1
|
Payamifar S, Khalili Y, Foroozandeh A, Abdouss M, Hasanzadeh M. Magnetic mesoporous silica nanoparticles as advanced polymeric scaffolds for efficient cancer chemotherapy: recent progress and challenges. RSC Adv 2025; 15:16050-16074. [PMID: 40370857 PMCID: PMC12076205 DOI: 10.1039/d5ra00948k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Accepted: 04/29/2025] [Indexed: 05/16/2025] Open
Abstract
Magnetic mesoporous silica nanoparticles (MMS NPs) stand out as excellent options for targeted chemotherapy owing to their remarkable features, such as extensive surface area, substantial pore volume, adjustable and uniform pore size, facile scalability, and versatile surface chemistry. This review comprehensively explores the latest developments in MMS NPs, emphasizing their design, functionalization, and application in cancer therapy. Initially, we discuss the critical need for targeted and controlled drug delivery (DD) in oncology, highlighting the role of magnetic and MMs in addressing some challenges. Subsequently, the key features of MMS NPs, such as their high surface area, pore structure, and functionalization strategies, are examined for their impact on their DD performance for efficient cancer chemotherapy. The integration of chemotherapy methods such as photothermal therapy and photodynamic therapy with MMS NPs is also explored, showcasing multifunctional platforms that combine imaging and therapeutic capabilities. Finally, we identify the current challenges and provide future perspectives for the development and clinical translation of MMS NPs, underscoring their potential to reshape CT paradigms.
Collapse
Affiliation(s)
- Sara Payamifar
- Department of Chemistry, Amirkabir University of Technology Tehran Iran
| | - Yasaman Khalili
- School of Chemistry, Faculty of Science, University of Tehran Iran
| | - Amin Foroozandeh
- Department of Chemistry, Amirkabir University of Technology Tehran Iran
| | - Majid Abdouss
- Department of Chemistry, Amirkabir University of Technology Tehran Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences Tabriz Iran
| |
Collapse
|
2
|
Zhang G, Jiang X, Xia Y, Qi P, Li J, Wang L, Wang Z, Tian X. Hyaluronic acid-conjugated lipid nanocarriers in advancing cancer therapy: A review. Int J Biol Macromol 2025; 299:140146. [PMID: 39842601 DOI: 10.1016/j.ijbiomac.2025.140146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 01/03/2025] [Accepted: 01/20/2025] [Indexed: 01/24/2025]
Abstract
Lipid nanoparticles are obtaining significant attention in cancer treatment because of their efficacy at delivering drugs and reducing side effects. These things are like a flexible platform for getting anticancer drugs to the tumor site, especially upon HA modification, a polymer that is known to target tumors overexpressing CD44. HA is promising in cancer therapy because it taregtes tumor cells by binding onto CD44 receptors, which are often upregulated in cancer cells. Lipid nanoparticles are not only beneficial in improving solubility and stability of drugs; they also use the EPR effect, meaning they accumulate more in tumor tissue than in healthy tissue. Adding HA to these nanoparticles expands their biocompatibility and makes them more accurate and specific towards tumor cells. Studies show that HA-modified nanoparticles carrying drugs such as paclitaxel or doxorubicin improve how well cells absorb the drugs, reduce drug resistance, and make tumor shrinking. These nanoparticles can respond to tumor microenvironment stimuli in targeted delivery. This targeted delivery diminishes side effects and improves anti-cancer activity of drugs. Thus, lipid-based nanoparticles conjugated with HA are a promising way to treat cancer by delivering drugs effectively, minimizing side effects, and giving us better therapeutic results.
Collapse
Affiliation(s)
- Guifeng Zhang
- Department of Neurology, Liaocheng People's Hospital and Liaocheng Hospital Affiliated to Shandong First Medical University, Liaocheng, Shandong, China
| | - Xin Jiang
- Department of Clinical Pharmacy, Baoying People's Hospital, Affiliated Hospital of Medical School, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yitong Xia
- Department of Oral Medicine, Jining Medical College, Jining, Shandong, China
| | - Pengpeng Qi
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Jie Li
- Department of Neurology, Liaocheng People's Hospital and Liaocheng Hospital Affiliated to Shandong First Medical University, Liaocheng, Shandong, China
| | - Lizhen Wang
- Department of Radiation Oncology Physics and Technology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan City, Shandong, China.
| | - Zheng Wang
- Department of Neurosurgery, Liaocheng City Hospital of Traditional Chinese Medicine, Liaocheng, Shandong, China.
| | - Xiuli Tian
- Department of Respiration, Liaocheng People's Hospital, Liaocheng, Shandong, China.
| |
Collapse
|
3
|
Benjamin AS, Nayak S. Iron oxide nanoparticles coated with bioactive materials: a viable theragnostic strategy to improve osteosarcoma treatment. DISCOVER NANO 2025; 20:18. [PMID: 39883285 PMCID: PMC11782756 DOI: 10.1186/s11671-024-04163-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 12/04/2024] [Indexed: 01/31/2025]
Abstract
Osteosarcoma (OS) is distinguished as a high-grade malignant tumor, characterized by rapid systemic metastasis, particularly to the lungs, resulting in very low survival rates. Understanding the complexities of tumor development and mutation is the need of the hour for the advancement of targeted therapies in cancer care. A significant innovation in this area is the use of nanotechnology, specifically nanoparticles, to tackle various challenges in cancer treatment. Iron oxide nanoparticles stand out in both therapeutic and diagnostic applications, offering a versatile platform for targeted drug delivery, hyperthermia, magneto-thermal therapy, and combinational therapy using modulation of ferroptosis pathways. These nanoparticles are easy to synthesize, non-toxic, biocompatible, and display enhanced circulation time within the system. They can also be easily conjugated to anti-cancer drugs, targeting agents, or genetic vectors that respond to specific stimuli or pH changes. The surface functionalization of these nanoparticles using bioactive molecules unveils a promising and effective nanoparticle system for assisting osteosarcoma therapy. This review will summarize the current conventional therapies for osteosarcoma and their disadvantages, the synthesis and modification of iron oxide nanoparticles documented in the literature, cellular targeting and uptake mechanism, with focus on their functionalization using natural biomaterials and application strategies towards management of osteosarcoma. The review also compiles the translational challenges and future prospects that must be addressed for clinical advancements of iron oxide based osteosarcoma treatment in the future.
