1
|
Wang Z, Zhang C. Nanomaterials for targeted therapy of kidney diseases: Strategies and advances. Mater Today Bio 2025; 31:101534. [PMID: 39990736 PMCID: PMC11846943 DOI: 10.1016/j.mtbio.2025.101534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/21/2025] [Accepted: 01/28/2025] [Indexed: 02/25/2025] Open
Abstract
The treatment and management of kidney diseases pose a significant global burden. Due to the presence of blood circulation barriers and glomerular filtration barriers, drug therapy for kidney diseases faces challenges such as poor renal targeting, short half-life, and severe systemic side effects, severely hindering therapeutic progress. Therefore, the research and development of kidney-targeted therapeutic agents is of great clinical significance. In recent years, the application of nanotechnology in the field of nephrology has shown potential for revolutionizing the diagnosis and treatment of kidney diseases. Carefully designed nanomaterials can exhibit optimal biological characteristics, influencing various aspects such as circulation, retention, targeting, and excretion. Rationally designing and modifying nanomaterials based on the anatomical structure and pathophysiological environment of the kidney to achieve highly specific kidney-targeted nanomaterials or nanodrug delivery systems is both feasible and promising. Based on the targeted therapy of kidney diseases, this review discusses the advantages and limitations of current nanomedicine in the targeted therapy of kidney diseases, and summarizes the application and challenges of current renal active/passive targeting strategies, in order to further promote the development of kidney-targeted nanomedicine through a preliminary summary of previous studies and future prospects.
Collapse
Affiliation(s)
- Zhiwen Wang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
2
|
Roointan A, Xu R, Corrie S, Hagemeyer CE, Alt K. Nanotherapeutics in Kidney Disease: Innovations, Challenges, and Future Directions. J Am Soc Nephrol 2025; 36:500-518. [PMID: 39705082 PMCID: PMC11888965 DOI: 10.1681/asn.0000000608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/17/2024] [Indexed: 12/22/2024] Open
Abstract
The treatment and management of kidney diseases present a significant global challenge, affecting over 800 million individuals and necessitating innovative therapeutic strategies that transcend symptomatic relief. The application of nanotechnology to therapies for kidney diseases, while still in its early stages, holds transformative potential for improving treatment outcomes. Recent advancements in nanoparticle-based drug delivery leverage the unique physicochemical properties of nanoparticles for targeted and controlled therapeutic delivery to the kidneys. Current research is focused on understanding the functional and phenotypic changes in kidney cells during both acute and chronic conditions, allowing for the identification of optimal target cells. In addition, the development of tailored nanomedicines enhances their retention and binding to key renal membranes and cell populations, ultimately improving localization, tolerability, and efficacy. However, significant barriers remain, including inconsistent nanoparticle synthesis and the complexity of kidney-specific targeting. To overcome these challenges, the field requires advanced synthesis techniques, refined targeting strategies, and the establishment of animal models that accurately reflect human kidney diseases. These efforts are critical for the clinical application of nanotherapeutics, which promise novel solutions for kidney disease management. This review evaluates a substantial body of in vivo research, highlighting the prospects, challenges, and opportunities presented by nanotechnology-mediated therapies and their potential to transform kidney disease treatment.
Collapse
Affiliation(s)
- Amir Roointan
- NanoBiotechnology Laboratory, Australian Centre for Blood Diseases, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
- NanoTheranostics Laboratory, Australian Centre for Blood Diseases, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Rong Xu
- NanoBiotechnology Laboratory, Australian Centre for Blood Diseases, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Simon Corrie
- Department of Chemical and Biological Engineering, Monash University, Melbourne, Victoria, Australia
| | - Christoph E. Hagemeyer
- NanoBiotechnology Laboratory, Australian Centre for Blood Diseases, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Karen Alt
- NanoTheranostics Laboratory, Australian Centre for Blood Diseases, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
3
|
Jin C, Xue L, Zhang L, Yu L, Wu P, Qian H. Engineered Nanoparticles for Theranostic Applications in Kidney Repair. Adv Healthc Mater 2025; 14:e2402480. [PMID: 39617999 DOI: 10.1002/adhm.202402480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 11/05/2024] [Indexed: 01/03/2025]
Abstract
Kidney diseases are characterized by their intricate nature and complexity, posing significant challenges in their treatment and diagnosis. Nanoparticles (NPs), which can be further classified as synthetic and biomimetic NPs, have emerged as promising candidates for treating various diseases. In recent years, the development of engineered nanotherapeutics has focused on targeting damaged tissues and serving as drug delivery vehicles. Additionally, these NPs have shown superior sensitivity and specificity in diagnosis and imaging, thus providing valuable insights for the early detection of diseases. This review aims to focus on the application of engineered synthetic and biomimetic NPs in kidney diseases in the aspects of treatment, diagnosis, and imaging. Notably, the current perspectives and challenges are evaluated, which provide inspiration for future research directions, and encourage the clinical application of NPs in this field.
Collapse
Affiliation(s)
- Can Jin
- Department of Nephrology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, 215300, China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Lingling Xue
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Leilei Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Lixia Yu
- Department of Nephrology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, 215300, China
| | - Peipei Wu
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Hui Qian
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| |
Collapse
|
4
|
Empitu MA, Rinastiti P, Kadariswantiningsih IN. Targeting endothelin signaling in podocyte injury and diabetic nephropathy-diabetic kidney disease. J Nephrol 2025; 38:49-60. [PMID: 39302622 DOI: 10.1007/s40620-024-02072-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 08/08/2024] [Indexed: 09/22/2024]
Abstract
Despite advances in diabetes management, there is an urgent need for novel therapeutic strategies since the current treatments remain insufficient in halting the progression of diabetic nephropathy-diabetic kidney disease (DN-DKD). This review is mainly addressed on the pivotal role of endothelin-1 in the pathophysiology of DN, with a specific focus on its effects on podocytes and the glomerular filtration barrier. Endothelin-1 promotes mesangial cell proliferation, sclerosis, and direct podocyte injury via the activation of endothelin type A and B receptors, that drive the progression of glomerulosclerosis in DN-DKD. Endothelin receptor antagonists, including drugs like atrasentan and sparsentan, have demonstrated nephroprotective effects in experimental models by reducing proteinuria and podocyte injury. The therapeutic potential to slow the progression of DN to end-stage kidney disease (ESKD) of these endothelin receptor antagonists in clinical practice is currently under evaluation. However, fluid retention and increased risk of heart failure associated with endothelin receptor antagonists need careful consideration. This review aims to provide an in-depth analysis of the pathophysiological role of endothelin and the emerging therapeutic implications of targeting this pathway in DN-DKD and discusses efficacy, safety, and the possibility of combining the new generation of endothelin receptor antagonists with the standard treatment of CKD and DN-DKD.
Collapse
Affiliation(s)
- Maulana Antiyan Empitu
- Faculty of Medicine, Airlangga University, Surabaya, Indonesia
- Faculty of Health, Medicine and Natural Sciences (FIKKIA), Airlangga University, Banyuwangi, Indonesia
| | - Pranindya Rinastiti
- Laboratory of Clinical Pharmaceutical Science, Kobe Pharmaceutical University, Kobe, Japan
- Department of Clinical Pathology, Faculty of Medicine, Public Health, and Nursing, Gadjah Mada University, Yogyakarta, Indonesia
| | | |
Collapse
|
5
|
Meliambro K, He JC, Campbell KN. Podocyte-targeted therapies - progress and future directions. Nat Rev Nephrol 2024; 20:643-658. [PMID: 38724717 DOI: 10.1038/s41581-024-00843-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2024] [Indexed: 09/14/2024]
Abstract
Podocytes are the key target cells for injury across the spectrum of primary and secondary proteinuric kidney disorders, which account for up to 90% of cases of kidney failure worldwide. Seminal experimental and clinical studies have established a causative link between podocyte depletion and the magnitude of proteinuria in progressive glomerular disease. However, no substantial advances have been made in glomerular disease therapies, and the standard of care for podocytopathies relies on repurposed immunosuppressive drugs. The past two decades have seen a remarkable expansion in understanding of the mechanistic basis of podocyte injury, with prospects increasing for precision-based treatment approaches. Dozens of disease-causing genes with roles in the pathogenesis of clinical podocytopathies have been identified, as well as a number of putative glomerular permeability factors. These achievements, together with the identification of novel targets of podocyte injury, the development of potential approaches to harness the endogenous podocyte regenerative potential of progenitor cell populations, ongoing clinical trials of podocyte-specific pharmacological agents and the development of podocyte-directed drug delivery systems, contribute to an optimistic outlook for the future of glomerular disease therapy.
Collapse
Affiliation(s)
- Kristin Meliambro
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John C He
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kirk N Campbell
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
6
|
Min L, Chen Y, Zhong F, Gu L, Lee K, He JC. Role and Mechanisms of Tyro3 in Podocyte Biology and Glomerular Disease. KIDNEY DISEASES (BASEL, SWITZERLAND) 2024; 10:398-406. [PMID: 39430290 PMCID: PMC11488836 DOI: 10.1159/000540452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/17/2024] [Indexed: 10/22/2024]
Abstract
Background Podocyte loss occurs in both primary and secondary glomerular diseases, leading to the progression of kidney disease. A large body of evidence suggests that apoptosis and detachment are the mechanisms mediating the reduction in podocyte numbers in glomerular diseases. Recent studies demonstrate a renal protective effect of protein S (PS) through the activation of Tyro3, one of the TAM receptors. Tyro3 is predominantly expressed in podocytes within the kidney, and its expression increases in early diabetic kidney disease (DKD) but decreases in patients with progressive DKD and focal segmental glomerulosclerosis (FSGS). Glomerular expression of Tyro3 also correlates with the progression of DKD and predicts the progression of primary glomerular diseases. High glucose increases Tyro3 expression, while TNF-α suppresses the expression of PS and Tyro3. PS has anti-inflammatory and antiapoptotic effects in podocytes, likely via the activation of the Akt pathway and the inhibition of NF-kB activation. In vivo, the knockout of PS or Tyro3 exacerbates podocyte loss and glomerular disease, while the overexpression of PS and Tyro3 attenuates the injury in mice with DKD and FSGS. Tyro3 agonists have also been shown to protect podocytes from injury in these animal models. Summary Tyro3 plays a critical role in podocyte biology and glomerular disease. Tyro3 agonists could potentially be developed as a new therapy for glomerular disease. Key Message The aim of this review article was to summarize the role and mechanisms mediating the protective effects of Tyro3 in podocyte biology and glomerular disease. Additionally, we discuss the possibility of developing Tyro3 agonists as potential treatment for glomerular diseases.
Collapse
Affiliation(s)
- Lulin Min
- Department of Medicine/Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yixin Chen
- Department of Medicine/Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Fang Zhong
- Department of Medicine/Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Leyi Gu
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Kyung Lee
- Department of Medicine/Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John Cijiang He
- Department of Medicine/Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Renal Section, James J Peters Veterans Affair Medical Center, Bronx, NY, USA
| |
Collapse
|
7
|
Huang X, Li M, Espinoza MIM, Zennaro C, Bossi F, Lonati C, Oldoni S, Castellano G, Alfieri C, Messa P, Cellesi F. Brain-Derived Neurotrophic Factor-Loaded Low-Temperature-Sensitive liposomes as a drug delivery system for repairing podocyte damage. Int J Pharm 2024; 660:124322. [PMID: 38866082 DOI: 10.1016/j.ijpharm.2024.124322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/30/2024] [Accepted: 06/07/2024] [Indexed: 06/14/2024]
Abstract
Podocytes, cells of the glomerular filtration barrier, play a crucial role in kidney diseases and are gaining attention as potential targets for new therapies. Brain-Derived Neurotrophic Factor (BDNF) has shown promising results in repairing podocyte damage, but its efficacy via parenteral administration is limited by a short half-life. Low temperature sensitive liposomes (LTSL) are a promising tool for targeted BDNF delivery, preserving its activity after encapsulation. This study aimed to improve LTSL design for efficient BDNF encapsulation and targeted release to podocytes, while maintaining stability and biological activity, and exploiting the conjugation of targeting peptides. While cyclic RGD (cRGD) was used for targeting endothelial cells in vitro, a homing peptide (HITSLLS) was conjugated for more specific uptake by glomerular endothelial cells in vivo. BDNF-loaded LTSL successfully repaired cytoskeleton damage in podocytes and reduced albumin permeability in a glomerular co-culture model. cRGD conjugation enhanced endothelial cell targeting and uptake, highlighting an improved therapeutic effect when BDNF release was induced by thermoresponsive liposomal degradation. In vivo, targeted LTSL showed evidence of accumulation in the kidneys, and their BDNF delivery decreased proteinuria and ameliorated kidney histology. These findings highlight the potential of BDNF-LTSL formulations in restoring podocyte function and treating glomerular diseases.
