosimetry and treatment are potential keys to the improvement of therapeutic efficacy and reducing side effects, radiotherapy is an established technique to eradicate the tumor cells. In order to progress the introduction of nanoparticles in radiooncology, due to the highly interdisciplinary nature, expertise in chemistry, radiobiology and translational research is needed. In this report recent insights and promising policies to design nanotechnology-based therapeutics for tumor radiosensitization will be discussed. An attempt is made to cover the entire field from preclinical development to clinical studies. Hence, this report illustrates (1) the radio- and tumor-biological rationales for combining nanostructures with radiotherapy, (2) tumor-site targeting strategies and mechanisms of cellular uptake, (3) biological response hypotheses for new nanomaterials of interest, and (4) challenges to translate the research findings into clinical trials.
Collapse
Affiliation(s)
- Leoni A Kunz-Schughart
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Anna Dubrovska
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Claudia Peitzsch
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Alexander Ewe
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, University of Leipzig, Germany
| | - Achim Aigner
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, University of Leipzig, Germany
| | - Samuel Schellenburg
- Institute of Pathology, University Hospital, Carl Gustav Carus, TU Dresden, Germany
| | - Michael H Muders
- Institute of Pathology, University Hospital, Carl Gustav Carus, TU Dresden, Germany
| | - Silke Hampel
- Leibniz Institute of Solid State and Material Research Dresden, 01171 Dresden, Germany
| | - Giuseppe Cirillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy
| | - Francesca Iemma
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy
| | - Rainer Tietze
- ENT-Department, Section for Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius Professorship, University Hospital Erlangen, Erlangen, Germany
| | - Christoph Alexiou
- ENT-Department, Section for Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius Professorship, University Hospital Erlangen, Erlangen, Germany
| | - Holger Stephan
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, 01314 Dresden, Germany
| | - Kristof Zarschler
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, 01314 Dresden, Germany
| | - Orazio Vittorio
- Children's Cancer Institute Australia, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Australian Centre for NanoMedicine, Sydney, UNSW, Australia
| | - Maria Kavallaris
- Children's Cancer Institute Australia, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Australian Centre for NanoMedicine, Sydney, UNSW, Australia
| | - Wolfgang J Parak
- Fachbereich Physik, Philipps Universität Marburg, 35037 Marburg, Germany; CIC Biomagune, 20009 San Sebastian, Spain
| | - Lutz Mädler
- Foundation Institute of Materials Science (IWT), Department of Production Engineering, University of Bremen, 28359 Bremen, Germany
| | - Suman Pokhrel
- Foundation Institute of Materials Science (IWT), Department of Production Engineering, University of Bremen, 28359 Bremen, Germany.
| |
Collapse
|
40
|
Nussbaumer MG, Duskey JT, Rother M, Renggli K, Chami M, Bruns N. Chaperonin-Dendrimer Conjugates for siRNA Delivery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2016; 3:1600046. [PMID: 27840795 PMCID: PMC5096033 DOI: 10.1002/advs.201600046] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 04/13/2016] [Indexed: 05/19/2023]
Abstract
The group II chaperonin thermosome (THS) is a hollow protein nanoparticle that can encapsulate macromolecular guests. Two large pores grant access to the interior of the protein cage. Poly(amidoamine) (PAMAM) is conjugated into THS to act as an anchor for small interfering RNA (siRNA), allowing to load the THS with therapeutic payload. THS-PAMAM protects siRNA from degradation by RNase A and traffics KIF11 and GAPDH siRNA into U87 cancer cells. By modification of the protein cage with the cell-penetrating peptide TAT, RNA interference is also induced in PC-3 cells. THS-PAMAM protein-polymer conjugates are therefore promising siRNA transfection reagents and greatly expand the scope of protein cages in drug delivery applications.
