1
|
Wang Z, Huang J, Lv W, Huang C, Wang Y, Li X, Liu H, Hao L. Ultrasound/magnetic resonance bimodal imaging-guided CD20-targeted multifunctional nanoplatform for photothermal/chemo synergistic therapy of B-cell lymphoma. J Pharm Sci 2025; 114:967-982. [PMID: 39551237 DOI: 10.1016/j.xphs.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 11/19/2024]
Abstract
B-cell lymphoma has a poor prognosis due to difficulties in early diagnosis and the negative effects of systemic chemotherapy. Therefore, there is an urgent need to develop highly accurate and effective theranostic strategies for B-cell lymphoma. In this study, we designed a poly (lactic-co-glycolic acid) (PLGA)-based theranostic nanoplatform (denoted as TscNPs) to achieve ultrasound (US)/magnetic resonance (MR) bimodal imaging-guided photothermal (PTT)/chemo synergistic therapy of B-cell lymphoma. The nanoplatform was conjugated with a CD20 monoclonal antibody specifically targeting B-cell lymphoma to promote tumor accumulation. Encapsulated superparamagnetic iron oxide nanoparticles (SPIONs) as photothermal and MR imaging agents enabled thermal ablation of tumors and imaging-guided tumor therapy. When exposed to near-infrared (NIR) laser, TscNPs generate heat that induces optical droplet vaporization (ODV) of perfluoropentane (PFP), which transforms into microbubbles. This process not only enhanced ultrasound imaging, but also facilitated the release of celastrol (CST) from the nanoplatform, ultimately achieving a PTT/chemo synergistic therapy effect. In the tumor-bearing nude mice model, TscNPs were effectively accumulated in the tumor region. Furthermore, the combined treatment mode of TscNPs and NIR laser irradiation demonstrated a tumor inhibition rate of approximately 96.57 %, which was significantly superior to the rates observed with PTT or chemotherapy alone. These results suggest that the multifunctional theranostic nanoplatform represents a promising new strategy for the therapy of B-cell lymphoma.
Collapse
Affiliation(s)
- Zhengji Wang
- Department of Molecular Imaging, School of Medical Technology, Qiqihar Medical University, Qiqihar, China
| | - Jian Huang
- Department of Molecular Imaging, School of Medical Technology, Qiqihar Medical University, Qiqihar, China
| | - Weiyang Lv
- Department of Ultrasound, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Chunxin Huang
- Department of Ultrasound, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Ying Wang
- Department of Ultrasound, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Xing Li
- Department of Ultrasound, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Huilin Liu
- Department of Ultrasound, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, China.
| | - Liguo Hao
- Department of Molecular Imaging, School of Medical Technology, Qiqihar Medical University, Qiqihar, China.
| |
Collapse
|
2
|
Lokesh BS, Ajmeera S, Choudhary R, Moharana SK, Purohit CS, Konkimalla VB. Engineering of redox-triggered polymeric lipid hybrid nanocarriers for selective drug delivery to cancer cells. J Mater Chem B 2025; 13:1437-1458. [PMID: 39690942 DOI: 10.1039/d4tb01236d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Tunable redox-sensitive polymeric-lipid hybrid nanocarriers (RS-PLHNCs) were fabricated using homogenization and nanoprecipitation methods. These nanocarriers were composed of novel redox-cholesterol with disulfide linkages and synthesized by conjugating cholesterol with dithiodipropionic acid via esterification. Berberine (BBR) was loaded into the fabricated nanocarriers to investigate the selective uptake of BBR by cancer cells as well as its release and enhanced cytotoxicity. The optimized BBR nanocarriers BBR NP-17 and -18 exhibited a spherical shape and uniform distribution, with a particle size of 124.7 ± 1.2 nm and 185.2 ± 1.6 nm and a zeta potential of -5.9 ± 2.5 mV and -20.3 ± 1.1 mV, respectively. These NCs released >80% BBR in a simulated intracellular tumor microenvironment (TME), while only 30%-45% was released under normal physiological conditions. The accelerated drug release in the TME was due to disulfide bond cleavage and ester bond hydrolysis in the presence of GSH and acidic pH, whereas under normal conditions, the NCs remained stable/undissociated. Cellular uptake studies confirmed enhanced BBR uptake in GSH-rich cancer cells (H1975) compared with normal cells (BEAS-2B and HEK293A). Following uptake, compared with the free form of the drug, the optimized nanocarriers displayed significant selective cytotoxicity and apoptosis in cancer cells by notably downregulating anti-oxidant (NFE2L2, HO-1, NQO1, and TXRND1) and anti-apoptotic (MCL-1) genes while upregulating pro-apoptotic genes (PUMA and NOXA). This resulted in increased oxidative stress, thereby inducing selective apoptosis in the GSH-rich lung cancer cells. These results suggest that the synthesized novel NCs hold great potential for specifically delivering drugs to cancer cells (with a reduced environment) while sparing normal cells, thus ensuring safe and efficient cancer therapy.
Collapse
Affiliation(s)
- B Siva Lokesh
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Jatni, Odisha 752050, India.
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Suresh Ajmeera
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Jatni, Odisha 752050, India.
- Hasselt University, Institute for Materials Research (IMO), Nano-Biophysics and Soft Matter Interfaces (NSI), Wetenschapspark 1, 3590 Diepenbeek, Belgium
- IMEC, associated lab IMOMEC, Wetenschapspark 1, 3590 Diepenbeek, Belgium
| | - Rajat Choudhary
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Jatni, Odisha 752050, India.
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Sanjaya Kumar Moharana
- School of Chemical Sciences, National Institute of Science Education and Research, HBNI, Jatni, Odisha 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - C S Purohit
- School of Chemical Sciences, National Institute of Science Education and Research, HBNI, Jatni, Odisha 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - V Badireenath Konkimalla
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Jatni, Odisha 752050, India.
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| |
Collapse
|
3
|
Qiao JX, Guo DY, Tian H, Wang ZP, Fan QQ, Tian Y, Sun J, Zhang XF, Zou JB, Cheng JX, Luan F, Zhai BT. Research progress of paclitaxel nanodrug delivery system in the treatment of triple-negative breast cancer. Mater Today Bio 2024; 29:101358. [PMID: 39677523 PMCID: PMC11638641 DOI: 10.1016/j.mtbio.2024.101358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/27/2024] [Accepted: 11/21/2024] [Indexed: 12/17/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, characterized by the loss or low expression of estrogen receptor (ER), human epidermal growth factor receptor 2 (HER2) and progesterone receptor (PR). Due to the lack of clear therapeutic targets, paclitaxel (PTX) is often used as a first-line standard chemotherapy drug for the treatment of high-risk and locally advanced TNBC. PTX is a diterpenoid alkaloid extracted and purified from Taxus plants, functioning as an anticancer agent by inducing and promoting tubulin polymerization, inhibiting spindle formation in cancer cells, and preventing mitosis. However, its clinical application is limited by low solubility and high toxicity. Nanodrug delivery system (NDDS) is one of the feasible methods to improve the water solubility of PTX and reduce side effects. In this review, we summarize the latest advancements in PTX-targeted NDDS, as well as its combination with other codelivery therapies for TNBC treatment. NDDS includes passive targeting, active targeting, stimuli-responsive, codelivery, and multimode strategies. These systems have good prospects in improving the bioavailability of PTX, enhancing tumor targeting, reducing toxicity, controlling drug release, and reverse tumor multidrug resistance (MDR). This review provides valuable insights into the clinical development and application of PTX-targeted NDDS in the treatment of TNBC.
Collapse
Affiliation(s)
- Jia-xin Qiao
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Dong-yan Guo
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Huan Tian
- Department of Pharmacy, National Old Pharmacist Inheritance Studio, Xi'an Hospital of Traditional Chinese Medicine, Xi'an, 710021, China
| | - Zhan-peng Wang
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Qiang-qiang Fan
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Yuan Tian
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Jing Sun
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Xiao-fei Zhang
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Jun-bo Zou
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Jiang-xue Cheng
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Fei Luan
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Bing-tao Zhai
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| |
Collapse
|
4
|
Li X, Zheng WZ, Xu PY, Zhang ZY, Lu B, Huang D, Zhen ZC, Ji JH, Wang GX. Ionized copolyesters with pH-responsive degradability: Accelerated degradation in specific environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175729. [PMID: 39214367 DOI: 10.1016/j.scitotenv.2024.175729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/08/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
The development of environmentally responsive biodegradable polymers is a promising solution for balancing the stability and degradability of biodegradable plastics. In this study, a commercial biodegradable polyester, poly(butylene adipate-co-butylene terephthalate) (PBAT), was used as the substrate and was synthetically modified with a small amount of anionic sodium 1-3-isophthalate-5-sulfonate (SIPA) to obtain the ionized random poly(butylene adipate-co-butylene terephthalate-co-butylene 5-sodiosulfoisophthalate) (PBATS). The introduction of the sodium sulfonate ionic group enhanced the mechanical and heat-resistant properties of the material, while significantly improving the hydrophilicity and water absorption of the copolyesters of PBATSs and endowing them with special pH-responsive degradation properties. Compared with PBAT, PBATS copolyesters could accelerate degradation in acidic or alkaline buffer solutions and natural seawater, while degradation was inhibited in neutral buffer solutions at pH 7.2. Degradation experiments in simulated gastric, intestinal, and body fluids revealed that the copolyester showed specific and rapid degradation in acidic gastric fluids. This environmentally-responsive degradable material greatly expands the special applications of biodegradable polyesters in the fields of environmental remediation and medical applications.
Collapse
Affiliation(s)
- Xiao Li
- National Engineering Research Center of Engineering Plastics and Ecological Plastics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei-Zhen Zheng
- National Engineering Research Center of Engineering Plastics and Ecological Plastics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng-Yuan Xu
- National Engineering Research Center of Engineering Plastics and Ecological Plastics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ze-Yang Zhang
- National Engineering Research Center of Engineering Plastics and Ecological Plastics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Lu
- National Engineering Research Center of Engineering Plastics and Ecological Plastics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; Hainan Degradable Plastics Technology Innovation Center, Haikou 571137, China
| | - Dan Huang
- National Engineering Research Center of Engineering Plastics and Ecological Plastics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; Hainan Degradable Plastics Technology Innovation Center, Haikou 571137, China
| | - Zhi-Chao Zhen
- National Engineering Research Center of Engineering Plastics and Ecological Plastics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; Hainan Degradable Plastics Technology Innovation Center, Haikou 571137, China
| | - Jun-Hui Ji
- National Engineering Research Center of Engineering Plastics and Ecological Plastics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; Hainan Degradable Plastics Technology Innovation Center, Haikou 571137, China.
| | - Ge-Xia Wang
- National Engineering Research Center of Engineering Plastics and Ecological Plastics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; Hainan Degradable Plastics Technology Innovation Center, Haikou 571137, China.
| |
Collapse
|
5
|
Meng Z, Taneja S, Hassan R, Parquette JR. pH-Responsive Rhodamine Nanotube Capable of Self-Reporting the Assembly State. ACS APPLIED MATERIALS & INTERFACES 2024; 16:47089-47099. [PMID: 39197171 DOI: 10.1021/acsami.4c07280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
Nanomaterials that respond to intracellular signals, such as pH, have the potential for many biomedical applications, such as drug delivery, because the assembly/disassembly process can be tailored to respond to a stimulus characteristic of a specific subcellular location. In this work, two rhodamine-peptides that form stable nanotubes at physiological pH but dissociate into highly fluorescent monomers within the acidified interior of endosomal/lysosomal cellular compartments have been developed. The rhodamine dipeptide conjugates, NH2-KK(RhB)-NH2 (RhB-KK) and NH2-EK(RhB)-NH2 (RhB-KE) with rhodamine B chromophores appended at the ε-amino position of a lysine residue, were shown to assemble into well-defined nanotubes at pH values above ∼4-5 and to dissociate into a fluorescent monomer state at lower pH values. The pH dependence of the assembly process was investigated using circular dichroism (CD) and fluorescence spectroscopy along with transmission electron microscopy (TEM), atomic force microscopy (AFM), and confocal imaging. Although the ring opening/closing transition of the rhodamine chromophore took place at pH 4.1 for both peptides, the onset of assembly began at pH 4.6 for RhB-KE and at a comparatively more basic pH (5.8) for RhB-KK. Accordingly, the rhodamine-peptides interconverted between three pH-dependent states: an open-ring, monomeric state (λmax 580 nm, λex 550 nm) at pH values at or below ∼4.6; a closed-ring, nanotube form that exhibits AIEE (λmax 460 nm, λex = 330 nm) at higher pH values; a closed-ring, nonemissive monomeric state that emerged below the critical micelle concentrations (CMC). The pH-responsive features of the peptides were evaluated by live-cell imaging in three cancer cell lines using confocal laser scanning microscopy (CLSM). Visualizing the cells after incubation with either RhB-KE or RhB-KK produced CLSM images with a punctate appearance in the Texas Red channel that colocalized with the lysosomes. These experiments indicate that the nanotubes were rapidly trafficked into the acidic lysosomal compartments within the cells, which induced dissociation into a monomeric, open state. Uptake inhibition studies suggested that cellular uptake was mediated by either caveolae- or clathrin-mediated endocytosis, depending on the cell line studied.