Collapse
Affiliation(s)
- Xiaoyi Huang
- Dipartimento di Chimica, Materiali ed Ingegneria Chimica "G. Natta". Politecnico di Milano, Via Mancinelli 7, 20131 Milan, Italy
| | - Min Li
- Renal Research Laboratory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Pace 9, 20122 Milan, Italy
| | - Maria Isabel Martinez Espinoza
- Dipartimento di Chimica, Materiali ed Ingegneria Chimica "G. Natta". Politecnico di Milano, Via Mancinelli 7, 20131 Milan, Italy
| | - Cristina Zennaro
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume, 447, I 34149 Trieste, Italy
| | - Fleur Bossi
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume, 447, I 34149 Trieste, Italy
| | - Caterina Lonati
- Center for Preclinical Research, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Milan, Italy
| | - Samanta Oldoni
- Center for Preclinical Research, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Milan, Italy
| | - Giuseppe Castellano
- Unit of Nephrology, Dialysis and Renal Transplant, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milan, Italy; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Carlo Alfieri
- Unit of Nephrology, Dialysis and Renal Transplant, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milan, Italy; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Piergiorgio Messa
- Unit of Nephrology, Dialysis and Renal Transplant, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milan, Italy; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Francesco Cellesi
- Dipartimento di Chimica, Materiali ed Ingegneria Chimica "G. Natta". Politecnico di Milano, Via Mancinelli 7, 20131 Milan, Italy.
| |
Collapse
|
8
|
Huang S, Lu H, Chen J, Jiang C, Jiang G, Maduraiveeran G, Pan Y, Liu J, Deng LE. Advances in drug delivery-based therapeutic strategies for renal fibrosis treatment. J Mater Chem B 2024; 12:6532-6549. [PMID: 38913013 DOI: 10.1039/d4tb00737a] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Renal fibrosis is the result of all chronic kidney diseases and is becoming a major global health hazard. Currently, traditional treatments for renal fibrosis are difficult to meet clinical needs due to shortcomings such as poor efficacy or highly toxic side effects. Therefore, therapeutic strategies that target the kidneys are needed to overcome these shortcomings. Drug delivery can be attained by improving drug stability and addressing controlled release and targeted delivery of drugs in the delivery category. By combining drug delivery technology with nanosystems, controlled drug release and biodistribution can be achieved, enhancing therapeutic efficacy and reducing toxic cross-wise effects. This review discusses nanomaterial drug delivery strategies reported in recent years. Firstly, the present review describes the mechanisms of renal fibrosis and anti-renal fibrosis drug delivery. Secondly, different nanomaterial drug delivery strategies for the treatment of renal injury and fibrosis are highlighted. Finally, the limitations of these strategies are also discussed. Investigating various anti-renal fibrosis drug delivery strategies reveals the characteristics and therapeutic effects of various novel nanosystem-derived drug delivery approaches. This will serve as a reference for future research on drug delivery strategies for renal fibrosis treatment.
Collapse
Affiliation(s)
- Sida Huang
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, China.
| | - Hanqi Lu
- Department of Nephrology, Dongguan Hospital of Guangzhou University of Traditional Chinese Medicine, Dongguan, Guangdong 523000, China.
| | - Jin Chen
- Department of Nephrology, Dongguan Hospital of Guangzhou University of Traditional Chinese Medicine, Dongguan, Guangdong 523000, China.
| | - Chengyi Jiang
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, China.
| | - Guanmin Jiang
- Department of Oncology, Affiliated Dongguan Hospital, Southern Medical University (Dongguan people's hospital), 78 Wandao Road South, Dongguan, 523059 Guangdong, China.
| | - Govindhan Maduraiveeran
- Materials Electrochemistry Laboratory, Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur - 603 203, Chengalpattu, Tamil Nadu, India.
| | - Ying Pan
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, China.
| | - Jianqiang Liu
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, China.
| | - Li-Er Deng
- Department of Nephrology, Dongguan Hospital of Guangzhou University of Traditional Chinese Medicine, Dongguan, Guangdong 523000, China.
| |
Collapse
|
9
|
Shang S, Li X, Wang H, Zhou Y, Pang K, Li P, Liu X, Zhang M, Li W, Li Q, Chen X. Targeted therapy of kidney disease with nanoparticle drug delivery materials. Bioact Mater 2024; 37:206-221. [PMID: 38560369 PMCID: PMC10979125 DOI: 10.1016/j.bioactmat.2024.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/09/2024] [Accepted: 03/10/2024] [Indexed: 04/04/2024] Open
Abstract
With the development of nanomedicine, nanomaterials have been widely used, offering specific drug delivery to target sites, minimal side effects, and significant therapeutic effects. The kidneys have filtration and reabsorption functions, with various potential target cell types and a complex structural environment, making the strategies for kidney function protection and recovery after injury complex. This also lays the foundation for the application of nanomedicine in kidney diseases. Currently, evidence in preclinical and clinical settings supports the feasibility of targeted therapy for kidney diseases using drug delivery based on nanomaterials. The prerequisite for nanomedicine in treating kidney diseases is the use of carriers with good biocompatibility, including nanoparticles, hydrogels, liposomes, micelles, dendrimer polymers, adenoviruses, lysozymes, and elastin-like polypeptides. These carriers have precise renal uptake, longer half-life, and targeted organ distribution, protecting and improving the efficacy of the drugs they carry. Additionally, attention should also be paid to the toxicity and solubility of the carriers. While the carriers mentioned above have been used in preclinical studies for targeted therapy of kidney diseases both in vivo and in vitro, extensive clinical trials are still needed to ensure the short-term and long-term effects of nano drugs in the human body. This review will discuss the advantages and limitations of nanoscale drug carrier materials in treating kidney diseases, provide a more comprehensive catalog of nanocarrier materials, and offer prospects for their drug-loading efficacy and clinical applications.
Collapse
Affiliation(s)
- Shunlai Shang
- Department of Nephrology, China-Japan Friendship Hospital, Beijing, China
| | - Xiangmeng Li
- Department of Nephrology, China-Japan Friendship Hospital, Beijing, China
- Key Laboratory of Bone Metabolism and Physiology in Chronic Kidney Disease of Hebei Province, China
- Peking Union Medical College, Beijing, China
| | - Haoran Wang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Yena Zhou
- School of Medicine, Nankai University, Tianjin, China
| | - Keying Pang
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province, China
| | - Ping Li
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Xiaomin Liu
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Min Zhang
- Department of Nephrology, Affiliated Beijing Chaoyang Hospital of Capital Medical University, Beijing, China
| | - Wenge Li
- Department of Nephrology, China-Japan Friendship Hospital, Beijing, China
| | - Qinggang Li
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Xiangmei Chen
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| |
Collapse
|
10
|
Qu C, Tan X, Hu Q, Tang J, Wang Y, He C, He Z, Li B, Fu X, Du Q. A systematic review of astragaloside IV effects on animal models of diabetes mellitus and its complications. Heliyon 2024; 10:e26863. [PMID: 38439832 PMCID: PMC10909731 DOI: 10.1016/j.heliyon.2024.e26863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 02/17/2024] [Accepted: 02/21/2024] [Indexed: 03/06/2024] Open
Abstract
Context Diabetes mellitus (DM) is one of the fastest-growing diseases worldwide; however, its pathogenesis remains unclear. Complications seriously affect the quality of life of patients in the later stages of diabetes, ultimately leading to suffering. Natural small molecules are an important source of antidiabetic agents. Objective Astragaloside IV (AS-IV) is an active ingredient of Astragalus mongholicus (Fisch.) Bunge. We reviewed the efficacy and mechanism of action of AS-IV in animal and cellular models of diabetes and the mechanism of action of AS-IV on diabetic complications in animal and cellular models. We also summarized the safety of AS-IV and provided ideas and rationales for its future clinical application. Methods Articles on the intervention in DM and its complications using AS-IV, such as those published in SCIENCE, PubMed, Springer, ACS, SCOPUS, and CNKI from the establishment of the database to February 2022, were reviewed. The following points were systematically summarized: dose/concentration, route of administration, potential mechanisms, and efficacy of AS-IV in animal models of DM and its complications. Results AS-IV has shown therapeutic effects in animal models of DM, such as alleviating gestational diabetes, delaying diabetic nephropathy, preventing myocardial cell apoptosis, and inhibiting vascular endothelial dysfunction; however, the potential effects of AS-IV on DM should be investigated. Conclusion AS-IV is a potential drug for the treatment of diabetes and its complications, including diabetic vascular disease, cardiomyopathy, retinopathy, peripheral neuropathy, and nephropathy. In addition, preclinical toxicity studies indicate that it appears to be safe, but the safe human dose limit is yet to be determined, and formal assessments of adverse drug reactions among humans need to be further investigated. However, additional formulations or structural modifications are required to improve the pharmacokinetic parameters and facilitate the clinical use of AS-IV.
Collapse
Affiliation(s)
- Caiyan Qu
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
- Nanjiang County Hospital of Chinese Medicine, Bazhong, 635600, China
| | - Xiyue Tan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qichao Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jiao Tang
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Yangyang Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Caiying He
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - ZiJia He
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Bin Li
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Xiaoxu Fu
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Quanyu Du
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, 610072, China
| |
Collapse
|
11
|
Cheng HT, Ngoc Ta YN, Hsia T, Chen Y. A quantitative review of nanotechnology-based therapeutics for kidney diseases. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1953. [PMID: 38500369 DOI: 10.1002/wnan.1953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/20/2024]
Abstract
Kidney-specific nanocarriers offer a targeted approach to enhance therapeutic efficacy and reduce off-target effects in renal treatments. The nanocarriers can achieve organ or cell specificity via passive targeting and active targeting mechanisms. Passive targeting capitalizes on the unique physiological traits of the kidney, with factors like particle size, charge, shape, and material properties enhancing organ specificity. Active targeting, on the other hand, achieves renal specificity through ligand-receptor interactions, modifying nanocarriers with molecules, peptides, or antibodies for receptor-mediated delivery. Nanotechnology-enabled therapy targets diseased kidney tissue by modulating podocytes and immune cells to reduce inflammation and enhance tissue repair, or by inhibiting myofibroblast differentiation to mitigate renal fibrosis. This review summarizes the current reports of the drug delivery systems that have been tested in vivo, identifies the nanocarriers that may preferentially accumulate in the kidney, and quantitatively compares the efficacy of various cargo-carrier combinations to outline optimal strategies and future research directions. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Hui-Teng Cheng
- Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu Branch, Zhu Bei City, Taiwan
| | - Yen-Nhi Ngoc Ta
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
- International Intercollegiate Ph.D. Program, National Tsing Hua University, Hsinchu, Taiwan
| | - Tiffaney Hsia
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Yunching Chen
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
12
|
Li S, Chen Y, Cao X, Yang C, Li W, Shen B. The application of nanotechnology in kidney transplantation. Nanomedicine (Lond) 2024; 19:413-429. [PMID: 38275168 DOI: 10.2217/nnm-2023-0286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024] Open
Abstract
Kidney transplantation is a crucial treatment option for end-stage renal disease patients, but challenges related to graft function, rejection and immunosuppressant side effects persist. This review highlights the potential of nanotechnology in addressing these challenges. Nanotechnology offers innovative solutions to enhance organ preservation, evaluate graft function, mitigate ischemia-reperfusion injury and improve drug delivery for immunosuppressants. The integration of nanotechnology holds promise for improving outcomes in kidney transplantation.