Collapse
Affiliation(s)
- Martin G. Nussbaumer
- Department of ChemistryUniversity of BaselKlingelbergstrasse 804056BaselSwitzerland
| | - Jason T. Duskey
- Department of ChemistryUniversity of BaselKlingelbergstrasse 804056BaselSwitzerland
| | - Martin Rother
- Department of ChemistryUniversity of BaselKlingelbergstrasse 804056BaselSwitzerland
| | - Kasper Renggli
- Department of ChemistryUniversity of BaselKlingelbergstrasse 804056BaselSwitzerland
| | - Mohamed Chami
- C‐CINACenter for Cellular Imaging and NanoAnalytics BiozentrumUniversity of BaselMattenstrasse 264058BaselSwitzerland
| | - Nico Bruns
- Department of ChemistryUniversity of BaselKlingelbergstrasse 804056BaselSwitzerland
- Adolphe Merkle InstituteUniversity of FribourgChemin des Verdiers 41700FribourgSwitzerland
| |
Collapse
|
41
|
Sun P, Huang W, Jin M, Wang Q, Fan B, Kang L, Gao Z. Chitosan-based nanoparticles for survivin targeted siRNA delivery in breast tumor therapy and preventing its metastasis. Int J Nanomedicine 2016; 11:4931-4945. [PMID: 27729789 PMCID: PMC5045910 DOI: 10.2147/ijn.s105427] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Nanoparticle-mediated small interfering RNA (siRNA) delivery is a promising therapeutic strategy in various cancers. However, it is difficult to deliver degradative siRNA to tumor tissue, and thus a safe and efficient vector for siRNA delivery is essential for cancer therapy. In this study, poly(ethylene glycol)-modified chitosan (PEG-CS) was synthesized successfully for delivering nucleic acid drug. We deemed that PEGylated CS could improve its solubility by forming a stable siRNA loaded in nanoparticles, and enhancing transfection efficiency of siRNA-loaded CS nanoparticles in cancer cell line. The research results showed that siRNA loaded in PEGylated CS (PEG-CS/siRNA) nanoparticles with smaller particle size had superior structural stability in the physical environment compared to CS nanoparticles. The data of in vitro antitumor activity revealed that 4T1 tumor cell growth was significantly inhibited and cellular uptake of PEG-CS/siRNA nanoparticles in 4T1 cells was dramatically enhanced compared to naked siRNA groups. The results from flow cytometry and confocal laser scanning microscopy showed that PEG-CS/siRNA nanoparticles were more easily taken up than naked siRNA. Importantly, PEG-CS/siRNA nanoparticles significantly reduced the growth of xenograft tumors of 4T1 cells in vivo. It has been demonstrated that the PEG-CS is a safe and efficient vector for siRNA delivery, and it can effectively reduce tumor growth and prevent metastasis.
Collapse
Affiliation(s)
- Ping Sun
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Wei Huang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Mingji Jin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Qiming Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Bo Fan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Lin Kang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Zhonggao Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| |
Collapse
|
42
|
Catalytic properties of polymer-colloid complexes based on polyethyleneimines and mono- and diquaternized 1,4-diazabicyclo[2.2.2]octane derivatives in the hydrolysis of phosphorus acids esters. Russ Chem Bull 2016. [DOI: 10.1007/s11172-015-1242-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
43
|
Liu J, Feng M, Liang D, Yang J, Tang X. Vitamin E-Labeled Polyethylenimine for in vitro and in vivo Gene Delivery. Biomacromolecules 2016; 17:3153-3161. [DOI: 10.1021/acs.biomac.6b00776] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jinxing Liu
- State Key Laboratory of Natural
and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics
and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, No. 38 Xueyuan Road Beijing, 100191, China
| | - Mengke Feng
- State Key Laboratory of Natural
and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics
and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, No. 38 Xueyuan Road Beijing, 100191, China
| | - Duanwei Liang
- State Key Laboratory of Natural
and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics
and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, No. 38 Xueyuan Road Beijing, 100191, China
| | - Jiali Yang
- State Key Laboratory of Natural
and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics
and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, No. 38 Xueyuan Road Beijing, 100191, China
| | - Xinjing Tang
- State Key Laboratory of Natural
and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics
and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, No. 38 Xueyuan Road Beijing, 100191, China
| |
Collapse
|
44
|
Polomska A, Leroux JC, Brambilla D. Layer-by-Layer Coating of Solid Drug Cores: A Versatile Method to Improve Stability, Control Release and Tune Surface Properties. Macromol Biosci 2016; 17. [DOI: 10.1002/mabi.201600228] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 07/14/2016] [Indexed: 01/02/2023]
Affiliation(s)
- Anna Polomska