Collapse
Affiliation(s)
- Ziyuan Meng
- Department of Chemistry and Biochemistry, The Ohio State University, 100 W. 18th Avenue, Columbus, Ohio 43210, United States
| | - Sagarika Taneja
- Department of Chemistry and Biochemistry, The Ohio State University, 100 W. 18th Avenue, Columbus, Ohio 43210, United States
| | - Reham Hassan
- Department of Chemistry and Biochemistry, The Ohio State University, 100 W. 18th Avenue, Columbus, Ohio 43210, United States
| | - Jon R Parquette
- Department of Chemistry and Biochemistry, The Ohio State University, 100 W. 18th Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
6
|
Kalosakas G. Drug polymer conjugates: Average release time from thin films. Int J Pharm 2024; 662:124506. [PMID: 39053679 DOI: 10.1016/j.ijpharm.2024.124506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/19/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
The reaction-diffusion problem describing the release of drugs conjugated through labile bonds to polymeric thin films has a known analytical solution, when the reaction kinetics is of first order. Using this solution, an exact formula is derived for the average release time of the system. This simple expression provides the characteristic time of release tav as the sum of the corresponding average diffusion time plus the inverse reaction rate constant: tav=(1/12)⋅(L2/D)+(1/k), where L is the slab thickness, D the diffusion coefficient, and k the reaction rate constant. The former term dominates in a diffusion-controlled release, while the latter one in a reaction-controlled delivery. The crossover regime is exactly described by their sum. The obtained result for the average release time is verified by direct numerical integration through the drug release profiles of the analytical solution. The value of fractional drug release at the characteristic average time is between 60-64%. These results can be used for the design of polymer-drug conjugates with a desired delivery time scale, as well as for the experimental determination of the values of microscopic parameters D and k in a conjugated system of interest.
Collapse
Affiliation(s)
- George Kalosakas
- Department of Materials Science, University of Patras, GR-26504 Rio, Greece.
| |
Collapse
|
7
|
Tessier B, Moine L, Peramo A, Tsapis N, Fattal E. Poly(malic acid)-budesonide nanoconjugates embedded in microparticles for lung administration. Drug Deliv Transl Res 2024; 14:2062-2078. [PMID: 38517568 DOI: 10.1007/s13346-024-01571-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2024] [Indexed: 03/24/2024]
Abstract
To improve the therapeutic activity of inhaled glucocorticoids and reduce potential side effects, we designed a formulation combining the advantages of nanoparticles, which have an enhanced uptake by alveolar cells, allow targeted delivery and sustained drug release, as well as limited drug systemic passage, with those of microparticles, which display good alveolar deposition. Herein, a polymer-drug conjugate, poly(malic acid)-budesonide (PMAB), was first synthesized with either 11, 20, 33, or 43 mol% budesonide (drug:polymer from 1:8 to 3:4), the drug creating hydrophobic domains. The obtained conjugates self-assemble into nanoconjugates in water, yielding excellent drug loading of up to 73 wt%, with 80-100 nm diameters. In vitro assays showed that budesonide could be steadily released from the nanoconjugates, and the anti-inflammatory activity was preserved, as evidenced by reduced cytokine production in LPS-activated RAW 264.7 macrophages. Nanoconjugates were then embedded into microparticles through spray-drying with L-leucine, forming nano-embedded microparticles (NEMs). NEMs were produced with an aerodynamic diameter close to 1 µm and a density below 0.1 g.cm-3, indicative of a high alveolar deposition. NEMs spray-dried with the less hydrophobic nanoconjugates, PMAB 1:4, were readily dissolved in simulated lung fluid and were chosen for in vivo experiments to study pharmacokinetics in healthy rats. As it was released in vivo from NEMs, sustained distribution of budesonide was obtained for 48 h in lung tissue, cells, and lining fluid. With high loading rates, modulable release kinetics, and low cytotoxicity, these nanoconjugates delivered by NEMs are promising for the more efficient treatment of pulmonary inflammatory diseases.
Collapse
Affiliation(s)
- Barbara Tessier
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400, Orsay, France
| | - Laurence Moine
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400, Orsay, France
| | - Arnaud Peramo
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400, Orsay, France
| | - Nicolas Tsapis
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400, Orsay, France
| | - Elias Fattal
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400, Orsay, France.
| |
Collapse
|
8
|
Liu Y, Li C, Yang X, Yang B, Fu Q. Stimuli-responsive polymer-based nanosystems for cardiovascular disease theranostics. Biomater Sci 2024; 12:3805-3825. [PMID: 38967109 DOI: 10.1039/d4bm00415a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Stimulus-responsive polymers have found widespread use in biomedicine due to their ability to alter their own structure in response to various stimuli, including internal factors such as pH, reactive oxygen species (ROS), and enzymes, as well as external factors like light. In the context of atherosclerotic cardiovascular diseases (CVDs), stimulus-response polymers have been extensively employed for the preparation of smart nanocarriers that can deliver therapeutic and diagnostic drugs specifically to inflammatory lesions. Compared with traditional drug delivery systems, stimulus-responsive nanosystems offer higher sensitivity, greater versatility, wider applicability, and enhanced biosafety. Recent research has made significant contributions towards designing stimulus-responsive polymer nanosystems for CVDs diagnosis and treatment. This review summarizes recent advances in this field by classifying stimulus-responsive polymer nanocarriers according to different responsiveness types and describing numerous stimuli relevant to these materials. Additionally, we discuss various applications of stimulus-responsive polymer nanomaterials in CVDs theranostics. We hope that this review will provide valuable insights into optimizing the design of stimulus-response polymers for accelerating their clinical application in diagnosing and treating CVDs.
Collapse
Affiliation(s)
- Yuying Liu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China.
| | - Congcong Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.
| | - Xiao Yang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.
| | - Bin Yang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China.
| | - Qinrui Fu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.
| |
Collapse
|
9
|
Cho H, Huh KM, Shim MS, Cho YY, Lee JY, Lee HS, Kang HC. Beyond Nanoparticle-Based Intracellular Drug Delivery: Cytosol/Organelle-Targeted Drug Release and Therapeutic Synergism. Macromol Biosci 2024; 24:e2300590. [PMID: 38488862 DOI: 10.1002/mabi.202300590] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/07/2024] [Indexed: 07/16/2024]
Abstract
Nanoparticle (NP)-based drug delivery systems are conceived to solve poor water-solubility and chemical/physical instability, and their purpose expanded to target specific sites for maximizing therapeutic effects and minimizing unwanted events of payloads. Targeted sites are also narrowed from organs/tissues and cells to cytosol/organelles. Beyond specific site targeting, the particular release of payloads at the target sites is growing in importance. This review overviews various issues and their general strategies during multiple steps, from the preparation of drug-loaded NPs to their drug release at the target cytosol/organelles. In particular, this review focuses on current strategies for "first" delivery and "later" release of drugs to the cytosol or organelles of interest using specific stimuli in the target sites. Recognizing or distinguishing the presence/absence of stimuli or their differences in concentration/level/activity in one place from those in another is applied to stimuli-triggered release via bond cleavage or nanostructural transition. In addition, future directions on understanding the intracellular balance of stimuli and their counter-stimuli are demonstrated to synergize the therapeutic effects of payloads released from stimuli-sensitive NPs.
Collapse
Affiliation(s)
- Hana Cho
- Department of Pharmacy, College of Pharmacy and Regulated Cell Death (RCD) Control·Material Research Institute, The Catholic University of Korea, Bucheon, Gyeonggi-do, 14662, Republic of Korea
| | - Kang Moo Huh
- Department of Polymer Science and Engineering, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Min Suk Shim
- Division of Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Yong-Yeon Cho
- Department of Pharmacy, College of Pharmacy and Regulated Cell Death (RCD) Control·Material Research Institute, The Catholic University of Korea, Bucheon, Gyeonggi-do, 14662, Republic of Korea
| | - Joo Young Lee
- Department of Pharmacy, College of Pharmacy and Regulated Cell Death (RCD) Control·Material Research Institute, The Catholic University of Korea, Bucheon, Gyeonggi-do, 14662, Republic of Korea
| | - Hye Suk Lee
- Department of Pharmacy, College of Pharmacy and Regulated Cell Death (RCD) Control·Material Research Institute, The Catholic University of Korea, Bucheon, Gyeonggi-do, 14662, Republic of Korea
| | - Han Chang Kang
- Department of Pharmacy, College of Pharmacy and Regulated Cell Death (RCD) Control·Material Research Institute, The Catholic University of Korea, Bucheon, Gyeonggi-do, 14662, Republic of Korea
| |
Collapse
|
10
|
Lin Q, Jing Y, Yan C, Chen X, Zhang Q, Lin X, Xu Y, Chen B. Design and Application of pH-Responsive Liposomes for Site-Specific Delivery of Cytotoxin from Cobra Venom. Int J Nanomedicine 2024; 19:5381-5395. [PMID: 38859950 PMCID: PMC11164093 DOI: 10.2147/ijn.s461728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/25/2024] [Indexed: 06/12/2024] Open
Abstract
Background Current immunotherapies with unexpected severe side effects and treatment resistance have not resulted in the desired outcomes for patients with melanoma, and there is a need to discover more effective medications. Cytotoxin (CTX) from Cobra Venom has been established to have favorable cytolytic activity and antitumor efficacy and is regarded as a promising novel anticancer agent. However, amphiphilic CTX with excellent anionic phosphatidylserine lipid-binding ability may also damage normal cells. Methods We developed pH-responsive liposomes with a high CTX load (CTX@PSL) for targeted acidic-stimuli release of drugs in the tumor microenvironment. The morphology, size, zeta potential, drug-release kinetics, and preservation stability were characterized. Cell uptake, apoptosis-promoting effects, and cytotoxicity were assessed using MTT assay and flow cytometry. Finally, the tissue distribution and antitumor effects of CTX@PSL were systematically assessed using an in vivo imaging system. Results CTX@PSL exhibited high drug entrapment efficiency, drug loading, stability, and a rapid release profile under acidic conditions. These nanoparticles, irregularly spherical in shape and small in size, can effectively accumulate at tumor sites (six times higher than free CTX) and are rapidly internalized into cancer cells (2.5-fold higher cell uptake efficiency). CTX@PSL displayed significantly stronger cytotoxicity (IC50 0.25 μg/mL) and increased apoptosis in than the other formulations (apoptosis rate 71.78±1.70%). CTX@PSL showed considerably better tumor inhibition efficacy than free CTX or conventional liposomes (tumor inhibition rate 79.78±5.93%). Conclusion Our results suggest that CTX@PSL improves tumor-site accumulation and intracellular uptake for sustained and targeted CTX release. By combining the advantages of CTX and stimuli-responsive nanotechnology, the novel CTX@PSL nanoformulation is a promising therapeutic candidate for cancer treatment.
Collapse
Affiliation(s)
- Qing Lin
- Department of Pharmacy, Affiliated Fuzhou First Hospital of Fujian Medical University, Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
- School of Pharmacy, Fujian Medical University, Fujian, People’s Republic of China
| | - Yafei Jing
- School of Pharmacy, Fujian Medical University, Fujian, People’s Republic of China
- Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
| | - Cailing Yan
- School of Pharmacy, Fujian Medical University, Fujian, People’s Republic of China
| | - Xinyi Chen
- School of Pharmacy, Fujian Medical University, Fujian, People’s Republic of China
| | - Qiong Zhang
- School of Pharmacy, Fujian Medical University, Fujian, People’s Republic of China
| | - Xinhua Lin
- School of Pharmacy, Fujian Medical University, Fujian, People’s Republic of China
- Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
| | - Yunlu Xu
- School of Pharmacy, Fujian Medical University, Fujian, People’s Republic of China
- Center of Translational Hematology, Fujian Medical University Union Hospital, Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
| | - Bing Chen
- School of Pharmacy, Fujian Medical University, Fujian, People’s Republic of China
- Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
| |
Collapse
|
11
|
Huo J, Lv X, Duan Q, Jiang R, Yang D, Sun L, Li S, Qian X. Antimicrobial and hydrophobic cellulose paper prepared by covalently attaching cinnamaldehyde for strawberries preservation. Int J Biol Macromol 2024; 268:131790. [PMID: 38677693 DOI: 10.1016/j.ijbiomac.2024.131790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/02/2024] [Accepted: 04/21/2024] [Indexed: 04/29/2024]
Abstract
The demand for paper-based packaging materials as an alternative to incumbent disposable petroleum-derived polymers for food packaging applications is ever-growing. However, typical paper-based formats are not suitable for use in unconventional applications due to inherent limitations (e.g., excessive hydrophilicity, lack antimicrobial ability), and accordingly, enabling new capabilities is necessity. Herein, a simple and environmentally friendly strategy was proposed to introduce antimicrobial and hydrophobic functions to cellulose paper through successive chemical grafting of 3-aminopropyltriethoxysilane (APS) and cinnamaldehyde (CA). The results revealed that cellulose paper not only showed long-term antibacterial effect on different bacteria, but also inhibited a wide range of fungi. Encouragingly, the modified paper, which is fluorine-free, displays a high contact angle of 119.7°. Thus, even in the wet state, the modified paper can still maintain good mechanical strength. Meanwhile, the multifunctional composite papers have excellent biocompatibility and biodegradability. Compared with ordinary cellulose paper, multifunctional composite paper can effectively prolong the shelf life of strawberries. Therefore, the multifunctional composite paper represents good application potential as a fruit packaging material.