Collapse
Affiliation(s)
- Shengzhou Li
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 200080, Shanghai, China
| | - Yiming Chen
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 200080, Shanghai, China
| | - Xiangqian Cao
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 200080, Shanghai, China
| | - Chenkai Yang
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 200080, Shanghai, China
| | - Wei Li
- Department of Nanomedicine & Shanghai Key Lab of Cell Engineering, Naval Medical University, 200433, Shanghai, China
| | - Bing Shen
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 200080, Shanghai, China
- Shanghai Tenth People's Hospital of Tongji University, 200072, Shanghai, China
| |
Collapse
|
13
|
Zhan HQ, Zhang X, Chen XL, Cheng L, Wang X. Application of nanotechnology in the treatment of glomerulonephritis: current status and future perspectives. J Nanobiotechnology 2024; 22:9. [PMID: 38169389 PMCID: PMC10763010 DOI: 10.1186/s12951-023-02257-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024] Open
Abstract
Glomerulonephritis (GN) is the most common cause of end-stage renal failure worldwide; in most cases, it cannot be cured and can only delay the progression of the disease. At present, the main treatment methods include symptomatic therapy, immunosuppressive therapy, and renal replacement therapy. However, effective treatment of GN is hindered by issues such as steroid resistance, serious side effects, low bioavailability, and lack of precise targeting. With the widespread application of nanoparticles in medical treatment, novel methods have emerged for the treatment of kidney diseases. Targeted transportation of drugs, nucleic acids, and other substances to kidney tissues and even kidney cells through nanodrug delivery systems can reduce the systemic effects and adverse reactions of drugs and improve treatment effectiveness. The high specificity of nanoparticles enables them to bind to ion channels and block or enhance channel gating, thus improving inflammation. This review briefly introduces the characteristics of GN, describes the treatment status of GN, systematically summarizes the research achievements of nanoparticles in the treatment of primary GN, diabetic nephropathy and lupus nephritis, analyzes recent therapeutic developments, and outlines promising research directions, such as gas signaling molecule nanodrug delivery systems and ultrasmall nanoparticles. The current application of nanoparticles in GN is summarized to provide a reference for better treatment of GN in the future.
Collapse
Affiliation(s)
- He-Qin Zhan
- Department of Pathology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
- Department of Pathology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Xiaoxun Zhang
- Department of Pathology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Xu-Lin Chen
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China
| | - Liang Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, People's Republic of China
| | - Xianwen Wang
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
14
|
Sabiu G, Kasinath V, Jung S, Li X, Tsokos GC, Abdi R. Targeted nanotherapy for kidney diseases: a comprehensive review. Nephrol Dial Transplant 2023; 38:1385-1396. [PMID: 35945647 PMCID: PMC10229287 DOI: 10.1093/ndt/gfac233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Indexed: 11/13/2022] Open
Abstract
Kidney diseases represent a major public health problem, affecting millions of people worldwide. Moreover, the treatment of kidney diseases is burdened by the problematic effects of conventional drug delivery, such as systemic drug toxicity, rapid drug clearance, and the absence of precise targeting of the kidney. Although the use of nanotechnology in medicine is in its early stage and lacks robust translational studies, nanomedicines have already shown great promise as novel drug-delivery systems for the treatment of kidney disease. On the basis of our current knowledge of renal anatomy and physiology, pathophysiology of kidney diseases, and physicochemical characteristics of nanoparticles, an expansive repertoire and wide use of nanomedicines could be developed for kidney diseases in the near future. Some limitations have slowed the transition of these agents from preclinical studies to clinical trials, however. In this review, we summarize the current knowledge on renal drug-delivery systems and recent advances in renal cell targeting; we also demonstrate their important potential as future paradigm-shifting therapies for kidney diseases.
Collapse
Affiliation(s)
- Gianmarco Sabiu
- Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- School of Nephrology, University of Milan, Milan, Italy
| | - Vivek Kasinath
- Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sungwook Jung
- Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Xiaofei Li
- Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - George C Tsokos
- Division of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Reza Abdi
- Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
15
|
Saha R, Patkar S, Pillai MM, Tayalia P. Bilayered skin substitute incorporating rutin nanoparticles for antioxidant, anti-inflammatory, and anti-fibrotic effect. BIOMATERIALS ADVANCES 2023; 150:213432. [PMID: 37119696 DOI: 10.1016/j.bioadv.2023.213432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 03/20/2023] [Accepted: 04/17/2023] [Indexed: 05/01/2023]
Abstract
Hypertrophic scarring in large burns and delayed healing in chronic wounds are consequences of prolonged and aggravated inflammation, sustained infiltration of immune cells, free radical generation, and abundance of inflammatory mediators. Therefore, it is imperative to curb hyperinflammation to expedite wound healing. In this study, rutin nanoparticles (RNPs) were synthesized without an encapsulant and incorporated into eggshell membrane powder-crosslinked gelatin-chitosan cryogels to impart antioxidant and anti-inflammatory properties for treating hyperinflammation. The resultant nanoparticles were found to be 17.53 ± 4.03 nm in size and were stable at room temperature for a month with no visible sedimentation. RNPs were found to be non-cytotoxic and exhibited anti-inflammatory (by increasing IL-10 levels) and antioxidant properties (by controlling the generation of reactive oxygen species and enhancing catalase production in human macrophages). Additionally, RNPs were found to reduce α-SMA expression in fibroblasts, thereby demonstrating their anti-scarring effect. In vivo studies with a bilayered skin substitute constituting an RNP-incorporated cryogel proved that it is biocompatible, does not induce renal toxicity, aids wound healing, and induces better re-epithelialization than the control groups at the initial stages. Thus, RNP-incorporated cryogels containing bilayered skin substitutes are an advanced and novel alternative to commercial dermo-epidermal substitutes that lack anti-inflammatory or anti-scarring properties.
Collapse
Affiliation(s)
- Rituparna Saha
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Shivali Patkar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Mamatha M Pillai
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Prakriti Tayalia
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| |
Collapse
|
16
|
Lee TY, Lu HH, Cheng HT, Huang HC, Tsai YJ, Chang IH, Tu CP, Chung CW, Lu TT, Peng CH, Chen Y. Delivery of nitric oxide with a pH-responsive nanocarrier for the treatment of renal fibrosis. J Control Release 2023; 354:417-428. [PMID: 36627025 DOI: 10.1016/j.jconrel.2022.12.059] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 12/19/2022] [Accepted: 12/28/2022] [Indexed: 01/12/2023]
Abstract
Fibrosis is an excessive accumulation of extracellular matrix (ECM) that may cause severe organ dysfunction. Nitric oxide (NO), a multifunctional gaseous signaling molecule, may inhibit fibrosis, and delivery of NO may serve as a potential antifibrotic strategy. However, major limitations in the application of NO to treat fibrotic diseases include its nonspecificity, short half-life and low availability in fibrotic tissue. Herein, we aimed to develop a stimuli-responsive drug carrier to deliver NO to halt kidney fibrosis. We manufactured a nanoparticle (NP) composed of pH-sensitive poly[2-(diisopropylamino)ethyl methacrylate (PDPA) polymers to encapsulate a NO donor, a dinitrosyl iron complex (DNIC; [Fe2(μ-SEt)2(NO)4]). The NPs were stable at physiological pH 7.4 but disintegrated at pH 4.0-6.0. The NPs showed significant cytotoxicity to cultured human myofibroblasts and were able to inhibit the activation of myofibroblasts, as indicated by a lower expression level of α-smooth muscle actin and the synthesis of a major ECM component, collagen I, in cultured human myofibroblasts. When given to mice treated with unilateral ureteral ligation/obstruction (UUO) to induce kidney fibrosis, these NPs remained in blood at a stable concentration for as long as 24 h and might enter the fibrotic kidneys to suppress myofibroblast activation and collagen I production, leading to a 70% reduction in the fibrotic area. In summary, our strategy to assemble a NO donor, the iron nitrosyl complex DNIC, into pH-responsive NPs proves effective in treating renal fibrosis and warrants further investigation for its therapeutic potential.
Collapse
Affiliation(s)
- Tsung-Ying Lee
- Institute of Biomedical Engineering, Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Hung-Hsun Lu
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Hui-Teng Cheng
- Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu Branch, Zhu Bei City 302, Taiwan
| | - Hsi-Chien Huang
- Institute of Biomedical Engineering, Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan; Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yun-Jen Tsai
- Institute of Biomedical Engineering, Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - I-Hsiang Chang
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chao-Peng Tu
- Institute of Biomedical Engineering, Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chieh-Wei Chung
- Institute of Biomedical Engineering, Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Tsai-Te Lu
- Institute of Biomedical Engineering, Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan; Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan.
| | - Chi-How Peng
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan.
| | - Yunching Chen
- Institute of Biomedical Engineering, Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan; Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan.
| |
Collapse
|
17
|
Zhong F, Cai H, Fu J, Sun Z, Li Z, Bauman D, Wang L, Das B, Lee K, He JC. TYRO3 agonist as therapy for glomerular disease. JCI Insight 2023; 8:e165207. [PMID: 36454644 PMCID: PMC9870075 DOI: 10.1172/jci.insight.165207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/18/2022] [Indexed: 12/05/2022] Open
Abstract
Podocyte injury and loss are key drivers of primary and secondary glomerular diseases, such as focal segmental glomerulosclerosis (FSGS) and diabetic kidney disease (DKD). We previously demonstrated the renoprotective role of protein S (PS) and its cognate tyrosine-protein kinase receptor, TYRO3, in models of FSGS and DKD and that their signaling exerts antiapoptotic and antiinflammatory effects to confer protection against podocyte loss. Among the 3 TAM receptors (TYRO3, AXL, and MER), only TYRO3 expression is largely restricted to podocytes, and glomerular TYRO3 mRNA expression negatively correlates with human glomerular disease progression. Therefore, we posited that the agonistic PS/TYRO3 signaling could serve as a potential therapeutic approach to attenuate glomerular disease progression. As PS function is not limited to TYRO3-mediated signal transduction but includes its anticoagulant activity, we focused on the development of TYRO3 agonists as an optimal therapeutic approach to glomerular disease. Among the small-molecule TYRO3 agonistic compounds screened, compound 10 (C-10) showed a selective activation of TYRO3 without any effects on AXL or MER. We also confirmed that C-10 directly binds to TYRO3, but not the other receptors. In vivo, C-10 attenuated proteinuria, glomerular injury, and podocyte loss in mouse models of Adriamycin-induced nephropathy and a db/db model of type 2 diabetes. Moreover, these renoprotective effects of C-10 were lost in Tyro3-knockout mice, indicating that C-10 is a selective agonist of TYRO3 activity that mitigates podocyte injury and glomerular disease. Therefore, C-10, a TYRO3 agonist, could be potentially developed as a new therapy for glomerular disease.
Collapse
Affiliation(s)
- Fang Zhong
- Department of Medicine/Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Hong Cai
- Department of Medicine/Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jia Fu
- Department of Medicine/Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Zeguo Sun
- Department of Medicine/Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Zhengzhe Li
- Department of Medicine/Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - David Bauman
- Department of Medicine/Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Lois Wang
- Department of Medicine/Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Bhaskar Das
- Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, New York, New York, USA
| | - Kyung Lee
- Department of Medicine/Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - John Cijiang He
- Department of Medicine/Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Renal Section, James J. Peters Veterans Affairs Medical Center, New York, New York, USA
| |
Collapse
|
18
|
Vallorz EL, Janda J, Mansour HM, Schnellmann RG. Kidney targeting of formoterol containing polymeric nanoparticles improves recovery from ischemia reperfusion-induced acute kidney injury in mice. Kidney Int 2022; 102:1073-1089. [PMID: 35779607 DOI: 10.1016/j.kint.2022.05.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 04/22/2022] [Accepted: 05/20/2022] [Indexed: 12/14/2022]
Abstract
The β2 adrenergic receptor agonist, formoterol, is an inducer of mitochondrial biogenesis and restorer of mitochondrial and kidney function in acute and chronic models of kidney injury. Unfortunately, systemic administration of formoterol has the potential for adverse cardiovascular effects, increased heart rate, and decreased blood pressure. To minimize these effects, we developed biodegradable and biocompatible polymeric nanoparticles containing formoterol that target the kidney, thereby decreasing the effective dose, and lessen cardiovascular effects while restoring kidney function after injury. Male C57Bl/6 mice, treated with these nanoparticles daily, had reduced ischemia-reperfusion-induced serum creatinine and kidney cortex kidney injury molecule-1 levels by 78% and 73% respectively, compared to control mice six days after injury. With nanoparticle therapy, kidney cortical mitochondrial number and proteins reduced by ischemic injury, recovered to levels of sham-operated mice. Tubular necrosis was reduced 69% with nanoparticles treatment. Nanoparticles improved kidney recovery even when the dosing frequency was reduced from daily to two days per week. Finally, compared to treatment with formoterol-free drug alone, these nanoparticles did not increase heart rate nor decrease blood pressure. Thus, targeted kidney delivery of formoterol-containing nanoparticles is an improvement in standard formoterol therapy for ischemia-reperfusion-induced acute kidney injuries by decreasing the dose, dosing frequency, and cardiac side effects.
