1
|
Liu S, Yan W, Zhang W, Zhang J, Li Z, Guo Y, Chen H, Xu J. Nanoenhanced-Cuproptosis Results From the Synergy of Calcium Overload and GSH Depletion with the Increasing of Intracellular Ca/Mn/Cu Ions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412067. [PMID: 39928524 PMCID: PMC11967785 DOI: 10.1002/advs.202412067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 01/12/2025] [Indexed: 02/12/2025]
Abstract
Cuproptosis is a newly discovered copper-dependent form of cell death. Intracellular glutathione (GSH) acts as a copper chelator to inhibit cuproptosis, so the reduction of GSH concentration is conducive to enhancing the cuproptosis of cells. In order to reduce GSH content and interfere with mitochondrial metabolism, a strategy based on calcium overload and GSH depletion to enhance cuproptosis is proposed in this study. Containing manganese (Mn) and copper (Cu) elements, CaCO3 nanoparticles (NPs) are modified with MCF-7 cell aptamer (CaCO3/Mn/Cu@lip-Apt). When entering the cell, CaCO3/Mn/Cu@lip-Apt decomposed and released Mn* (Mn2+/Mn3+/Mn4+), Cu2+ and Ca2+. The high valence Mn ion in Mn* can effectively consume GSH to produce Mn2+ which catalyzed H2O2 to produce reactive oxygen species (ROS), while reducing the GSH concentration. The production of ROS promoted the influx of exogenous Ca2+. The large accumulation of Ca2+ led to intracellular calcium overload, resulting in mitochondrial dysfunction and metabolism disorders. The depletion of GSH promoted the accumulation of Cu2+, which in turn triggered cuproptosis. This strategy showed excellent antitumor effects and provided a new way to study disease treatment.
Collapse
Affiliation(s)
- Shiwei Liu
- School of Chemistry and Chemical EngineeringQilu University of Technology (Shandong Academy of Sciences)Jinan250353China
| | - Wennan Yan
- School of Chemistry and Chemical EngineeringQilu University of Technology (Shandong Academy of Sciences)Jinan250353China
| | - Wenyue Zhang
- School of Chemistry and Chemical EngineeringQilu University of Technology (Shandong Academy of Sciences)Jinan250353China
| | - Ji Zhang
- School of Chemistry and Chemical EngineeringQilu University of Technology (Shandong Academy of Sciences)Jinan250353China
| | - Ziyi Li
- School of Chemistry and Chemical EngineeringQilu University of Technology (Shandong Academy of Sciences)Jinan250353China
| | - Yingshu Guo
- School of Chemistry and Chemical EngineeringQilu University of Technology (Shandong Academy of Sciences)Jinan250353China
| | - Hong‐Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry andChemical EngineeringNanjing UniversityNanjing210023China
| | - Jing‐Juan Xu
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry andChemical EngineeringNanjing UniversityNanjing210023China
| |
Collapse
|
2
|
Song Y, Lei L, Cai X, Wei H, Yu CY. Immunomodulatory Peptides for Tumor Treatment. Adv Healthc Mater 2025; 14:e2400512. [PMID: 38657003 DOI: 10.1002/adhm.202400512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/07/2024] [Indexed: 04/26/2024]
Abstract
Peptides exhibit various biological activities, including biorecognition, cell targeting, and tumor penetration, and can stimulate immune cells to elicit immune responses for tumor immunotherapy. Peptide self-assemblies and peptide-functionalized nanocarriers can reduce the effect of various biological barriers and the degradation by peptidases, enhancing the efficiency of peptide delivery and improving antitumor immune responses. To date, the design and development of peptides with various functionalities have been extensively reviewed for enhanced chemotherapy; however, peptide-mediated tumor immunotherapy using peptides acting on different immune cells, to the knowledge, has not yet been summarized. Thus, this work provides a review of this emerging subject of research, focusing on immunomodulatory anticancer peptides. This review introduces the role of peptides in the immunomodulation of innate and adaptive immune cells, followed by a link between peptides in the innate and adaptive immune systems. The peptides are discussed in detail, following a classification according to their effects on different innate and adaptive immune cells, as well as immune checkpoints. Subsequently, two delivery strategies for peptides as drugs are presented: peptide self-assemblies and peptide-functionalized nanocarriers. The concluding remarks regarding the challenges and potential solutions of peptides for tumor immunotherapy are presented.
Collapse
Affiliation(s)
- Yang Song
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Longtianyang Lei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Xingyu Cai
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Hua Wei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Cui-Yun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
- Affiliated Hospital of Hunan Academy of Chinese Medicine, Hunan Academy of Chinese Medicine, Changsha, 410013, China
| |
Collapse
|
3
|
Wu Y, Shang J, Zhang X, Li N. Advances in molecular imaging and targeted therapeutics for lymph node metastasis in cancer: a comprehensive review. J Nanobiotechnology 2024; 22:783. [PMID: 39702277 PMCID: PMC11657939 DOI: 10.1186/s12951-024-02940-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 10/19/2024] [Indexed: 12/21/2024] Open
Abstract
Lymph node metastasis is a critical indicator of cancer progression, profoundly affecting diagnosis, staging, and treatment decisions. This review article delves into the recent advancements in molecular imaging techniques for lymph nodes, which are pivotal for the early detection and staging of cancer. It provides detailed insights into how these techniques are used to visualize and quantify metastatic cancer cells, resident immune cells, and other molecular markers within lymph nodes. Furthermore, the review highlights the development of innovative, lymph node-targeted therapeutic strategies, which represent a significant shift towards more precise and effective cancer treatments. By examining cutting-edge research and emerging technologies, this review offers a comprehensive overview of the current and potential impact of lymph node-centric approaches on cancer diagnosis, staging, and therapy. Through its exploration of these topics, the review aims to illuminate the increasingly sophisticated landscape of cancer management strategies focused on lymph node assessment and intervention.
Collapse
Affiliation(s)
- Yunhao Wu
- Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Jin Shang
- Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Xinyue Zhang
- The First Hospital of China Medical University, Shenyang, 110001, Liaoning, China
| | - Nu Li
- The First Hospital of China Medical University, Shenyang, 110001, Liaoning, China.
| |
Collapse
|
4
|
Feng T, Hu J, Wen J, Qian Z, Che G, Zhou Q, Zhu L. Personalized nanovaccines for treating solid cancer metastases. J Hematol Oncol 2024; 17:115. [PMID: 39609851 PMCID: PMC11603676 DOI: 10.1186/s13045-024-01628-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 10/25/2024] [Indexed: 11/30/2024] Open
Abstract
Cancer vaccines have garnered attention as a potential treatment for cancer metastases. Nevertheless, the clinical response rate to vaccines remains < 30%. Nanoparticles stabilize vaccines and improve antigen recognition and presentation, resulting in high tumor penetration or accumulation, effective co-distribution of drugs to the secondary lymphatic system, and adaptable antigen or adjuvant administration. Such vaccine-like nanomedicines have the ability to eradicate the primary tumors as well as to prevent or eliminate metastases. This review examines state-of-the-art nanocarriers developed to deliver tumor vaccines to metastases, including synthetic, semi-biogenic, and biogenic nanosystems. Moreover, it highlights the physical and pharmacological properties that enhance their anti-metastasis efficiency. This review also addresses the combination of nanovaccines with cancer immunotherapy to target various steps in the metastatic cascade, drawing insights from preclinical and clinical studies. The review concludes with a critical analysis of the challenges and frameworks linked to the clinical translation of cancer nanovaccines.
Collapse
Affiliation(s)
- Tang Feng
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jia Hu
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jirui Wen
- Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhiyong Qian
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Guowei Che
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qinghua Zhou
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lingling Zhu
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
5
|
Zeng Y, Gao Y, He L, Ge W, Wang X, Ma T, Xie X. Smart delivery vehicles for cancer: categories, unique roles and therapeutic strategies. NANOSCALE ADVANCES 2024; 6:4275-4308. [PMID: 39170969 PMCID: PMC11334973 DOI: 10.1039/d4na00285g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/19/2024] [Indexed: 08/23/2024]
Abstract
Chemotherapy and surgery remain the primary treatment modalities for cancers; however, these techniques have drawbacks, such as cancer recurrence and toxic side effects, necessitating more efficient cancer treatment strategies. Recent advancements in research and medical technology have provided novel insights and expanded our understanding of cancer development; consequently, scholars have investigated several delivery vehicles for cancer therapy to improve the efficiency of cancer treatment and patient outcomes. Herein, we summarize several types of smart therapeutic carriers and elaborate on the mechanism underlying drug delivery. We reveal the advantages of smart therapeutic carriers for cancer treatment, focus on their effectiveness in cancer immunotherapy, and discuss the application of smart cancer therapy vehicles in combination with other emerging therapeutic strategies for cancer treatment. Finally, we summarize the bottlenecks encountered in the development of smart cancer therapeutic vehicles and suggest directions for future research. This review will promote progress in smart cancer therapy and facilitate related research.
Collapse
Affiliation(s)
- Yiyu Zeng
- Department of Stomatology, The Second Xiangya Hospital, Central South University Changsha 410011 P. R. China
| | - Yijun Gao
- Department of Stomatology, The Second Xiangya Hospital, Central South University Changsha 410011 P. R. China
| | - Liming He
- Department of Stomatology, Changsha Stomatological Hospital Changsha 410004 P. R. China
| | - Wenhui Ge
- Department of Stomatology, The Second Xiangya Hospital, Central South University Changsha 410011 P. R. China
| | - Xinying Wang
- Department of Stomatology, The Second Xiangya Hospital, Central South University Changsha 410011 P. R. China
| | - Tao Ma
- Department of Stomatology, The Second Xiangya Hospital, Central South University Changsha 410011 P. R. China
| | - Xiaoyan Xie
- Department of Stomatology, The Second Xiangya Hospital, Central South University Changsha 410011 P. R. China
| |
Collapse
|
6
|
Desai N, Chavda V, Singh TRR, Thorat ND, Vora LK. Cancer Nanovaccines: Nanomaterials and Clinical Perspectives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401631. [PMID: 38693099 DOI: 10.1002/smll.202401631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/30/2024] [Indexed: 05/03/2024]
Abstract
Cancer nanovaccines represent a promising frontier in cancer immunotherapy, utilizing nanotechnology to augment traditional vaccine efficacy. This review comprehensively examines the current state-of-the-art in cancer nanovaccine development, elucidating innovative strategies and technologies employed in their design. It explores both preclinical and clinical advancements, emphasizing key studies demonstrating their potential to elicit robust anti-tumor immune responses. The study encompasses various facets, including integrating biomaterial-based nanocarriers for antigen delivery, adjuvant selection, and the impact of nanoscale properties on vaccine performance. Detailed insights into the complex interplay between the tumor microenvironment and nanovaccine responses are provided, highlighting challenges and opportunities in optimizing therapeutic outcomes. Additionally, the study presents a thorough analysis of ongoing clinical trials, presenting a snapshot of the current clinical landscape. By curating the latest scientific findings and clinical developments, this study aims to serve as a comprehensive resource for researchers and clinicians engaged in advancing cancer immunotherapy. Integrating nanotechnology into vaccine design holds immense promise for revolutionizing cancer treatment paradigms, and this review provides a timely update on the evolving landscape of cancer nanovaccines.