- Institute of Pharmaceutical Sciences; Department of Chemistry and Applied Biosciences; Swiss Federal Institute of Technology Zurich (ETHZ); Vladimir-Prelog Weg 1-5/10 8093 Zurich Switzerland
| | - Jean-Christophe Leroux
- Institute of Pharmaceutical Sciences; Department of Chemistry and Applied Biosciences; Swiss Federal Institute of Technology Zurich (ETHZ); Vladimir-Prelog Weg 1-5/10 8093 Zurich Switzerland
| | - Davide Brambilla
- Institute of Pharmaceutical Sciences; Department of Chemistry and Applied Biosciences; Swiss Federal Institute of Technology Zurich (ETHZ); Vladimir-Prelog Weg 1-5/10 8093 Zurich Switzerland
| |
Collapse
|
45
|
Valdepérez D, del Pino P, Sánchez L, Parak WJ, Pelaz B. Highly active antibody-modified magnetic polyelectrolyte capsules. J Colloid Interface Sci 2016; 474:1-8. [DOI: 10.1016/j.jcis.2016.04.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 03/31/2016] [Accepted: 04/02/2016] [Indexed: 01/27/2023]
|
46
|
Namvar A, Bolhassani A, Khairkhah N, Motevalli F. Physicochemical properties of polymers: An important system to overcome the cell barriers in gene transfection. Biopolymers 2016; 103:363-75. [PMID: 25761628 DOI: 10.1002/bip.22638] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 03/04/2015] [Accepted: 03/04/2015] [Indexed: 12/22/2022]
Abstract
Delivery of the macromolecules including DNA, miRNA, and antisense oligonucleotides is typically mediated by carriers due to the large size and negative charge. Different physical (e.g., gene gun or electroporation), and chemical (e.g., cationic polymer or lipid) vectors have been already used to improve the efficiency of gene transfer. Polymer-based DNA delivery systems have attracted special interest, in particular via intravenous injection with many intra- and extracellular barriers. The recent progress has shown that stimuli-responsive polymers entitled as multifunctional nucleic acid vehicles can act to target specific cells. These nonviral carriers are classified by the type of stimulus including reduction potential, pH, and temperature. Generally, the physicochemical characterization of DNA-polymer complexes is critical to enhance the transfection potency via protection of DNA from nuclease digestion, endosomal escape, and nuclear localization. The successful clinical applications will depend on an exact insight of barriers in gene delivery and development of carriers overcoming these barriers. Consequently, improvement of novel cationic polymers with low toxicity and effective for biomedical use has attracted a great attention in gene therapy. This article summarizes the main physicochemical and biological properties of polyplexes describing their gene transfection behavior, in vitro and in vivo. In this line, the relative efficiencies of various cationic polymers are compared.
Collapse
Affiliation(s)
- Ali Namvar
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | | | | | | |
Collapse
|
47
|
Gao H, Goriacheva OA, Tarakina NV, Sukhorukov GB. Intracellularly Biodegradable Polyelectrolyte/Silica Composite Microcapsules as Carriers for Small Molecules. ACS APPLIED MATERIALS & INTERFACES 2016; 8:9651-9661. [PMID: 27008032 DOI: 10.1021/acsami.6b01921] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Microcapsules that can be efficiently loaded with small molecules and effectively released at the target area through the degradation of the capsule shells hold great potential for treating diseases. Traditional biodegradable polyelectrolyte (PE) capsules can be degraded by cells and eliminated from the body but fail to encapsulate drugs with small molecular weight. Here, we report a poly-l-arginine hydrochloride (PARG)/dextran sulfate sodium salt (DEXS)/silica (SiO2) composite capsule that can be destructed in cells and of which the in situ formed inorganic SiO2 enables loading of small model molecules, Rhodamine B (Rh-B). The composite capsules were fabricated based on the layer-by-layer (LbL) technique and the hydrolysis of tetraethoxysilane (TEOS). Capsules composed of nondegradable PEs and SiO2, polyllamine hydrochloride (PAH)/poly(sodium 4-styrenesulfonate) (PSS)/silica (the control sample), were prepared and briefly compared with the degradable composite capsules. An intracellular degradation study of both types of composite capsules revealed that PARG/DEXS/silica capsules were degraded into fragments and lead to the release of model molecules in a relatively short time (2 h), while the structure of PAH/PSS/silica capsules remained intact even after 3 days incubation with B50 cells. Such results indicated that the polymer components played a significant role in the degradability of the SiO2. Specifically, PAH/PSS scaffolds blocked the degradation of SiO2. For PARG/DEXS/silica capsules, we proposed the effects of both hydrolytic degradation of amorphous silica and enzymatic degradation of PARG/DEXS polymers as a cell degradation mechanism. All the results demonstrated a new type of functional composite microcapsule with low permeability, good biocompatibility, and biodegradability for potential medical applications.