Collapse
Affiliation(s)
- Amy Sarah Benjamin
- School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Sunita Nayak
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
4
|
Lokesh BS, Ajmeera S, Choudhary R, Moharana SK, Purohit CS, Konkimalla VB. Engineering of redox-triggered polymeric lipid hybrid nanocarriers for selective drug delivery to cancer cells. J Mater Chem B 2025; 13:1437-1458. [PMID: 39690942 DOI: 10.1039/d4tb01236d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Tunable redox-sensitive polymeric-lipid hybrid nanocarriers (RS-PLHNCs) were fabricated using homogenization and nanoprecipitation methods. These nanocarriers were composed of novel redox-cholesterol with disulfide linkages and synthesized by conjugating cholesterol with dithiodipropionic acid via esterification. Berberine (BBR) was loaded into the fabricated nanocarriers to investigate the selective uptake of BBR by cancer cells as well as its release and enhanced cytotoxicity. The optimized BBR nanocarriers BBR NP-17 and -18 exhibited a spherical shape and uniform distribution, with a particle size of 124.7 ± 1.2 nm and 185.2 ± 1.6 nm and a zeta potential of -5.9 ± 2.5 mV and -20.3 ± 1.1 mV, respectively. These NCs released >80% BBR in a simulated intracellular tumor microenvironment (TME), while only 30%-45% was released under normal physiological conditions. The accelerated drug release in the TME was due to disulfide bond cleavage and ester bond hydrolysis in the presence of GSH and acidic pH, whereas under normal conditions, the NCs remained stable/undissociated. Cellular uptake studies confirmed enhanced BBR uptake in GSH-rich cancer cells (H1975) compared with normal cells (BEAS-2B and HEK293A). Following uptake, compared with the free form of the drug, the optimized nanocarriers displayed significant selective cytotoxicity and apoptosis in cancer cells by notably downregulating anti-oxidant (NFE2L2, HO-1, NQO1, and TXRND1) and anti-apoptotic (MCL-1) genes while upregulating pro-apoptotic genes (PUMA and NOXA). This resulted in increased oxidative stress, thereby inducing selective apoptosis in the GSH-rich lung cancer cells. These results suggest that the synthesized novel NCs hold great potential for specifically delivering drugs to cancer cells (with a reduced environment) while sparing normal cells, thus ensuring safe and efficient cancer therapy.
Collapse
Affiliation(s)
- B Siva Lokesh
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Jatni, Odisha 752050, India.
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Suresh Ajmeera
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Jatni, Odisha 752050, India.
- Hasselt University, Institute for Materials Research (IMO), Nano-Biophysics and Soft Matter Interfaces (NSI), Wetenschapspark 1, 3590 Diepenbeek, Belgium
- IMEC, associated lab IMOMEC, Wetenschapspark 1, 3590 Diepenbeek, Belgium
| | - Rajat Choudhary
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Jatni, Odisha 752050, India.
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Sanjaya Kumar Moharana
- School of Chemical Sciences, National Institute of Science Education and Research, HBNI, Jatni, Odisha 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - C S Purohit
- School of Chemical Sciences, National Institute of Science Education and Research, HBNI, Jatni, Odisha 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - V Badireenath Konkimalla
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Jatni, Odisha 752050, India.
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| |
Collapse
|
5
|
Li P, Li J, Cheng J, Huang J, Li J, Xiao J, Duan X. Hypoxia-responsive liposome enhances intracellular delivery of photosensitizer for effective photodynamic therapy. J Control Release 2025; 377:277-287. [PMID: 39561946 DOI: 10.1016/j.jconrel.2024.11.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 11/09/2024] [Accepted: 11/13/2024] [Indexed: 11/21/2024]
Abstract
Liposomes, especially polyethylene glycol (PEG)-modified long-circulating liposomes, have been approved for market use, due to good biocompatibility, passive tumor targeting, and sustained drug release. PEG-modified long-circulating liposomes address issues such as poor stability and rapid clearance by the reticuloendothelial system. However, they still face challenges like hindering drug uptake by tumor cells and preventing tumor penetration. Inspired by the hypoxic tumor microenvironment, we constructed a hypoxia-responsive liposome (PAO-L) to enhance the intracellular uptake and photodynamic therapy (PDT) effect of chlorin e6 (Ce6). The intelligent hypoxia-cleavable PEG-AZO-OA (PAO) was prepared by coupling PEG and octadecylamine (OA) to hypoxia-sensitive azobenzene-4,4'-dicarboxylic acid (AZO) through amide reaction. The synthesized PAO was further incorporated into Ce6-loaded liposomes to enhance the circulation stability, while promote the tumor penetration and internalization by the responsive shedding of PEG from liposome surface upon reaching the hypoxic tumor tissue. PAO-L mediated PDT significantly inhibited the growth of B16F10 and 4T1 tumors, as well as lung metastasis of 4T1 breast cancer. The excellent therapeutic effect and good tolerability make PAO-L a promising candidate for enhanced PDT.
Collapse
Affiliation(s)
- Peishan Li
- Department of General Surgery, Zhujiang Hospital; Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jiaxin Li
- Department of General Surgery, Zhujiang Hospital; Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jinmei Cheng
- Department of General Surgery, Zhujiang Hospital; Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Junyi Huang
- Department of General Surgery, Zhujiang Hospital; Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China; Department of Cardiology, Heart Center, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease; Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Jinhui Li
- Experimental Education/Administration Center, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China
| | - Jisheng Xiao
- Department of General Surgery, Zhujiang Hospital; Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China; Department of Cardiology, Heart Center, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease; Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Xiaopin Duan
- Department of General Surgery, Zhujiang Hospital; Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China.
| |
Collapse
|
6
|
Dejeu IL, Vicaș LG, Marian E, Ganea M, Frenț OD, Maghiar PB, Bodea FI, Dejeu GE. Innovative Approaches to Enhancing the Biomedical Properties of Liposomes. Pharmaceutics 2024; 16:1525. [PMID: 39771504 PMCID: PMC11728823 DOI: 10.3390/pharmaceutics16121525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 10/31/2024] [Accepted: 11/25/2024] [Indexed: 01/16/2025] Open
Abstract
Liposomes represent a promising class of drug delivery systems that enhance the therapeutic efficacy and safety of various pharmaceutical agents. Also, they offer numerous advantages compared to traditional drug delivery methods, including targeted delivery to specific sites, controlled release, and fewer side effects. This review meticulously examines the methodologies employed in the preparation and characterization of liposomal formulations. With the rising incidence of adverse drug reactions, there is a pressing need for innovative delivery strategies that prioritize selectivity, specificity, and safety. Nanomedicine promises to revolutionize diagnostics and treatments, addressing current limitations and improving disease management, including cancer, which remains a major global health challenge. This paper aims to conduct a comprehensive study on the interest of biomedical research regarding nanotechnology and its implications for further applications.