Collapse
Affiliation(s)
- Nimeet Desai
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, 502285, India
| | - Vivek Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L M College of Pharmacy, Ahmedabad, 380009, India
| | | | - Nanasaheb D Thorat
- Limerick Digital Cancer Research Centre (LDCRC), University of Limerick, Castletroy, Limerick, V94T9PX, Ireland
- Department of Physics, Bernal Institute, Castletroy, Limerick, V94T9PX, Ireland
- Nuffield Department of Women's & Reproductive Health, Medical Science Division, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| |
Collapse
|
7
|
Xu M, Wei S, Duan L, Ji Y, Han X, Sun Q, Weng L. The recent advancements in protein nanoparticles for immunotherapy. NANOSCALE 2024; 16:11825-11848. [PMID: 38814163 DOI: 10.1039/d4nr00537f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
In recent years, the advancement of nanoparticle-based immunotherapy has introduced an innovative strategy for combatting diseases. Compared with other types of nanoparticles, protein nanoparticles have obtained substantial attention owing to their remarkable biocompatibility, biodegradability, ease of modification, and finely designed spatial structures. Nature provides several protein nanoparticle platforms, including viral capsids, ferritin, and albumin, which hold significant potential for disease treatment. These naturally occurring protein nanoparticles not only serve as effective drug delivery platforms but also augment antigen delivery and targeting capabilities through techniques like genetic modification and covalent conjugation. Motivated by nature's originality and driven by progress in computational methodologies, scientists have crafted numerous protein nanoparticles with intricate assembly structures, showing significant potential in the development of multivalent vaccines. Consequently, both naturally occurring and de novo designed protein nanoparticles are anticipated to enhance the effectiveness of immunotherapy. This review consolidates the advancements in protein nanoparticles for immunotherapy across diseases including cancer and other diseases like influenza, pneumonia, and hepatitis.
Collapse
Affiliation(s)
- Miaomiao Xu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| | - Siyuan Wei
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| | - Lifan Duan
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| | - Yifan Ji
- Portland Institute, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Xiaofan Han
- Portland Institute, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Qipeng Sun
- Portland Institute, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Lixing Weng
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| |
Collapse
|
8
|
Qiao Q, Li X, Ou X, Liu X, Fu C, Wang Y, Niu B, Kong L, Yang C, Zhang Z. Hybrid biomineralized nanovesicles to enhance inflamed lung biodistribution and reduce side effect of glucocorticoid for ARDS therapy. J Control Release 2024; 369:746-764. [PMID: 38599547 DOI: 10.1016/j.jconrel.2024.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 04/02/2024] [Accepted: 04/07/2024] [Indexed: 04/12/2024]
Abstract
Acute respiratory distress syndrome (ARDS) is a critical illness characterized by severe lung inflammation. Improving the delivery efficiency and achieving the controlled release of anti-inflammatory drugs at the lung inflammatory site are major challenges in ARDS therapy. Taking advantage of the increased pulmonary vascular permeability and a slightly acidic-inflammatory microenvironment, pH-responsive mineralized nanoparticles based on dexamethasone sodium phosphate (DSP) and Ca2+ were constructed. By further biomimetic modification with M2 macrophage membranes, hybrid mineralized nanovesicles (MM@LCaP) were designed to possess immunomodulatory ability from the membranes and preserve the pH-sensitivity from core nanoparticles for responsive drug release under acidic inflammatory conditions. Compared with healthy mice, the lung/liver accumulation of MM@LCaP in inflammatory mice was increased by around 5.5 times at 48 h after intravenous injection. MM@LCaP promoted the polarization of anti-inflammatory macrophages, calmed inflammatory cytokines, and exhibited a comprehensive therapeutic outcome. Moreover, MM@LCaP improved the safety profile of glucocorticoids. Taken together, the hybrid mineralized nanovesicles-based drug delivery strategy may offer promising ideas for enhancing the efficacy and reducing the toxicity of clinical drugs.
Collapse
Affiliation(s)
- Qi Qiao
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaonan Li
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiangjun Ou
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiong Liu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chuansheng Fu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yi Wang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Boning Niu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Li Kong
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Conglian Yang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhiping Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
9
|
Dehghankhold M, Sadat Abolmaali S, Nezafat N, Mohammad Tamaddon A. Peptide nanovaccine in melanoma immunotherapy. Int Immunopharmacol 2024; 129:111543. [PMID: 38301413 DOI: 10.1016/j.intimp.2024.111543] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/03/2024] [Accepted: 01/11/2024] [Indexed: 02/03/2024]
Abstract
Melanoma is an especially fatal neoplasm resistant to traditional treatment. The advancement of novel therapeutical approaches has gained attention in recent years by shedding light on the molecular mechanisms of melanoma tumorigenesis and their powerful interplay with the immune system. The presence of many mutations in melanoma cells results in the production of a varied array of antigens. These antigens can be recognized by the immune system, thereby enabling it to distinguish between tumors and healthy cells. In the context of peptide cancer vaccines, generally, they are designed based on tumor antigens that stimulate immunity through antigen-presenting cells (APCs). As naked peptides often have low potential in eliciting a desirable immune reaction, immunization with such compounds usually necessitates adjuvants and nanocarriers. Actually, nanoparticles (NPs) can provide a robust immune response to peptide-based melanoma vaccines. They improve the directing of peptide vaccines to APCs and induce the secretion of cytokines to get maximum immune response. This review provides an overview of the current knowledge of the utilization of nanotechnology in peptide vaccines emphasizing melanoma, as well as highlights the significance of physicochemical properties in determining the fate of these nanovaccines in vivo, including their drainage to lymph nodes, cellular uptake, and influence on immune responses.
Collapse
Affiliation(s)
- Mahvash Dehghankhold
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Samira Sadat Abolmaali
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Navid Nezafat
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Computational vaccine and Drug Design Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ali Mohammad Tamaddon
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
10
|
Shi C, Jian C, Wang L, Gao C, Yang T, Fu Z, Wu T. Dendritic cell hybrid nanovaccine for mild heat inspired cancer immunotherapy. J Nanobiotechnology 2023; 21:347. [PMID: 37752555 PMCID: PMC10521411 DOI: 10.1186/s12951-023-02106-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/14/2023] [Indexed: 09/28/2023] Open
Abstract
Cancer therapeutic vaccine can induce antigen-specific immune response, which has shown great potential in cancer immunotherapy. As the key factor of vaccine, antigen plays a central role in eliciting antitumor immunity. However, the insufficient antigen delivery and low efficiency of antigen presentation by dendritic cells (DCs) have greatly restricted the therapeutic efficiency of vaccine. Here we developed a kind of DC hybrid zinc phosphate nanoparticles to co-deliver antigenic peptide and photosensitive melanin. Owing to the chelating ability of Zn2+, the nanoparticles can co-encapsulate antigenic peptide and melanin with high efficiency. The nanovaccine showed good physiological stability with the hydration particle size was approximately 30 nm, and zeta potential was around - 10 mV. The nanovaccine showed homologous targeting effect to DCs in vivo and in vitro, efficiently delivering antigen to DCs. Meanwhile, the nanovaccine could effectively reflux to the tumor-draining lymph nodes. When combined with near-infrared irradiation, the nanovaccine induced effective mild heat in vitro and in vivo to promote antigen presentation. After administrating to MC38 tumor-bearing mice, the hybrid nanovaccine effectively promoted the maturation of DCs, the expansion of cytotoxic T lymphocytes and helper T cells, and the secretion of immunostimulatory cytokines, thereby significantly inhibiting tumor growth.
Collapse
Affiliation(s)
- Chen Shi
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022, China
| | - Chen Jian
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lulu Wang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chen Gao
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ting Yang
- Affiliated Hospital of Yunnan University, Kunming, 650000, China
| | - Zhiwen Fu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022, China
| | - Tingting Wu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022, China.
| |
Collapse
|
11
|
He P, Tang H, Zheng Y, Xiong Y, Cheng H, Li J, Zhang Y, Liu G. Advances in nanomedicines for lymphatic imaging and therapy. J Nanobiotechnology 2023; 21:292. [PMID: 37620846 PMCID: PMC10463797 DOI: 10.1186/s12951-023-02022-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023] Open
Abstract
Lymph nodes play a pivotal role in tumor progression as key components of the lymphatic system. However, the unique physiological structure of lymph nodes has traditionally constrained the drug delivery efficiency. Excitingly, nanomedicines have shown tremendous advantages in lymph node-specific delivery, enabling distinct recognition and diagnosis of lymph nodes, and hence laying the foundation for efficient tumor therapies. In this review, we comprehensively discuss the key factors affecting the specific enrichment of nanomedicines in lymph nodes, and systematically summarize nanomedicines for precise lymph node drug delivery and therapeutic application, including the lymphatic diagnosis and treatment nanodrugs and lymph node specific imaging and identification system. Notably, we delve into the critical challenges and considerations currently facing lymphatic nanomedicines, and futher propose effective strategies to address these issues. This review encapsulates recent findings, clinical applications, and future prospects for designing effective nanocarriers for lymphatic system targeting, with potential implications for improving cancer treatment strategies.
Collapse
Affiliation(s)
- Pan He
- Department of Hepatobiliary Surgery, Academician (Expert) Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637600, China
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, 361002, China
| | - Haitian Tang
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, 361002, China
| | - Yating Zheng
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, 361002, China
| | - Yongfu Xiong
- Department of Hepatobiliary Surgery, Academician (Expert) Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637600, China
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, 361002, China
| | - Hongwei Cheng
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, 361002, China
| | - Jingdong Li
- Department of Hepatobiliary Surgery, Academician (Expert) Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637600, China.
| | - Yang Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, 361002, China.
| | - Gang Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, 361002, China.
| |
Collapse
|
12
|
Roy M, Roy A, Rustagi S, Pandey N. An Overview of Nanomaterial Applications in Pharmacology. BIOMED RESEARCH INTERNATIONAL 2023; 2023:4838043. [PMID: 37388336 PMCID: PMC10307208 DOI: 10.1155/2023/4838043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/06/2023] [Accepted: 06/13/2023] [Indexed: 07/01/2023]
Abstract
Nanotechnology has become one of the most extensive fields of research. Nanoparticles (NPs) form the base for nanotechnology. Recently, nanomaterials (NMs) are widely used due to flexible chemical, biological, and physical characteristics with improved efficacy in comparison to bulk counterparts. The significance of each class of NMs is enhanced by identifying their properties. Day by day, there is an emergence of various applications of NMs, but the toxic effects associated with them cannot be avoided. NMs demonstrate therapeutic abilities by enhancing the drug delivery system, diagnosis, and therapeutic effects of numerous agents, but determining the benefits of NMs over other clinical applications (disease-specific) or substances is an ongoing investigation. This review is aimed at defining NMs and NPs and their types, synthesis, and pharmaceutical, biomedical, and clinical applications.