Collapse
Affiliation(s)
- Jiaqi Huo
- Research Division for Sustainable Papermaking & Advanced Materials, Key Laboratory of Biobased Materials Science and Technology (Ministry of Education), Northeast Forestry University, Harbin, China
| | - Xingyu Lv
- Research Division for Sustainable Papermaking & Advanced Materials, Key Laboratory of Biobased Materials Science and Technology (Ministry of Education), Northeast Forestry University, Harbin, China
| | - Qinghui Duan
- Research Division for Sustainable Papermaking & Advanced Materials, Key Laboratory of Biobased Materials Science and Technology (Ministry of Education), Northeast Forestry University, Harbin, China
| | - Ruyi Jiang
- Research Division for Sustainable Papermaking & Advanced Materials, Key Laboratory of Biobased Materials Science and Technology (Ministry of Education), Northeast Forestry University, Harbin, China
| | - Dongmei Yang
- Research Division for Sustainable Papermaking & Advanced Materials, Key Laboratory of Biobased Materials Science and Technology (Ministry of Education), Northeast Forestry University, Harbin, China; Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan, China.
| | - Lijian Sun
- College of Light Industry and Textile, Qiqihar University, Qiqihar, China.
| | - Shujun Li
- Research Division for Sustainable Papermaking & Advanced Materials, Key Laboratory of Biobased Materials Science and Technology (Ministry of Education), Northeast Forestry University, Harbin, China.
| | - Xueren Qian
- Research Division for Sustainable Papermaking & Advanced Materials, Key Laboratory of Biobased Materials Science and Technology (Ministry of Education), Northeast Forestry University, Harbin, China
| |
Collapse
|
12
|
Liu J, Cabral H, Mi P. Nanocarriers address intracellular barriers for efficient drug delivery, overcoming drug resistance, subcellular targeting and controlled release. Adv Drug Deliv Rev 2024; 207:115239. [PMID: 38437916 DOI: 10.1016/j.addr.2024.115239] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/16/2024] [Accepted: 02/27/2024] [Indexed: 03/06/2024]
Abstract
The cellular barriers are major bottlenecks for bioactive compounds entering into cells to accomplish their biological functions, which limits their biomedical applications. Nanocarriers have demonstrated high potential and benefits for encapsulating bioactive compounds and efficiently delivering them into target cells by overcoming a cascade of intracellular barriers to achieve desirable therapeutic and diagnostic effects. In this review, we introduce the cellular barriers ahead of drug delivery and nanocarriers, as well as summarize recent advances and strategies of nanocarriers for increasing internalization with cells, promoting intracellular trafficking, overcoming drug resistance, targeting subcellular locations and controlled drug release. Lastly, the future perspectives of nanocarriers for intracellular drug delivery are discussed, which mainly focus on potential challenges and future directions. Our review presents an overview of intracellular drug delivery by nanocarriers, which may encourage the future development of nanocarriers for efficient and precision drug delivery into a wide range of cells and subcellular targets.
Collapse
Affiliation(s)
- Jing Liu
- Department of Radiology, Huaxi MR Research Center (HMRRC), State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No.17 South Renmin Road, Chengdu, Sichuan 610041, China
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Peng Mi
- Department of Radiology, Huaxi MR Research Center (HMRRC), State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No.17 South Renmin Road, Chengdu, Sichuan 610041, China.
| |
Collapse
|
13
|
Appiah E, Nakamura H, Assumang A, Etrych T, Haratake M. Chemical modification of bradykinin-polymer conjugates for optimum delivery of nanomedicines to tumors. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2024; 57:102744. [PMID: 38460653 DOI: 10.1016/j.nano.2024.102744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 02/15/2024] [Accepted: 03/01/2024] [Indexed: 03/11/2024]
Abstract
We recently prepared pH-responsive HPMA copolymer conjugates of bradykinin (P-BK), which release BK in response to the acidic tumor microenvironment, and found that administration of P-BK increased the tumor accumulation and therapeutic efficacy of nanomedicine. Because the release of BK from P-BK determines its onset of action, P-BKs with different release rates were prepared, and their properties were evaluated. The release kinetics were significantly altered by substitution proximal to hydrazone bond, release constant of methyl-substituted P-BK (P-MeBK) was approximately 4- and 80-fold higher than that of cyclopropyl-substituted P-BK (P-CPBK) and phenyl-substituted P-BK (P-PhBK). None of the P-BKs were active, but the release of BK restored their BK-like activity. Pre-administration of the P-BKs increased the tumor accumulation of nanomedicine in C26 tumor-bearing mice by 2- and 1.4-fold for P-MeBK and P-PhBK at 3 and 6 h. Altogether, this study provides insights into the design of pH-responsive nanodrugs with the desired release properties to target acidic lesions such as cancer and inflammation.
Collapse
Affiliation(s)
- Enoch Appiah
- Faculty of Pharmaceutical Sciences, Sojo University, Ikeda 4-22-1, Nishi-ku, Kumamoto 860-0082, Japan
| | - Hideaki Nakamura
- Faculty of Pharmaceutical Sciences, Sojo University, Ikeda 4-22-1, Nishi-ku, Kumamoto 860-0082, Japan.
| | - Anthony Assumang
- Faculty of Pharmaceutical Sciences, Sojo University, Ikeda 4-22-1, Nishi-ku, Kumamoto 860-0082, Japan
| | - Tomáš Etrych
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic
| | - Mamoru Haratake
- Faculty of Pharmaceutical Sciences, Sojo University, Ikeda 4-22-1, Nishi-ku, Kumamoto 860-0082, Japan
| |
Collapse
|
14
|
Hu R, Lan J, Zhang D, Shen W. Nanotherapeutics for prostate cancer treatment: A comprehensive review. Biomaterials 2024; 305:122469. [PMID: 38244344 DOI: 10.1016/j.biomaterials.2024.122469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/07/2024] [Accepted: 01/09/2024] [Indexed: 01/22/2024]
Abstract
Prostate cancer (PCa) is the most prevalent solid organ malignancy and seriously affects male health. The adverse effects of prostate cancer therapeutics can cause secondary damage to patients. Nanotherapeutics, which have special targeting abilities and controlled therapeutic release profiles, may serve as alternative agents for PCa treatment. At present, many nanotherapeutics have been developed to treat PCa and have shown better treatment effects in animals than traditional therapeutics. Although PCa nanotherapeutics are highly attractive, few successful cases have been reported in clinical practice. To help researchers design valuable nanotherapeutics for PCa treatment and avoid useless efforts, herein, we first reviewed the strategies and challenges involved in prostate cancer treatment. Subsequently, we presented a comprehensive review of nanotherapeutics for PCa treatment, including their targeting methods, controlled release strategies, therapeutic approaches and mechanisms. Finally, we proposed the future prospects of nanotherapeutics for PCa treatment.
Collapse
Affiliation(s)
- Ruimin Hu
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China; Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China; Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jin Lan
- Department of Ultrasound, Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China
| | - Dinglin Zhang
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China; Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| | - Wenhao Shen
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| |
Collapse
|
15
|
Cao Y, Meng F, Cai T, Gao L, Lee J, Solomevich SO, Aharodnikau UE, Guo T, Lan M, Liu F, Li Q, Viktor T, Li D, Cai Y. Nanoparticle drug delivery systems responsive to tumor microenvironment: Promising alternatives in the treatment of triple-negative breast cancer. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1950. [PMID: 38528388 DOI: 10.1002/wnan.1950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/04/2024] [Accepted: 02/11/2024] [Indexed: 03/27/2024]
Abstract
The conventional therapeutic treatment of triple-negative breast cancer (TNBC) is negatively influenced by the development of tumor cell drug resistant, and systemic toxicity of therapeutic agents due to off-target activity. In accordance with research findings, nanoparticles (NPs) responsive to the tumor microenvironment (TME) have been discovered for providing opportunities to selectively target tumor cells via active targeting or Enhanced Permeability and Retention (EPR) effect. The combination of the TME control and therapeutic NPs offers promising solutions for improving the prognosis of the TNBC because the TME actively participates in tumor growth, metastasis, and drug resistance. The NP-based systems leverage stimulus-responsive mechanisms, such as low pH value, hypoxic, excessive secretion enzyme, concentration of glutathione (GSH)/reactive oxygen species (ROS), and high concentration of Adenosine triphosphate (ATP) to combat TNBC progression. Concurrently, NP-based stimulus-responsive introduces a novel approach for drug dosage design, administration, and modification of the pharmacokinetics of conventional chemotherapy and immunotherapy drugs. This review provides a comprehensive examination of the strengths, limitations, applications, perspectives, and future expectations of both novel and traditional stimulus-responsive NP-based drug delivery systems for improving outcomes in the medical practice of TNBC. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Ye Cao
- State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/Guangdong Key Lab of Traditional Chinese Medicine Informatization/International Science and Technology Cooperation Base of Guangdong Province/School of Pharmacy, Jinan University, Guangzhou, China
| | - Fansu Meng
- Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan, China
| | - Tiange Cai
- College of Life Sciences, Liaoning University, Shenyang, China
| | - Lanwen Gao
- State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/Guangdong Key Lab of Traditional Chinese Medicine Informatization/International Science and Technology Cooperation Base of Guangdong Province/School of Pharmacy, Jinan University, Guangzhou, China
| | - Jaiwoo Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sergey O Solomevich
- Research Institute for Physical Chemical Problems of the Belarusian State University, Minsk, Belarus
| | - Uladzislau E Aharodnikau
- Research Institute for Physical Chemical Problems of the Belarusian State University, Minsk, Belarus
| | - Tingting Guo
- State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/Guangdong Key Lab of Traditional Chinese Medicine Informatization/International Science and Technology Cooperation Base of Guangdong Province/School of Pharmacy, Jinan University, Guangzhou, China
| | - Meng Lan
- State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/Guangdong Key Lab of Traditional Chinese Medicine Informatization/International Science and Technology Cooperation Base of Guangdong Province/School of Pharmacy, Jinan University, Guangzhou, China
| | - Fengjie Liu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/Guangdong Key Lab of Traditional Chinese Medicine Informatization/International Science and Technology Cooperation Base of Guangdong Province/School of Pharmacy, Jinan University, Guangzhou, China
| | - Qianwen Li
- State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/Guangdong Key Lab of Traditional Chinese Medicine Informatization/International Science and Technology Cooperation Base of Guangdong Province/School of Pharmacy, Jinan University, Guangzhou, China
| | - Timoshenko Viktor
- Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia
| | - Detang Li
- The First Clinical Medical School of Guangzhou University of Chinese Medicine/Department of Pharmacy, The First Affiliated Hospital of Guangzhou University of Chinese Medicine/Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China
| | - Yu Cai
- State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/Guangdong Key Lab of Traditional Chinese Medicine Informatization/International Science and Technology Cooperation Base of Guangdong Province/School of Pharmacy, Jinan University, Guangzhou, China
| |
Collapse
|
16
|
Liu J, Jiang X, Li Y, Yang K, Weichselbaum RR, Lin W. Immunogenic Bifunctional Nanoparticle Suppresses Programmed Cell Death-Ligand 1 in Cancer and Dendritic Cells to Enhance Adaptive Immunity and Chemo-Immunotherapy. ACS NANO 2024; 18:5152-5166. [PMID: 38286035 PMCID: PMC11776391 DOI: 10.1021/acsnano.3c12678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Blockade of programmed cell death-1/programmed cell death-ligand 1 (PD-L1) immune checkpoints with monoclonal antibodies has shown great promise for cancer treatment, but these antibodies can cause immune-related adverse events in normal organs. Here we report a dual-cell targeted chemo-immunotherapeutic nanoscale coordination polymer (NCP), OxPt/BP, comprising oxaliplatin (OxPt) and 2-bromopalmitic acid (BP), for effective downregulation of PD-L1 expression in both cancer cells and dendritic cells (DCs) by inhibiting palmitoyl acyltransferase DHHC3. OxPt/BP efficiently promotes DC maturation by increasing intracellular oxidative stress and enhancing OxPt-induced immunostimulatory immunogenic cancer cell death. Systemic administration of OxPt/BP reduces the growth of subcutaneous and orthotopic colorectal carcinoma by facilitating the infiltration and activation of cytotoxic T lymphocytes together with reducing the population of immunosuppressive regulatory T cells. As a result, OxPt/BP significantly extends mouse survival without causing side effects. This work highlights the potential of NCPs in simultaneously reprogramming cancer cells and DCs for potent cancer treatment.