Collapse
Affiliation(s)
- Ioana Lavinia Dejeu
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 29 Nicolae Jiga Street, 410028 Oradea, Romania; (I.L.D.); (E.M.); (M.G.); (O.D.F.)
| | - Laura Grațiela Vicaș
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 29 Nicolae Jiga Street, 410028 Oradea, Romania; (I.L.D.); (E.M.); (M.G.); (O.D.F.)
| | - Eleonora Marian
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 29 Nicolae Jiga Street, 410028 Oradea, Romania; (I.L.D.); (E.M.); (M.G.); (O.D.F.)
| | - Mariana Ganea
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 29 Nicolae Jiga Street, 410028 Oradea, Romania; (I.L.D.); (E.M.); (M.G.); (O.D.F.)
| | - Olimpia Daniela Frenț
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 29 Nicolae Jiga Street, 410028 Oradea, Romania; (I.L.D.); (E.M.); (M.G.); (O.D.F.)
| | - Paula Bianca Maghiar
- Doctoral School of Biomedical Science, University of Oradea, 1 University Street, 410087 Oradea, Romania; (P.B.M.); (F.I.B.)
| | - Flaviu Ionut Bodea
- Doctoral School of Biomedical Science, University of Oradea, 1 University Street, 410087 Oradea, Romania; (P.B.M.); (F.I.B.)
| | - George Emanuiel Dejeu
- Department of Surgical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 10 Piata 1 Decembrie Street, 410073 Oradea, Romania;
| |
Collapse
|
7
|
Sun C, Li S, Ding J. Biomaterials-Boosted Immunotherapy for Osteosarcoma. Adv Healthc Mater 2024; 13:e2400864. [PMID: 38771618 DOI: 10.1002/adhm.202400864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/05/2024] [Indexed: 05/22/2024]
Abstract
Osteosarcoma (OS) is a primary malignant bone tumor that emanates from mesenchymal cells, commonly found in the epiphyseal end of long bones. The highly recurrent and metastatic nature of OS poses significant challenges to the efficacy of treatment and negatively affects patient prognosis. Currently, available clinical treatment strategies primarily focus on maximizing tumor resection and reducing localized symptoms rather than the complete eradication of malignant tumor cells to achieve ideal outcomes. The biomaterials-boosted immunotherapy for OS is characterized by high effectiveness and a favorable safety profile. This therapeutic approach manipulates the tumor microenvironments at the cellular and molecular levels to impede tumor progression. This review delves into the mechanisms underlying the treatment of OS, emphasizing biomaterials-enhanced tumor immunity. Moreover, it summarizes the immune cell phenotype and tumor microenvironment regulation, along with the ability of immune checkpoint blockade to activate the autoimmune system. Gaining a profound comprehension of biomaterials-boosted OS immunotherapy is imperative to explore more efficacious immunotherapy protocols and treatment options in this setting.
Collapse
Affiliation(s)
- Chao Sun
- Department of Orthopedic Surgery, Orthopedic Center, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130061, P. R. China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
| | - Shuqiang Li
- Department of Orthopedic Surgery, Orthopedic Center, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130061, P. R. China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
| |
Collapse
|
8
|
Wu X, Xin Y, Zhang H, Quan L, Ao Q. Biopolymer-Based Nanomedicine for Cancer Therapy: Opportunities and Challenges. Int J Nanomedicine 2024; 19:7415-7471. [PMID: 39071502 PMCID: PMC11278852 DOI: 10.2147/ijn.s460047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/18/2024] [Indexed: 07/30/2024] Open
Abstract
Cancer, as the foremost challenge among human diseases, has plagued medical professionals for many years. While there have been numerous treatment approaches in clinical practice, they often cause additional harm to patients. The emergence of nanotechnology has brought new directions for cancer treatment, which can deliver anticancer drugs specifically to tumor areas. This article first introduces the application scenarios of nanotherapies and treatment strategies of nanomedicine. Then, the noteworthy characteristics exhibited by biopolymer materials were described, which make biopolymers stand out in polymeric nanomedicine delivery. Next, we focus on summarizing the state-of-art studies of five categories of proteins (Albumin, Gelatin, Silk fibroin, Zein, Ferritin), nine varieties of polysaccharides (Chitosan, Starch, Hyaluronic acid, Dextran, cellulose, Fucoidan, Carrageenan, Lignin, Pectin) and liposomes in the field of anticancer drug delivery. Finally, we also provide a summary of the advantages and limitations of these biopolymers, discuss the prevailing impediments to their application, and discuss in detail the prospective research directions. This review not only helps readers understand the current development status of nano anticancer drug delivery systems based on biopolymers, but also is helpful for readers to understand the properties of various biopolymers and find suitable solutions in this field through comparative reading.
Collapse
Affiliation(s)
- Xixi Wu
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial, & Institute of Regulatory Science for Medical Device, & National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People’s Republic of China
| | - Yuan Xin
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial, & Institute of Regulatory Science for Medical Device, & National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People’s Republic of China
| | - Hengtong Zhang
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial, & Institute of Regulatory Science for Medical Device, & National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People’s Republic of China
| | - Liang Quan
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial, & Institute of Regulatory Science for Medical Device, & National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People’s Republic of China
| | - Qiang Ao
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial, & Institute of Regulatory Science for Medical Device, & National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People’s Republic of China
| |
Collapse
|
9
|
Mirhadi E, Askarizadeh A, Farhoudi L, Mashreghi M, Behboodifar S, Alavizadeh SH, Arabi L, Jaafari MR. The impact of phospholipids with high transition temperature to enhance redox-sensitive liposomal doxorubicin efficacy in colon carcinoma model. Chem Phys Lipids 2024; 261:105396. [PMID: 38621603 DOI: 10.1016/j.chemphyslip.2024.105396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/01/2024] [Accepted: 04/11/2024] [Indexed: 04/17/2024]
Abstract
In this study, we have developed a redox-sensitive (RS) liposomal doxorubicin formulation by incorporating 10,10'-diselanediylbis decanoic acid (DDA) organoselenium compound as the RS moiety. Hence, several RS liposomal formulations were prepared by using DOPE, HSPC, DDA, mPEG2000-DSPE, and cholesterol. In situ drug loading using a pH gradient and citrate complex yielded high drug to lipid ratio and encapsulation efficiency (100%) for RS liposomes. Liposomal formulations were characterized in terms of size, surface charge and morphology, drug loading, release properties, cell uptake and cytotoxicity, as well as therapeutic efficacy in BALB/c mice bearing C26 tumor cells. The formulations showed an average particle size of 200 nm with narrow size distributions (PDI < 0.3), and negative surface charges varying from -6 mV to -18.6 mV. Our study confirms that the presence of the DDA compound in liposomes is highly sensitive to hydrogen peroxide at 0.1% w/v, resulting in a significant burst release of up to 40%. The in vivo therapeutic efficacy study in BALB/c mice bearing C26 colon carcinoma confirmed the promising function of RS liposomes in the tumor microenvironment which led to a prolonged median survival time (MST). The addition of hydrogenated soy phosphatidylcholine (HSPC) with a high transition temperature (Tm: 52-53.5°C) extended the MST of our 3-component formulation of F14 (DOPE/HSPC/DDA) to 60 days in comparison to Caelyx (PEGylated liposomal Dox), which is not RS-sensitive (39 days). Overall, HSPC liposomes bearing RS-sensitive moiety enhanced therapeutic efficacy against colon cancer in vitro and in vivo. This achievement unequivocally underscores the criticality of high-TM phospholipids, particularly HSPC, in significantly enhancing liposome stability within the bloodstream. In addition, RS liposomes enable the on-demand release of drugs, leveraging the redox environment of tumor cells, thereby augmenting the efficacy of the formulation.