Collapse
Affiliation(s)
- Ernest L Vallorz
- Department of Pharmacology and Toxicology, The University of Arizona R. Ken Coit College of Pharmacy, Skaggs Pharmaceutical Sciences Center, Tucson, Arizona, USA
| | - Jaroslav Janda
- Department of Pharmacology and Toxicology, The University of Arizona R. Ken Coit College of Pharmacy, Skaggs Pharmaceutical Sciences Center, Tucson, Arizona, USA
| | - Heidi M Mansour
- Department of Pharmacology and Toxicology, The University of Arizona R. Ken Coit College of Pharmacy, Skaggs Pharmaceutical Sciences Center, Tucson, Arizona, USA; The University of Arizona College of Medicine, Tucson, Arizona, USA; The University of Arizona, BIO5 Institute, Tucson, Arizona, USA
| | - Rick G Schnellmann
- Department of Pharmacology and Toxicology, The University of Arizona R. Ken Coit College of Pharmacy, Skaggs Pharmaceutical Sciences Center, Tucson, Arizona, USA; The University of Arizona College of Medicine, Tucson, Arizona, USA; The University of Arizona, BIO5 Institute, Tucson, Arizona, USA; Southern Arizona VA Health Care System, USA.
| |
Collapse
|
19
|
Abstract
The burden of acute and chronic kidney diseases to the health care system is exacerbated by the high mortality that this disease carries paired with the still limited availability of comprehensive therapies. A reason partially resides in the complexity of the kidney, with multiple potential target cell types and a complex structural environment that complicate strategies to protect and recover renal function after injury. Management of both acute and chronic renal disease, irrespective of the cause, are mainly focused on supportive treatments and renal replacement strategies when needed. Emerging preclinical evidence supports the feasibility of drug delivery technology for the kidney, and recent studies have contributed to building a robust catalog of peptides, proteins, nanoparticles, liposomes, extracellular vesicles, and other carriers that may be fused to therapeutic peptides, proteins, nucleic acids, or small molecule drugs. These fusions can display a precise renal uptake, an enhanced circulating time, and a directed intraorgan biodistribution while protecting their cargo to improve therapeutic efficacy. However, several hurdles that slow the transition towards clinical applications are still in the way, such as solubility, toxicity, and sub-optimal renal targeting. This review will discuss the feasibility and current limitations of drug delivery technologies for the treatment of renal disease, offering an update on their potential and the future directions of these promising strategies.
Collapse
Affiliation(s)
- Alejandro R. Chade
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS
- Department of Radiology, University of Mississippi Medical Center, Jackson, MS
| | - Gene L. Bidwell
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS
- Department of Pharmacology, University of Mississippi Medical Center, Jackson, MS
| |
Collapse
|
20
|
Advancements in nanomedicines for the detection and treatment of diabetic kidney disease. BIOMATERIALS AND BIOSYSTEMS 2022; 6:100047. [PMID: 36824160 PMCID: PMC9934479 DOI: 10.1016/j.bbiosy.2022.100047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/22/2022] [Accepted: 03/27/2022] [Indexed: 12/18/2022] Open
Abstract
In the diabetic kidneys, morbidities such as accelerated ageing, hypertension and hyperglycaemia create a pro-inflammatory microenvironment characterised by extensive fibrogenesis. Radiological techniques are not yet optimised generating inconsistent and non-reproducible data. The gold standard procedure to assess renal fibrosis is kidney biopsy, followed by histopathological assessment. However, this method is risky, invasive, subjective and examines less than 0.01% of kidney tissue resulting in diagnostic errors. As such, less than 10% of patients undergo kidney biopsy, limiting the accuracy of the current diabetic kidney disease (DKD) staging method. Standard treatments suppress the renin-angiotensin system to control hypertension and use of pharmaceuticals aimed at controlling diabetes have shown promise but can cause hypoglycaemia, diuresis and malnutrition as a result of low caloric intake. New approaches to both diagnosis and treatment are required. Nanoparticles (NPs) are an attractive candidate for managing DKD due to their ability to act as theranostic tools that can carry drugs and enhance image contrast. NP-based point-of-care systems can provide physiological information previously considered unattainable and provide control over the rate and location of drug release. Here we discuss the use of nanotechnology in renal disease, its application to both the treatment and diagnosis of DKD. Finally, we propose a new method of NP-based DKD classification that overcomes the current systems limitations.
Collapse
|
21
|
Cai H, Tan P, Chen X, Kopytynski M, Pan D, Zheng X, Gu L, Gong Q, Tian X, Gu Z, Zhang H, Chen R, Luo K. Stimuli-Sensitive Linear-Dendritic Block Copolymer-Drug Prodrug as a Nanoplatform for Tumor Combination Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108049. [PMID: 34875724 DOI: 10.1002/adma.202108049] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/28/2021] [Indexed: 02/05/2023]
Abstract
Linear-dendritic block copolymer (LDBCs) are highly attractive candidates for smart drug-delivery vehicles. Herein, an amphiphilic poly[(ethylene glycol) methyl ether methacrylate] (POEGMA) linear-peptide dendritic prodrug of doxorubicin (DOX) prepared by reversible addition-fragmentation chain transfer (RAFT) polymerization is reported. The hydrophobic-dye-based photosensitizer chlorin e6 (Ce6) is employed for encapsulation in the prodrug nanoparticles (NPs) to obtain an LDBCs-based drug-delivery system (LD-DOX/Ce6) that offers a combination cancer therapy. Due to the presence of Gly-Phe-Leu-Gly peptides and hydrazone bonds in the prodrug structure, LD-DOX/Ce6 is degraded into small fragments, thus specifically triggering the intracellular release of DOX and Ce6 in the tumor microenvironment. Bioinformatics analysis suggests that LD-DOX/Ce6 with laser irradiation treatment significantly induces apoptosis, DNA damage, and cell cycle arrest. The combination treatment can not only suppress tumor growth, but also significantly reduce tumor metastasis compared with treatments with DOX or Ce6 through regulating EMT pathway, TGFβ pathway, angiogenesis, and the hypoxia pathway. LD-DOX/Ce6 displays a synergistic chemo-photodynamic antitumor efficacy, resulting in a high inhibition in tumor growth and metastasis, while maintaining an excellent biosafety. Therefore, this study demonstrates the potential of the biodegradable and tumor-microenvironment-responsive LDBCs as an intelligent multifunctional drug-delivery vehicle for high-efficiency cancer combination therapy.
Collapse
Affiliation(s)
- Hao Cai
- Huaxi MR Research Center (HMRRC) Department of Radiology National Clinical Research Center for Geriatrics Frontiers Science Center for Disease‐Related Molecular Network State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
| | - Ping Tan
- Huaxi MR Research Center (HMRRC) Department of Radiology National Clinical Research Center for Geriatrics Frontiers Science Center for Disease‐Related Molecular Network State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
| | - Xiaoting Chen
- Animal Experimental Center of West China Hospital Sichuan University Chengdu 610041 China
| | - Michal Kopytynski
- Department of Chemical Engineering Imperial College London South Kensington Campus London SW7 2AZ UK
| | - Dayi Pan
- Huaxi MR Research Center (HMRRC) Department of Radiology National Clinical Research Center for Geriatrics Frontiers Science Center for Disease‐Related Molecular Network State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
| | - Xiuli Zheng
- Huaxi MR Research Center (HMRRC) Department of Radiology National Clinical Research Center for Geriatrics Frontiers Science Center for Disease‐Related Molecular Network State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
| | - Lei Gu
- Huaxi MR Research Center (HMRRC) Department of Radiology National Clinical Research Center for Geriatrics Frontiers Science Center for Disease‐Related Molecular Network State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC) Department of Radiology National Clinical Research Center for Geriatrics Frontiers Science Center for Disease‐Related Molecular Network State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province and Research Unit of Psychoradiology Chinese Academy of Medical Sciences Chengdu 610041 China
| | - Xiaohe Tian
- Huaxi MR Research Center (HMRRC) Department of Radiology National Clinical Research Center for Geriatrics Frontiers Science Center for Disease‐Related Molecular Network State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
| | - Zhongwei Gu
- Huaxi MR Research Center (HMRRC) Department of Radiology National Clinical Research Center for Geriatrics Frontiers Science Center for Disease‐Related Molecular Network State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
| | - Hu Zhang
- Amgen Bioprocessing Centre Keck Graduate Institute Claremont CA 91711 USA
| | - Rongjun Chen
- Department of Chemical Engineering Imperial College London South Kensington Campus London SW7 2AZ UK
| | - Kui Luo
- Huaxi MR Research Center (HMRRC) Department of Radiology National Clinical Research Center for Geriatrics Frontiers Science Center for Disease‐Related Molecular Network State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province and Research Unit of Psychoradiology Chinese Academy of Medical Sciences Chengdu 610041 China
| |
Collapse
|
22
|
Role of Endothelial Glucocorticoid Receptor in the Pathogenesis of Kidney Diseases. Int J Mol Sci 2021; 22:ijms222413295. [PMID: 34948091 PMCID: PMC8706765 DOI: 10.3390/ijms222413295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/05/2021] [Accepted: 12/07/2021] [Indexed: 01/12/2023] Open
Abstract
Glucocorticoids, as multifunctional hormones, are widely used in the treatment of various diseases including nephrological disorders. They are known to affect immunological cells, effectively treating many autoimmune and inflammatory processes. Furthermore, there is a growing body of evidence demonstrating the potent role of glucocorticoids in non-immune cells such as podocytes. Moreover, novel data show additional pathways and processes affected by glucocorticoids, such as the Wnt pathway or autophagy. The endothelium is currently considered as a key organ in the regulation of numerous kidney functions such as glomerular filtration, vascular tone and the regulation of inflammation and coagulation. In this review, we analyse the literature concerning the effects of endothelial glucocorticoid receptor signalling on kidney function in health and disease, with special focus on hypertension, diabetic kidney disease, glomerulopathies and chronic kidney disease. Recent studies demonstrate the potential role of endothelial GR in the prevention of fibrosis of kidney tissue and cell metabolism through Wnt pathways, which could have a protective effect against disease progression. Another important aspect covered in this review is blood pressure regulation though GR and eNOS. We also briefly cover potential therapies that might affect the endothelial glucocorticoid receptor and its possible clinical implications, with special interest in selective or local GR stimulation and potential mitigation of GC treatment side effects.
Collapse
|
23
|
Shamiya Y, Ravi SP, Coyle A, Chakrabarti S, Paul A. Engineering nanoparticle therapeutics for impaired wound healing in diabetes. Drug Discov Today 2021; 27:1156-1166. [PMID: 34839040 DOI: 10.1016/j.drudis.2021.11.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/01/2021] [Accepted: 11/22/2021] [Indexed: 12/14/2022]
Abstract
Diabetes mellitus is a chronic disease characterized by increased blood glucose levels, leading to damage of the nerves blood vessels, subsequently manifesting as organ failures, wounds, or ulcerations. Wounds in patients with diabetes are further complicated because of reduced cytokine responses, infection, poor vascularization, and delayed healing processes. Surface-functionalized and bioengineered nanoparticles (NPs) have recently gained attention as emerging treatment modalities for wound healing in diabetes. Here, we review emerging therapeutic NPs to treat diabetic wounds and highlight their discrete delivery mechanisms and sites of action. We further critically assess the current challenges of these nanoengineered materials for successful clinical translation and discuss their potential for growth in the clinical marketplace.