Collapse
Affiliation(s)
- Jing Liu
- Department of Chemistry, University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, University of Chicago, 5758 South Maryland Avenue, Chicago, Illinois 60637, United States
| | - Xiaomin Jiang
- Department of Chemistry, University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Youyou Li
- Department of Chemistry, University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Kaiting Yang
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, University of Chicago, 5758 South Maryland Avenue, Chicago, Illinois 60637, United States
| | - Ralph R. Weichselbaum
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, University of Chicago, 5758 South Maryland Avenue, Chicago, Illinois 60637, United States
| | - Wenbin Lin
- Department of Chemistry, University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, University of Chicago, 5758 South Maryland Avenue, Chicago, Illinois 60637, United States
| |
Collapse
|
17
|
Morrow JP, Mazrad ZAI, Warne NM, Ayton S, Bush AI, Kempe K. Schiff-Base Cross-Linked Poly(2-oxazoline) Micelle Drug Conjugates Possess Antiferroptosis Activity in Numerous In Vitro Cell Models. Biomacromolecules 2024; 25:1068-1083. [PMID: 38178625 DOI: 10.1021/acs.biomac.3c01106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
A great deal of nanocarriers have been applied to induce ferroptosis in cancer research, yet there are limited examples of nanocarrier formulations to rescue ferroptosis, which can be applied to neurodegeneration, inflammation, liver damage, kidney disease, and more. Here, we present the synthesis, characterization, and in vitro evaluation of pH-responsive, core-cross-linked micelle (CCM) ferrostatin-1 (Fer-1) conjugates with amine, valproic acid, and biotin surface chemistries. Fer-1 release from stable and defined CCM Fer-1 conjugates was quantified, highlighting the sustained release for 24 h. CCM Fer-1 conjugates demonstrated excellent ferroptosis rescue by their antilipid peroxidation activity in a diverse set of cell lines in vitro. Additionally, CCMs showed tunable cell association in SH-SY5Y and translocation across an in vitro blood-brain barrier (BBB) model, highlighting potential brain disease applications. Overall, here, we present a polymeric Fer-1 delivery system to enhance Fer-1 action, which could help in improving Fer-1 action in the treatment of ferroptosis-related diseases.
Collapse
Affiliation(s)
- Joshua P Morrow
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Zihnil A I Mazrad
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Nicole M Warne
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Scott Ayton
- Melbourne Dementia Research Centre, The Florey Institute for Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Ashley I Bush
- Melbourne Dementia Research Centre, The Florey Institute for Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Kristian Kempe
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
- Materials Science and Engineering, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
18
|
Lyu M, Yazdi M, Lin Y, Höhn M, Lächelt U, Wagner E. Receptor-Targeted Dual pH-Triggered Intracellular Protein Transfer. ACS Biomater Sci Eng 2024; 10:99-114. [PMID: 35802884 DOI: 10.1021/acsbiomaterials.2c00476] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein therapeutics are of widespread interest due to their successful performance in the current pharmaceutical and medical fields, even though their broad applications have been hindered by the lack of an efficient intracellular delivery approach. Herein, we fabricated an active-targeted dual pH-responsive delivery system with favorable tumor cell entry augmented by extracellular pH-triggered charge reversal and tumor receptor targeting and pH-controlled endosomal release in a traceless fashion. As a traceable model protein, the enhanced green fluorescent protein (eGFP) bearing a nuclear localization signal was covalently coupled with a pH-labile traceless azidomethyl-methylmaleic anhydride (AzMMMan) linker followed by functionalization with different molar equivalents of two dibenzocyclooctyne-octa-arginine-cysteine (DBCO-R8C)-modified moieties: polyethylene glycol (PEG)-GE11 peptide for epidermal growth factor receptor-mediated targeting and melittin for endosomal escape. The cationic melittin domain was masked with tetrahydrophthalic anhydride revertible at mild acidic pH 6.5. At the optimally balanced ratio of functional units, the on-demand charge conversion at tumoral extracellular pH 6.5 in combination with GE11-mediated targeting triggered enhanced electrostatic cellular attraction by the R8C cell-penetrating peptides and melittin, as demonstrated by strongly enhanced cellular uptake. Successful endosomal release followed by nuclear localization of the eGFP cargo was obtained by taking advantage of melittin-mediated endosomal escape and rapid traceless release from the AzMMMan linker. The effectiveness of this multifunctional bioresponsive system suggests a promising strategy for delivery of protein drugs toward intracellular targets. A possible therapeutic relevance was indicated by an example of cytosolic delivery of cytochrome c initiating the apoptosis pathway to kill cancer cells.
Collapse
Affiliation(s)
- Meng Lyu
- Pharmaceutical Biotechnology, Department of Pharmacy and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Mina Yazdi
- Pharmaceutical Biotechnology, Department of Pharmacy and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Yi Lin
- Pharmaceutical Biotechnology, Department of Pharmacy and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Miriam Höhn
- Pharmaceutical Biotechnology, Department of Pharmacy and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Ulrich Lächelt
- Pharmaceutical Biotechnology, Department of Pharmacy and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, 81377 Munich, Germany
- Department of Pharmaceutical Sciences, University of Vienna, 1090 Vienna, Austria
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Department of Pharmacy and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| |
Collapse
|
19
|
Xu J, Hu Y, Clogston JD. Quantitation of Active Pharmaceutical Ingredients in Polymeric Drug Products Using Elemental Analysis. Methods Mol Biol 2024; 2789:35-43. [PMID: 38506989 DOI: 10.1007/978-1-0716-3786-9_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Polymeric prodrugs have gained significant popularity as a strategy to enhance the bioavailability and improve the pharmacokinetic properties of active pharmaceutical ingredients (API). Since the amount of the API in a polymeric prodrug product directly impacts both safety and efficacy, there is a pressing need for robust and accurate analytical methods to quantify the API in these formulations. Presently, drug quantification methods include reversed-phase high-performance liquid chromatography (RP-HPLC) and size exclusion chromatography (SEC)-based molecular weight determination. Even though these methods are highly precise and reproducible, a deep understanding of chromatography is required for complex method development, including optimization of the elution profile and selecting the appropriate column and mobile phase. In this chapter, we introduce the automated elemental analyzer for drug quantification, which is simple to use and does not require special method development.
Collapse
Affiliation(s)
- Jie Xu
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Yingwen Hu
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Jeffrey D Clogston
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA.
| |
Collapse
|
20
|
Zhao Z, Pan M, Yang W, Huang C, Qiao C, Yang H, Wang J, Wang X, Liu J, Zeng H. Bioinspired engineered proteins enable universal anchoring strategy for surface functionalization. J Colloid Interface Sci 2023; 650:1525-1535. [PMID: 37487283 DOI: 10.1016/j.jcis.2023.07.108] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/01/2023] [Accepted: 07/17/2023] [Indexed: 07/26/2023]
Abstract
HYPOTHESIS Conventional coating strategies and materials for bio-applications with protective, diagnostic, and therapeutic functions are commonly limited by their arduous preparation processes and lack of on-demand functionalities. Herein, inspired by the 'root-leaf' structure of grass, a series of novel polyacrylate-conjugated proteins can be engineered with sticky bovine serum albumin (BSA) protein as a 'root' anchoring layer and a multifunctional polyacrylate as a 'leaf' functional layer for the facile coating procedure and versatile surface functionalities. EXPERIMENTS The engineered proteins were synthesized based on click chemistry, where the 'root' layer can universally anchor onto both organic and inorganic substrates through a facile dip/spraying method with excellent stability in harsh solution conditions, thanks to its multiple adaptive molecular interactions with substrates that further elucidated by molecular force measurements between the 'root' BSA protein and substrates. The 'leaf' conjugated-polyacrylates imparted coatings with versatile on-demand functionalities, such as resistance to over 99% biofouling in complex biofluids, pH-responsive performance, and robust adhesion with various nanomaterials. FINDINGS By synergistically leveraging the universal anchoring capabilities of BSA with the versatile physicochemical properties of polyacrylates, this study introduces a promising and facile strategy for imparting novel functionalities to a myriad of surfaces through engineering natural proteins and biomaterials for biotechnical and nanotechnical applications.
Collapse
Affiliation(s)
- Ziqian Zhao
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Mingfei Pan
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Wenshuai Yang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Charley Huang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Chenyu Qiao
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Haoyu Yang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Jianmei Wang
- Heavy Machinery Engineering Research Center of Education Ministry, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Xiaogang Wang
- Heavy Machinery Engineering Research Center of Education Ministry, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Jifang Liu
- The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510700, China
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
| |
Collapse
|
21
|
Yan H, Xu P, Ma H, Li Y, Zhang R, Cong H, Yu B, Shen Y. Enzyme-triggered transcytosis of drug carrier system for deep penetration into hepatoma tumors. Biomaterials 2023; 301:122213. [PMID: 37385137 DOI: 10.1016/j.biomaterials.2023.122213] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 06/08/2023] [Accepted: 06/20/2023] [Indexed: 07/01/2023]
Abstract
In recent years, nano-drug delivery systems have made considerable progress in the direction of tumor treatment, but the low permeability of drugs has restricted the development of nano drugs. To solve this problem, we constructed a nano-drug delivery system with the dual effects of γ-glutamyltransferase (GGT) reaction and high nuclear targeting in tumor microenvironment to promote the deep penetration of drugs. Over-expression of GGT in tumor cells can specifically recognize γ-glutamyl substrate and release amino group from the hydrolysis reaction, which makes the whole system change from negative or neutral to positive charge system. The conjugated complex with positive charge rapidly endocytosis through electrostatic interaction, enhancing its permeability in tumor parenchyma. At the same time, the cell penetrating TAT contains a large amount of lysine, which can be identified by the nuclear pore complexes (NPCs) on the surface of the nuclear membrane, showing excellent nuclear localization function. The active DOX is released in the nucleus, which inhibits the mitosis of cancer cells and enhances the active transport ability of drugs in tumor cells. Therefore, this drug delivery system actively transports adriamycin into the tumor to achieve deep penetration of drugs through enzyme response and nuclear targeting, showing high anti-tumor activity and can be effectively applied to the treatment of liver cancer.
Collapse
Affiliation(s)
- Han Yan
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - Pengchao Xu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - He Ma
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - Yanan Li
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - Runfeng Zhang
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - Hailin Cong
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China; School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China.
| | - Youqing Shen
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China; Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, And Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| |
Collapse
|
22
|
Vegad U, Patel M, Khunt D, Zupančič O, Chauhan S, Paudel A. pH stimuli-responsive hydrogels from non-cellulosic biopolymers for drug delivery. Front Bioeng Biotechnol 2023; 11:1270364. [PMID: 37781530 PMCID: PMC10540072 DOI: 10.3389/fbioe.2023.1270364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/01/2023] [Indexed: 10/03/2023] Open
Abstract
Over the past several decades, there has been significant growth in the design and development of more efficient and advanced biomaterials based on non-cellulosic biological macromolecules. In this context, hydrogels based on stimuli-responsive non-cellulosic biological macromolecules have garnered significant attention because of their intrinsic physicochemical properties, biological characteristics, and sustainability. Due to their capacity to adapt to physiological pHs with rapid and reversible changes, several researchers have investigated pH-responsive-based non-cellulosic polymers from various materials. pH-responsive hydrogels release therapeutic substances in response to pH changes, providing tailored administration, fewer side effects, and improved treatment efficacy while reducing tissue damage. Because of these qualities, they have been shown to be useful in a wide variety of applications, including the administration of chemotherapeutic drugs, biological material, and natural components. The pH-sensitive biopolymers that are utilized most frequently include chitosan, alginate, hyaluronic acid, guar gum, and dextran. In this review article, the emphasis is placed on pH stimuli-responsive materials that are based on biological macromolecules for the purposes of drug administration.
Collapse
Affiliation(s)
- Udaykumar Vegad
- Graduate School of Pharmacy, Gujarat Technological University, Ahmedabad, Gujarat, India
| | - Megha Patel
- Graduate School of Pharmacy, Gujarat Technological University, Ahmedabad, Gujarat, India
| | - Dignesh Khunt
- Graduate School of Pharmacy, Gujarat Technological University, Ahmedabad, Gujarat, India
| | - Ožbej Zupančič
- Research Center Pharmaceutical Engineering GmbH (RCPE), Graz, Austria
| | - Sanjay Chauhan
- Graduate School of Pharmacy, Gujarat Technological University, Ahmedabad, Gujarat, India
| | - Amrit Paudel
- Research Center Pharmaceutical Engineering GmbH (RCPE), Graz, Austria
- Institute of Process and Particle Engineering, Graz University of Technology, Graz, Austria
| |
Collapse
|
23
|
Shaik BB, Katari NK, Jonnalagadda SB. Internal stimuli-responsive nanocarriers for controlled anti-cancer drug release: a review. Ther Deliv 2023; 14:595-613. [PMID: 37877308 DOI: 10.4155/tde-2023-0041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023] Open
Abstract
Cancer disease is one of the most frequent life-threatening, with a high fatality rate worldwide. However, recent immunotherapy studies in various tumours have yielded unsatisfactory outcomes, with just a few individuals experiencing long-term responses. To overcome these issues, nowadays internal stimuli-responsive nanocarriers have been widely exploited to transport a wide range of active substances, including peptides, genes and medicines. These nanosystems could be chemically adjusted to produce target-based drug release at the target location, minimizing pathological and physiological difficulties while increasing therapeutic efficiency. This review highlights the various types of internal stimuli-responsive nanocarriers and applications in cancer diagnosis. This study can provide inspiration and impetus for exploiting more promising internal stimuli-responsive nanosystems for drug delivery.