Collapse
Affiliation(s)
- Elaheh Mirhadi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Anis Askarizadeh
- Marine Pharmaceutical Science Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Leila Farhoudi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Mashreghi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeed Behboodifar
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedeh Hoda Alavizadeh
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Arabi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
10
|
Hou H, Li Y, Tang W, Gao D, Liu Z, Zhao F, Gao X, Ling P, Wang F, Sun F, Tan H. Chondroitin sulfate-based universal nanoparticle delivers angiogenic inhibitor and paclitaxel to exhibit a combination of chemotherapy and anti-angiogenic therapy. Int J Biol Macromol 2024; 271:132520. [PMID: 38772463 DOI: 10.1016/j.ijbiomac.2024.132520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/23/2024] [Accepted: 05/17/2024] [Indexed: 05/23/2024]
Abstract
Blocking the tumor nutrient supply through angiogenic inhibitors is an effective treatment approach for malignant tumors. However, using angiogenic inhibitors alone may not be enough to achieve a significant tumor response. Therefore, we recently designed a universal drug delivery system combining chemotherapy and anti-angiogenic therapy to target tumor cells while minimizing drug-related side effects. This system (termed as PCCE) is composed of biomaterial chondroitin sulfate (CS), the anti-angiogenic peptide ES2, and paclitaxel (PTX), which collectively enhance antitumor properties. Interestingly, the PCCE system is conferred exceptional cell membrane permeability due to inherent characteristics of CS, including CD44 receptor-mediated endocytosis. The PCCE could respond to the acidic and high glutathione conditions, thereby releasing PTX and ES2. PCCE could effectively inhibit the proliferation, migration, and invasion of tumor cells and cause apoptosis, while PCCE can affect the endothelial cells tube formation and exert anti-angiogenic function. Consistently, more potent in vivo antitumor efficacy and non-toxic sides were demonstrated in B16F10 xenograft mouse models. PCCE can achieve excellent antitumor activity via modulating angiogenic and apoptosis-related factors. In summary, we have successfully developed an intelligent and responsive CS-based nanocarrier known as PCCE for delivering various antitumor drugs, offering a promising strategy for treating malignant tumors.
Collapse
Affiliation(s)
- Huiwen Hou
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, China
| | - Yan Li
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, China
| | - Wen Tang
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, China
| | - Didi Gao
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, China
| | - Zengmei Liu
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, China
| | - Feiyan Zhao
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, China
| | - Xinqing Gao
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, China
| | - Peixue Ling
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, China; School of Pharmaceutical sciences, Shandong University, Jinan 250012, China
| | - Fengshan Wang
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, China; School of Pharmaceutical sciences, Shandong University, Jinan 250012, China
| | - Feng Sun
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, China.
| | - Haining Tan
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, China; School of Pharmaceutical sciences, Shandong University, Jinan 250012, China.
| |
Collapse
|
11
|
Wang Z, Zhou P, Li Y, Zhang D, Chu F, Yuan F, Pan B, Gao F. A Bimetallic Polymerization Network for Effective Increase in Labile Iron Pool and Robust Activation of cGAS/STING Induces Ferroptosis-Based Tumor Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308397. [PMID: 38072786 DOI: 10.1002/smll.202308397] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/13/2023] [Indexed: 12/20/2023]
Abstract
Due to the inherent low immunogenicity and immunosuppressive tumor microenvironment (TME) of malignant cancers, the clinical efficacy and application of tumor immunotherapy have been limited. Herein, a bimetallic drug-gene co-loading network (Cu/ZIF-8@U-104@siNFS1-HA) is developed that increased the intracellular labile iron pool (LIP) and enhanced the weakly acidic TME by co-suppressing the dual enzymatic activities of carbonic anhydrase IX (CA IX) and cysteine desulfurylase (NFS1), inducing a safe and efficient initial tumor immunogenic ferroptosis. During this process, Cu2+ is responsively released to deplete glutathione (GSH) and reduce the enzyme activity of glutathione peroxidase 4 (GPX4), achieving the co-inhibition of the three enzymes and further inducing lipid peroxidation (LPO). Additionally, the reactive oxygen species (ROS) storm in target cells promoted the generation of large numbers of double-stranded DNA breaks. The presence of Zn2+ substantially increased the expression of cGAS/STING, which cooperated with ferroptosis to strengthen the immunogenic cell death (ICD) response and remodel the immunosuppressive TME. In brief, Cu/ZIF-8@U-104@siNFS1-HA linked ferroptosis with immunotherapy through multiple pathways, including the increase in LIP, regulation of pH, depletion of GSH/GPX4, and activation of STING, effectively inhibiting cancer growth and metastasis.
Collapse
Affiliation(s)
- Zhenxin Wang
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Jiangsu, 221002, P. R. China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu, 221002, P. R. China
| | - Peng Zhou
- Department of Orthopedics, The Affiliated Huai'an Hospital of Xuzhou Medical University, The Second People's Hospital of Huai'an, Jiangsu, 223002, P. R. China
| | - Yuting Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu, 221002, P. R. China
| | - Dazhen Zhang
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Jiangsu, 221002, P. R. China
| | - Fuchao Chu
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Jiangsu, 221002, P. R. China
| | - Feng Yuan
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Jiangsu, 221002, P. R. China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu, 221002, P. R. China
| | - Bin Pan
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Jiangsu, 221002, P. R. China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu, 221002, P. R. China
| | - Fenglei Gao
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Jiangsu, 221002, P. R. China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu, 221002, P. R. China
| |
Collapse
|
12
|
Zuo Y, Sun R, Del Piccolo N, Stevens MM. Microneedle-mediated nanomedicine to enhance therapeutic and diagnostic efficacy. NANO CONVERGENCE 2024; 11:15. [PMID: 38634994 PMCID: PMC11026339 DOI: 10.1186/s40580-024-00421-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 03/26/2024] [Indexed: 04/19/2024]
Abstract
Nanomedicine has been extensively explored for therapeutic and diagnostic applications in recent years, owing to its numerous advantages such as controlled release, targeted delivery, and efficient protection of encapsulated agents. Integration of microneedle technologies with nanomedicine has the potential to address current limitations in nanomedicine for drug delivery including relatively low therapeutic efficacy and poor patient compliance and enable theragnostic uses. In this Review, we first summarize representative types of nanomedicine and describe their broad applications. We then outline the current challenges faced by nanomedicine, with a focus on issues related to physical barriers, biological barriers, and patient compliance. Next, we provide an overview of microneedle systems, including their definition, manufacturing strategies, drug release mechanisms, and current advantages and challenges. We also discuss the use of microneedle-mediated nanomedicine systems for therapeutic and diagnostic applications. Finally, we provide a perspective on the current status and future prospects for microneedle-mediated nanomedicine for biomedical applications.