Collapse
Affiliation(s)
- Yasmeen Shamiya
- Department of Chemistry, The University of Western Ontario, London, ON N6A 5B9, Canada
| | - Shruthi Polla Ravi
- School of Biomedical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada
| | - Ali Coyle
- School of Biomedical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada
| | - Subrata Chakrabarti
- Department of Pathology and Laboratory Medicine, The University of Western Ontario, London, ON N6A 5B9, Canada
| | - Arghya Paul
- Department of Chemistry, The University of Western Ontario, London, ON N6A 5B9, Canada; School of Biomedical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada; Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada; The Centre for Advanced Materials and Biomaterials Research, The University of Western Ontario, London, ON N6A 5B7, Canada.
| |
Collapse
|
24
|
Liu D, Du Y, Jin FY, Xu XL, Du YZ. Renal Cell-Targeted Drug Delivery Strategy for Acute Kidney Injury and Chronic Kidney Disease: A Mini-Review. Mol Pharm 2021; 18:3206-3222. [PMID: 34337953 DOI: 10.1021/acs.molpharmaceut.1c00511] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Kidney diseases, including acute kidney injury (AKI) and chronic kidney disease (CKD), have become a global public health concern associated with high morbidity, mortality, and healthcare costs. However, at present, very few effective and specific drug therapies are available, owing to the poor therapeutic efficacy and systemic side effects. Kidney-targeted drug delivery, as a potential strategy for solving these problems, has received great attention in the fields of AKI and CKD in recent years. Here, we review the literature on renal targeted, more specifically, renal cell-targeted formulations of AKI and CKD that offered biodistribution data. First, we provide a broad overview of the unique structural characteristics and injured cells of acute and chronic injured kidneys. We then separately summarize literature examples of renal targeted formulations according to the difference of target cells and elaborate on the appropriate formulation design criteria for AKI and CKD. Finally, we propose a hypothetic strategy to improve the renal accumulation of glomerular cell-targeted formulation by escaping the uptake of the reticuloendothelial system and provide some perspectives for future studies.
Collapse
Affiliation(s)
- Di Liu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou 310058, China
| | - Yan Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou 310058, China
| | - Fei-Yang Jin
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou 310058, China
| | - Xiao-Ling Xu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou 310058, China
| | - Yong-Zhong Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou 310058, China
| |
Collapse
|
25
|
Huang C, Zhao X, Su M, Yin Z. Construction and evaluation of novel αvβ3 integrin ligand-conjugated ultrasmall star polymer micelles targeted glomerular podocytes through GFB permeation. Biomaterials 2021; 276:121053. [PMID: 34352625 DOI: 10.1016/j.biomaterials.2021.121053] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 12/29/2022]
Abstract
As glomerular cells, podocytes are the last line of defense for glomerular filtration barriers (GFB) and play a critical role in chronic kidney disease (CKD). Podocyte-targeted drug delivery is a promising direction in the treatment of CKD. In this study, we constructed four-arm star polymers conjugated with a novel linear RWrNM peptide. And poly ε-caprolactone (PCL) hydrophobic core and brush poly (2-hydroxyethyl methacrylate) (PHEMA) hydrophilic shell were synthesized by ROP and SET LRP polymerization. The PHEMA modified by succinic anhydride was coupled with the novel linear RWrNM peptide, and then the PCL hydrophobic core was loaded with dexamethasone acetate (Dexac) to form micelles with stable dimensions. Our findings showed that the novel micelles had an ultrasmall particle size of 16-30 nm. We, for the first time, showed that the specific affinity of the novel linear RWrNM peptide to primary podocytes (24.9 ± 1.7 times of the free RhB uptake) through the αvβ3 integrin receptor mediation was comparable to that of B16F10 cells (24.4 ± 1.2 times of the free RhB uptake). In vivo studies showed that the novel ultrasmall micelles possessed a significant kidney-targeted effect, excellent podocyte colocalization effect, and GFB permeability at 49%-60 % in normal SD rats. Besides, the novel ultrasmall micelles decreased the plasma elimination half-life of Dexac to 1.62-2.09 h and showed good safety in vitro and in vivo. Both in vitro and in vivo results demonstrated the novel ultrasmall micelles could be used as a promising drug delivery strategy for actively targeted therapy of CKD.
Collapse
Affiliation(s)
- Chengyuan Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Xuan Zhao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Meiling Su
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Zongning Yin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
26
|
Fleischmann D, Goepferich A. General sites of nanoparticle biodistribution as a novel opportunity for nanomedicine. Eur J Pharm Biopharm 2021; 166:44-60. [PMID: 34087354 DOI: 10.1016/j.ejpb.2021.05.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/22/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023]
Abstract
The development of nanomedical devices has led to a considerable number of clinically applied nanotherapeutics. Yet, the overall poor translation of nanoparticular concepts into marketable systems has not met the initial expectations and led to increasing criticism in recent years. Most novel nano approaches thereby use highly refined formulations including a plethora of active targeting sequences, but ultimately fail to reach their target due to a generally high off-target deposition in organs such as the liver or kidney. In this context, we argue that initial nanoparticle (NP) development should not entirely become set on conventional formulation aspects. In contrast, we propose a change of focus towards a prior analysis of general sites of NP in vivo deposition and an assessment of how accumulation in these organs or tissues can be harnessed to develop therapies for site-related pathologies. We therefore give a comprehensive overview of existing nanotherapeutic targeting strategies for specific cell types within three of the usual suspects, i.e. the liver, kidney and the vascular system. We discuss the physiological surroundings and relevant pathologies of described tissues as well as the implications for NP-mediated drug delivery. Additionally, successful cell-selective NP concepts using active targeting strategies are assessed. By bringing together both (patho)physiological aspects and concepts for cell-selective NP formulations, we hope to show a novel opportunity for the development of more promising nanotherapeutic devices.
Collapse
Affiliation(s)
- Daniel Fleischmann
- Department of Pharmaceutical Technology, University of Regensburg, Universitaetsstrasse 31, 93053 Regensburg, Germany
| | - Achim Goepferich
- Department of Pharmaceutical Technology, University of Regensburg, Universitaetsstrasse 31, 93053 Regensburg, Germany.
| |
Collapse
|
27
|
Huang X, Ma Y, Li Y, Han F, Lin W. Targeted Drug Delivery Systems for Kidney Diseases. Front Bioeng Biotechnol 2021; 9:683247. [PMID: 34124026 PMCID: PMC8193852 DOI: 10.3389/fbioe.2021.683247] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 04/27/2021] [Indexed: 12/12/2022] Open
Abstract
Kidney diseases have gradually become a global health burden. Along with the development of nanotechnology, many hybrids or nanomaterials have been utilized to promote treatment efficiency with negligible side effects. These therapeutic agents have been successfully applied in many fields. In particular, some efforts have also been made to ameliorate the treatment of kidney diseases through targeted delivery nanomaterials. Though most of the delivery systems have not yet been transmitted into clinical use or even still at an early stage, they have shown great potential in carrying immunosuppressants like tacrolimus and triptolide, antioxidants, or siRNAs. Excitingly, some of them have achieved significant treatment effectiveness and reduced systemic side effect in kidney disease animal models. Here, we have reviewed the recent advances and presented nanotherapeutic devices designed for kidney targeted delivery.
Collapse
Affiliation(s)
- Xiaohan Huang
- Key Laboratory of Kidney Disease Prevention and Control Technology, Kidney Disease Center, Zhejiang University School of Medicine, The First Affiliated Hospital, Institute of Nephrology, Zhejiang University, Hangzhou, China
| | - Yanhong Ma
- Key Laboratory of Kidney Disease Prevention and Control Technology, Kidney Disease Center, Zhejiang University School of Medicine, The First Affiliated Hospital, Institute of Nephrology, Zhejiang University, Hangzhou, China
| | - Yangyang Li
- Key Laboratory of Women's Reproductive Health Research of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fei Han
- Key Laboratory of Kidney Disease Prevention and Control Technology, Kidney Disease Center, Zhejiang University School of Medicine, The First Affiliated Hospital, Institute of Nephrology, Zhejiang University, Hangzhou, China
| | - Weiqiang Lin
- Department of Nephrology, The Fourth Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Jinhua, China
| |
Collapse
|
28
|
Celentano W, Ordanini S, Bruni R, Marocco L, Medaglia P, Rossi A, Buzzaccaro S, Cellesi F. Complex poly(ε-caprolactone)/poly(ethylene glycol) copolymer architectures and their effects on nanoparticle self-assembly and drug nanoencapsulation. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2020.110226] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
29
|
Prikhozhdenko ES, Gusliakova OI, Kulikov OA, Mayorova OA, Shushunova NA, Abdurashitov AS, Bratashov DN, Pyataev NA, Tuchin VV, Gorin DA, Sukhorukov GB, Sindeeva OA. Target delivery of drug carriers in mice kidney glomeruli via renal artery. Balance between efficiency and safety. J Control Release 2021; 329:175-190. [PMID: 33276016 DOI: 10.1016/j.jconrel.2020.11.051] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 11/11/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022]
Abstract
Targeting drug delivery systems is crucial to reducing the side effects of therapy. However, many of them are lacking effectiveness for kidney targeting, due to systemic dispersion and accumulation in the lungs and liver after intravenous administration. Renal artery administration of carriers provides their effective local accumulation but may cause irreversible vessel blockage. Therefore, the combination of the correct administration procedure, suitable drug delivery system, selection of effective and safe dosage is the key to sparing local therapy. Here, we propose the 3-μm sized fluorescent capsules based on poly-L-arginine and dextran sulfate for targeting the kidney via a mice renal artery. Hemodynamic study of the target kidney in combination with the histological analysis reveals a safe dose of microcapsules (20 × 106), which has not lead to irreversible pathological changes in blood flow and kidney tissue, and provides retention of 20.5 ± 3% of the introduced capsules in the renal cortex glomeruli. Efficacy of fluorescent dye localization in the target kidney after intra-arterial administration is 9 times higher than in the opposite kidney and after intravenous injection. After 24 h microcapsules are not observed in the target kidney when the safe dose of carriers is being used but a high level of fluorescent signal persists for 48 h indicating that fluorescent cargo accumulation in tissues. Injection of non-safe microcapsule dose leads to carriers staying in glomeruli for at least 48 h which has consequences of blood flow not being restored and tissue damage being observed in histology.