Collapse
Affiliation(s)
- Baji Baba Shaik
- Department of Chemistry, School of Science, GITAM (Deemed to be) University, Hyderabad, Telangana, 502329, India
- School of Chemistry & Physics, Westville Campus, University of KwaZulu-Natal, P Bag X 54001, Durban, 4000, Kwa-Zulu Natal, South Africa
| | - Naresh Kumar Katari
- Department of Chemistry, School of Science, GITAM (Deemed to be) University, Hyderabad, Telangana, 502329, India
- School of Chemistry & Physics, Westville Campus, University of KwaZulu-Natal, P Bag X 54001, Durban, 4000, Kwa-Zulu Natal, South Africa
| | - Sreekanth B Jonnalagadda
- School of Chemistry & Physics, Westville Campus, University of KwaZulu-Natal, P Bag X 54001, Durban, 4000, Kwa-Zulu Natal, South Africa
| |
Collapse
|
24
|
Wang Z, Pan T, Shen M, Liao J, Tian Y. Cross-conjugated polymers as fluorescent probes for intracellular potassium ion detection. SENSORS AND ACTUATORS B: CHEMICAL 2023; 390:134008. [DOI: 10.1016/j.snb.2023.134008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
|
25
|
Junyaprasert VB, Thummarati P. Innovative Design of Targeted Nanoparticles: Polymer-Drug Conjugates for Enhanced Cancer Therapy. Pharmaceutics 2023; 15:2216. [PMID: 37765185 PMCID: PMC10537251 DOI: 10.3390/pharmaceutics15092216] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/10/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
Polymer-drug conjugates (PDCs) have shown great promise in enhancing the efficacy and safety of cancer therapy. These conjugates combine the advantageous properties of both polymers and drugs, leading to improved pharmacokinetics, controlled drug release, and targeted delivery to tumor tissues. This review provides a comprehensive overview of recent developments in PDCs for cancer therapy. First, various types of polymers used in these conjugates are discussed, including synthetic polymers, such as poly(↋-caprolactone) (PCL), D-α-tocopheryl polyethylene glycol (TPGS), and polyethylene glycol (PEG), as well as natural polymers such as hyaluronic acid (HA). The choice of polymer is crucial to achieving desired properties, such as stability, biocompatibility, and controlled drug release. Subsequently, the strategies for conjugating drugs to polymers are explored, including covalent bonding, which enables a stable linkage between the polymer and the drug, ensuring controlled release and minimizing premature drug release. The use of polymers can extend the circulation time of the drug, facilitating enhanced accumulation within tumor tissues through the enhanced permeability and retention (EPR) effect. This, in turn, results in improved drug efficacy and reduced systemic toxicity. Moreover, the importance of tumor-targeting ligands in PDCs is highlighted. Various ligands, such as antibodies, peptides, aptamers, folic acid, herceptin, and HA, can be incorporated into conjugates to selectively deliver the drug to tumor cells, reducing off-target effects and improving therapeutic outcomes. In conclusion, PDCs have emerged as a versatile and effective approach to cancer therapy. Their ability to combine the advantages of polymers and drugs offers enhanced drug delivery, controlled release, and targeted treatment, thereby improving the overall efficacy and safety of cancer therapies. Further research and development in this field has great potential to advance personalized cancer treatment options.
Collapse
|
26
|
Dai J, Peng Z, Shen S, Huang B, Ren L, Liu J, Chen CH, Chen G. Evaluation of exogenous therapeutic protein activity under confinement and crowding effects. NANOSCALE 2023; 15:13450-13458. [PMID: 37548227 DOI: 10.1039/d3nr02968a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Dysfunction of intracellular proteins is frequently associated with various diseases, such as cancer. The exogenous proteins in cells are usually assembled with specific configurations due to physiological confinement/crowding to exhibit novel features in the protein structure, folding or conformational stability, distinguished with their behaviors in buffer solutions. Here, we synthesized exogenous proteins under confined/crowded conditions, to explore protein activity within cells. The findings suggested that the confinement and crowding effects on protein activity are heterogeneous; they showed an inhibitory effect on HRP by decreasing Km from ∼9.5- and ∼21.7-fold and Vmax from ∼6.8- and ∼20.2-fold lower than that of dilute solutions. Interestingly, the effects on Cyt C seem to be more complicated, and crowding exerts a positive effect by increasing Km ∼ 3.6-fold and Vmax ∼ 1.5-fold higher than that of dilute solutions; however, confinement exhibits a negative effect by decreasing Km ∼2.0 and Vmax ∼8.3 times. Additionally, in contrast to traditional nanoparticle-based confinement models, we synthesized a biodegradable nanoparticle to mimic the confined space, and the biggest advantage of this novel model is that the particles can be degraded and thus it can provide more intuitive observations of the properties of the target proteins under confinement and after release. Furthermore, we also evaluated protein activity in different cellular environments, indicating that the exogenous protein activity was closely related to the crowdedness of cellular environments, and the inhibition of protein activity in MDA-MB-231 cancer cells was more obvious than in HEK293 normal cells. Finally, SAXS analysis revealed the correlation between the protein conformation and the different environments. Our work will provide a unique method for precisely assessing whether the target cellular environments are native matrix in which specific exogenous protein drugs are delivered to function or whether they display a therapeutic role, which is of great significance for screening and development of new drugs.
Collapse
Affiliation(s)
- Jie Dai
- School of Pharmaceutical Sciences, Nanjing Tech University, 30th Puzhu South Road, Nanjing 211816, China.
| | - Zhiyi Peng
- School of Pharmaceutical Sciences, Nanjing Tech University, 30th Puzhu South Road, Nanjing 211816, China.
| | - Shuwei Shen
- School of Pharmaceutical Sciences, Nanjing Tech University, 30th Puzhu South Road, Nanjing 211816, China.
| | - Binbin Huang
- School of Pharmaceutical Sciences, Nanjing Tech University, 30th Puzhu South Road, Nanjing 211816, China.
| | - Lili Ren
- School of Pharmaceutical Sciences, Nanjing Tech University, 30th Puzhu South Road, Nanjing 211816, China.
| | - Jia Liu
- School of Pharmaceutical Sciences, Nanjing Tech University, 30th Puzhu South Road, Nanjing 211816, China.
| | - Chia-Hung Chen
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, China.
| | - Guoguang Chen
- School of Pharmaceutical Sciences, Nanjing Tech University, 30th Puzhu South Road, Nanjing 211816, China.
| |
Collapse
|
27
|
Kalosakas G. Interplay between Diffusion and Bond Cleavage Reaction for Determining Release in Polymer-Drug Conjugates. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4595. [PMID: 37444909 DOI: 10.3390/ma16134595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/08/2023] [Accepted: 06/10/2023] [Indexed: 07/15/2023]
Abstract
In conjugated polymeric drug delivery systems, both the covalent bond degradation rate and the diffusion of the freely moving drug particles affect the release profile of the formulation. Using Monte Carlo simulations in spherical matrices, the release kinetics resulting from the competition between the reaction and diffusion processes is discussed. For different values of the relative bond cleavage rate, varied over four orders of magnitude, the evolution of (i) the number of bonded drug molecules, (ii) the fraction of the freely moved detached drug within the polymer matrix, and (iii) the resulting fractional release of the drug is presented. The characteristic release time scale is found to increase by several orders of magnitude as the cleavage reaction rate constant decreases. The two extreme rate-limiting cases where either the diffusion or the reaction dominates the release are clearly distinguishable. The crossover between the diffusion-controlled and reaction-controlled regimes is also examined and a simple analytical formula is presented that can describe the full dependence of the release time on the bond cleavage rate constant. This simple relation is provided simply by the sum of the characteristic time for purely diffusional release and the bond cleavage decay time, which equals the inverse of the reaction rate constant.
Collapse
Affiliation(s)
- George Kalosakas
- Materials Science Department, University of Patras, GR-26504 Rio, Greece
| |
Collapse
|
28
|
Mao L, Ma P, Luo X, Cheng H, Wang Z, Ye E, Loh XJ, Wu YL, Li Z. Stimuli-Responsive Polymeric Nanovaccines Toward Next-Generation Immunotherapy. ACS NANO 2023; 17:9826-9849. [PMID: 37207347 DOI: 10.1021/acsnano.3c02273] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The development of nanovaccines that employ polymeric delivery carriers has garnered substantial interest in therapeutic treatment of cancer and a variety of infectious diseases due to their superior biocompatibility, lower toxicity and reduced immunogenicity. Particularly, stimuli-responsive polymeric nanocarriers show great promise for delivering antigens and adjuvants to targeted immune cells, preventing antigen degradation and clearance, and increasing the uptake of specific antigen-presenting cells, thereby sustaining adaptive immune responses and improving immunotherapy for certain diseases. In this review, the most recent advances in the utilization of stimulus-responsive polymer-based nanovaccines for immunotherapeutic applications are presented. These sophisticated polymeric nanovaccines with diverse functions, aimed at therapeutic administration for disease prevention and immunotherapy, are further classified into several active domains, including pH, temperature, redox, light and ultrasound-sensitive intelligent nanodelivery systems. Finally, the potential strategies for the future design of multifunctional next-generation polymeric nanovaccines by integrating materials science with biological interface are proposed.
Collapse
Affiliation(s)
- Liuzhou Mao
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Panqin Ma
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Xi Luo
- BE/Phase I Clinical Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361000, China
| | - Hongwei Cheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Zhanxiang Wang
- BE/Phase I Clinical Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361000, China
| | - Enyi Ye
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
| | - Yun-Long Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Zibiao Li
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Republic of Singapore
| |
Collapse
|
29
|
Wang T, Wu C, Hu Y, Zhang Y, Ma J. Stimuli-responsive nanocarrier delivery systems for Pt-based antitumor complexes: a review. RSC Adv 2023; 13:16488-16511. [PMID: 37274408 PMCID: PMC10233443 DOI: 10.1039/d3ra00866e] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/30/2023] [Indexed: 06/06/2023] Open
Abstract
Platinum-based anticancer drugs play a crucial role in the clinical treatment of various cancers. However, the application of platinum-based drugs is heavily restricted by their severe toxicity and drug resistance/cross resistance. Various drug delivery systems have been developed to overcome these limitations of platinum-based chemotherapy. Stimuli-responsive nanocarrier drug delivery systems as one of the most promising strategies attract more attention. And huge progress in stimuli-responsive nanocarrier delivery systems of platinum-based drugs has been made. In these systems, a variety of triggers including endogenous and extracorporeal stimuli have been employed. Endogenous stimuli mainly include pH-, thermo-, enzyme- and redox-responsive nanocarriers. Extracorporeal stimuli include light-, magnetic field- and ultrasound responsive nanocarriers. In this review, we present the recent advances in stimuli-responsive drug delivery systems with different nanocarriers for improving the efficacy and reducing the side effects of platinum-based anticancer drugs.
Collapse
Affiliation(s)
- Tianshuai Wang
- Hubei Key Lab of Wudang Local Chinese Medicine Research, Hubei University of Medicine Shiyan 442000 Hubei China
- College of Pharmaceutical Sciences, Hubei University of Medicine Shiyan 442000 Hubei China
| | - Chen Wu
- College of Pharmaceutical Sciences, Hubei University of Medicine Shiyan 442000 Hubei China
| | - Yanggen Hu
- Hubei Key Lab of Wudang Local Chinese Medicine Research, Hubei University of Medicine Shiyan 442000 Hubei China
- College of Pharmaceutical Sciences, Hubei University of Medicine Shiyan 442000 Hubei China
| | - Yan Zhang
- College of Pharmaceutical Sciences, Hubei University of Medicine Shiyan 442000 Hubei China
| | - Junkai Ma
- Hubei Key Lab of Wudang Local Chinese Medicine Research, Hubei University of Medicine Shiyan 442000 Hubei China
- College of Pharmaceutical Sciences, Hubei University of Medicine Shiyan 442000 Hubei China
| |
Collapse
|
30
|
Li JJ, Rong RX, Yang Y, Hu ZY, Hu B, Zhao YY, Li HB, Hu XY, Wang KR, Guo DS. Triple targeting host-guest drug delivery system based on lactose-modified azocalix[4]arene for tumor ablation. MATERIALS HORIZONS 2023; 10:1689-1696. [PMID: 36825769 DOI: 10.1039/d3mh00018d] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Host-guest drug delivery systems (HGDDSs) have been studied in an effort to modify the characteristics of therapeutic agents through noncovalent interactions, reduce toxic side effects and improve therapeutic effects. However, it is still an important task to continuously improve the targeting ability of HGDDSs, which is conducive to the development of precision medicine. Herein, we utilize the lactose-modified azocalix[4]arene (LacAC4A) as a triple targeting drug carrier customized for antitumor purposes. LacAC4A integrates three targeting features, passive targeting through the enhancing permeability and retention effect, active targeting by the interactions of lactose and the asialoglycoprotein receptors on the surface of tumor cells, and stimuli-responsive targeting via the reduction of the azo group under a hypoxia microenvironment. After loading doxorubicin (DOX) in LacAC4A, the supramolecular nanoformulation DOX@LacAC4A clearly showed the effective suppression of tumor growth through in vivo experiments. LacAC4A can achieve effective targeting, rapid release, and improve drug bioavailability. This design principle will provide a new material for drug delivery systems.