Collapse
Affiliation(s)
- Yuyang Zuo
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Rujie Sun
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Nuala Del Piccolo
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Molly M Stevens
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK.
- Department of Physiology, Anatomy and Genetics, Department of Engineering Science, and Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, OX1 3QU, UK.
| |
Collapse
|
13
|
Wang B, Hu H, Wang X, Shao Z, Shi D, Wu F, Liu J, Zhang Z, Li J, Xia Z, Liu W, Wu Q. POLE2 promotes osteosarcoma progression by enhancing the stability of CD44. Cell Death Discov 2024; 10:177. [PMID: 38627379 PMCID: PMC11021398 DOI: 10.1038/s41420-024-01875-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 04/19/2024] Open
Abstract
Osteosarcoma (OS) is the most prevalent primary malignancy of bone in children and adolescents. It is extremely urgent to develop a new therapy for OS. In this study, the GSE14359 chip from the GEO database was used to screen differentially expressed genes in OS. DNA polymerase epsilon 2 (POLE2) was confirmed to overexpress in OS tissues and cell lines by immunohistochemical staining, qPCR and Western blot. Knockdown of POLE2 inhibited the proliferation and migration of OS cells in vitro, as well as the growth of tumors in vivo, while the apoptosis rate was increased. Bioinformatics analysis revealed that CD44 and Rac signaling pathway were the downstream molecule and pathway of POLE2, which were inhibited by knockdown of POLE2. POLE2 reduced the ubiquitination degradation of CD44 by acting on MDM2. Moreover, knockdown of CD44 inhibited the tumor-promoting effects of POLE2 overexpression on OS cells. In conclusion, POLE2 augmented the expression of CD44 via inhibiting MDM2-mediated ubiquitination, and then activated Rac signaling pathway to influence the progression of OS, indicating that POLE2/CD44 might be potential targets for OS treatment.
Collapse
Affiliation(s)
- Baichuan Wang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, Wuhan, 430022, China
| | - Hongzhi Hu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, Wuhan, 430022, China
| | - Xiaohui Wang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zengwu Shao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, Wuhan, 430022, China
| | - Deyao Shi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, Wuhan, 430022, China
| | - Fashuai Wu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, Wuhan, 430022, China
| | - Jianxiang Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, Wuhan, 430022, China
| | - Zhicai Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, Wuhan, 430022, China
| | - Juan Li
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, Wuhan, 430022, China
| | - Zhidao Xia
- Institute of Life Sciences 2, Swansea University Medical School, Singleton Park, Swansea, SA2 8PP, UK
| | - Weijian Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, Wuhan, 430022, China.
| | - Qiang Wu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, Wuhan, 430022, China.
| |
Collapse
|
14
|
Maghsoudian S, Motasadizadeh H, Farhadnejad H, Fatahi Y, Fathian Nasab MH, Mahdieh A, Nouri Z, Abdollahi A, Amini M, Atyabi F, Dinarvand R. Targeted pH- and redox-responsive AuS/micelles with low CMC for highly efficient sonodynamic therapy of metastatic breast cancer. BIOMATERIALS ADVANCES 2024; 158:213771. [PMID: 38271801 DOI: 10.1016/j.bioadv.2024.213771] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/02/2024] [Accepted: 01/11/2024] [Indexed: 01/27/2024]
Abstract
The efficacy of injectable micellar carriers is hindered due to the disassembly of micelles into free surfactants in the body, resulting in their dilution below the critical micelle concentration (CMC). Copolymer micelles were developed to address this issue, containing a superhydrophilic zwitterionic block and a superhydrophobic block with a disulfide bond, which exhibited a CMC lower than conventional micellar carriers. Cleavable copolymers composed of 2-methacryloyloxyethyl phosphorylcholine (MPC) zwitterion and polycaprolactone CHLZW as the shell, with gold nanoparticles as their core, were studied to deliver doxorubicin to tumor cells while reducing the side effect of the free cytotoxic agent. The research focused on the impact of gold nanoparticles present in targeted TMT-micelles core on stability and in vivo bioavailability and sonotoxicity of the nanoparticles, as well as their synergistic effect on targeted chemotherapy. The nanomicelles prepared in this study demonstrated excellent biocompatibility and responsiveness to stimuli. PCL-SS-MPC nanomicelles displayed drug release in response to GSH and pH, resulting in high DOX release at GSH 10 mM and pH 5. Our findings, supported by MTT, flow cytometry, and confocal laser scanning microscopy, demonstrated that AuS-PM-TMTM-DOX micelles effectively induced apoptosis and enhanced cellular uptake in MCF7 and MDA-MB231 cell lines. The cytotoxic effects of AuS-PM-DOX/US on cancer cells were approximately 38 % higher compared to AuS-PM-DOX samples at a concentration of IC50 0.68 nM. This increase in cellular toxicity was primarily attributed to the promotion of apoptosis. The introduction of disulfide linkages in AuSNPs resulted in increased ROS production when exposed to ultrasound stimulation, due to a reduction in GSH levels. Compared to other commercially available nanosensitizers such as titanium dioxide, exposure of AuS-PM to ultrasound radiation (1.0 W/cm, 2 min) significantly enhanced cavitation effects and resulted in 3 to 5 times higher ROS production. Furthermore, laboratory experiments using human breast cancer cells (MDA-MB-231, MCF7) demonstrated that the toxicity of AuS-PM in response to ultrasound waves is dose-dependent. The findings of this study suggest that this formulated nanocarrier holds great potential as a viable treatment option for breast cancer. It can induce apoptosis in cancer cells, reduce tumor size, and display notable therapeutic efficacy.
Collapse
Affiliation(s)
- Samane Maghsoudian
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamidreza Motasadizadeh
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Farhadnejad
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Athar Mahdieh
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Zeinab Nouri
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Alyeh Abdollahi
- Department of Pharmaceutical Biomaterials, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Amini
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Atyabi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Rassoul Dinarvand
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Leicester School of Pharmacy, De Montfort University, Leicester, UK.