Collapse
Affiliation(s)
| | - Olga I Gusliakova
- Saratov State University, 83 Astrakhanskaya str., Saratov 410012, Russia
| | - Oleg A Kulikov
- Ogarev Mordovia State University, 68 Bolshevistskaya str., Saransk 430005, Russia
| | - Oksana A Mayorova
- Saratov State University, 83 Astrakhanskaya str., Saratov 410012, Russia
| | | | - Arkady S Abdurashitov
- Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, 3 Nobel str., Moscow 143005, Russia
| | - Daniil N Bratashov
- Saratov State University, 83 Astrakhanskaya str., Saratov 410012, Russia
| | - Nikolay A Pyataev
- Ogarev Mordovia State University, 68 Bolshevistskaya str., Saransk 430005, Russia
| | - Valery V Tuchin
- Saratov State University, 83 Astrakhanskaya str., Saratov 410012, Russia; National Research Tomsk State University, 36 Lenin Ave., Tomsk 634050, Russia
| | - Dmitry A Gorin
- Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, 3 Nobel str., Moscow 143005, Russia
| | - Gleb B Sukhorukov
- Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, 3 Nobel str., Moscow 143005, Russia; School of Engineering and Materials Science, Queen Mary University of London, Mile End, Eng, 215, London E1 4NS, United Kingdom
| | - Olga A Sindeeva
- Saratov State University, 83 Astrakhanskaya str., Saratov 410012, Russia; Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, 3 Nobel str., Moscow 143005, Russia.
| |
Collapse
|
30
|
van Asbeck AH, Dieker J, Boswinkel M, van der Vlag J, Brock R. Kidney-targeted therapies: A quantitative perspective. J Control Release 2020; 328:762-775. [DOI: 10.1016/j.jconrel.2020.09.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 01/23/2023]
|
31
|
Zohreh N, Rastegaran Z, Hosseini SH, Akhlaghi M, Istrate C, Busuioc C. pH-triggered intracellular release of doxorubicin by a poly(glycidyl methacrylate)-based double-shell magnetic nanocarrier. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111498. [PMID: 33255062 DOI: 10.1016/j.msec.2020.111498] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/25/2020] [Accepted: 09/04/2020] [Indexed: 12/26/2022]
Abstract
Two core-double-shell pH-sensitive nanocarriers were fabricated using Fe3O4 as magnetic core, poly(glycidyl methacrylate-PEG) and salep dialdehyde as the first and the second shell, and doxorubicin as the hydrophobic anticancer drug. Two nanocarriers were different in the drug loading steps. The interaction between the first and the second shell assumed to be pH-sensitive via acetal cross linkages. The structure of nanocarriers, organic shell loading, magnetic responsibility, morphology, size, dispersibility, and drug loading content were investigated by IR, NMR, TG, VSM, XRD, DLS, HRTEM and UV-Vis analyses. The long-term drug release profiles of both nanocarriers showed that the drug loading before cross-linking between the first and second shell led to a more pH-sensitive nanocarrier exhibiting higher control on DOX release. Cellular toxicity assay (MTT) showed that DOX-free nanocarrier is biocompatible having cell viability greater than 80% for HEK-293 and MCF-7 cell lines. Besides, high cytotoxic effect observed for drug-loaded nanocarrier on MCF-7 cancer cells. Cellular uptake analysis showed that the nanocarrier is able to transport DOX into the cytoplasm and perinuclear regions of MCF-7 cells. In vitro hemolysis and coagulation assays demonstrated high blood compatibility of nanocarrier. The results also suggested that low concentration of nanocarrier have a great potential as a contrast agent in magnetic resonance imaging (MRI).
Collapse
Affiliation(s)
- Nasrin Zohreh
- Department of Chemistry, Faculty of Science, University of Qom, P. O. Box: 37185-359, Qom, Iran.
| | - Zahra Rastegaran
- Department of Chemistry, Faculty of Science, University of Qom, P. O. Box: 37185-359, Qom, Iran
| | - Seyed Hassan Hosseini
- Department of Chemical Engineering, University of Science and Technology of Mazandaran, Behshahr, Iran.
| | - Mehdi Akhlaghi
- Research Center for Nuclear Medicine, Tehran University of Medical Sciences, Tehran 1414713135, Iran
| | - Cosmin Istrate
- Laboratory of Atomic Structures and Defects in Advanced Materials, National Institute of Materials Physics, Magurele, Romania
| | - Cristina Busuioc
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, Bucharest, Romania
| |
Collapse
|
32
|
Neri G, Mion G, Pizzi A, Celentano W, Chaabane L, Chierotti MR, Gobetto R, Li M, Messa P, De Campo F, Cellesi F, Metrangolo P, Baldelli Bombelli F. Fluorinated PLGA Nanoparticles for Enhanced Drug Encapsulation and 19 F NMR Detection. Chemistry 2020; 26:10057-10063. [PMID: 32515857 DOI: 10.1002/chem.202002078] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/08/2020] [Indexed: 12/13/2022]
Abstract
In the continuous search for multimodal systems with combined diagnostic and therapeutic functions, several efforts have been made to develop multifunctional drug delivery systems. In this work, through a covalent approach, a new class of fluorinated poly(lactic-co-glycolic acid) co-polymers (F-PLGA) were designed that contain an increasing number of magnetically equivalent fluorine atoms. In particular, two novel compounds, F3 -PLGA and F9 -PLGA, were synthesized and their chemical structure and thermal stability were analyzed by solution NMR, DSC, and TGA. The obtained F-PLGA compounds were proven to form in aqueous solution colloidal stable nanoparticles (NPs) displaying a strong 19 F NMR signal. The fluorinated NPs also showed an enhanced ability to load hydrophobic drugs containing fluorine atoms compared to analogous pristine PLGA NPs. Preliminary in vitro studies showed high cell viability and the NP ability to intracellularly deliver and release a functioning drug.
Collapse
Affiliation(s)
- Giulia Neri
- Laboratory of Supramolecular and Bio-Nanomaterials (SupraBioNanoLab), Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, V. Luigi Mancinelli, 20131, Milan, Italy.,Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d'Alcontres, 31, 98166, Messina, Italy
| | - Giuliana Mion
- Laboratory of Supramolecular and Bio-Nanomaterials (SupraBioNanoLab), Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, V. Luigi Mancinelli, 20131, Milan, Italy
| | - Andrea Pizzi
- Laboratory of Supramolecular and Bio-Nanomaterials (SupraBioNanoLab), Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, V. Luigi Mancinelli, 20131, Milan, Italy
| | - Wanda Celentano
- Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, V. Luigi Mancinelli, 20131, Milan, Italy
| | - Linda Chaabane
- Institute of Experimental Neurology (INSPE) and Experimental Imaging, Center (CIS), IRCCS San Raffaele Hospital, V. Olgettina, 60, 20132, Milan, Italy
| | - Michele R Chierotti
- Department of Chemistry and NIS Centre, Università di Torino, V. Pietro Giuria, 7, 10125, Turin, Italy
| | - Roberto Gobetto
- Department of Chemistry and NIS Centre, Università di Torino, V. Pietro Giuria, 7, 10125, Turin, Italy
| | - Min Li
- Renal Research Laboratory, Fondazione IRCCS Ca" Granda Ospedale Maggiore Policlinico, V. Francesco Sforza, 35, 20122, Milan, Italy
| | - Piergiorgio Messa
- Renal Research Laboratory, Fondazione IRCCS Ca" Granda Ospedale Maggiore Policlinico, V. Francesco Sforza, 35, 20122, Milan, Italy
| | - Floryan De Campo
- Solvay Specialty Polymers, V. Lombardia, 20, Bollate, 20021, Milan, Italy
| | - Francesco Cellesi
- Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, V. Luigi Mancinelli, 20131, Milan, Italy
| | - Pierangelo Metrangolo
- Laboratory of Supramolecular and Bio-Nanomaterials (SupraBioNanoLab), Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, V. Luigi Mancinelli, 20131, Milan, Italy
| | - Francesca Baldelli Bombelli
- Laboratory of Supramolecular and Bio-Nanomaterials (SupraBioNanoLab), Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, V. Luigi Mancinelli, 20131, Milan, Italy
| |
Collapse
|
33
|
Liu GW, Pippin JW, Eng DG, Lv S, Shankland SJ, Pun SH. Nanoparticles exhibit greater accumulation in kidney glomeruli during experimental glomerular kidney disease. Physiol Rep 2020; 8:e14545. [PMID: 32786069 PMCID: PMC7422806 DOI: 10.14814/phy2.14545] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 12/26/2022] Open
Abstract
Loss and dysfunction of glomerular podocytes result in increased macromolecule permeability through the glomerular filtration barrier and nephrotic syndrome. Current therapies can induce and maintain disease remission, but cause serious and chronic complications. Nanoparticle drug carriers could mitigate these side effects by delivering drugs to the kidneys more efficiently than free drug through tailoring of carrier properties. An important extrinsic factor of nanoparticle biodistribution is local pathophysiology, which may drive greater nanoparticle deposition in certain tissues. Here, we hypothesized that a "leakier" filtration barrier during glomerular kidney disease would increase nanoparticle distribution into the kidneys. We examined the effect of nanoparticle size and disease state on kidney accumulation in male BALB/c mice. The effect of size was tested using a panel of fluorescent polystyrene nanoparticles of size 20-200 nm, due to the relevance of this size range for drug delivery applications.Experimental focal segmental glomerulosclerosis was induced using an anti-podocyte antibody that causes abrupt podocyte depletion. Nanoparticles were modified with carboxymethyl-terminated poly(ethylene glycol) for stability and biocompatibility. After intravenous injection, fluorescence from nanoparticles of size 20 and 100 nm, but not 200 nm, was observed in kidney glomeruli and peritubular capillaries. During conditions of experimental focal segmental glomerulosclerosis, the number of fluorescent nanoparticle punctae in kidney glomeruli increased by 1.9-fold for 20 and 100 nm nanoparticles compared to normal conditions. These findings underscore the importance of understanding and leveraging kidney pathophysiology in engineering new, targeted drug carriers that accumulate more in diseased glomeruli to treat glomerular kidney disease.
Collapse
Affiliation(s)
- Gary W. Liu
- Department of Bioengineering and Molecular Engineering & Sciences InstituteUniversity of WashingtonSeattleWAUSA
| | - Jeffrey W. Pippin
- Department of MedicineDivision of NephrologyUniversity of Washington School of MedicineSeattleWAUSA
| | - Diana G. Eng
- Department of MedicineDivision of NephrologyUniversity of Washington School of MedicineSeattleWAUSA
| | - Shixian Lv
- Department of Bioengineering and Molecular Engineering & Sciences InstituteUniversity of WashingtonSeattleWAUSA
| | - Stuart J. Shankland
- Department of Bioengineering and Molecular Engineering & Sciences InstituteUniversity of WashingtonSeattleWAUSA
| | - Suzie H. Pun
- Department of Bioengineering and Molecular Engineering & Sciences InstituteUniversity of WashingtonSeattleWAUSA
| |
Collapse
|
34
|
Sun J, Wan Z, Chen Y, Xu J, Luo Z, Parise RA, Diao D, Ren P, Beumer JH, Lu B, Li S. Triple drugs co-delivered by a small gemcitabine-based carrier for pancreatic cancer immunochemotherapy. Acta Biomater 2020; 106:289-300. [PMID: 32004652 PMCID: PMC7183357 DOI: 10.1016/j.actbio.2020.01.039] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/23/2020] [Accepted: 01/23/2020] [Indexed: 12/15/2022]
Abstract
Poor tumor penetration and highly immunosuppressive tumor microenvironment are two major factors that limit the therapeutic efficacy for the treatment of pancreatic ductal adenocarcinoma (PDA). In this work, a redox-responsive gemcitabine (GEM)-conjugated polymer, PGEM, was employed as a tumor penetrating nanocarrier to co-load an immunomodulating agent (NLG919, an inhibitor of indoleamine 2,3-dioxygenase 1 (IDO1) and a chemotherapeutic drug (paclitaxel (PTX)) for immunochemo combination therapy. The NLG919/PTX co-loaded micelles showed very small size of ~15 nm. In vivo tumor imaging study indicated that PGEM was much more effective than the relatively large-sized POEG-co-PVD nanoparticles (~160 nm) in deep tumor penetration and could reach the core of the pancreatic tumor. PTX formulated in the PGEM carrier showed improved tumor inhibition effect compared with PGEM alone. Incorporation of NLG919 in the formulation led to a more immunoactive tumor microenvironment with significantly decreased percentage of Treg cells, and increased percentages of CD4+ IFNγ+ T and CD8+ IFNγ+ T cells. PGEM micelles co-loaded with PTX and NLG919 showed the best anti-tumor activity in pancreatic (PANC02) as well as two other tumor models compared to PGEM micelles loaded with PTX or NLG919 alone, suggesting that codelivery of NLG919 and PTX via PGEM may represent an effective strategy for immunochemotherapy of PDA as well as other types of cancers. STATEMENT OF SIGNIFICANCE: In order to effectively accumulate and penetrate the PDA that is poorly vascularized and enriched with dense fibrotic stroma, the size of nanomedicine has to be well controlled. Here, we reported an immunochemotherapy regimen based on co-delivery of GEM, PTX and IDO1 inhibitor NLG919 through an ultra-small sized GEM-based nanocarrier (PGEM). We demonstrated that the PGEM carrier was effective in accumulating and penetrating into PDA tumors. Besides, PGEM co-loaded with PTX and NLG9 induced an improved anti-tumor immune response and was highly efficacious in inhibiting tumor growth as well as in prolonging the survival rate in PANC02 xenograft model. Our work represents a potential strategy for enhancing PDA tumor penetration and immunochemotherapy.