Collapse
Affiliation(s)
- Madhura Roy
- Centre for Translational and Clinical Research, School of Chemical and Life Sciences, Jamia Hamdard, India
| | - Arpita Roy
- Department of Biotechnology, Sharda School of Engineering & Technology, Sharda University, Greater Noida, India
| | - Sarvesh Rustagi
- School of Applied and Life sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Neha Pandey
- Department of Biotechnology, Graphic Era Deemed to Be University, Dehradun, Uttarakhand, India
| |
Collapse
|
13
|
Lu Y, You J. Strategy and application of manipulating DCs chemotaxis in disease treatment and vaccine design. Biomed Pharmacother 2023; 161:114457. [PMID: 36868016 DOI: 10.1016/j.biopha.2023.114457] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/17/2023] [Accepted: 02/26/2023] [Indexed: 03/05/2023] Open
Abstract
As the most versatile antigen-presenting cells (APCs), dendritic cells (DCs) function as the cardinal commanders in orchestrating innate and adaptive immunity for either eliciting protective immune responses against canceration and microbial invasion or maintaining immune homeostasis/tolerance. In fact, in physiological or pathological conditions, the diversified migratory patterns and exquisite chemotaxis of DCs, prominently manipulate their biological activities in both secondary lymphoid organs (SLOs) as well as homeostatic/inflammatory peripheral tissues in vivo. Thus, the inherent mechanisms or regulation strategies to modulate the directional migration of DCs even could be regarded as the crucial cartographers of the immune system. Herein, we systemically reviewed the existing mechanistic understandings and regulation measures of trafficking both endogenous DC subtypes and reinfused DCs vaccines towards either SLOs or inflammatory foci (including neoplastic lesions, infections, acute/chronic tissue inflammations, autoimmune diseases and graft sites). Furthermore, we briefly introduced the DCs-participated prophylactic and therapeutic clinical application against disparate diseases, and also provided insights into the future clinical immunotherapies development as well as the vaccines design associated with modulating DCs mobilization modes.
Collapse
Affiliation(s)
- Yichao Lu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, 291 Fucheng Road, Zhejiang 310018, PR China; Zhejiang-California International NanoSystems Institute, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China.
| |
Collapse
|
14
|
Pereira I, Monteiro C, Pereira-Silva M, Peixoto D, Nunes C, Reis S, Veiga F, Hamblin MR, Paiva-Santos AC. Nanodelivery systems for cutaneous melanoma treatment. Eur J Pharm Biopharm 2023; 184:214-247. [PMID: 36773725 DOI: 10.1016/j.ejpb.2023.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 10/03/2022] [Accepted: 02/06/2023] [Indexed: 02/12/2023]
Abstract
Cutaneous melanoma (CM) is a multifactorial disease whose treatment still presents challenges: the rapid progression to advanced CM, which leads to frequent recurrences even after surgical excision and, notably, the low response rates and resistance to the available therapies, particularly in the case of unresectable metastatic CM. Thereby, alternative innovative therapeutic approaches for CM continue to be searched. In this review we discuss relevant preclinical research studies, and provide a broad-brush analysis of patents and clinical trials which involve the application of nanotechnology-based delivery systems in CM therapy. Nanodelivery systems have been developed for the delivery of anticancer biomolecules to CM, which can be administered by different routes. Overall, nanosystems could promote technological advances in several therapeutic modalities and can be used in combinatorial therapies. Nevertheless, the results of these preclinical studies have not been translated to clinical applications. Thus, concerted and collaborative research studies involving basic, applied, translational, and clinical scientists need to be performed to allow the development of effective and safe nanomedicines to treat CM.
Collapse
Affiliation(s)
- Irina Pereira
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal; LAQV, REQUIMTE, Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal; LAQV, REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Carina Monteiro
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal
| | - Miguel Pereira-Silva
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal; LAQV, REQUIMTE, Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal
| | - Diana Peixoto
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal
| | - Cláudia Nunes
- LAQV, REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Salette Reis
- LAQV, REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Francisco Veiga
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal; LAQV, REQUIMTE, Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal.
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa.
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal; LAQV, REQUIMTE, Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal.
| |
Collapse
|
15
|
Hegde M, Naliyadhara N, Unnikrishnan J, Alqahtani MS, Abbas M, Girisa S, Sethi G, Kunnumakkara AB. Nanoparticles in the diagnosis and treatment of cancer metastases: Current and future perspectives. Cancer Lett 2023; 556:216066. [PMID: 36649823 DOI: 10.1016/j.canlet.2023.216066] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/31/2022] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
Metastasis accounts for greater than 90% of cancer-related deaths. Despite recent advancements in conventional chemotherapy, immunotherapy, targeted therapy, and their rational combinations, metastatic cancers remain essentially untreatable. The distinct obstacles to treat metastases include their small size, high multiplicity, redundancy, therapeutic resistance, and dissemination to multiple organs. Recent advancements in nanotechnology provide the numerous applications in the diagnosis and prophylaxis of metastatic diseases, including the small particle size to penetrate cell membrane and blood vessels and their capacity to transport complex molecular 'cargo' particles to various metastatic regions such as bones, brain, liver, lungs, and lymph nodes. Indeed, nanoparticles (NPs) have demonstrated a significant ability to target specific cells within these organs. In this regard, the purpose of this review is to summarize the present state of nanotechnology in terms of its application in the diagnosis and treatment of metastatic cancer. We intensively reviewed applications of NPs in fluorescent imaging, PET scanning, MRI, and photoacoustic imaging to detect metastasis in various cancer models. The use of targeted NPs for cancer ablation in conjunction with chemotherapy, photothermal treatment, immuno therapy, and combination therapy is thoroughly discussed. The current review also highlights the research opportunities and challenges of leveraging engineering technologies with cancer cell biology and pharmacology to fabricate nanoscience-based tools for treating metastases.
Collapse
Affiliation(s)
- Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Nikunj Naliyadhara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Jyothsna Unnikrishnan
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha, 61421, Saudi Arabia; BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester, LE1 7RH, UK
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha, 61421, Saudi Arabia; Computers and Communications Department, College of Engineering, Delta University for Science and Technology, Gamasa, 35712, Egypt
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
16
|
Li J, Lu W, Yang Y, Xiang R, Ling Y, Yu C, Zhou Y. Hybrid Nanomaterials for Cancer Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204932. [PMID: 36567305 PMCID: PMC9951325 DOI: 10.1002/advs.202204932] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/30/2022] [Indexed: 06/17/2023]
Abstract
Nano-immunotherapy has been recognized as a highly promising strategy for cancer treatment in recent decades, which combines nanotechnology and immunotherapy to combat against tumors. Hybrid nanomaterials consisting of at least two constituents with distinct compositions and properties, usually organic and inorganic, have been engineered with integrated functions and enormous potential in boosting cancer immunotherapy. This review provides a summary of hybrid nanomaterials reported for cancer immunotherapy, including nanoscale metal-organic frameworks, metal-phenolic networks, mesoporous organosilica nanoparticles, metallofullerene nanomaterials, polymer-lipid, and biomacromolecule-based hybrid nanomaterials. The combination of immunotherapy with chemotherapy, chemodynamic therapy, radiotherapy, radiodynamic therapy, photothermal therapy, photodynamic therapy, and sonodynamic therapy based on hybrid nanomaterials is also discussed. Finally, the current challenges and the prospects for designing hybrid nanomaterials and their application in cancer immunotherapy are outlined.
Collapse
Affiliation(s)
- Jianing Li
- Shanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsDepartment of ChemistryFudan UniversityShanghai200433China
| | - Wanyue Lu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsDepartment of ChemistryFudan UniversityShanghai200433China
| | - Yannan Yang
- Institute of OptoelectronicsFudan UniversityShanghai200433China
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSt LuciaBrisbane4072Australia
| | - Ruiqing Xiang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsDepartment of ChemistryFudan UniversityShanghai200433China
| | - Yun Ling
- Shanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsDepartment of ChemistryFudan UniversityShanghai200433China
| | - Chengzhong Yu
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSt LuciaBrisbane4072Australia
| | - Yaming Zhou
- Shanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsDepartment of ChemistryFudan UniversityShanghai200433China
| |
Collapse
|
17
|
Shathi TS, Rahman MA, Rahman MA, Nasiruddin M, Alim Al-Bari MA, Pande S, Komeda T, Ul-Hamid A, Ahmad H, Karim MR. Synthesis and functionalization of zinc phosphate@polyglycidyl methacrylate composites for antimicrobial drug immobilization and controlled release: an in vitro study. NEW J CHEM 2023; 47:14534-14550. [DOI: 10.1039/d3nj01822a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Functionalized polyglycidyl methacrylate coated ZnPPs with enhanced surface properties were synthesized for physical immobilization, and sustained release of antibacterial drug under physiological and slightly acidic media.
Collapse
Affiliation(s)
- Tonmoye Sarkar Shathi
- Research Laboratory of Polymer Colloids and Nanomaterials, Department of Chemistry, Faculty of Science, University of Rajshahi, Rajshahi-6205, Bangladesh
| | - Md. Abdur Rahman
- Research Laboratory of Polymer Colloids and Nanomaterials, Department of Chemistry, Faculty of Science, University of Rajshahi, Rajshahi-6205, Bangladesh
| | - Md. Ataur Rahman
- Research Laboratory of Polymer Colloids and Nanomaterials, Department of Chemistry, Faculty of Science, University of Rajshahi, Rajshahi-6205, Bangladesh
| | - Md. Nasiruddin
- Department of Chemistry, Graduate School of Science, Tohoku University, Aramaki-Aza-Aoba, Aoba-Ku, Sendai 9808578, Japan
| | - Md. Abdul Alim Al-Bari
- Department of Pharmacy, Faculty of Science, University of Rajshahi, Rajshahi-6205, Bangladesh
| | - Sagar Pande
- Department of Chemistry, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Tadahiro Komeda
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM, Tagen), Tohoku University, 2-1-1, Katahira, Aoba-Ku, Sendai 9800877, Japan
| | - Anwar Ul-Hamid
- Center for Engineering Research, Research Institute, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Hasan Ahmad
- Research Laboratory of Polymer Colloids and Nanomaterials, Department of Chemistry, Faculty of Science, University of Rajshahi, Rajshahi-6205, Bangladesh
| | - Md. Rabiul Karim
- Research Laboratory of Polymer Colloids and Nanomaterials, Department of Chemistry, Faculty of Science, University of Rajshahi, Rajshahi-6205, Bangladesh
| |
Collapse
|
18
|
Yang Y, Li H, Fotopoulou C, Cunnea P, Zhao X. Toll-like receptor-targeted anti-tumor therapies: Advances and challenges. Front Immunol 2022; 13:1049340. [PMID: 36479129 PMCID: PMC9721395 DOI: 10.3389/fimmu.2022.1049340] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/31/2022] [Indexed: 11/22/2022] Open
Abstract
Toll-like receptors (TLRs) are pattern recognition receptors, originally discovered to stimulate innate immune reactions against microbial infection. TLRs also play essential roles in bridging the innate and adaptive immune system, playing multiple roles in inflammation, autoimmune diseases, and cancer. Thanks to the immune stimulatory potential of TLRs, TLR-targeted strategies in cancer treatment have proved to be able to regulate the tumor microenvironment towards tumoricidal phenotypes. Quantities of pre-clinical studies and clinical trials using TLR-targeted strategies in treating cancer have been initiated, with some drugs already becoming part of standard care. Here we review the structure, ligand, signaling pathways, and expression of TLRs; we then provide an overview of the pre-clinical studies and an updated clinical trial watch targeting each TLR in cancer treatment; and finally, we discuss the challenges and prospects of TLR-targeted therapy.