| |
Collapse
|
15
|
Huang J, Chen J. Pharmacokinetics and pharmacodynamic evaluation of hyaluronic acid-modified imatinib-loaded PEGylated liposomes in CD44-positive Gist882 tumor-bearing mice. J Liposome Res 2024; 34:97-112. [PMID: 37401372 DOI: 10.1080/08982104.2023.2228888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/14/2023] [Indexed: 07/05/2023]
Abstract
To develop a PEGylated and CD44-targeted liposomes, enabled by surface coating with hyaluronic acid (HA) via amide bond to improve the efficacy of imatinib mesylate (IM), for tumor-targeted cytoplasmic drug delivery. HA was covalently grafted on DSPE-PEG2000-NH2 polymer. HA-modified or unmodified PEGylated liposomes were prepared with ethanol injection method, and the stability, drug release, and cytotoxicity of these liposomes were studied. Meanwhile, intracellular drug delivery efficiency, antitumor efficacy, and pharmacokinetics were also investigated. Ex vivo fluorescence biodistribution was also detected by small animal imaging. In addition, endocytosis mechanism was also explored HA-coated PEGylated liposomes (137.5 nm ± 10.24) had a negative zeta potential (-29.3 mV ± 5.44) and high drug loading (27.8%, w/w). The liposomes were stable with cumulative drug leakage (<60%) under physiological conditions. Blank liposomes were nontoxic to Gist882 cells, and IM-loaded liposomes had higher cytotoxicity to Gist882 cells. HA-modified PEGylated liposomes were internalized more effectively than non-HA coating via CD44-mediated endocytosis. Besides, the cellular uptake of HA-modified liposomes also partly depends on caveolin-medicated endocytosis and micropinocytosis. In rats, both liposomes produced a prolonged half-life of IM (HA/Lp/IM: 14.97h; Lp/IM: 11.15h) by 3- to 4.5-folds compared with the IM solution (3.61h). HA-decorated PEGylated liposomes encapsulated IM exhibited strong inhibitory effect on tumor growth in Gist882 cell-bearing nude mice and formation of 2D/3D tumor spheroids. The Ki67 immunohistochemistry result was consistent with the above results. IM-loaded PEGylated liposomes modified with HA exerted the excellent anti-tumor effect on tumor-bearing mice and more drugs accumulated into the tumor site.
Collapse
Affiliation(s)
- Ju Huang
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences Peking Union Medical College, Beijing, China
| | - Jian Chen
- Department of Oncology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| |
Collapse
|
16
|
Ngo TLH, Wang KL, Pan WY, Ruan T, Lin YJ. Immunomodulatory Prodrug Micelles Imitate Mild Heat Effects to Reshape Tumor Microenvironment for Enhanced Cancer Immunotherapy. ACS NANO 2024; 18:5632-5646. [PMID: 38344992 PMCID: PMC10883120 DOI: 10.1021/acsnano.3c11186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 02/05/2024] [Accepted: 02/08/2024] [Indexed: 02/22/2024]
Abstract
Physical stimulation with mild heat possesses the notable ability to induce immunomodulation within the tumor microenvironment (TME). It transforms the immunosuppressive TME into an immune-active state, making tumors more receptive to immune checkpoint inhibitor (ICI) therapy. Transient receptor potential vanilloid 1 (TRPV1), which can be activated by mild heat, holds the potential to induce these alterations in the TME. However, achieving precise temperature control within tumors while protecting neighboring tissues remains a significant challenge when using external heat sources. Taking inspiration from the heat sensation elicited by capsaicin-containing products activating TRPV1, this study employs capsaicin to chemically stimulate TRPV1, imitating immunomodulatory benefits akin to those induced by mild heat. This involves developing a glutathione (GSH)-responsive immunomodulatory prodrug micelle system to deliver capsaicin and an ICI (BMS202) concurrently. Following intravenous administration, the prodrug micelles accumulate at the tumor site through the enhanced permeability and retention effect. Within the GSH-rich TME, the micelles disintegrate and release capsaicin and BMS202. The released capsaicin activates TRPV1 expressed in the TME, enhancing programmed death ligand 1 expression on tumor cell surfaces and promoting T cell recruitment into the TME, rendering it more immunologically active. Meanwhile, the liberated BMS202 blocks immune checkpoints on tumor cells and T cells, activating the recruited T cells and ultimately eradicating the tumors. This innovative strategy represents a comprehensive approach to fine-tune the TME, significantly amplifying the effectiveness of cancer immunotherapy by exploiting the TRPV1 pathway and enabling in situ control of immunomodulation within the TME.
Collapse
Affiliation(s)
- Thi-Lan-Huong Ngo
- Research
Center for Applied Sciences, Academia Sinica, Taipei, 115201, Taiwan
| | - Kuan-Lin Wang
- Research
Center for Applied Sciences, Academia Sinica, Taipei, 115201, Taiwan
- School
of Medicine, College of Medicine, Fu Jen
Catholic University, New Taipei
City, 242062, Taiwan
| | - Wen-Yu Pan
- School
of Medical Laboratory Science and Biotechnology, College of Medical
Science and Technology, Taipei Medical University, Taipei, 110301, Taiwan
- Ph.D.
Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, 110301, Taiwan
| | - Ting Ruan
- School
of Medicine, College of Medicine, Fu Jen
Catholic University, New Taipei
City, 242062, Taiwan
| | - Yu-Jung Lin
- Research
Center for Applied Sciences, Academia Sinica, Taipei, 115201, Taiwan
| |
Collapse
|
17
|
Gómez-Lázaro L, Martín-Sabroso C, Aparicio-Blanco J, Torres-Suárez AI. Assessment of In Vitro Release Testing Methods for Colloidal Drug Carriers: The Lack of Standardized Protocols. Pharmaceutics 2024; 16:103. [PMID: 38258113 PMCID: PMC10819705 DOI: 10.3390/pharmaceutics16010103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Although colloidal carriers have been in the pipeline for nearly four decades, standardized methods for testing their drug-release properties remain to be established in pharmacopeias. The in vitro assessment of drug release from these colloidal carriers is one of the most important parameters in the development and quality control of drug-loaded nano- and microcarriers. This lack of standardized protocols occurs due to the difficulties encountered in separating the released drug from the encapsulated one. This review aims to compare the most frequent types of release testing methods (i.e., membrane diffusion techniques, sample and separate methods and in situ detection techniques) in terms of the advantages and disadvantages of each one and of the key parameters that influence drug release in each case.
Collapse
Affiliation(s)
- Laura Gómez-Lázaro
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (L.G.-L.); (C.M.-S.); (A.I.T.-S.)
| | - Cristina Martín-Sabroso
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (L.G.-L.); (C.M.-S.); (A.I.T.-S.)
- Institute of Industrial Pharmacy, Complutense University Madrid, 28040 Madrid, Spain
| | - Juan Aparicio-Blanco
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (L.G.-L.); (C.M.-S.); (A.I.T.-S.)
- Institute of Industrial Pharmacy, Complutense University Madrid, 28040 Madrid, Spain
| | - Ana Isabel Torres-Suárez
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (L.G.-L.); (C.M.-S.); (A.I.T.-S.)