Collapse
Affiliation(s)
- Jingjing Sun
- Center for Pharmacogenetics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA; Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Zhuoya Wan
- Center for Pharmacogenetics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA; Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yichao Chen
- Center for Pharmacogenetics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA; Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jieni Xu
- Center for Pharmacogenetics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA; Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Zhangyi Luo
- Center for Pharmacogenetics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA; Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Robert A Parise
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Dingwei Diao
- Center for Pharmacogenetics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA; Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Pengfei Ren
- Center for Pharmacogenetics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA; Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jan H Beumer
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Binfeng Lu
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Song Li
- Center for Pharmacogenetics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA; Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
35
|
Moncalvo F, Martinez Espinoza MI, Cellesi F. Nanosized Delivery Systems for Therapeutic Proteins: Clinically Validated Technologies and Advanced Development Strategies. Front Bioeng Biotechnol 2020; 8:89. [PMID: 32117952 PMCID: PMC7033645 DOI: 10.3389/fbioe.2020.00089] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 01/30/2020] [Indexed: 12/18/2022] Open
Abstract
The impact of protein therapeutics in healthcare is steadily increasing, due to advancements in the field of biotechnology and a deeper understanding of several pathologies. However, their safety and efficacy are often limited by instability, short half-life and immunogenicity. Nanodelivery systems are currently being investigated for overcoming these limitations and include covalent attachment of biocompatible polymers (PEG and other synthetic or naturally derived macromolecules) as well as protein nanoencapsulation in colloidal systems (liposomes and other lipid or polymeric nanocarriers). Such strategies have the potential to develop next-generation protein therapeutics. Herein, we review recent research progresses on these nanodelivery approaches, as well as future directions and challenges.
Collapse
Affiliation(s)
| | | | - Francesco Cellesi
- Dipartimento di Chimica, Materiali e Ingegneria Chimica “G. Natta”, Politecnico di Milano, Milan, Italy
| |
Collapse
|
36
|
Celentano W, Neri G, Distante F, Li M, Messa P, Chirizzi C, Chaabane L, De Campo F, Metrangolo P, Baldelli Bombelli F, Cellesi F. Design of fluorinated hyperbranched polyether copolymers for 19F MRI nanotheranostics. Polym Chem 2020. [DOI: 10.1039/d0py00393j] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
19F MRI contrast agents and drug nanocarriers based on fluorinated hyperbranched polyether copolymers.
Collapse
Affiliation(s)
- Wanda Celentano
- Dipartimento di Chimica
- Materiali ed Ingegneria Chimica “G. Natta”
- Politecnico di Milano
- 20131 Milan
- Italy
| | - Giulia Neri
- Dipartimento di Chimica
- Materiali ed Ingegneria Chimica “G. Natta”
- Politecnico di Milano
- 20131 Milan
- Italy
| | - Francesco Distante
- ETH Zurich
- Department of Chemistry and Applied Biosciences
- Institute of Chemical and Bioengineering
- CH-8093 Zurich
- Switzerland
| | - Min Li
- Renal Research Laboratory
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico
- 20122 Milan
- Italy
| | - Piergiorgio Messa
- Renal Research Laboratory
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico
- 20122 Milan
- Italy
| | - Cristina Chirizzi
- Institute of Experimental Neurology (INSPE) and Imaging (CIS)
- IRCCS San Raffaele Scientific Institute
- I-20132 Milan
- Italy
| | - Linda Chaabane
- Institute of Experimental Neurology (INSPE) and Imaging (CIS)
- IRCCS San Raffaele Scientific Institute
- I-20132 Milan
- Italy
| | | | - Pierangelo Metrangolo
- Dipartimento di Chimica
- Materiali ed Ingegneria Chimica “G. Natta”
- Politecnico di Milano
- 20131 Milan
- Italy
| | | | - Francesco Cellesi
- Dipartimento di Chimica
- Materiali ed Ingegneria Chimica “G. Natta”
- Politecnico di Milano
- 20131 Milan
- Italy
| |
Collapse
|
37
|
Sun J, Chen Y, Xu J, Song X, Wan Z, Du Y, Ma W, Li X, Zhang L, Li S. High Loading of Hydrophobic and Hydrophilic Agents via Small Immunostimulatory Carrier for Enhanced Tumor Penetration and Combinational Therapy. Theranostics 2020; 10:1136-1150. [PMID: 31938056 PMCID: PMC6956803 DOI: 10.7150/thno.38287] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 10/05/2019] [Indexed: 01/08/2023] Open
Abstract
Development of small-sized nanoformulations for effective tumor penetration, particularly for those tumors with dense stroma is a major challenge in cancer nanomedicine. It is even more challenging to achieve effective co-loading of both hydrophobic and hydrophilic anticancer agents through a small-sized nanocarrier. In this work, we designed a novel redox-responsive gemcitabine (GEM)-conjugated polymer POEG-co-PVDGEM (PGEM) as a small-sized nanocarrier to co-deliver hydrophilic GEM and hydrophobic paclitaxel (PTX). Methods: The in vitro physicochemical and biological properties of PTX/PGEM NPs were characterized. The efficiency of the PGEM carrier in selective codelivery of GEM and PTX in two murine tumor models as well as a patient derived xenograft model (PDX) was also evaluated. In addition, we investigated the changes in tumor immune microenvironment after treatment with PTX/PGEM nanoparticles. Results: We discovered that GEM conjugation could significantly decrease the nanoparticle size from 160 nm to 13 nm. Moreover, different from most reported GEM-conjugated polymers, PGEM polymer could serve as a prodrug carrier to load a wide variety of hydrophobic agents with high drug loading capacity and excellent stability. More importantly, our strategy could be extended to various nucleotides-based drugs such as azacytidine, decitabine and cytarabine, suggesting a new platform for co-delivery of various first line hydrophilic and hydrophobic anticancer agents. Imaging showed that our small-sized carrier was much more effective in tumor accumulation and penetration compared to the relatively large-sized drug carrier. The PGEM prodrug-based carrier not only well retained the pharmacological activity of GEM, but also boosted T-cell immune response. Furthermore, delivery of PTX via PGEM led to significantly improved antitumor activity in several murine cancer models and a PDX model of colon cancer. Conclusion: This work not only provided a small-sized carrier platform that was able to load multiple hydrophilic and hydrophobic drugs with high loading capacity, but also provided an effective regimen for enhanced tumor penetration and improved anti-tumor immunity.
Collapse
Affiliation(s)
- Jingjing Sun
- Center for Pharmacogenetics, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Yichao Chen
- Center for Pharmacogenetics, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Jieni Xu
- Center for Pharmacogenetics, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Xiangping Song
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Zhuoya Wan
- Center for Pharmacogenetics, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Yuqian Du
- Center for Pharmacogenetics, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Weina Ma
- Center for Pharmacogenetics, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Xizhen Li
- Center for Pharmacogenetics, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Lin Zhang
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Song Li
- Center for Pharmacogenetics, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| |
Collapse
|
38
|
Ordanini S, Celentano W, Bernardi A, Cellesi F. Mannosylated brush copolymers based on poly(ethylene glycol) and poly(ε-caprolactone) as multivalent lectin-binding nanomaterials. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2019; 10:2192-2206. [PMID: 31807405 PMCID: PMC6880840 DOI: 10.3762/bjnano.10.212] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/23/2019] [Indexed: 06/10/2023]
Abstract
A class of linear and four-arm mannosylated brush copolymers based on poly(ethylene glycol) and poly(ε-caprolactone) is presented here. The synthesis through ring-opening and atom transfer radical polymerizations provided high control over molecular weight and functionality. A post-polymerization azide-alkyne cycloaddition allowed for the formation of glycopolymers with different mannose valencies (1, 2, 4, and 8). In aqueous media, these macromolecules formed nanoparticles that were able to bind lectins, as investigated by concanavalin A binding assay. The results indicate that carbohydrate-lectin interactions can be tuned by the macromolecular architecture and functionality, hence the importance of these macromolecular properties in the design of targeted anti-pathogenic nanomaterials.
Collapse
Affiliation(s)
- Stefania Ordanini
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, via Mancinelli 7, Milano 20131, Italy
| | - Wanda Celentano
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, via Mancinelli 7, Milano 20131, Italy
- Humanitas Research Hospital, Via Manzoni 56, Rozzano, Milano 20089, Italy
| | - Anna Bernardi
- Department of Chemistry, Università degli Studi di Milano, via Golgi 19, Milano 20133, Italy
| | - Francesco Cellesi
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, via Mancinelli 7, Milano 20131, Italy
| |
Collapse
|
39
|
|
40
|
Abstract
Glucocorticoids are potent anti-inflammatory agents that are commonly used in the treatment of various glomerular diseases. Data from in vitro and in vivo studies, in both animals and humans, convincingly demonstrate that glucocorticoids have many beneficial direct effects on glomeruli, including podocytes, suggesting that, in theory, systemic administration is not necessary to achieve therapeutic benefit. Indeed, it is increasingly recognized that systemic steroids often have an unfavorable risk-to-benefit ratio. As we move into an age of personalized medicine, strategies to develop targeted steroid delivery systems and individualized risk assessment algorithms are desirable in clinicians' efforts to "first, do no harm."
Collapse
Affiliation(s)
- Julie E Goodwin
- Department of Pediatrics, Yale University School of Medicine , New Haven, Connecticut ; and Vascular Biology and Therapeutics Program, Yale University School of Medicine , New Haven, Connecticut
| |
Collapse
|
41
|
Ordanini S, Cellesi F. Complex Polymeric Architectures Self-Assembling in Unimolecular Micelles: Preparation, Characterization and Drug Nanoencapsulation. Pharmaceutics 2018; 10:E209. [PMID: 30388744 PMCID: PMC6321574 DOI: 10.3390/pharmaceutics10040209] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 10/19/2018] [Accepted: 10/27/2018] [Indexed: 02/04/2023] Open
Abstract
Unimolecular polymeric micelles are a class of single-molecule amphiphilic core-shell polymeric architectures, where the hydrophobic core is well stabilized by the hydrophilic shell, avoiding intermolecular core-core interactions. Multi-arm copolymers with a dendritic core, as well as hyperbranched and comb-like polymers, can form unimolecular micelles easily. In this review, examples of polymers able to form detectable unimolecular micelles will be presented, summarizing the analytical techniques used to characterize the unimolecular micelles and discriminate them from other supramolecular aggregates, such as multi-micelle aggregates. Unimolecular micelles are suitable for the nanoencapsulation of guest molecules. Compared to traditional supramolecular micelles, unimolecular micelles do not disassemble under dilution and are stable to environmental modifications. Recent examples of their application as drug delivery systems, endowed with increased stability and transport properties, will be discussed.