Collapse
Affiliation(s)
- Juan-Juan Li
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Rui-Xue Rong
- Department of Medical Microbiology and Immunology, School of Basic Medical Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Key Laboratory of Chemical Biology of Hebei Province, Medical Comprehensive Experimental Center, Hebei University, Baoding 071002, China
| | - Yan Yang
- Department of Medical Microbiology and Immunology, School of Basic Medical Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Key Laboratory of Chemical Biology of Hebei Province, Medical Comprehensive Experimental Center, Hebei University, Baoding 071002, China
| | - Zong-Ying Hu
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Bing Hu
- College of Chemistry and Environmental Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding 071002, China.
| | - Ying-Ying Zhao
- College of Chemistry and Environmental Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding 071002, China.
| | - Hua-Bin Li
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Xin-Yue Hu
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Ke-Rang Wang
- College of Chemistry and Environmental Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding 071002, China.
| | - Dong-Sheng Guo
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China.
| |
Collapse
|
31
|
Matshe WMR, Tshweu LL, Mvango S, Cele ZED, Chetty AS, Pilcher LA, Famuyide IM, McGaw LJ, Taylor D, Gibhard L, Basarab GS, Balogun MO. A Water-Soluble Polymer-Lumefantrine Conjugate for the Intravenous Treatment of Severe Malaria. Macromol Biosci 2023; 23:e2200518. [PMID: 36999404 DOI: 10.1002/mabi.202200518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/10/2023] [Indexed: 04/01/2023]
Abstract
Uncomplicated malaria is effectively treated with oral artemisinin-based combination therapy (ACT). Yet, there is an unmet clinical need for the intravenous treatment of the more fatal severe malaria. There is no combination intravenous therapy for uncomplicated due to the nonavailability of a water-soluble partner drug for the artemisinin, artesunate. The currently available treatment is a two-part regimen split into an intravenous artesunate followed by the conventional oral ACT . In a novel application of polymer therapeutics, the aqueous insoluble antimalarial lumefantrine is conjugated to a carrier polymer to create a new water-soluble chemical entity suitable for intravenous administration in a clinically relevant formulation . The conjugate is characterized by spectroscopic and analytical techniques, and the aqueous solubility of lumefantrine is determined to have increased by three orders of magnitude. Pharmacokinetic studies in mice indicate that there is a significant plasma release of lumefantrine and production its metabolite desbutyl-lumefantrine (area under the curve of metabolite is ≈10% that of the parent). In a Plasmodium falciparum malaria mouse model, parasitemia clearance is 50% higher than that of reference unconjugated lumefantrine. The polymer-lumefantrine shows potential for entering the clinic to meet the need for a one-course combination treatment for severe malaria.
Collapse
Affiliation(s)
- William M R Matshe
- Bio-Polymer Modification and Therapeutics Laboratory, Centre for Nanostructures and Advanced Materials, CSIR, Pretoria, 0001, South Africa
| | - Lesego L Tshweu
- Bio-Polymer Modification and Therapeutics Laboratory, Centre for Nanostructures and Advanced Materials, CSIR, Pretoria, 0001, South Africa
| | - Sindisiwe Mvango
- Bio-Polymer Modification and Therapeutics Laboratory, Centre for Nanostructures and Advanced Materials, CSIR, Pretoria, 0001, South Africa
- Department of Chemistry, University of Pretoria, Lynnwood Road, Hatfield, Pretoria, 0002, South Africa
| | - Zamani E D Cele
- Bio-Polymer Modification and Therapeutics Laboratory, Centre for Nanostructures and Advanced Materials, CSIR, Pretoria, 0001, South Africa
| | - Avashnee S Chetty
- Bio-Polymer Modification and Therapeutics Laboratory, Centre for Nanostructures and Advanced Materials, CSIR, Pretoria, 0001, South Africa
| | - Lynne A Pilcher
- Department of Chemistry, University of Pretoria, Lynnwood Road, Hatfield, Pretoria, 0002, South Africa
| | - Ibukun M Famuyide
- Phytomedicine Programme, Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, Pretoria, 0110, South Africa
| | - Lyndy J McGaw
- Phytomedicine Programme, Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, Pretoria, 0110, South Africa
| | - Dale Taylor
- Drug Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch, Cape Town, 7701, South Africa
| | - Liezl Gibhard
- Drug Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch, Cape Town, 7701, South Africa
| | - Gregory S Basarab
- Drug Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch, Cape Town, 7701, South Africa
| | - Mohammed O Balogun
- Bio-Polymer Modification and Therapeutics Laboratory, Centre for Nanostructures and Advanced Materials, CSIR, Pretoria, 0001, South Africa
| |
Collapse
|
32
|
Liu J, Jiang X, Feng X, Lee MJ, Li Y, Mao J, Weichselbaum RR, Lin W. A Three-in-One Nanoscale Coordination Polymer for Potent Chemo-Immunotherapy. SMALL METHODS 2023; 7:e2201437. [PMID: 36638256 PMCID: PMC10192092 DOI: 10.1002/smtd.202201437] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/21/2022] [Indexed: 05/17/2023]
Abstract
The addition of immune checkpoint blockade to standard chemotherapy has changed the standards of care for some cancer patients. However, current chemo-immunotherapy strategies do not benefit most colorectal cancer patients and many triple-negative breast cancer patients. Here, the design of a three-in-one nanoscale coordination polymer (NCP), OX/GC/CQ, comprising prodrugs of oxaliplatin (OX), gemcitabine (GC), and 5-carboxy-8-hydroxyquinoline (CQ) for triple-modality chemo-immunotherapy is reported. OX/GC/CQ exhibits optimal pharmacokinetics and enhanced particle accumulation and drug release in acidic tumor tissues, wherein CQ greatly enhances immunogenic cell death induced by OX/GC and downregulates programmed cell death-ligand 1 expression in cancer cells. Consequently, OX/GC/CQ efficiently promotes infiltration and activity of cytotoxic T lymphocytes, while decreasing the proportion of immunosuppressive regulatory T cells. Intravenous injection of OX/GC/CQ reduces the growth of colorectal carcinoma and triple-negative breast cancer, prevents metastasis to lungs, and extends mouse survival by 30-40 days compared to free drugs. This work highlights the potential of NCPs in co-delivering synergistic chemo-immunotherapeutics for the treatment of advanced and aggressive cancers.
Collapse
Affiliation(s)
- Jing Liu
- Department of Chemistry, University of Chicago, Chicago, IL, 60637, USA
- Department of Radiation and Cellular Oncology and the Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, 60637, USA
| | - Xiaomin Jiang
- Department of Chemistry, University of Chicago, Chicago, IL, 60637, USA
| | - Xuanyu Feng
- Department of Chemistry, University of Chicago, Chicago, IL, 60637, USA
| | - Morten J. Lee
- Department of Chemistry, University of Chicago, Chicago, IL, 60637, USA
| | - Youyou Li
- Department of Chemistry, University of Chicago, Chicago, IL, 60637, USA
| | - Jianming Mao
- Department of Chemistry, University of Chicago, Chicago, IL, 60637, USA
| | - Ralph R. Weichselbaum
- Department of Radiation and Cellular Oncology and the Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, 60637, USA
| | - Wenbin Lin
- Department of Chemistry, University of Chicago, Chicago, IL, 60637, USA
- Department of Radiation and Cellular Oncology and the Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
33
|
Pastuch-Gawołek G, Szreder J, Domińska M, Pielok M, Cichy P, Grymel M. A Small Sugar Molecule with Huge Potential in Targeted Cancer Therapy. Pharmaceutics 2023; 15:913. [PMID: 36986774 PMCID: PMC10056414 DOI: 10.3390/pharmaceutics15030913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/01/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
The number of cancer-related diseases is still growing. Despite the availability of a large number of anticancer drugs, the ideal drug is still being sought that would be effective, selective, and overcome the effect of multidrug resistance. Therefore, researchers are still looking for ways to improve the properties of already-used chemotherapeutics. One of the possibilities is the development of targeted therapies. The use of prodrugs that release the bioactive substance only under the influence of factors characteristic of the tumor microenvironment makes it possible to deliver the drug precisely to the cancer cells. Obtaining such compounds is possible by coupling a therapeutic agent with a ligand targeting receptors, to which the attached ligand shows affinity and is overexpressed in cancer cells. Another way is to encapsulate the drug in a carrier that is stable in physiological conditions and sensitive to conditions of the tumor microenvironment. Such a carrier can be directed by attaching to it a ligand recognized by receptors typical of tumor cells. Sugars seem to be ideal ligands for obtaining prodrugs targeted at receptors overexpressed in cancer cells. They can also be ligands modifying polymers' drug carriers. Furthermore, polysaccharides can act as selective nanocarriers for numerous chemotherapeutics. The proof of this thesis is the huge number of papers devoted to their use for modification or targeted transport of anticancer compounds. In this work, selected examples of broad-defined sugars application for improving the properties of both already-used drugs and substances exhibiting anticancer activity are presented.
Collapse
Affiliation(s)
- Gabriela Pastuch-Gawołek
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland
- Biotechnology Centre, Silesian University of Technology, B. Krzywoustego 8, 44-100 Gliwice, Poland
| | - Julia Szreder
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland
| | - Monika Domińska
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland
| | - Mateusz Pielok
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland
| | - Piotr Cichy
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland
| | - Mirosława Grymel
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland
- Biotechnology Centre, Silesian University of Technology, B. Krzywoustego 8, 44-100 Gliwice, Poland
| |
Collapse
|
34
|
Wei M, Jiang Y, Sun R, Fang L, Chu C, He H, Gou J, Yin T, Song Y, Tang X, Zhao F, Zhai Y, Zhang Y. Self-Assembly of a Linear-Dendritic Polymer Containing Cisplatin and Norcantharidin into Raspberry-like Multimicelle Clusters for the Efficient Chemotherapy of Liver Cancer. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 36882938 DOI: 10.1021/acsami.2c21529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Combination chemotherapy has been proved to be an effective strategy in the clinic, and nanoformulations have drawn much attention in the field of drug delivery. However, conventional nanocarriers suffer from shortcomings such as inefficient coloading and undesired molar ratios of the combined drugs, preleakage of cargos during systemic circulation, and lack of cancer-selective drug release. To achieve tumor-specific codelivery of cisplatin (CDDP) and norcantharidin (NCTD) for synergistic treatment of liver cancer, a novel linear-dendritic polymer, termed as G1(PPDC)x, was designed and synthesized, where a prodrug consisting of cisplatin (CDDP) and norcantharidin (NCTD) was conjugated to PEG2000 via ester bonds to fabricate linear polymer-drug conjugates, and the conjugates were subsequently grafted to the terminal hydroxyls of a dendritic polycarbonate core. Benefiting from the hydrogen bond interactions, G1(PPDC)x could spontaneously self-assemble into a unique type of raspberry-like multimicelle clusters in solution (G1(PPDC)x-PMs). G1(PPDC)x-PMs possessed an optimal synergistic ratio of CDDP and NCTD, without obvious premature release or disassembly in biological environments. Intriguingly, upon extravasation into the interstitial tumor tissues, G1(PPDC)x-PMs (132 nm in diameter) could disassemble and reassemble into smaller micelles (40 nm in diameter) in response to the mildly acidic tumor microenvironment, which would enhance the deep tumor penetration and cellular accumulation of drugs. In vivo delivery of G1(PPDC)x-PMs led to a significantly prolonged blood circulation half-life, which is beneficial to achieve sufficient tumor accumulation through the enhanced permeability and retention (EPR) effect. G1(PPDC)x-PMs displayed the best antitumor activity in H22 tumor-bearing mice with a tumor inhibition rate of 78.87%. Meanwhile, G1(PPDC)x-PMs alleviated both myelosuppression toxicities of CDDP and vascular irritation of NCTD. Our results demonstrated that G1(PPDC)x-PMs could serve as an effective drug delivery system for codelivery of CDDP and NCTD to treat liver cancer efficiently.
Collapse
Affiliation(s)
- Mingli Wei
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ying Jiang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Rong Sun
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Liangyi Fang
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Chenxiao Chu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Haibing He
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jingxin Gou
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Tian Yin
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yongbo Song
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xing Tang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Fan Zhao
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yinglei Zhai
- Department of Biomedical Engineering, School of Medical Devices, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yu Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
35
|
Tóth K, S Nagy K, Güler Z, Juhász ÁG, Pállinger É, Varga G, Sarac AS, Zrínyi M, Jedlovszky-Hajdú A, Juriga D. Characterization of Electrospun Polysuccinimide-Dopamine Conjugates and Effect on Cell Viability and Uptake. Macromol Biosci 2023; 23:e2200397. [PMID: 36592964 DOI: 10.1002/mabi.202200397] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/14/2022] [Indexed: 01/04/2023]
Abstract
Biocompatible nanofibrous systems made by electrospinning have been studied widely for pharmaceutical applications since they have a high specific surface and the capability to make the entrapped drug molecule amorphous, which increases bioavailability. By covalently conjugating drugs onto polymers, the degradation of the drug as well as the fast clearance from the circulation can be avoided. Although covalent polymer-drug conjugates have a lot of advantages, there is a lack of research focusing on their nano-formulation by electrospinning. In this study, polysuccinimide (PSI) based electrospun fibrous meshes conjugated with dopamine (DA) are prepared. Fiber diameter, mechanical properties, dissolution kinetics and membrane permeability are thoroughly investigated, as these are crucial for drug delivery and implantation. Dopamine release kinetics prove the prolonged release that influenced the viability and morphology of periodontal ligament stem cells (PDLSCs) and SH-SY5Y cells. The presence of dopamine receptors on both cell types is also demonstrated and the uptake of the conjugates is measured. According to flow cytometry analysis, the conjugates are internalized by both cell types, which is influenced by the chemical structure and physical properties. In conclusion, electrospinning of PSI-DA conjugates alters release kinetics, meanwhile, conjugated dopamine can play a key role in cellular uptake.