- Institute of Industrial Pharmacy, Complutense University Madrid, 28040 Madrid, Spain
| |
Collapse
|
18
|
Manchanda N, Vishkarma H, Goyal M, Shah S, Famta P, Talegaonkar S, Srivastava S. Surface Functionalized Lipid Nanoparticles in Promoting Therapeutic Outcomes: An Insight View of the Dynamic Drug Delivery System. Curr Drug Targets 2024; 25:278-300. [PMID: 38409709 DOI: 10.2174/0113894501285598240216065627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/27/2024] [Accepted: 02/01/2024] [Indexed: 02/28/2024]
Abstract
Compared to the conventional approach, nanoparticles (NPs) facilitate a non-hazardous, non-toxic, non-interactive, and biocompatible system, rendering them incredibly promising for improving drug delivery to target cells. When that comes to accomplishing specific therapeutic agents like drugs, peptides, nucleotides, etc., lipidic nanoparticulate systems have emerged as even more robust. They have asserted impressive ability in bypassing physiological and cellular barriers, evading lysosomal capture and the proton sponge effect, optimizing bioavailability, and compliance, lowering doses, and boosting therapeutic efficacy. However, the lack of selectivity at the cellular level hinders its ability to accomplish its potential to the fullest. The inclusion of surface functionalization to the lipidic NPs might certainly assist them in adapting to the basic biological demands of a specific pathological condition. Several ligands, including peptides, enzymes, polymers, saccharides, antibodies, etc., can be functionalized onto the surface of lipidic NPs to achieve cellular selectivity and avoid bioactivity challenges. This review provides a comprehensive outline for functionalizing lipid-based NPs systems in prominence over target selectivity. Emphasis has been put upon the strategies for reinforcing the therapeutic performance of lipidic nano carriers' using a variety of ligands alongside instances of relevant commercial formulations.
Collapse
Affiliation(s)
- Namish Manchanda
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), Government of NCT of Delhi, Mehrauli-Badarpur Road, Pushp Vihar Sector-3, New Delhi-110017, Delhi (NCT), India
- Centre of Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S Nagar, India
- Department of Pharmaceuticals, Ministry of Chemicals & Fertilizers, Government of India, Sector-67, S.A.S Nagar, Mohali-160062, Punjab, India
| | - Harish Vishkarma
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), Government of NCT of Delhi, Mehrauli-Badarpur Road, Pushp Vihar Sector-3, New Delhi-110017, Delhi (NCT), India
| | - Muskan Goyal
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), Government of NCT of Delhi, Mehrauli-Badarpur Road, Pushp Vihar Sector-3, New Delhi-110017, Delhi (NCT), India
| | - Saurabh Shah
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
- Department of Pharmaceuticals, Ministry of Chemicals & Fertilizers, Government of India, Balanagar, Hyderabad-500037, Telangana, India
| | - Paras Famta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
- Department of Pharmaceuticals, Ministry of Chemicals & Fertilizers, Government of India, Balanagar, Hyderabad-500037, Telangana, India
| | - Sushama Talegaonkar
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), Government of NCT of Delhi, Mehrauli-Badarpur Road, Pushp Vihar Sector-3, New Delhi-110017, Delhi (NCT), India
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
- Department of Pharmaceuticals, Ministry of Chemicals & Fertilizers, Government of India, Balanagar, Hyderabad-500037, Telangana, India
| |
Collapse
|
19
|
Redruello-Guerrero P, Córdoba-Peláez P, Láinez-Ramos-Bossini AJ, Rivera-Izquierdo M, Mesas C, Ortiz R, Prados J, Perazzoli G. Liposomal Doxorubicin In vitro and In vivo Assays in Non-small Cell Lung Cancer: A Systematic Review. Curr Drug Deliv 2024; 21:1346-1361. [PMID: 38099532 DOI: 10.2174/0115672018272162231116093143] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/21/2023] [Accepted: 10/13/2023] [Indexed: 07/23/2024]
Abstract
BACKGROUND Liposomal Doxorubicin (Doxil®) was one of the first nanoformulations approved for the treatment of solid tumors. Although there is already extensive experience in its use for different tumors, there is currently no grouped evidence of its therapeutic benefits in non-small cell lung cancer (NSCLC). A systematic review of the literature was performed on the therapeutic effectiveness and benefits of Liposomal Doxil® in NSCLC. METHODS A total of 1022 articles were identified in publications up to 2020 (MEDLINE, Cochrane, Web of Science Core Collection and Scopus). After applying inclusion criteria, the number was restricted to 114, of which 48 assays, including in vitro (n=20) and in vivo (animals, n=35 and humans, n=6) studies, were selected. RESULTS The maximum inhibitory concentration (IC50), tumor growth inhibition rate, response and survival rates were the main indices for evaluating the efficacy and effectiveness of Liposomal DOX. These have shown clear benefits both in vitro and in vivo, improving the IC50 of free DOX or untargeted liposomes, depending on their size, administration, or targeting. CONCLUSION Doxil® significantly reduced cellular proliferation in vitro and improved survival in vivo in both experimental animals and NSCLC patients, demonstrating optimal safety and pharmacokinetic behavior indices. Although our systematic review supports its benefits for the treatment of NSCLC, additional clinical trials with larger sample sizes are necessary to obtain more precise clinical data on its activity and effects in humans.
Collapse
Affiliation(s)
- Pablo Redruello-Guerrero
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
| | | | | | - Mario Rivera-Izquierdo
- Department of Preventive Medicine and Public Health, Faculty of Medicine, University of Granada, 18071 Granada, Spain
| | - Cristina Mesas
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. Granada), Granada, 18014 Granada, Spain
| | - Raul Ortiz
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
| | - Jose Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. Granada), Granada, 18014 Granada, Spain
| | - Gloria Perazzoli
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. Granada), Granada, 18014 Granada, Spain
| |
Collapse
|
20
|
Wang S, Li S, Liang N, Li S, Li X, Yan P, Sun S. Sulfur dioxide-releasing polymeric micelles based on modified hyaluronic acid for combined cancer therapy. Int J Biol Macromol 2023; 253:126624. [PMID: 37657576 DOI: 10.1016/j.ijbiomac.2023.126624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/01/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023]
Abstract
In this study, an amphiphilic polymer mPEG-HA(SA)-DNs was designed and synthesized to fabricate a multifunctional micellar system to enhance the therapeutic efficacy and reduce the toxic effect of paclitaxel (PTX). The polymer was prepared by introducing mPEG, stearic acid (SA) and 2,4-dinitrobenzenesulfonic acid (DNs) to the backbone of hyaluronic acid (HA). With above modifications, the fabricated micelles could encapsulate PTX in the core with high drug loading. The optimized PTX-loaded micelles had a mean size of 158.3 nm. Upon the effect of mPEG, the mPEG-HA(SA)-DNs micelles reduced the non-specific protein adsorption. In vitro drug release study revealed the excellent glutathione (GSH)-triggered PTX release behavior of the micelles. Moreover, GSH could trigger the detachment of DNs segment from mPEG-HA(SA)-DNs, and result in the release of SO2. In vitro and in vivo antitumor efficacy studies demonstrated that the PTX-loaded mPEG-HA(SA)-DNs micelles exhibited outstanding tumor suppression effect. The micelles would be potential carriers for combination cancer therapy by SO2 and PTX.