Collapse
Affiliation(s)
- Yang Yang
- Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, China
| | - Hongyi Li
- Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, China
| | - Christina Fotopoulou
- Division of Cancer, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Paula Cunnea
- Division of Cancer, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Xia Zhao
- Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
19
|
Zhang D, Liu P, Qin X, Cheng L, Wang F, Xiong X, Huang C, Zhang Z. HSA-templated self-generation of gold nanoparticles for tumor vaccine delivery and combinational therapy. J Mater Chem B 2022; 10:8750-8759. [PMID: 36254821 DOI: 10.1039/d2tb01483a] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Drug delivery systems (DDS) play a vital role in the construction of tumor vaccines and can promote their therapeutic effect. Taking advantage of the versatile binding sites and bioreduction ability of human serum albumin (HSA), Au ions could be absorbed, reduced and nucleated to generate gold nanoparticles (AuNPs) on HSA without complicated intermediates, forming a DDS that can transform light to heat. Here, we designed self-generated AuNPs templated by HSA (HSA@AuNP). The HSA@AuNPs can deliver peptides, amplify the immune response and achieve combined photothermal therapy and immunotherapy. Human melanoma antigen gp10025-33 (hgp100) peptide, a common hydrophilic tumor vaccine peptide that can be easily encapsulated in HSA, was chosen to be incorporated into the HSA@AuNPs. The in vitro and in vivo studies demonstrated that the nanoparticles can mediate light-to-heat transduction under near-infrared irradiation (NIR), achieving tumor ablation and enhancing antitumor immunity. Our design can insulate toxic agents, streamline flux, increase the transition efficiency of interactants and improve the product yield, contributing a novel modality for facile and green synthesis of nanovaccines.
Collapse
Affiliation(s)
- Dan Zhang
- Department of Pharmacy, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Pengran Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xianya Qin
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Lu Cheng
- Department of Pharmacy, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Fuqian Wang
- Department of Pharmacy, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xin Xiong
- Department of Pharmacy, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chuanqi Huang
- Department of Pharmacy, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhiping Zhang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
20
|
Tu Y, Yao Z, Yang W, Tao S, Li B, Wang Y, Su Z, Li S. Application of Nanoparticles in Tumour Targeted Drug Delivery and Vaccine. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.948705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cancer is a major cause of death worldwide, and nearly 1 in 6 deaths each year is caused by cancer. Traditional cancer treatment strategies cannot completely solve cancer recurrence and metastasis. With the development of nanotechnology, the study of nanoparticles (NPs) has gradually become a hotspot of medical research. NPs have various advantages. NPs exploit the enhanced permeability and retention (EPR) of tumour cells to achieve targeted drug delivery and can be retained in tumours long-term. NPs can be used as a powerful design platform for vaccines as well as immunization enhancers. Liposomes, as organic nanomaterials, are widely used in the preparation of nanodrugs and vaccines. Currently, most of the anticancer drugs that have been approved and entered clinical practice are prepared from lipid materials. However, the current clinical conversion rate of NPs is still extremely low, and the transition of NPs from the laboratory to clinical practice is still a substantial challenge. In this paper, we review the in vivo targeted delivery methods, material characteristics of NPs and the application of NPs in vaccine preparation. The application of nanoliposomes is also emphasized. Furthermore, the challenges and limitations of NPs are briefly discussed.
Collapse
|
21
|
Abstract
The lymphatic system, composed of initial and collecting lymphatic vessels as well as lymph nodes that are present in almost every tissue of the human body, acts as an essential transport system for fluids, biomolecules and cells between peripheral tissues and the central circulation. Consequently, it is required for normal body physiology but is also involved in the pathogenesis of various diseases, most notably cancer. The important role of tumor-associated lymphatic vessels and lymphangiogenesis in the formation of lymph node metastasis has been elucidated during the last two decades, whereas the underlying mechanisms and the relation between lymphatic and peripheral organ dissemination of cancer cells are incompletely understood. Lymphatic vessels are also important for tumor-host communication, relaying molecular information from a primary or metastatic tumor to regional lymph nodes and the circulatory system. Beyond antigen transport, lymphatic endothelial cells, particularly those residing in lymph node sinuses, have recently been recognized as direct regulators of tumor immunity and immunotherapy responsiveness, presenting tumor antigens and expressing several immune-modulatory signals including PD-L1. In this review, we summarize recent discoveries in this rapidly evolving field and highlight strategies and challenges of therapeutic targeting of lymphatic vessels or specific lymphatic functions in cancer patients.
Collapse
Affiliation(s)
- Lothar C Dieterich
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Carlotta Tacconi
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland.,Department of Biosciences, University of Milan, Milan, Italy
| | - Luca Ducoli
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Michael Detmar
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| |
Collapse
|
22
|
Nanomaterial-Based Drug Delivery System Targeting Lymph Nodes. Pharmaceutics 2022; 14:pharmaceutics14071372. [PMID: 35890268 PMCID: PMC9325242 DOI: 10.3390/pharmaceutics14071372] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/28/2022] [Accepted: 06/22/2022] [Indexed: 02/06/2023] Open
Abstract
The lymphatic system plays an indispensable role in humoral balance, lipid metabolism, and immune regulation. The lymph nodes (LNs) are known as the primary sites of tumor metastasis and the metastatic LNs largely affected the prognosis of the patiens. A well-designed lymphatic-targeted system favors disease treatment as well as vaccination efficacy. In recent years, development of nanotechnologies and emerging biomaterials have gained increasing attention in developing lymph-node-targeted drug-delivery systems. By mimicking the endogenous macromolecules or lipid conjugates, lymph-node-targeted nanocarries hold potential for disease diagnosis and tumor therapy. This review gives an introduction to the physiological functions of LNs and the roles of LNs in diseases, followed by a review of typical lymph-node-targeted nanomaterial-based drug-delivery systems (e.g., liposomes, micelles, inorganic nanomaterials, hydrogel, and nanocapsules). Future perspectives and conclusions concerned with lymph-node-targeted drug-delivery systems are also provided.
Collapse
|
23
|
|
24
|
Abstract
A favorable outcome of the COVID-19 crisis might be achieved with massive vaccination. The proposed vaccines contain several different vaccine active principles (VAP), such as inactivated virus, antigen, mRNA, and DNA, which are associated with either standard adjuvants or nanomaterials (NM) such as liposomes in Moderna's and BioNTech/Pfizer's vaccines. COVID-19 vaccine adjuvants may be chosen among liposomes or other types of NM composed for example of graphene oxide, carbon nanotubes, micelles, exosomes, membrane vesicles, polymers, or metallic NM, taking inspiration from cancer nano-vaccines, whose adjuvants may share some of their properties with those of viral vaccines. The mechanisms of action of nano-adjuvants are based on the facilitation by NM of targeting certain regions of immune interest such as the mucus, lymph nodes, and zones of infection or blood irrigation, the possible modulation of the type of attachment of the VAP to NM, in particular VAP positioning on the NM external surface to favor VAP presentation to antigen presenting cells (APC) or VAP encapsulation within NM to prevent VAP degradation, and the possibility to adjust the nature of the immune response by tuning the physico-chemical properties of NM such as their size, surface charge, or composition. The use of NM as adjuvants or the presence of nano-dimensions in COVID-19 vaccines does not only have the potential to improve the vaccine benefit/risk ratio, but also to reduce the dose of vaccine necessary to reach full efficacy. It could therefore ease the overall spread of COVID-19 vaccines within a sufficiently large portion of the world population to exit the current crisis.
Collapse
Affiliation(s)
- Edouard Alphandéry
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, IRD, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, 75005 Paris, France. .,Nanobacterie SARL, 36 Boulevard Flandrin, 75116, Paris, France.,Institute of Anatomy, UZH University of Zurich, Instiute of Anatomy, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| |
Collapse
|
25
|
Liu XY, Zhu MH, Wang XY, Dong X, Liu HJ, Li RY, Jia SC, Lu Q, Zhao M, Sun P, Chen HZ, Fang C. A nano-innate immune system activator for cancer therapy in a 4T1 tumor-bearing mouse model. J Nanobiotechnology 2022; 20:54. [PMID: 35093074 PMCID: PMC8800325 DOI: 10.1186/s12951-022-01265-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 01/14/2022] [Indexed: 11/25/2022] Open
Abstract
Background Harnessing the immune system to fight cancer has led to prominent clinical successes. Strategies to stimulate innate immune effectors are attracting considerable interest in cancer therapy. Here, through conjugating multivalent Fc fragments onto the surface of mesoporous silica nanoparticles (MSN), we developed a nanoparticle-based innate immune system activator (NISA) for breast cancer immunotherapy. Methods NISA was prepared through conjugating mouse IgG3 Fc to MSN surface. Then, long-chain PEG5000, which was used to shield Fc to confer nanoparticle colloidal stability, was linked to the MSN surface via matrix metalloprotease-2 (MMP-2)-cleavable peptide (GPLGIAGQC). The activation of multiple components of innate immune system, including complement and the innate cells (macrophages and dendritic cells) and the associated anticancer effect were investigated. Results Fc fragments of NISA can be exposed through hydrolysis of long-chain PEG5000 by highly expressed MMP-2 in tumor microenvironment. Then, effective stimulation and activation of multiple components of innate immune system, including complement, macrophages, and dendritic cells were obtained, leading to efficient antitumor effect in 4T1 breast cancer cells and orthotopic breast tumor model in mice. Conclusions The antitumor potency conferred by NISA highlights the significance of stimulating multiple innate immune elements in cancer immunotherapy. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01265-4.
Collapse
|
26
|
Li J, Li S, Li Y, Yuan G, Shen Y, Peng Y, Kong L, Yang C, Zhang Z, Li Z. A magnetic resonance nanoprobe with STING activation character collaborates with platinum-based drug for enhanced tumor immunochemotherapy. J Nanobiotechnology 2021; 19:415. [PMID: 34895243 PMCID: PMC8666035 DOI: 10.1186/s12951-021-01158-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/21/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Immunochemotherapy is a potent anti-tumor strategy, however, how to select therapeutic drugs to enhance the combined therapeutic effect still needs to be explored. METHODS AND RESULTS: Herein, a magnetic resonance nanoprobe (MnP@Lip) with STING (Stimulator of INterferon Genes) activation character was synthesized and co-administered with platinum-based chemotherapeutics for enhanced immunochemotherapy. MnP@Lip nanoparticles was prepared by simple fabrication process with good reproducibility, pH-sensitive drug release behavior and biocompatibility. In vitro experiments elucidated that Mn2+ can promote the polarization of M0 and/or M2 macrophages to M1 phenotype, and promote the maturation of BMDC cells. Upon Mn2+ treatment, the STING pathway was activated in tumor cells, mouse lung epithelial cells, and immune cells. More importantly, anti-tumor experiments in vivo proved that MnP@Lip combined with platinum-based chemotherapeutics increased T cells infiltration in the tumor microenvironment, and inhibited tumor growth in the orthotopic therapeutic and postoperative tumor models. CONCLUSIONS This kind of therapeutic strategy that combined MnP@Lip nanoparticles with platinum-based chemotherapeutics may provide a novel insight for immunochemotherapy.