Collapse
Affiliation(s)
- Krisztina Tóth
- Laboratory of Nanochemistry, Department of Biophysics and Radiation Biology, Semmelweis University, Nagyvárad tér 4, Budapest, H-1089, Hungary
| | - Krisztina S Nagy
- Laboratory of Nanochemistry, Department of Biophysics and Radiation Biology, Semmelweis University, Nagyvárad tér 4, Budapest, H-1089, Hungary.,Department of Oral Biology, Semmelweis University, Nagyvárad tér 4, Budapest, H-1089, Hungary
| | - Zeliha Güler
- Department of Nanoscience and Nanoengineering, Istanbul Technical University, Istanbul, 34469, Turkey.,Department of Obstetrics and Gynecology, Amsterdam Reproduction and Development, Amsterdam UMC, location AMC, University of Amsterdam, Meibergdreef 9, Amsterdam, 1105 AZ, the Netherlands
| | - Ákos György Juhász
- Laboratory of Nanochemistry, Department of Biophysics and Radiation Biology, Semmelweis University, Nagyvárad tér 4, Budapest, H-1089, Hungary
| | - Éva Pállinger
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Nagyvárad tér 4, Budapest, H-1089, Hungary
| | - Gábor Varga
- Department of Oral Biology, Semmelweis University, Nagyvárad tér 4, Budapest, H-1089, Hungary.,Centre for Translational Medicine, Semmelweis University, Üllői út 26, Budapest, H-1085, Hungary
| | - A Sezai Sarac
- Department of Nanoscience and Nanoengineering, Istanbul Technical University, Istanbul, 34469, Turkey
| | - Miklós Zrínyi
- Laboratory of Nanochemistry, Department of Biophysics and Radiation Biology, Semmelweis University, Nagyvárad tér 4, Budapest, H-1089, Hungary
| | - Angéla Jedlovszky-Hajdú
- Laboratory of Nanochemistry, Department of Biophysics and Radiation Biology, Semmelweis University, Nagyvárad tér 4, Budapest, H-1089, Hungary
| | - Dávid Juriga
- Laboratory of Nanochemistry, Department of Biophysics and Radiation Biology, Semmelweis University, Nagyvárad tér 4, Budapest, H-1089, Hungary
| |
Collapse
|
36
|
Su Y, Jin G, Zhou H, Yang Z, Wang L, Mei Z, Jin Q, Lv S, Chen X. Development of stimuli responsive polymeric nanomedicines modulating tumor microenvironment for improved cancer therapy. MEDICAL REVIEW (2021) 2023; 3:4-30. [PMID: 37724108 PMCID: PMC10471091 DOI: 10.1515/mr-2022-0048] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 02/16/2023] [Indexed: 09/20/2023]
Abstract
The complexity of the tumor microenvironment (TME) severely hinders the therapeutic effects of various cancer treatment modalities. The TME differs from normal tissues owing to the presence of hypoxia, low pH, and immune-suppressive characteristics. Modulation of the TME to reverse tumor growth equilibrium is considered an effective way to treat tumors. Recently, polymeric nanomedicines have been widely used in cancer therapy, because their synthesis can be controlled and they are highly modifiable, and have demonstrated great potential to remodel the TME. In this review, we outline the application of various stimuli responsive polymeric nanomedicines to modulate the TME, aiming to provide insights for the design of the next generation of polymeric nanomedicines and promote the development of polymeric nanomedicines for cancer therapy.
Collapse
Affiliation(s)
- Yuanzhen Su
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
- School of Materials Science and Engineering, Peking University, Beijing, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui Province, China
| | - Guanyu Jin
- School of Materials Science and Engineering, Peking University, Beijing, China
- Department of Chemistry, Capital Normal University, Beijing, China
| | - Huicong Zhou
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Zhaofan Yang
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Lanqing Wang
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Zi Mei
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Qionghua Jin
- Department of Chemistry, Capital Normal University, Beijing, China
| | - Shixian Lv
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
- School of Materials Science and Engineering, Peking University, Beijing, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui Province, China
| |
Collapse
|
37
|
Tao W, Wang J, Zhou Y, Liu Z, Chen H, Zhao Z, Yan H, Liao X. Acid/reduction dual-sensitive amphiphilic graft polyurethane with folic acid and detachable poly(ethylene glycol) as anticancer drug delivery carrier. Colloids Surf B Biointerfaces 2023; 222:113084. [PMID: 36549246 DOI: 10.1016/j.colsurfb.2022.113084] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 11/02/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
Abstract
In order to not only improve the stability of nanomicelles in blood circulation but also promote the cellular uptake in tumors and rapidly release the encapsulated drugs in tumor cells, a kind of acid/reduction dual-sensitive amphiphilic graft polyurethane with folic acid and detachable poly(ethylene glycol) (FA-PUSS-gimi-mPEG) was synthesized by grafting folic acid and monomethoxy poly(ethylene glycol) to the polyurethane side chain. FA-PUSS-gimi-mPEG could self-assemble in aqueous solution to form negatively charged nanomicelles, which endowed them good stability under normal physiological condition. Using ultraviolet-visible spectrometer (UV-vis) and dynamic light scattering (DLS), it was found that the hydrophilic poly(ethylene glycol) layer of FA-PUSS-gimi-mPEG micelles could be detached due to the cleavage of benzoic-imine bond under slightly acidic condition, which resulted in reversing the charge of the micellar surface and exposing folic acid to the micellar surface. FA-PUSS-gimi-mPEG micelles could load doxorubicin (DOX), moreover the drug release rate was faster at pH 5.0 and 10 mM glutathione (GSH) than that under normal physiological condition. The results of cell experiments further demonstrated that FA-PUSS-gimi-mPEG micelles had acid/reduction dual-sensitive property. The changes in the structure of FA-PUSS-gimi-mPEG micelles could enhance the cellular uptake under acid condition and the micelles could accelerate the drug release in tumor cells due to the presence of disulfide bonds in the polymer. Therefore, FA-PUSS-gimi-mPEG micelles could efficiently deliver anticancer drug into tumor cells and enhance the inhibition of cellular proliferation through multi-effect synergy.
Collapse
Affiliation(s)
- Wangwang Tao
- Key Laboratory of Coal Conversion and New Carbon Material of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, Hubei, China
| | - Jun Wang
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Yu Zhou
- Key Laboratory of Coal Conversion and New Carbon Material of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, Hubei, China.
| | - Zhaoxia Liu
- Key Laboratory of Coal Conversion and New Carbon Material of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, Hubei, China
| | - Hongxiang Chen
- Key Laboratory of Coal Conversion and New Carbon Material of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, Hubei, China
| | - Zuyi Zhao
- Key Laboratory of Coal Conversion and New Carbon Material of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, Hubei, China
| | - Hongye Yan
- Key Laboratory of Coal Conversion and New Carbon Material of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, Hubei, China
| | - Xinghua Liao
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430081, China.
| |
Collapse
|
38
|
Barathi S, Sabapathi N, Aruljothi KN, Lee JH, Shim JJ, Lee J. Regulatory Small RNAs for a Sustained Eco-Agriculture. Int J Mol Sci 2023; 24:ijms24021041. [PMID: 36674558 PMCID: PMC9863784 DOI: 10.3390/ijms24021041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/29/2022] [Accepted: 01/04/2023] [Indexed: 01/07/2023] Open
Abstract
Small RNA (sRNA) has become an alternate biotechnology tool for sustaining eco-agriculture by enhancing plant solidity and managing environmental hazards over traditional methods. Plants synthesize a variety of sRNA to silence the crucial genes of pests or plant immune inhibitory proteins and counter adverse environmental conditions. These sRNAs can be cultivated using biotechnological methods to apply directly or through bacterial systems to counter the biotic stress. On the other hand, through synthesizing sRNAs, microbial networks indicate toxic elements in the environment, which can be used effectively in environmental monitoring and management. Moreover, microbes possess sRNAs that enhance the degradation of xenobiotics and maintain bio-geo-cycles locally. Selective bacterial and plant sRNA systems can work symbiotically to establish a sustained eco-agriculture system. An sRNA-mediated approach is becoming a greener tool to replace xenobiotic pesticides, fertilizers, and other chemical remediation elements. The review focused on the applications of sRNA in both sustained agriculture and bioremediation. It also discusses limitations and recommends various approaches toward future improvements for a sustained eco-agriculture system.
Collapse
Affiliation(s)
- Selvaraj Barathi
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Nadana Sabapathi
- Guangdong Key Laboratory for Genome Stability and Disease Prevention, School of Medicine, Shenzhen University, Shenzhen 518060, China
| | - Kandasamy Nagarajan Aruljothi
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chennai 603 203, India
- Correspondence: (K.N.A.); (J.L.); Tel.: +91-995-235-8239 (K.N.A.); +82-53-810-2533 (J.L.); Fax: +82-53-810-4631 (J.L.)
| | - Jin-Hyung Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Jae-Jin Shim
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
- Correspondence: (K.N.A.); (J.L.); Tel.: +91-995-235-8239 (K.N.A.); +82-53-810-2533 (J.L.); Fax: +82-53-810-4631 (J.L.)
| |
Collapse
|
39
|
Geng S, Guo M, Zhan G, Shi D, Shi L, Gan L, Zhao Y, Yang X. NIR-triggered ligand-presenting nanocarriers for enhancing synergistic photothermal-chemotherapy. J Control Release 2023; 353:229-240. [PMID: 36427657 DOI: 10.1016/j.jconrel.2022.11.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/14/2022] [Accepted: 11/20/2022] [Indexed: 11/27/2022]
Abstract
Surface PEGylation of nanomedicine is effective for prolonging blood circulation time and facilitating the EPR effect, whereas the hydrophilic stealth surface inhibits effective cellular uptake and hinders active targeting. To address the dilemma, herein, a NIR light-triggered dePEGylation/ligand-presenting strategy based on thermal decomposition of azo bonds is developed, whereby Dox/Pz-IR nanoparticle is self-assembled from thermo-labile azo molecule-linked long PEG chain polymer (Pz-IR), cRGD-conjugated IR783 with short PEG chains (rP-IR) and doxorubicin. The long PEG chains could mask cRGD peptides in the blood circulation, preventing serum degradation and nonspecific interaction with normal cells. Once exposed to NIR laser, the PEG corona is stripped off owing to the rupture of azo bonds through the photothermal effect of IR783, and the masked cRGD peptides are exposed, which remarkably enhances cellular uptake by tumor cells and improves tumor accumulation. Dox/Pz-IR achieves the optimal synergy of photothermal-chemotherapy at mild temperature through progressive tumor accumulation, precisely regulated photothermal effect and NIR-PTT induced pulsated drug release. The strategy of NIR photo-driven dePEGylation/targeting offers a new approach to overcoming the "PEG dilemma", and provides a noval avenue for programmed tumor-targeted drug delivery.
Collapse
Affiliation(s)
- Shinan Geng
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou 310015, China
| | - Mengqin Guo
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Guiting Zhan
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Dingwen Shi
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Liyun Shi
- Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou 310015, China
| | - Lu Gan
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yanbing Zhao
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan 430074, China; GBA Research Innovation Institute for Nanotechnology, Guangdong 510530, China.
| |
Collapse
|
40
|
Lou L, Zhou S, Tan S, Xiang M, Wang W, Yuan C, Gao L, Xiao Q. Amplifying the efficacy of ALA-based prodrugs for photodynamic therapy using nanotechnology. Front Pharmacol 2023; 14:1137707. [PMID: 36923350 PMCID: PMC10008889 DOI: 10.3389/fphar.2023.1137707] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/16/2023] [Indexed: 03/01/2023] Open
Abstract
5-aminolevulinic acid (ALA) is a clinically approved prodrug involved in intracellular Heme biosynthesis to produce the natural photosensitizer (PS) Protoporphyrin IX (PpIX). ALA based photodynamic therapy (PDT) has been used to treat various malignant and non-malignant diseases. However, natural ALA has disadvantages such as weak lipophilicity, low stability and poor bioavailability, greatly reducing its clinical performance. The emerging nanotechnology is expected to address these limitations and thus improve the therapeutic outcomes. Herein, we summarized important recent advances in the design of ALA-based prodrugs using nanotechnology to improve the efficacy of PDT. The potential limitations and future perspectives of ALA-based nanomedicines are also briefly presented and discussed.