Collapse
Affiliation(s)
- Hui Gao
- School of Engineering and Materials Science, Queen Mary University of London , Mile End Road, London E1 4NS, United Kingdom
| | - Olga A Goriacheva
- Saratov State University , 83 Astrakhanskaya Street, Saratov 410012, Russia
| | - Nadezda V Tarakina
- School of Engineering and Materials Science, Queen Mary University of London , Mile End Road, London E1 4NS, United Kingdom
| | - Gleb B Sukhorukov
- School of Engineering and Materials Science, Queen Mary University of London , Mile End Road, London E1 4NS, United Kingdom
| |
Collapse
|
48
|
Gao C, Wu Z, Lin Z, Lin X, He Q. Polymeric capsule-cushioned leukocyte cell membrane vesicles as a biomimetic delivery platform. NANOSCALE 2016; 8:3548-3554. [PMID: 26804725 DOI: 10.1039/c5nr08407e] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We report a biomimetic delivery of microsized capsule-cushioned leukocyte membrane vesicles (CLMVs) through the conversion of freshly reassembled leukocyte membrane vesicles (LMVs), including membrane lipids and membrane-bound proteins onto the surface of layer-by-layer assembled polymeric multilayer microcapsules. The leukocyte membrane coating was verified by using electron microscopy, a quartz crystal microbalance, dynamic light scattering, and confocal laser scanning microscopy. The resulting CLMVs have the ability to effectively evade clearance by the immune system and thus prolong the circulation time in mice. Moreover, we also show that the right-side-out leukocyte membrane coating can distinctly improve the accumulation of capsules in tumor sites through the molecular recognition of membrane-bound proteins of CLMVs with those of tumor cells in vitro and in vivo. The natural cell membrane camouflaged polymeric multilayer capsules with the immunosuppressive and tumor-recognition functionalities of natural leukocytes provide a new biomimetic delivery platform for disease therapy.
Collapse
Affiliation(s)
- Changyong Gao
- State Key Laboratory of Robotics and System (HIT), Micro/Nanotechnology Research Center, Harbin Institute of Technology, Yikuangjie 2, Harbin 150080, China.
| | | | | | | | | |
Collapse
|
49
|
Affiliation(s)
- Mingming Wang
- Shanghai
Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, P.R. China
| | - Yiyun Cheng
- Shanghai
Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, P.R. China
| |
Collapse
|
50
|
An S, He D, Wagner E, Jiang C. Peptide-like Polymers Exerting Effective Glioma-Targeted siRNA Delivery and Release for Therapeutic Application. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015. [PMID: 26222334 DOI: 10.1002/smll.201501167] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Lipopolymer 49, a solid-phase synthesized T-shaped peptide-like oligoamide containing two central oleic acids, 20 aminoethane, and two terminal cysteine units, is identified as very potent and biocompatible small interfering RNA (siRNA) carrier for gene silencing in glioma cells. This carrier is combined with a novel targeting polymer 727, containing a precise sequence of Angiopep 2 targeting peptide, linked with 28 monomer units of ethylene glycol, 40 aminoethane, and two terminal cysteines in siRNA complex formation. Angiopep-polyethylene glycol (PEG)/siRNA polyplexes exhibit good nanoparticle features, effective glioma-targeting siRNA delivery, and intracellular siRNA release, resulting in an outstanding gene downregulation both in glioma cells and upon intravenous delivery in glioma model nude mice without significant biotoxicity. Therefore, this novel siRNA delivery system is expected to be a promising strategy for targeted and safe glioma therapy.
Collapse
Affiliation(s)
- Sai An
- Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, China
| | - Dongsheng He
- Pharmaceutical Biotechnology, Center for Nanoscience, Ludwig-Maximilians-University Munich, Butenandtstrasse 5-13, 81377, Munich, Germany
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Center for Nanoscience, Ludwig-Maximilians-University Munich, Butenandtstrasse 5-13, 81377, Munich, Germany
| | - Chen Jiang
- Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, China
| |
Collapse
|