Collapse
Affiliation(s)
- Jiali Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, People's Republic of China
| | - Shichao Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, People's Republic of China
| | - Yang Li
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Guanjie Yuan
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, People's Republic of China
| | - Yaqi Shen
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, People's Republic of China
| | - Yang Peng
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, People's Republic of China
| | - Li Kong
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Conglian Yang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| | - Zhiping Zhang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.,Hubei Engineering Research Center for Novel Drug Delivery System, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Zhen Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, People's Republic of China.
| |
Collapse
|
27
|
Li J, Jiang X, Shang L, Li Z, Yang C, Luo Y, Hu D, Shen Y, Zhang Z. L-EGCG-Mn nanoparticles as a pH-sensitive MRI contrast agent. Drug Deliv 2021; 28:134-143. [PMID: 33356629 PMCID: PMC7782420 DOI: 10.1080/10717544.2020.1862363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
This study aimed to synthesize and characterize L-epigallocatechin gallate (EGCG) complexed Mn2+ nanoparticle (L-EGCG-Mn), a proof-of-concept pH-sensitive manganese core nanoparticle (NP), and compare its magnetic resonance (MR) properties with those of Gd-DTPA, both in vitro and in vivo. Reverse microemulsion was used to obtain the L-EGCG-Mn NPs. The physicochemical properties of L-EGCG-Mn were characterized using dynamic light scattering, transmission electron microscopy, and near-infrared fluorescence small animal live imaging. The in vitro relaxivity of L-EGCG-Mn incubated with different pH buffer solutions (pH = 7.4, 6.8, 5.5) was evaluated. The T1-weighted MR imaging (MRI) properties were evaluated in vitro using hypoxic H22 cells as well as in H22 tumor-bearing mice. Cytotoxicity tests and histological analysis were performed to evaluate the safety of L-EGCG-Mn. L-EGCG-Mn showed good biocompatibility, stability, pH sensitivity, and tumor-targeting ability. Moreover, when the pH was decreased from 7.4 to 5.5, the r 1 relaxivity of L-EGCG-Mn was shown to gradually increase from 1.79 to 6.43 mM-1·s-1. Furthermore, after incubation with L-EGCG-Mn for 4 h, the T1 relaxation time of hypoxic H22 cells was significantly lower than that of normoxic H22 cells (1788 ± 89 vs. 1982 ± 68 ms, p=.041). The in vivo analysis showed that after injection, L-EGCG-Mn exhibited a higher MRI signal compared to Gd-DTPA in H22 tumor-bearing mice (p < .05). Furthermore, L-EGCG-Mn was found to have a good safety profile via cytotoxicity tests and histological analysis. L-EGCG-Mn has a good safety profile and pH sensitivity and may thus serve as a potential MRI contrast agent.
Collapse
Affiliation(s)
- Jiali Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xue Jiang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, PR China
| | - Lihuan Shang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, PR China
| | - Zhen Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Conglian Yang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, PR China
| | - Yan Luo
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Daoyu Hu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yaqi Shen
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiping Zhang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, PR China.,National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, PR China.,Hubei Engineering Research Center for Novel Drug Delivery System, Huazhong University of Science and Technology, Wuhan, PR China
| |
Collapse
|
28
|
Recent advances in immunotherapy, immunoadjuvant, and nanomaterial-based combination immunotherapy. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
29
|
Seaberg J, Montazerian H, Hossen MN, Bhattacharya R, Khademhosseini A, Mukherjee P. Hybrid Nanosystems for Biomedical Applications. ACS NANO 2021; 15:2099-2142. [PMID: 33497197 PMCID: PMC9521743 DOI: 10.1021/acsnano.0c09382] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Inorganic/organic hybrid nanosystems have been increasingly developed for their versatility and efficacy at overcoming obstacles not readily surmounted by nonhybridized counterparts. Currently, hybrid nanosystems are implemented for gene therapy, drug delivery, and phototherapy in addition to tissue regeneration, vaccines, antibacterials, biomolecule detection, imaging probes, and theranostics. Though diverse, these nanosystems can be classified according to foundational inorganic/organic components, accessory moieties, and architecture of hybridization. Within this Review, we begin by providing a historical context for the development of biomedical hybrid nanosystems before describing the properties, synthesis, and characterization of their component building blocks. Afterward, we introduce the architectures of hybridization and highlight recent biomedical nanosystem developments by area of application, emphasizing hybrids of distinctive utility and innovation. Finally, we draw attention to ongoing clinical trials before recapping our discussion of hybrid nanosystems and providing a perspective on the future of the field.
Collapse
Affiliation(s)
- Joshua Seaberg
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma 73104, USA
| | - Hossein Montazerian
- Department of Bioengineering, University of California-Los Angeles, Los Angeles, CA 90095, USA
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA 90095, USA
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90024, USA
| | - Md Nazir Hossen
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma 73104, USA
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | - Resham Bhattacharya
- Department of Obstetrics and Gynecology, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90024, USA
| | - Priyabrata Mukherjee
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma 73104, USA
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| |
Collapse
|
30
|
Arasi MB, Pedini F, Valentini S, Felli N, Felicetti F. Advances in Natural or Synthetic Nanoparticles for Metastatic Melanoma Therapy and Diagnosis. Cancers (Basel) 2020; 12:cancers12102893. [PMID: 33050185 PMCID: PMC7601614 DOI: 10.3390/cancers12102893] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 12/17/2022] Open
Abstract
Advanced melanoma is still a major challenge in oncology. In the early stages, melanoma can be treated successfully with surgery and the survival rate is high, nevertheless the survival rate drops drastically after metastasis dissemination. The identification of parameters predictive of the prognosis to support clinical decisions and of new efficacious therapies are important to ensure patients the best possible prognosis. Recent progress in nanotechnology allowed the development of nanoparticles able to protect drugs from degradation and to deliver the drug to the tumor. Modification of the nanoparticle surface by specific molecules improves retention and accumulation in the target tissue. In this review, we describe the potential role of nanoparticles in advanced melanoma treatment and discuss the current efforts of designing polymeric nanoparticles for controlled drug release at the site upon injection. In addition, we highlight the advances as well as the challenges of exosome-based nanocarriers as drug vehicles. We place special focus on the advantages of these natural nanocarriers in delivering various cargoes in advanced melanoma treatment. We also describe the current advances in knowledge of melanoma-related exosomes, including their biogenesis, molecular contents and biological functions, focusing our attention on their utilization for early diagnosis and prognosis in melanoma disease.
Collapse
|
31
|
Gan J, Du G, He C, Jiang M, Mou X, Xue J, Sun X. Tumor cell membrane enveloped aluminum phosphate nanoparticles for enhanced cancer vaccination. J Control Release 2020; 326:297-309. [DOI: 10.1016/j.jconrel.2020.07.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/03/2020] [Accepted: 07/07/2020] [Indexed: 02/07/2023]
|
32
|
Abstract
Personalized cancer vaccines (PCVs) are reinvigorating vaccine strategies in cancer immunotherapy. In contrast to adoptive T-cell therapy and checkpoint blockade, the PCV strategy modulates the innate and adaptive immune systems with broader activation to redeploy antitumor immunity with individualized tumor-specific antigens (neoantigens). Following a sequential scheme of tumor biopsy, mutation analysis, and epitope prediction, the administration of neoantigens with synthetic long peptide (SLP) or mRNA formulations dramatically improves the population and activity of antigen-specific CD4+ and CD8+ T cells. Despite the promising prospect of PCVs, there is still great potential for optimizing prevaccination procedures and vaccine potency. In particular, the arduous development of tumor-associated antigen (TAA)-based vaccines provides valuable experience and rational principles for augmenting vaccine potency which is expected to advance PCV through the design of adjuvants, delivery systems, and immunosuppressive tumor microenvironment (TME) reversion since current personalized vaccination simply admixes antigens with adjuvants. Considering the broader application of TAA-based vaccine design, these two strategies complement each other and can lead to both personalized and universal therapeutic methods. Chemical strategies provide vast opportunities for (1) exploring novel adjuvants, including synthetic molecules and materials with optimizable activity, (2) constructing efficient and precise delivery systems to avoid systemic diffusion, improve biosafety, target secondary lymphoid organs, and enhance antigen presentation, and (3) combining bioengineering methods to innovate improvements in conventional vaccination, "smartly" re-educate the TME, and modulate antitumor immunity. As chemical strategies have proven versatility, reliability, and universality in the design of T cell- and B cell-based antitumor vaccines, the union of such numerous chemical methods in vaccine construction is expected to provide new vigor and vitality in cancer treatment.
Collapse
Affiliation(s)
- Wen-Hao Li
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, 100084 Beijing, China
| | - Yan-Mei Li
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, 100084 Beijing, China.,Beijing Institute for Brain Disorders, 100069 Beijing, China.,Center for Synthetic and Systems Biology, Tsinghua University, 100084 Beijing, China
| |
Collapse
|
33
|
Engineering nanoparticulate vaccines for enhancing antigen cross-presentation. Curr Opin Biotechnol 2020; 66:113-122. [PMID: 32745889 DOI: 10.1016/j.copbio.2020.06.015] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/27/2020] [Accepted: 06/28/2020] [Indexed: 12/13/2022]
Abstract
Efficient cross-presentation is pivotal for vaccination against cancer and infection by intracellular virus and bacteria. Recently, various types of nanoparticle vaccines have been developed and investigated for efficiently and specifically improving cross-presentation and CD8+ T cell priming. In this review, we will summarize the known intracellular pathways involved in cross-presentation, and focus on several nanoparticle strategies that have been reported for enhancing cross-presentation, including designing multifunctional nano-vaccines for increasing endosomal escape, designing nano-vaccines that can target lymph nodes to improve antigen uptake by lymph node resident CD8α+ dendritic cells, and co-delivering immune modulators for upregulating cross-presentation related intracellular components. We will also briefly discuss the future prospects of cross-presentation based nano-vaccine strategy for curing diseases.