Collapse
Affiliation(s)
- Liang Lou
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University and Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Shizhe Zhou
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University and Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Sijia Tan
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University and Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Menghua Xiang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University and Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Wei Wang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University and Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Chuang Yuan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China.,Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
| | - Liqian Gao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University and Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Qicai Xiao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University and Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
41
|
Sun Y, Sha Y, Cui G, Meng F, Zhong Z. Lysosomal-mediated drug release and activation for cancer therapy and immunotherapy. Adv Drug Deliv Rev 2023; 192:114624. [PMID: 36435229 DOI: 10.1016/j.addr.2022.114624] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 11/10/2022] [Accepted: 11/19/2022] [Indexed: 11/27/2022]
Abstract
The development of carrier systems that are able to transport and release therapeutics to target cells is an emergent strategy to treat cancer; however, they following endocytosis are usually trapped in the endo/lysosomal compartments. The efficacy of drug conjugates and nanotherapeutics relies critically on their intracellular drug release ability, for which advanced systems responding to the unique lysosomal environment such as acidic pH and abundant enzymes (e.g. cathepsin B, sulfatase and β-glucuronidase) or equipped with photochemical internalization property have been energetically pursued. In this review, we highlight the recent designs of smart systems that promote efficient lysosomal release and/or escape of anticancer agents including chemotherapeutics (e.g. doxorubicin, platinum, chloroquine and hydrochloroquine) and biotherapeutics (e.g. proteins, siRNA, miRNA, mRNA and pDNA) to cancer cells or immunotherapeutic agents (e.g. antigens, mRNA and immunoadjuvants) to antigen-presenting cells (APCs), thereby boosting cancer therapy and immunotherapy. Lysosomal-mediated drug release presents an appealing approach to develop innovative cancer therapeutics and immunotherapeutics.
Collapse
Affiliation(s)
- Yinping Sun
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Soochow University, Suzhou 215123, PR China
| | - Yongjie Sha
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Soochow University, Suzhou 215123, PR China
| | - Guanhong Cui
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Soochow University, Suzhou 215123, PR China
| | - Fenghua Meng
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Soochow University, Suzhou 215123, PR China.
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Soochow University, Suzhou 215123, PR China; College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, PR China.
| |
Collapse
|
42
|
Vordos N, Gkika DA, Pradakis N, Mitropoulos AC, Kyzas GZ. Therapeutic and Diagnostic Potential of Nanomaterials for Enhanced Biomedical Applications. ADVANCED AND INNOVATIVE APPROACHES OF ENVIRONMENTAL BIOTECHNOLOGY IN INDUSTRIAL WASTEWATER TREATMENT 2023:277-300. [DOI: 10.1007/978-981-99-2598-8_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
43
|
Kai Zhang, Liu P, Bai X, Gao X, Liu K, Li A, Lyu Z. The pH-Responsive CS-g-PEI-g-PEG Graft Copolymer as PolyI:C/OVA Drug Carrier. POLYMER SCIENCE SERIES A 2022. [DOI: 10.1134/s0965545x2370061x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
44
|
Guo Z, Sui J, Li Y, Wei Q, Wei C, Xiu L, Zhu R, Sun Y, Hu J, Li JL. GE11 peptide-decorated acidity-responsive micelles for improved drug delivery and enhanced combination therapy of metastatic breast cancer. J Mater Chem B 2022; 10:9266-9279. [PMID: 36342458 DOI: 10.1039/d2tb01816k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Nanotechnology-mediated drug delivery systems suffer from insufficient retention in tumor tissues and unreliable drug release at specific target sites. Herein, we developed an epidermal growth factor receptor-targeted multifunctional micellar nanoplatform (GE11-DOX+CEL-M) by encapsulating celecoxib into polymeric micelles based on the conjugate of GE11-poly(ethylene glycol)-b-poly(trimethylene carbonate) with doxorubicin to suppress tumor growth and metastasis. The polymeric micelles maintained stable nanostructures under physiological conditions but quickly disintegrated in a weakly acidic environment, which is conducive to controlled drug release. Importantly, GE11-DOX+CEL-M micelles effectively delivered the drug combination to tumor sites and enhanced tumor cell uptake through GE11-mediated active tumor targeting. Subsequently, GE11-DOX+CEL-M micelles dissociated in response to intracellular slightly acidic microenvironmental stimuli, resulting in rapid release of celecoxib and doxorubicin to synergistically inhibit the proliferation and migration of tumor cells. Systemic administration of GE11-DOX+CEL-M micelles into mice bearing subcutaneous 4T1 tumor models resulted in higher tumor growth suppression and decreased lung metastasis of tumor cells compared with micelles without GE11 decoration or delivering only doxorubicin. Furthermore, the micelles effectively reduced the systemic toxicity of the chemotherapy drugs. This nanotherapeutic system provides a promising strategy for safe and effective cancer therapy.
Collapse
Affiliation(s)
- Zhihao Guo
- School of Biomedical Engineering, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, 325027, China. .,National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, China. .,Center for Molecular Science and Engineering, College of Science, Northeastern University, 3-11 Wenhua Road, Shenyang, 110819, China
| | - Junhui Sui
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, China. .,College of Life Science and Technology, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, 453003, China
| | - Yumei Li
- School of Biomedical Engineering, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, 325027, China.
| | - Qinchuan Wei
- School of Biomedical Engineering, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, 325027, China.
| | - Cailing Wei
- School of Biomedical Engineering, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, 325027, China.
| | - Linyun Xiu
- School of Biomedical Engineering, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, 325027, China.
| | - Ruohua Zhu
- School of Biomedical Engineering, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, 325027, China.
| | - Yong Sun
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, China.
| | - Jianshe Hu
- Center for Molecular Science and Engineering, College of Science, Northeastern University, 3-11 Wenhua Road, Shenyang, 110819, China
| | - Ji-Liang Li
- School of Biomedical Engineering, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, 325027, China. .,Wenzhou Institute, University of Chinese Academy of Sciences, 1 Jinlian Road, Wenzhou, 325000, China.
| |
Collapse
|
45
|
Batista A, Bellettini IC, Brondani PB. Pain and nociception bioinspiration for the development of a micellar-based screening test for antinociceptive drugs. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
46
|
Yu B, Shen Y, Zhang X, Ding L, Meng Z, Wang X, Han M, Guo Y, Wang X. Poly(methacrylate citric acid) as a Dual Functional Carrier for Tumor Therapy. Pharmaceutics 2022; 14:pharmaceutics14091765. [PMID: 36145512 PMCID: PMC9506429 DOI: 10.3390/pharmaceutics14091765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/11/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
Owing to its pH-sensitive property and chelating Cu2+ effect, poly(methacrylate citric acid) (PCA) can be utilized as a dual functional nanocarrier to construct a nanodelivery system. Negatively charged carboxyl groups can interact with positively charged antineoplastic drugs through electrostatic interaction to form stable drug nanoparticles (NPs). Through drug experimental screening, doxorubicin (DOX) was selected as the model drug, PCA/DOX NPs with a diameter of 84 nm were prepared, and the drug-loading content was 68.3%. PCA/DOX NPs maintained good stability and a sustained release profile. Cell experiments presented that PCA/DOX NPs could inhibit effectively the growth of 4T1 cells; the IC50 value was decreased by approximately 15-fold after incubation for 72 h. The cytotoxicity toward H9C2 was decreased significantly. Moreover, based on its ability to efficiently adsorb copper ions, PCA showed good vascular growth inhibition effect in vitro. Furthermore, animal experiments showed that PCA/DOX NPs presented stronger anticancer effects than DOX; the tumor inhibition rate was increased by 1.5-fold. Myocardial toxicity experiments also confirmed that PCA reduced the cardiotoxicity of DOX. In summary, PCA/DOX NPs show good antitumor efficacy and low toxicity, and have good potential for clinical application.
Collapse
Affiliation(s)
- Bo Yu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Yiping Shen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Xuejie Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Lijuan Ding
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Zheng Meng
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Xiaotong Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Meihua Han
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Yifei Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100094, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
- Correspondence: (Y.G.); (X.W.)
| | - Xiangtao Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
- Correspondence: (Y.G.); (X.W.)
| |
Collapse
|
47
|
Xu Y, Liang N, Liu J, Gong X, Yan P, Sun S. Design and fabrication of chitosan-based AIE active micelles for bioimaging and intelligent delivery of paclitaxel. Carbohydr Polym 2022; 290:119509. [PMID: 35550783 DOI: 10.1016/j.carbpol.2022.119509] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/10/2022] [Accepted: 04/18/2022] [Indexed: 11/02/2022]
Abstract
In this study, cetyl 4-formylbenzoate alkyl and 4-(2-hydroxyethoxy) benzophenonesalicylaldazide modified biotinylated chitosan (CS-BT-HBS-CB) featured with aggregation-induced emission (AIE) characteristic, active tumor-targeting ability and pH-responsive drug release property was designed and synthesized. The polymer was fabricated by introducing hydrophobic segment, tumor targeting ligand, acid-sensitive bond and AIE fluorophore to the backbone of chitosan. Due to its amphiphilicity, the polymer could self-assemble into micelles and encapsulate paclitaxel (PTX) to form PTX-loaded CS-BT-HBS-CB micelles. The mean size of the micelles was 167 nm, which was beneficial to the EPR effect. Moreover, with the help of above functional groups, the micelles exhibited excellent AIE effect, triggered drug release behavior by acidic condition, selective internalization by MCF-7 cells and excellent cellular imaging capability. In vivo studies revealed that the PTX-loaded CS-BT-HBS-CB micelles could enhance the antitumor efficacy with low systemic toxicity. This micellar system would be a potential candidate for cancer therapy and bioimaging.
Collapse
Affiliation(s)
- Yang Xu
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Material Science, Heilongjiang University, Harbin 150080, China
| | - Na Liang
- College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China.
| | - Jiyang Liu
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Material Science, Heilongjiang University, Harbin 150080, China
| | - Xianfeng Gong
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Material Science, Heilongjiang University, Harbin 150080, China
| | - Pengfei Yan
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Material Science, Heilongjiang University, Harbin 150080, China
| | - Shaoping Sun
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Material Science, Heilongjiang University, Harbin 150080, China.
| |
Collapse
|
48
|
pH-Sensitive nanoparticles co-loaded with dimethylcurcumin and regorafenib for targeted combinational therapy of hepatocellular carcinoma. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
49
|
Wang J, Li B, Qiu L, Qiao X, Yang H. Dendrimer-based drug delivery systems: history, challenges, and latest developments. J Biol Eng 2022; 16:18. [PMID: 35879774 PMCID: PMC9317453 DOI: 10.1186/s13036-022-00298-5] [Citation(s) in RCA: 127] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 07/01/2022] [Indexed: 11/16/2022] Open
Abstract
Since the first dendrimer was reported in 1978 by Fritz Vögtle, dendrimer research has grown exponentially, from synthesis to application in the past four decades. The distinct structure characteristics of dendrimers include nanoscopic size, multi-functionalized surface, high branching, cavernous interior, and so on, making dendrimers themselves ideal drug delivery vehicles. This mini review article provides a brief overview of dendrimer’s history and properties and the latest developments of dendrimers as drug delivery systems. This review focuses on the latest progress in the applications of dendrimers as drug and gene carriers, including 1) active drug release strategies to dissociate drug/gene from dendrimer in response to stimuli; 2) size-adaptive and charge reversal dendrimer delivery systems that can better take advantage of the size and surface properties of dendrimer; 3) bulk and micro/nano dendrimer gel delivery systems. The recent advances in dendrimer formulations may lead to the generation of new drug and gene products and enable the development of novel combination therapies.
Collapse
Affiliation(s)
- Juan Wang
- College of Biomedical Engineering, Sichuan University, Chengdu, 610065, Sichuan, China.
| | - Boxuan Li
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Li Qiu
- College of Biomedical Engineering, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Xin Qiao
- College of Biomedical Engineering, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Hu Yang
- Linda and Bipin Doshi Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, MO, 65409, USA
| |
Collapse
|
50
|
Sanchez Armengol E, Unterweger A, Laffleur F. PEGylated drug delivery systems in the pharmaceutical field: past, present and future perspective. Drug Dev Ind Pharm 2022; 48:129-139. [PMID: 35822253 DOI: 10.1080/03639045.2022.2101062] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Target-site drug delivery systems are gaining interest in the pharmaceutical field due to their great advantages, such as higher drug dosing capacity and better bioavailability. However, some existing problems need to be overcome. As an example, interaction between blood proteins and drug delivery systems. A potent candidate to approach the mentioned problem is based on polyethylene glycol (PEG) surface modifications. This polymer acts as a protector towards the external possible interactions with other compounds, making targeted delivery possible. Diseases such as cancer, diabetes, haemophilia and pain treatment can benefit from these new systems.This review aims to give an overview of drug delivery systems based on PEGylation as surface modification as pharmaceutical approach. Moreover, a deeper insight of the properties of PEG and its advantages is given, as well as brief overview of present therapies based on this technology.
Collapse
Affiliation(s)
- Eva Sanchez Armengol
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Alexander Unterweger
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Flavia Laffleur
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| |
Collapse
|