Collapse
Affiliation(s)
- Stefania Ordanini
- Dipartimento di Chimica, Materiali ed Ingegneria Chimica "G. Natta", Politecnico di Milano, Via Mancinelli 7, 20131 Milan, Italy.
| | - Francesco Cellesi
- Dipartimento di Chimica, Materiali ed Ingegneria Chimica "G. Natta", Politecnico di Milano, Via Mancinelli 7, 20131 Milan, Italy.
| |
Collapse
|
42
|
Celentano W, Battistella J, Silvestri IP, Bruni R, Huang X, Li M, Messa P, Ordanini S, Cellesi F. Engineered polyester-PEG nanoparticles prepared through a “grafting through” strategy and post-functionalization via Michael type addition. REACT FUNCT POLYM 2018. [DOI: 10.1016/j.reactfunctpolym.2018.07.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
43
|
Liu GW, Prossnitz AN, Eng DG, Cheng Y, Subrahmanyam N, Pippin JW, Lamm RJ, Ngambenjawong C, Ghandehari H, Shankland SJ, Pun SH. Glomerular disease augments kidney accumulation of synthetic anionic polymers. Biomaterials 2018; 178:317-325. [DOI: 10.1016/j.biomaterials.2018.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/31/2018] [Accepted: 06/02/2018] [Indexed: 12/22/2022]
|
44
|
Jia Z, Wang X, Wei X, Zhao G, Foster KW, Qiu F, Gao Y, Yuan F, Yu F, Thiele GM, Bronich TK, O’Dell JR, Wang D. Micelle-Forming Dexamethasone Prodrug Attenuates Nephritis in Lupus-Prone Mice without Apparent Glucocorticoid Side Effects. ACS NANO 2018; 12:7663-7681. [PMID: 29965725 PMCID: PMC6117746 DOI: 10.1021/acsnano.8b01249] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 07/02/2018] [Indexed: 05/27/2023]
Abstract
Nephritis is one of the major complications of systemic lupus erythematosus. While glucocorticoids (GCs) are frequently used as the first-line treatment for lupus nephritis (LN), long-term GC usage is often complicated by severe adverse effects. To address this challenge, we have developed a polyethylene glycol-based macromolecular prodrug (ZSJ-0228) of dexamethasone, which self-assembles into micelles in aqueous media. When compared to the dose equivalent daily dexamethasone 21-phosphate disodium (Dex) treatment, monthly intravenous administration of ZSJ-0228 for two months significantly improved the survival of lupus-prone NZB/W F1 mice and was much more effective in normalizing proteinuria, with clear histological evidence of nephritis resolution. Different from the dose equivalent daily Dex treatment, monthly ZSJ-0228 administration has no impact on the serum anti-double-stranded DNA (anti-dsDNA) antibody level but can significantly reduce renal immune complex deposition. No significant systemic toxicities of GCs ( e. g., total IgG reduction, adrenal gland atrophy, and osteopenia) were found to be associated with ZSJ-0228 treatment. In vivo imaging and flow cytometry studies revealed that the fluorescent-labeled ZSJ-0228 primarily distributed to the inflamed kidney after systemic administration, with renal myeloid cells and proximal tubular epithelial cells mainly responsible for its kidney retention. Collectively, these data suggest that the ZSJ-0228's potent local anti-inflammatory/immunosuppressive effects and improved safety may be attributed to its nephrotropicity and cellular sequestration at the inflamed kidney tissues. Pending further optimization, it may be developed into an effective and safe therapy for improved clinical management of LN.
Collapse
Affiliation(s)
- Zhenshan Jia
- Department
of Pharmaceutical Sciences, College of Pharmacy, Department of Pathology
and Microbiology, College of Medicine, Department of Biostatistics, College
of Public Health, and Division of Rheumatology, Department of Internal
Medicine, College of Medicine, University
of Nebraska Medical Center, Omaha, Nebraska 68198-6125, United States
| | - Xiaobei Wang
- Department
of Pharmaceutical Sciences, College of Pharmacy, Department of Pathology
and Microbiology, College of Medicine, Department of Biostatistics, College
of Public Health, and Division of Rheumatology, Department of Internal
Medicine, College of Medicine, University
of Nebraska Medical Center, Omaha, Nebraska 68198-6125, United States
| | - Xin Wei
- Department
of Pharmaceutical Sciences, College of Pharmacy, Department of Pathology
and Microbiology, College of Medicine, Department of Biostatistics, College
of Public Health, and Division of Rheumatology, Department of Internal
Medicine, College of Medicine, University
of Nebraska Medical Center, Omaha, Nebraska 68198-6125, United States
| | - Gang Zhao
- Department
of Pharmaceutical Sciences, College of Pharmacy, Department of Pathology
and Microbiology, College of Medicine, Department of Biostatistics, College
of Public Health, and Division of Rheumatology, Department of Internal
Medicine, College of Medicine, University
of Nebraska Medical Center, Omaha, Nebraska 68198-6125, United States
| | - Kirk W. Foster
- Department
of Pharmaceutical Sciences, College of Pharmacy, Department of Pathology
and Microbiology, College of Medicine, Department of Biostatistics, College
of Public Health, and Division of Rheumatology, Department of Internal
Medicine, College of Medicine, University
of Nebraska Medical Center, Omaha, Nebraska 68198-6125, United States
| | - Fang Qiu
- Department
of Pharmaceutical Sciences, College of Pharmacy, Department of Pathology
and Microbiology, College of Medicine, Department of Biostatistics, College
of Public Health, and Division of Rheumatology, Department of Internal
Medicine, College of Medicine, University
of Nebraska Medical Center, Omaha, Nebraska 68198-6125, United States
| | - Yangyang Gao
- Department
of Pharmaceutical Sciences, College of Pharmacy, Department of Pathology
and Microbiology, College of Medicine, Department of Biostatistics, College
of Public Health, and Division of Rheumatology, Department of Internal
Medicine, College of Medicine, University
of Nebraska Medical Center, Omaha, Nebraska 68198-6125, United States
| | - Fang Yuan
- Department
of Pharmaceutical Sciences, College of Pharmacy, Department of Pathology
and Microbiology, College of Medicine, Department of Biostatistics, College
of Public Health, and Division of Rheumatology, Department of Internal
Medicine, College of Medicine, University
of Nebraska Medical Center, Omaha, Nebraska 68198-6125, United States
| | - Fang Yu
- Department
of Pharmaceutical Sciences, College of Pharmacy, Department of Pathology
and Microbiology, College of Medicine, Department of Biostatistics, College
of Public Health, and Division of Rheumatology, Department of Internal
Medicine, College of Medicine, University
of Nebraska Medical Center, Omaha, Nebraska 68198-6125, United States
| | - Geoffrey M. Thiele
- Department
of Pharmaceutical Sciences, College of Pharmacy, Department of Pathology
and Microbiology, College of Medicine, Department of Biostatistics, College
of Public Health, and Division of Rheumatology, Department of Internal
Medicine, College of Medicine, University
of Nebraska Medical Center, Omaha, Nebraska 68198-6125, United States
| | - Tatiana K. Bronich
- Department
of Pharmaceutical Sciences, College of Pharmacy, Department of Pathology
and Microbiology, College of Medicine, Department of Biostatistics, College
of Public Health, and Division of Rheumatology, Department of Internal
Medicine, College of Medicine, University
of Nebraska Medical Center, Omaha, Nebraska 68198-6125, United States
| | - James R. O’Dell
- Department
of Pharmaceutical Sciences, College of Pharmacy, Department of Pathology
and Microbiology, College of Medicine, Department of Biostatistics, College
of Public Health, and Division of Rheumatology, Department of Internal
Medicine, College of Medicine, University
of Nebraska Medical Center, Omaha, Nebraska 68198-6125, United States
| | - Dong Wang
- Department
of Pharmaceutical Sciences, College of Pharmacy, Department of Pathology
and Microbiology, College of Medicine, Department of Biostatistics, College
of Public Health, and Division of Rheumatology, Department of Internal
Medicine, College of Medicine, University
of Nebraska Medical Center, Omaha, Nebraska 68198-6125, United States
| |
Collapse
|
45
|
Liu C, Hu Y, Lin J, Fu H, Lim LY, Yuan Z. Targeting strategies for drug delivery to the kidney: From renal glomeruli to tubules. Med Res Rev 2018; 39:561-578. [DOI: 10.1002/med.21532] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 07/10/2018] [Accepted: 07/18/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Chun‐Ping Liu
- Department of PharmacyCollege of Veterinary Medicine, Sichuan Agricultural UniversityChengdu China
- Key Laboratory of Animal Disease and Human Health of Sichuan ProvinceChengdu China
| | - You Hu
- Department of PharmacyCollege of Veterinary Medicine, Sichuan Agricultural UniversityChengdu China
- Key Laboratory of Animal Disease and Human Health of Sichuan ProvinceChengdu China
| | - Ju‐Chun Lin
- Department of PharmacyCollege of Veterinary Medicine, Sichuan Agricultural UniversityChengdu China
- Key Laboratory of Animal Disease and Human Health of Sichuan ProvinceChengdu China
| | - Hua‐Lin Fu
- Department of PharmacyCollege of Veterinary Medicine, Sichuan Agricultural UniversityChengdu China
- Key Laboratory of Animal Disease and Human Health of Sichuan ProvinceChengdu China
| | - Lee Yong Lim
- Pharmacy, Centre for Optimization of Medicines, School of Allied Health, The University of Western AustraliaCrawley Australia
| | - Zhi‐Xiang Yuan
- Department of PharmacyCollege of Veterinary Medicine, Sichuan Agricultural UniversityChengdu China
- Key Laboratory of Animal Disease and Human Health of Sichuan ProvinceChengdu China
| |
Collapse
|
46
|
Chen D, Han S, Zhu Y, Hu F, Wei Y, Wang G. Kidney-targeted drug delivery via rhein-loaded polyethyleneglycol- co-polycaprolactone- co-polyethylenimine nanoparticles for diabetic nephropathy therapy. Int J Nanomedicine 2018; 13:3507-3527. [PMID: 29950832 PMCID: PMC6016261 DOI: 10.2147/ijn.s166445] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Introduction Diabetic nephropathy (DN) is the primary root of morbidity and mortality in diabetic patients. Unfortunately, currently, no effective therapeutic strategies are available to ameliorate and reverse the progression of DN. Rhein (RH) is an anthraquinone derivative extracted from herbal medicines with various pharmacological effects on DN. However, its clinical administration is limited by its poor solubility, low bioavailability, reduced distribution into the kidney and adverse effects. Methods and results To improve the delivery of RH into kidney and the therapeutic effect on DN, we synthesized and utilized polyethyleneglycol-co-polycaprolactone-co-polyethylenimine triblock amphiphilic polymers to prepare RH-loaded polyethyleneglycol-co-polycaprolactone-co-polyethylenimine nanoparticles (PPP-RH-NPs). PPP-RH-NP size was optimized to 75 ± 25 nm for kidney-targeted drug delivery; the positive zeta potential allowed an effective cellular uptake and the polyethylenimine amine groups facilitate the endosomal escape quickly. The distribution and pharmacodynamics of PPP-RH-NPs were studied in a streptozocin-induced DN model, which explicitly demonstrated kidney-targeted distribution and improved the therapeutic effects of RH on DN by ameliorating several pathological indicators. Conclusion Therefore, this study not only stimulates further clinical research on RH but also, more importantly, proposes a promising DN therapy consisting of an effective kidney-targeted drug delivery.
Collapse
Affiliation(s)
- Danfei Chen
- Department of Pediatrics, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006 China
| | - Shunping Han
- Department of Chemistry, Imperial College London, London, UK.,College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 310053 China
| | - Yongqin Zhu
- Department of Pediatrics, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006 China
| | - Fang Hu
- Department of Pediatrics, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006 China
| | - Yinghui Wei
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 310053 China
| | - Guowei Wang
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 310053 China.,College of Biological and Chemical Engineering, Zhejiang University, Hangzhou, 310007 China
| |
Collapse
|
47
|
Capasso Palmiero U, Sponchioni M, Manfredini N, Maraldi M, Moscatelli D. Strategies to combine ROP with ATRP or RAFT polymerization for the synthesis of biodegradable polymeric nanoparticles for biomedical applications. Polym Chem 2018. [DOI: 10.1039/c8py00649k] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The available strategies to combine CRPs and ROP in the synthesis of highly engineered polymer nanoparticles are here critically discussed.
Collapse
Affiliation(s)
| | - Mattia Sponchioni
- Department of Chemistry
- Materials and Chemical Engineering
- Politecnico di Milano
- 20131 Milano
- Italy
| | - Nicolò Manfredini
- Department of Chemistry and Applied Biosciences
- Institute for Chemical and Bioengineering
- ETH Zurich
- Switzerland
| | - Matteo Maraldi
- Department of Chemistry and Applied Biosciences
- Institute for Chemical and Bioengineering
- ETH Zurich
- Switzerland
| | - Davide Moscatelli
- Department of Chemistry
- Materials and Chemical Engineering
- Politecnico di Milano
- 20131 Milano
- Italy
| |
Collapse
|