Collapse
|
34
|
Liu K, Yan S, Ma Z, Liu B. Effective pressure and treatment duration of high hydrostatic pressure to prepare melanoma vaccines. Oncol Lett 2020; 20:1135-1142. [PMID: 32724353 PMCID: PMC7377178 DOI: 10.3892/ol.2020.11657] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 04/06/2020] [Indexed: 12/19/2022] Open
Abstract
Current therapeutic methods for melanoma have numerous limitations, and thus the improvement of such treatment methods are essential. One possible option is the vaccination of autologous inactivated tumor cells. The primary indispensable principles of a cell-based melanoma vaccine include: i) Entire inactivation of melanoma cells; ii) retaining the immunogenicity of melanoma cells; and iii) adherence to laws and ethical guidelines. However, traditional methods for the production of the vaccine, such as ultrasonic, chemotherapeutics and freeze-thawing, have some juridical or therapeutic constraints. Therefore, the present study used high hydrostatic pressure (HHP) to inactivate malignant cells, and treated B16-F10 tumor cells with different pressures (≥50 MPa) and different durations (≥1 min). It was identified that tumor cells in vitro lost their proliferative ability, but retained their immunogenicity following treatment. Furthermore, the vaccination of the melanoma cells significantly suppressed their oncogenesis. Collectively, the present results suggest that HHP treatment may be an economically viable and effective measure to develop a melanoma vaccine, when pressure was ≥200 MPa and the treatment duration was ≥30 min.
Collapse
Affiliation(s)
- Kai Liu
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Shuai Yan
- Department of Operating Room, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Zhanchuan Ma
- Institute of Immunology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Bin Liu
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
35
|
Tsikourkitoudi V, Karlsson J, Merkl P, Loh E, Henriques-Normark B, Sotiriou GA. Flame-Made Calcium Phosphate Nanoparticles with High Drug Loading for Delivery of Biologics. Molecules 2020; 25:E1747. [PMID: 32290273 PMCID: PMC7181047 DOI: 10.3390/molecules25071747] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 04/03/2020] [Accepted: 04/07/2020] [Indexed: 11/18/2022] Open
Abstract
Nanoparticles exhibit potential as drug carriers in biomedicine due to their high surface-to-volume ratio that allows for facile drug loading. Nanosized drug delivery systems have been proposed for the delivery of biologics facilitating their transport across epithelial layers and maintaining their stability against proteolytic degradation. Here, we capitalize on a nanomanufacturing process famous for its scalability and reproducibility, flame spray pyrolysis, and produce calcium phosphate (CaP) nanoparticles with tailored properties. The as-prepared nanoparticles are loaded with bovine serum albumin (model protein) and bradykinin (model peptide) by physisorption and the physicochemical parameters influencing their loading capacity are investigated. Furthermore, we implement the developed protocol by formulating CaP nanoparticles loaded with the LL-37 antimicrobial peptide, which is a biological drug currently involved in clinical trials. High loading values along with high reproducibility are achieved. Moreover, it is shown that CaP nanoparticles protect LL-37 from proteolysis in vitro. We also demonstrate that LL-37 retains its antimicrobial activity against Escherichia coli and Streptococcus pneumoniae when loaded on nanoparticles in vitro. Therefore, we highlight the potential of nanocarriers for optimization of the therapeutic profile of existing and emerging biological drugs.
Collapse
Affiliation(s)
- Vasiliki Tsikourkitoudi
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-1 71 77 Stockholm, Sweden; (V.T.); (J.K.); (P.M.); (E.L.); (B.H.-N.)
| | - Jens Karlsson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-1 71 77 Stockholm, Sweden; (V.T.); (J.K.); (P.M.); (E.L.); (B.H.-N.)
| | - Padryk Merkl
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-1 71 77 Stockholm, Sweden; (V.T.); (J.K.); (P.M.); (E.L.); (B.H.-N.)
| | - Edmund Loh
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-1 71 77 Stockholm, Sweden; (V.T.); (J.K.); (P.M.); (E.L.); (B.H.-N.)
- Lee Kong Chian School of Medicine (LKC) and Singapore Centre on Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore 639798, Singapore
| | - Birgitta Henriques-Normark
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-1 71 77 Stockholm, Sweden; (V.T.); (J.K.); (P.M.); (E.L.); (B.H.-N.)
- Lee Kong Chian School of Medicine (LKC) and Singapore Centre on Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore 639798, Singapore
- Department of Clinical Microbiology, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Georgios A. Sotiriou
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-1 71 77 Stockholm, Sweden; (V.T.); (J.K.); (P.M.); (E.L.); (B.H.-N.)
| |
Collapse
|
36
|
Shields CW, Wang LLW, Evans MA, Mitragotri S. Materials for Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1901633. [PMID: 31250498 DOI: 10.1002/adma.201901633] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/17/2019] [Indexed: 05/20/2023]
Abstract
Breakthroughs in materials engineering have accelerated the progress of immunotherapy in preclinical studies. The interplay of chemistry and materials has resulted in improved loading, targeting, and release of immunomodulatory agents. An overview of the materials that are used to enable or improve the success of immunotherapies in preclinical studies is presented, from immunosuppressive to proinflammatory strategies, with particular emphasis on technologies poised for clinical translation. The materials are organized based on their characteristic length scale, whereby the enabling feature of each technology is organized by the structure of that material. For example, the mechanisms by which i) nanoscale materials can improve targeting and infiltration of immunomodulatory payloads into tissues and cells, ii) microscale materials can facilitate cell-mediated transport and serve as artificial antigen-presenting cells, and iii) macroscale materials can form the basis of artificial microenvironments to promote cell infiltration and reprogramming are discussed. As a step toward establishing a set of design rules for future immunotherapies, materials that intrinsically activate or suppress the immune system are reviewed. Finally, a brief outlook on the trajectory of these systems and how they may be improved to address unsolved challenges in cancer, infectious diseases, and autoimmunity is presented.
Collapse
Affiliation(s)
- C Wyatt Shields
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| | - Lily Li-Wen Wang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Michael A Evans
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| |
Collapse
|
37
|
Deng H, Tan S, Gao X, Zou C, Xu C, Tu K, Song Q, Fan F, Huang W, Zhang Z. Cdk5 knocking out mediated by CRISPR-Cas9 genome editing for PD-L1 attenuation and enhanced antitumor immunity. Acta Pharm Sin B 2020; 10:358-373. [PMID: 32082979 PMCID: PMC7016277 DOI: 10.1016/j.apsb.2019.07.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/29/2019] [Accepted: 07/03/2019] [Indexed: 02/07/2023] Open
Abstract
Blocking the programmed death-ligand 1 (PD-L1) on tumor cells with monoclonal antibody therapy has emerged as powerful weapon in cancer immunotherapy. However, only a minority of patients presented immune responses in clinical trials. To develop an alternative treatment method based on immune checkpoint blockade, we designed a novel and efficient CRISPR-Cas9 genome editing system delivered by cationic copolymer aPBAE to downregulate PD-L1 expression on tumor cells via specifically knocking out Cyclin-dependent kinase 5 (Cdk5) gene in vivo. The expression of PD-L1 on tumor cells was significantly attenuated by knocking out Cdk5, leading to effective tumor growth inhibition in murine melanoma and lung metastasis suppression in triple-negative breast cancer. Importantly, we demonstrated that aPBAE/Cas9-Cdk5 treatment elicited strong T cell-mediated immune responses in tumor microenvironment that the population of CD8+ T cells was significantly increased while regulatory T cells (Tregs) was decreased. It may be the first case to exhibit direct in vivo PD-L1 downregulation via CRISPR-Cas9 genome editing technology for cancer therapy. It will provide promising strategy for preclinical antitumor treatment through the combination of nanotechnology and genome engineering.
Collapse
Affiliation(s)
- Huan Deng
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Songwei Tan
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xueqin Gao
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chenming Zou
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chenfeng Xu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Kun Tu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qingle Song
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Fengjuan Fan
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wei Huang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhiping Zhang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Engineering Research Center for Novel Drug Delivery System, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
38
|
Borgheti-Cardoso LN, Viegas JSR, Silvestrini AVP, Caron AL, Praça FG, Kravicz M, Bentley MVLB. Nanotechnology approaches in the current therapy of skin cancer. Adv Drug Deliv Rev 2020; 153:109-136. [PMID: 32113956 DOI: 10.1016/j.addr.2020.02.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/16/2019] [Accepted: 02/26/2020] [Indexed: 02/07/2023]
Abstract
Skin cancer is a high burden disease with a high impact on global health. Conventional therapies have several drawbacks; thus, the development of effective therapies is required. In this context, nanotechnology approaches are an attractive strategy for cancer therapy because they enable the efficient delivery of drugs and other bioactive molecules to target tissues with low toxic effects. In this review, nanotechnological tools for skin cancer will be summarized and discussed. First, pathology and conventional therapies will be presented, followed by the challenges of skin cancer therapy. Then, the main features of developing efficient nanosystems will be discussed, and next, the most commonly used nanoparticles (NPs) described in the literature for skin cancer therapy will be presented. Subsequently, the use of NPs to deliver chemotherapeutics, immune and vaccine molecules and nucleic acids will be reviewed and discussed as will the combination of physical methods and NPs. Finally, multifunctional delivery systems to codeliver anticancer therapeutic agents containing or not surface functionalization will be summarized.
Collapse
|
39
|
Kim CG, Kye YC, Yun CH. The Role of Nanovaccine in Cross-Presentation of Antigen-Presenting Cells for the Activation of CD8 + T Cell Responses. Pharmaceutics 2019; 11:E612. [PMID: 31731667 PMCID: PMC6920862 DOI: 10.3390/pharmaceutics11110612] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/12/2019] [Accepted: 11/12/2019] [Indexed: 01/30/2023] Open
Abstract
Explosive growth in nanotechnology has merged with vaccine development in the battle against diseases caused by bacterial or viral infections and malignant tumors. Due to physicochemical characteristics including size, viscosity, density and electrostatic properties, nanomaterials have been applied to various vaccination strategies. Nanovaccines, as they are called, have been the subject of many studies, including review papers from a material science point of view, although a mode of action based on a biological and immunological understanding has yet to emerge. In this review, we discuss nanovaccines in terms of CD8+ T cell responses, which are essential for antiviral and anticancer therapies. We focus mainly on the role and mechanism, with particular attention to the functional aspects, of nanovaccines in inducing cross-presentation, an unconventional type of antigen-presentation that activates CD8+ T cells upon administration of exogenous antigens, in dendritic cells followed by activation of antigen-specific CD8+ T cell responses. Two major intracellular mechanisms that nanovaccines harness for cross-presentation are described; one is endosomal swelling and rupture, and the other is membrane fusion. Both processes eventually allow exogenous vaccine antigens to be exported from phagosomes to the cytosol followed by loading on major histocompatibility complex class I, triggering clonal expansion of CD8+ T cells. Advancement of nanotechnology with an enhanced understanding of how nanovaccines work will contribute to the design of more effective and safer nanovaccines.
Collapse
Affiliation(s)
- Cheol Gyun Kim
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (C.G.K.); (Y.-C.K.)
| | - Yoon-Chul Kye
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (C.G.K.); (Y.-C.K.)
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (C.G.K.); (Y.-C.K.)
- Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Korea
- Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang, Gangwon-do 25354, Korea
| |
Collapse
|
40
|
Zou C, Jiang G, Gao X, Zhang W, Deng H, Zhang C, Ding J, Wei R, Wang X, Xi L, Tan S. Targeted co-delivery of Trp-2 polypeptide and monophosphoryl lipid A by pH-sensitive poly (β-amino ester) nano-vaccines for melanoma. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 22:102092. [PMID: 31593795 DOI: 10.1016/j.nano.2019.102092] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 08/07/2019] [Accepted: 09/01/2019] [Indexed: 01/08/2023]
Abstract
Dendritic cell (DC)-targeted vaccines based on nanotechnology are a promising strategy to efficiently induce potent immune responses. We synthesized and manufactured a mannose-modified poly (β-amino ester) (PBAE) nano-vaccines with easily tuneable and pH-sensitive characteristics to co-deliver the tumor-associated antigen polypeptide Trp-2 and the TLR4 agonist monophosphoryl lipid A (MPLA). To reduce immunosuppression in the tumor microenvironment, an immune checkpoint inhibitor, PD-L1 antagonist, was administrated along with PBAE nano-vaccines to delay melanoma development. We found that mannosylated Trp-2 and MPLA-loaded PBAE nano-vaccines can target and mature DCs, consequently boosting antigen-specific cytotoxic T lymphocyte activity against melanoma. The prophylactic study indicates that combination therapy with PD-L1 antagonist further enhanced anti-tumor efficacy by 3.7-fold and prolonged median survival time by 1.6-fold more than free Trp-2/MPLA inoculation. DC-targeting PBAE polymers have a great potential as a nanotechnology platform to design vaccines and achieve synergistic anti-tumor effects with immune checkpoint therapy.
Collapse
Affiliation(s)
- Chenming Zou
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Guiying Jiang
- Department of Gynecologic Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xueqin Gao
- Department of Pharmacy, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Zhang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Huan Deng
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chong Zhang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jiahui Ding
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Rui Wei
- Department of Gynecologic Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xueqian Wang
- Department of Gynecologic Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ling Xi
- Department of Gynecologic Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Songwei Tan
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
41
|
Song C, Li F, Wang S, Wang J, Wei W, Ma G. Recent Advances in Particulate Adjuvants for Cancer Vaccination. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900115] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Cui Song
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Feng Li
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Shuang Wang
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of Sciences Beijing 100190 P. R. China
| | - Jianghua Wang
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Wei Wei
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Guanghui Ma
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
42
|
Mi Y, Hagan CT, Vincent BG, Wang AZ. Emerging Nano-/Microapproaches for Cancer Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1801847. [PMID: 30937265 PMCID: PMC6425500 DOI: 10.1002/advs.201801847] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/01/2018] [Indexed: 05/15/2023]
Abstract
Cancer immunotherapy has achieved remarkable clinical efficacy through recent advances such as chimeric antigen receptor-T cell (CAR-T) therapy, immune checkpoint blockade (ICB) therapy, and neoantigen vaccines. However, application of immunotherapy in a clinical setting has been limited by low durable response rates and immune-related adverse events. The rapid development of nano-/microtechnologies in the past decade provides potential strategies to improve cancer immunotherapy. Advances of nano-/microparticles such as virus-like size, high surface to volume ratio, and modifiable surfaces for precise targeting of specific cell types can be exploited in the design of cancer vaccines and delivery of immunomodulators. Here, the emerging nano-/microapproaches in the field of cancer vaccines, immune checkpoint blockade, and adoptive or indirect immunotherapies are summarized. How nano-/microparticles improve the efficacy of these therapies, relevant immunological mechanisms, and how nano-/microparticle methods are able to accelerate the clinical translation of cancer immunotherapy are explored.
Collapse
Affiliation(s)
- Yu Mi
- Laboratory of Nano‐ and Translational MedicineCarolina Center for Cancer Nanotechnology ExcellenceCarolina Institute of NanomedicineLineberger Comprehensive Cancer CenterDepartment of Radiation OncologyUniversity of North Carolina at Chapel HillChapel HillNC27599USA
| | - C. Tilden Hagan
- Laboratory of Nano‐ and Translational MedicineCarolina Center for Cancer Nanotechnology ExcellenceCarolina Institute of NanomedicineLineberger Comprehensive Cancer CenterDepartment of Radiation OncologyUniversity of North Carolina at Chapel HillChapel HillNC27599USA
| | - Benjamin G. Vincent
- Lineberger Comprehensive Cancer CenterDepartment of Microbiology & ImmunologyCurriculum in Bioinformatics and Computational BiologyDivision of Hematology/OncologyDepartment of MedicineUniversity of North Carolina at Chapel HillChapel HillNC27599USA
| | - Andrew Z. Wang
- Laboratory of Nano‐ and Translational MedicineCarolina Center for Cancer Nanotechnology ExcellenceCarolina Institute of NanomedicineLineberger Comprehensive Cancer CenterDepartment of Radiation OncologyUniversity of North Carolina at Chapel HillChapel HillNC27599USA
| |
Collapse
|
43
|
Hu X, Wu T, Qin X, Qi Y, Qiao Q, Yang C, Zhang Z. Tumor Lysate-Loaded Lipid Hybrid Nanovaccine Collaborated with an Immune Checkpoint Antagonist for Combination Immunotherapy. Adv Healthc Mater 2019; 8:e1800837. [PMID: 30506847 DOI: 10.1002/adhm.201800837] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 11/18/2018] [Indexed: 01/17/2023]
Abstract
Cancer vaccines have shown great potential for treating different types of cancer. However, the application of vaccination still presents two major challenges. One is efficiency of antigen delivery, and the other is dealing with immune tolerance accompanied with tumor development. Lipid zinc phosphate hybrid nanoparticles (LZnP NPs) with a unique material structure can realize efficient delivery of antigens to dendritic cells (DCs) and also serve as an adjuvant to promote immune responses. Herein, ZnP NPs are introduced to load toll-like receptor 4 agonist (monophosphoryl lipid A) and B16F10 melanoma cell-derived tumor lysate (TLS) for vaccination. To regulate immune tolerance, the immune checkpoint antagonist, d-peptide antagonist (D PPA-1), is involved in treatment. TLS-loaded LZnP nanovaccine can efficiently prime DCs and induce cytotoxic T lymphocytes response. The explored combination treatment further exhibits the anticipated tumor inhibition on therapeutic and prophylactic melanoma models with extended survival time. It demonstrates the possibility to combine TLS-loaded LZnP nanovaccine with D PPA-1 against melanoma and provides support to optimize the combination treatment based on nanovaccine and immune checkpoint therapy.
Collapse
Affiliation(s)
- Xiaomeng Hu
- Tongji School of Pharmacy; Huazhong University of Science and Technology; Wuhan 430030 China
- Immunology and Allergy Unit; Department of Medicine Solna; Karolinska Institute and Karolinska University Hospital; Stockholm 171 76 Sweden
| | - Tingting Wu
- Tongji School of Pharmacy; Huazhong University of Science and Technology; Wuhan 430030 China
| | - Xianya Qin
- Tongji School of Pharmacy; Huazhong University of Science and Technology; Wuhan 430030 China
| | - Yan Qi
- Tongji School of Pharmacy; Huazhong University of Science and Technology; Wuhan 430030 China
| | - Qi Qiao
- Tongji School of Pharmacy; Huazhong University of Science and Technology; Wuhan 430030 China
| | - Conglian Yang
- Tongji School of Pharmacy; Huazhong University of Science and Technology; Wuhan 430030 China
| | - Zhiping Zhang
- Tongji School of Pharmacy; Huazhong University of Science and Technology; Wuhan 430030 China
- National Engineering Research Center for Nanomedicine; Huazhong University of Science and Technology; Wuhan 430030 China
- Hubei Engineering Research Center for Novel Drug Delivery System; Huazhong University of Science and Technology; Wuhan 430030 China
| |
Collapse
|
44
|
Mishra H, Mishra PK, Ekielski A, Jaggi M, Iqbal Z, Talegaonkar S. Melanoma treatment: from conventional to nanotechnology. J Cancer Res Clin Oncol 2018; 144:2283-2302. [PMID: 30094536 DOI: 10.1007/s00432-018-2726-1] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 07/30/2018] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Melanoma is the most serious form of skin cancer causing most of the skin cancer-related deaths. The incidence of melanoma has risen so dramatically over past few years that no other solid or blood malignancy comes close to it in terms of increased incidence. The main problem associated with the treatment of melanoma is low response rate to the existing treatment modalities, which in turn is due to the incomplete response by chemotherapeutic agents and inherent resistance of melanoma cells. MATERIALS AND METHODS Conventional therapeutic strategies, as well as, recent literature on melanoma have been thoroughly studied. This review summarizes the base of anti-melanoma treatment with conventional chemotherapeutic drugs, followed by an account of recent studies which explored the potential of nanotechnology and newer strategies and agents in melanoma treatment. CONCLUSION Although melanoma is curable if detected in its early localized form, metastatic melanoma continues to be a therapeutic challenge. Metastatic melanoma has a very poor prognosis and conventional therapies have not improved the outcomes of the treatment so far. For this reason, newer combinations of anti-melanoma drugs and newer strategies utilizing nanotechnology have been constantly explored.
Collapse
Affiliation(s)
- Harshita Mishra
- School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Pawan K Mishra
- Department of Wood Processing Technologies, Mendel University in Brno, Brno, Czech Republic
| | - Adam Ekielski
- Department of Production Management and Engineering, Faculty of Production Engineering, Warsaw University of Life Sciences, Warsaw, Poland
| | - Manu Jaggi
- Dabur Research Foundation, Ghaziabad, India
| | - Zeenat Iqbal
- School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Sushama Talegaonkar
- School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India.
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, Government of NCT of Delhi, New Delhi, India.
| |
Collapse
|
45
|
Singha S, Shao K, Ellestad KK, Yang Y, Santamaria P. Nanoparticles for Immune Stimulation Against Infection, Cancer, and Autoimmunity. ACS NANO 2018; 12:10621-10635. [PMID: 30481968 DOI: 10.1021/acsnano.8b05950] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Vaccination using nanocarrier-based delivery systems has recently emerged as a promising approach for meeting the continued challenge posed by infectious diseases and cancer. A diverse portfolio of nanocarriers of various sizes, compositions, and physical parameters have now been developed, and this diversity provides an opportunity for the rational design of vaccines that can mediate targeted delivery of various antigens and adjuvants or immune regulatory agents in ways unachievable with classical vaccination approaches. This flexibility allows control over the characteristics of vaccine-elicited immune responses such that they can be tailored to be effective in circumstances where classical vaccines have failed. Furthermore, the utility of nanocarrier-based immune modulation extends to the treatment of autoimmune disease where precisely targeted inhibition of immune responses is desirable. Clearly, the selection of appropriate nanocarriers, antigens, adjuvants, and other components underpins the efficacy of these nanoimmune interventions. Herein, we provide an overview of currently available nanocarriers of various types and their physical and pharmacological properties with the goal of providing a resource for researchers exploring nanomaterial-based approaches for immune modulation and identify some information gaps and unexplored questions to help guide future investigation.
Collapse
Affiliation(s)
- Santiswarup Singha
- Julia McFarlane Diabetes Research Centre (JMDRC) and Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases and Hotchkiss Brain Institute, Cumming School of Medicine , University of Calgary , Calgary , Alberta T2N 4N1 , Canada
| | - Kun Shao
- Julia McFarlane Diabetes Research Centre (JMDRC) and Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases and Hotchkiss Brain Institute, Cumming School of Medicine , University of Calgary , Calgary , Alberta T2N 4N1 , Canada
| | - Kristofor K Ellestad
- Julia McFarlane Diabetes Research Centre (JMDRC) and Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases and Hotchkiss Brain Institute, Cumming School of Medicine , University of Calgary , Calgary , Alberta T2N 4N1 , Canada
| | - Yang Yang
- Julia McFarlane Diabetes Research Centre (JMDRC) and Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases and Hotchkiss Brain Institute, Cumming School of Medicine , University of Calgary , Calgary , Alberta T2N 4N1 , Canada
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine , University of Calgary , Calgary , Alberta T2N 4N1 , Canada
| | - Pere Santamaria
- Julia McFarlane Diabetes Research Centre (JMDRC) and Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases and Hotchkiss Brain Institute, Cumming School of Medicine , University of Calgary , Calgary , Alberta T2N 4N1 , Canada
- Institut D'Investigacions Biomèdiques August Pi i Sunyer , Barcelona 08036 , Spain
| |
Collapse
|
46
|
Park O, Choi ES, Yu G, Kim JY, Kang YY, Jung H, Mok H. Efficient Delivery of Tyrosinase Related Protein-2 (TRP2) Peptides to Lymph Nodes using Serum-Derived Exosomes. Macromol Biosci 2018; 18:e1800301. [PMID: 30407735 DOI: 10.1002/mabi.201800301] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 09/13/2018] [Indexed: 12/21/2022]
Abstract
Exosomes (EXO) are considered to be versatile carriers for biomolecules; however, the delivery of therapeutic peptides using EXOs poses several challenges. In this study, the efficiency of serum-derived EXOs in delivering tyrosinase-related protein-2 (TRP2) peptides to lymph nodes is determined. TRP2 peptides are successfully incorporated into EXOs, which show a uniform and narrow size distribution of around 45 nm. The TRP2-incorporated exosomes (EXO-TRP2) are efficiently internalized into macrophages and dendritic cells, and are seen to display a punctate distribution. EXOs loaded with TRP2 together with MPLA, (EXO-MPLA-TRP2) result in a strong release of proinflammatory cytokines (TNF-α and IL-6) from both RAW264.7 and DC2.4 cells. Finally, subcutaneous injection of fluorescently labeled EXO-TRP2 followed by ex vivo imaging using in vivo imaging system (IVIS) show a strong fluorescent signal in the lymph nodes after only 1 h, which is maintained until at least 4 h after injection. Taken together, the findings suggest that serum-derived EXOs can serve as promising carriers to deliver therapeutic peptides to lymph nodes for immunotherapy.
Collapse
Affiliation(s)
- Ok Park
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Eun Seo Choi
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Gyeonghui Yu
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Jun Yeong Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Yoon Young Kang
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Heesun Jung
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Hyejung Mok
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| |
Collapse
|
47
|
Ding C, Li L, Zhang Y, Ji Z, Zhang C, Liang T, Guo X, Liu X, Kang Q. Toll-like receptor agonist rMBP-NAP enhances antitumor cytokines production and CTL activity of peripheral blood mononuclear cells from patients with lung cancer. Oncol Lett 2018; 16:4707-4712. [PMID: 30214604 PMCID: PMC6126164 DOI: 10.3892/ol.2018.9182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 05/30/2018] [Indexed: 11/06/2022] Open
Abstract
Toll-like receptor (TLR) agonists are known for their ability to inhibit tumor progression via enhancing antitumor cytokines production and cytotoxic T lymphocyte (CTL) activity. Recombinant Helicobacter pylori neutrophil-activating protein fused with maltose-binding protein (rMBP-NAP) has been reported as a novel TLR agonist for antitumor treatment in murine models. The present study aimed to determine the potential and efficacy of the rMBP-NAP for antitumor treatment prior to further clinical trials. The rMBP-NAP was expressed and purified for subsequent experiments. Peripheral blood mononuclear cells (PBMCs) from health donors and patients with lung cancer (LC) were incubated with PBS and 0.2 mg/ml rMBP-NAP. Antitumor cytokines production was assayed using ELISA and reverse transcription-quantitative polymerase chain reaction analysis. The cytolytic activity of PBMCs and the number of Interferon-γ (IFN-γ)-secreting cells were assayed using lactate dehydrogenase and Enzyme-linked ImmunoSpot assays, respectively. The results from the present study revealed that the expression of IFN-γ, interleukin (IL)-2, tumor necrosis factor-α and IL-12 of PBMCs from patients with LC and healthy donors were significantly increased following treatment with rMBP-NAP (P<0.05). Additionally, rMBP-NAP significantly upregulated the number of IFN-γ-secreting cells in PBMCs and prominently increased the cytotoxic activity of PBMCs (P<0.05). Furthermore, the expression of TLR2 was significantly enhanced following rMBP-NAP stimulation (P<0.05), which indicated that rMBP-NAP may serve an antitumor role via TLR2 signaling pathways. Overall, these results demonstrated that rMBP-NAP possesses the potential to be a novel immunomodulatory candidate drug and requires further evaluation in clinical trials.
Collapse
Affiliation(s)
- Cong Ding
- Department of Protein Function and Immunomodulatory Laboratory, School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Li Li
- Department of Protein Function and Immunomodulatory Laboratory, School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Yi Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Zhenyu Ji
- Henan Academy of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Chenglong Zhang
- Department of Protein Function and Immunomodulatory Laboratory, School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Taotao Liang
- Department of Protein Function and Immunomodulatory Laboratory, School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Xun Guo
- Department of Protein Function and Immunomodulatory Laboratory, School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Xin Liu
- Department of Protein Function and Immunomodulatory Laboratory, School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Qiaozhen Kang
- Department of Protein Function and Immunomodulatory Laboratory, School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| |
Collapse
|
48
|
Abstract
Cancer immunotherapy is a powerful, growing treatment approach to cancer that can be combined with chemotherapy, radiotherapy, and oncosurgery. Modulating the immune system to enhance anticancer response by several strategies has yielded improved cancer survival. Despite this progress, the success rate for immunotherapy has been below expectations due to unpredictable efficacy and off-target side effects from systemic dosing. Nanotechnology offers numerous different materials and targeting properties to overcome many of these challenges in immunotherapy. In this chapter, we review current immunotherapy and its challenges as well as the latest nanotechnology applications in cancer immunotherapy.
Collapse
Affiliation(s)
- C Tilden Hagan
- Laboratory of Nano- and Translational Medicine, Lineberger Comprehensive Cancer Center, Carolina Center for Cancer Nanotechnology Excellence, Carolina Institute of Nanomedicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Department of Radiation Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; UNC/NCSU Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Yusra B Medik
- Laboratory of Nano- and Translational Medicine, Lineberger Comprehensive Cancer Center, Carolina Center for Cancer Nanotechnology Excellence, Carolina Institute of Nanomedicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Department of Radiation Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Andrew Z Wang
- Laboratory of Nano- and Translational Medicine, Lineberger Comprehensive Cancer Center, Carolina Center for Cancer Nanotechnology Excellence, Carolina Institute of Nanomedicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Department of Radiation Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.
| |
Collapse
|
49
|
Kang T, Huang Y, Zhu Q, Cheng H, Pei Y, Feng J, Xu M, Jiang G, Song Q, Jiang T, Chen H, Gao X, Chen J. Necroptotic cancer cells-mimicry nanovaccine boosts anti-tumor immunity with tailored immune-stimulatory modality. Biomaterials 2018; 164:80-97. [PMID: 29499438 DOI: 10.1016/j.biomaterials.2018.02.033] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 02/10/2018] [Accepted: 02/17/2018] [Indexed: 12/30/2022]
Abstract
Recent breakthroughs in cancer immunotherapy offer new paradigm-shifting therapeutic options for combating cancer. Personalized therapeutic anti-cancer vaccines training T cells to directly fight against tumor cells endogenously offer tremendous benefits in working synergistically with immune checkpoint inhibitors. Biomimetic nanotechnology offers a versatile platform to boost anticancer immunity by efficiently co-delivering optimized immunogenic antigen materials and adjuvants to antigen presenting cells (APC). Necroptotic tumor cells can release danger associated molecule patterns (DAMPs) like heat shock proteins, being more immunogenic than naïve tumor cells. Here, nano-size "artificial necroptotic cancer cell" (αHSP70p-CM-CaP) composing of phospholipid bilayer and a phosphate calcium core was designed as a flexible vaccine platform for co-delivering cancer membrane proteins (CM), DAMPs signal-augmenting element α-helix HSP70 functional peptide (αHSP70p) and CpG to both natural killer (NK) cells and APC. Mechanically, immunogenic B16OVA tumor cells membrane-associated antigens and αHSP70p were reconstituted in artificial outer phospholipid bilayer membrane via one-step hydration and CpG encapsulated in the phosphate calcium core. The resulted αHSP70p-CM-CaP exhibited 30 nm in diameter with the immunogenic membrane proteins reserved in the particles to produce synergistic effect on bone marrow derived dendritic cells maturation and antigen-presentation. Following αHSP70p-CM-CaP vaccination, efficient lymph node trafficking and multi-epitope-T cells response was observed in mice. Vitally, αHSP70p-CM-CaP was also able to induce expansion of IFN-γ-expressing CD8+ T cells and NKG2D+ NK cells subsets. Most promisingly, αHSP70p-CM-CaP vaccination led to the killing of target cells and tumor regression in vivo when combined with anti-PD-1 antibody treatment on mice B16OVA melanoma models. Altogether, we demonstrated proof-of-concept evidence for the feasibility, capability and safety of a nanovaccine platform towards efficient personalized anticancer application.
Collapse
Affiliation(s)
- Ting Kang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, PR China
| | - Yukun Huang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, PR China
| | - Qianqian Zhu
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, PR China
| | - Hao Cheng
- Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Yuanyuan Pei
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, PR China
| | - Jingxian Feng
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, PR China
| | - Minjun Xu
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, PR China
| | - Gan Jiang
- Department of Pharmacology and Chemical Biology, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, PR China
| | - Qingxiang Song
- Department of Pharmacology and Chemical Biology, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, PR China
| | - Tianze Jiang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, PR China
| | - Hongzhuan Chen
- Department of Pharmacology and Chemical Biology, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, PR China
| | - Xiaoling Gao
- Department of Pharmacology and Chemical Biology, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, PR China.
| | - Jun Chen
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, PR China.
| |
Collapse
|
50
|
Lymph node targeting strategies to improve vaccination efficacy. J Control Release 2017; 267:47-56. [DOI: 10.1016/j.jconrel.2017.08.009] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 07/21/2017] [Accepted: 08/07/2017] [Indexed: 01/15/2023]
|