Collapse
Affiliation(s)
- Sheng Wang
- Key Laboratory of Functional Inorganic Materials Chemistry, Ministry of Education, School of Chemistry and Material Science, Heilongjiang University, Harbin 150080, China
| | - Shupeng Li
- Key Laboratory of Functional Inorganic Materials Chemistry, Ministry of Education, School of Chemistry and Material Science, Heilongjiang University, Harbin 150080, China
| | - Na Liang
- College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China.
| | - Siyi Li
- Key Laboratory of Functional Inorganic Materials Chemistry, Ministry of Education, School of Chemistry and Material Science, Heilongjiang University, Harbin 150080, China
| | - Xiaoxin Li
- Key Laboratory of Functional Inorganic Materials Chemistry, Ministry of Education, School of Chemistry and Material Science, Heilongjiang University, Harbin 150080, China
| | - Pengfei Yan
- Key Laboratory of Functional Inorganic Materials Chemistry, Ministry of Education, School of Chemistry and Material Science, Heilongjiang University, Harbin 150080, China
| | - Shaoping Sun
- Key Laboratory of Functional Inorganic Materials Chemistry, Ministry of Education, School of Chemistry and Material Science, Heilongjiang University, Harbin 150080, China.
| |
Collapse
|
21
|
Kizhakkanoodan KS, Rallapalli Y, Praveena J, Acharya S, Guru BR. Cancer nanomedicine: emergence, expansion, and expectations. SN APPLIED SCIENCES 2023; 5:385. [DOI: 10.1007/s42452-023-05593-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/13/2023] [Indexed: 01/06/2025] Open
Abstract
AbstractThe introduction of cancer nanomedicine has substantially enhanced the effectiveness of cancer treatments. Nano-formulations are becoming more prevalent among other treatment methods due to their improved therapeutic efficacy and low systemic toxicity. The discovery of the enhanced permeability and retention (EPR) effect has led to the development of numerous nanodrugs that passively target tumours. Then researchers identified certain cancer cells overexpress certain receptors, targeting these over-expressing receptors using targeting moiety on the surface of the nanoparticles becomes promising and surface functionalization of nanoparticles has become an important area of cancer nanomedicine. This leads to the physiochemical modification of nanoparticles for strengthening the EPR effect and active targeting. This review comprehensively outlines the origins of cancer nanomedicine, the role of the EPR effect, the tools of nanotechnology and their specifications, and the nature of passive and active targeting, which gives important direction for the progress of cancer therapy using nanomedicine. The review briefly enlists the available nano formulations for different cancers and attempts were made to account for the barriers to clinical translation. The review also briefly describes the transition of research from nanomedicine to nano-immunotherapy.
Collapse
|
22
|
Wu K, Zhou Z, Liu T, Liu C, Mu X, Jiang J. Co-delivery of curcumin and si-STAT3 with a bioinspired tumor homing for polydopamine nanoparticles for synergistic osteosarcoma therapy. Cancer Nanotechnol 2023; 14:66. [DOI: 10.1186/s12645-023-00215-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 06/02/2023] [Indexed: 01/06/2025] Open
Abstract
Abstract
Purpose
Owing to the complexity of cancer, a synergistic combination of chemotherapy and gene therapy can be a promising therapeutic strategy. This study aimed to use stem cell membrane (SCM)-camouflaged polydopamine nanoparticles for simultaneous delivery of curcumin (CUR) and siRNA-targeting STAT3 (CPDA/siSTAT3@SCM NPs) for osteosarcoma (OS).
Methods
Transmission electron microscopy, UV–Vis absorbance spectra, zeta potential, cell co-localization, and Coomassie bright blue staining were used to characterize CPDA/siSTAT3@SCM NPs constructed by the self-assembly method. Drug release, cellular uptake, cell proliferation, apoptosis, wound healing, and transwell assays were evaluated in vitro. The expression levels of epithelial–mesenchymal transition (EMT)- and apoptosis-related proteins were measured by western blotting. Furthermore, the biodistribution, antitumor efficacy, and biosafety of CPDA/siSTAT3@SCM NPs in an MG63 xenograft mouse model were evaluated.
Results
CPDA/siSTAT3@SCM NPs were successfully synthesized to deliver CUR and siRNA simultaneously, and they showed osteosarcoma-targeting ability. Furthermore, it showed high cellular uptake and excellent synergistic antitumor effects in vitro. CPDA/siSTAT3@SCM NPs suppressed OS cell proliferation, migration, invasion, and EMT progression, and promoted the apoptotic process. In tumor-bearing mice, the treatment with CPDA/siSTAT3@SCM NPs showed an excellent antitumor effect with no side effects in major organs.
Conclusion
This study revealed that CPDA/siSTAT3@SCM NPs can target drug delivery by biomimetic multifunctional nanoparticles to treat OS through chemo-gene combined therapy.
Collapse
|
23
|
Li J, Zhang J, Gao Y, Lei S, Wu J, Chen X, Wang K, Duan X, Men K. Targeted siRNA Delivery by Bioinspired Cancer Cell Membrane-Coated Nanoparticles with Enhanced Anti-Cancer Immunity. Int J Nanomedicine 2023; 18:5961-5982. [PMID: 37901359 PMCID: PMC10612485 DOI: 10.2147/ijn.s429036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/07/2023] [Indexed: 10/31/2023] Open
Abstract
Introduction Cell-membrane nanocarriers are usually constructed by modifying the nanoparticle surface with cell membrane extracts, which has a direct benefit in endowing targeting capacity to nanocarriers based on their original cell types. However, delivering nucleic acid cargos by cell membrane-based nanoparticles is difficult owing to the strong negative charge of the cell membrane fraction. In this study, we developed a cancer cell membrane-based drug delivery system, the cMDS, for efficient siRNA delivery. Meanwhile, the cancer-specific immune response stimulated by the gene vector itself could offer synergistic anti-cancer ability. Methods The cMDS was prepared by ultrasound, and its transfection efficiency and anti-cancer ability were examined using cultures of CT26 cells. MTT and red blood cell hemolysis tests were performed to assess the safety of cMDS, while its targeted gene delivery and strong immune stimulation were investigated in a subcutaneous tumor model. Moreover, the detailed anti-cancer immune stimulation mechanisms of cMDS are uncovered by protein chip analysis. Results The cMDS was spherical core-shell structure. It showed high transfection efficiency and anti-cancer ability in vitro. In animal experiments, intravenously administered cMDS/siStat3 complex efficiently suppress the growth of colon cancer. Moreover, the result of protein chip analysis suggested that cMDS affect the migration and chemotaxis of immune cells. Conclusion The cMDS shows obvious tumor tissue-specific accumulation properties and strong immune stimulation ability. It is an advanced targeted gene delivery system with potent immunotherapeutic properties.
Collapse
Affiliation(s)
- Jingmei Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Jin Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Yan Gao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Sibei Lei
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Jieping Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Xiaohua Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Kaiyu Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Xingmei Duan
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, People’s Republic of China
| | - Ke Men
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| |
Collapse
|
24
|
Luo K, Yang L, Yan C, Zhao Y, Li Q, Liu X, Xie L, Sun Q, Li X. A Dual-Targeting Liposome Enhances Triple-Negative Breast Cancer Chemoimmunotherapy through Inducing Immunogenic Cell Death and Inhibiting STAT3 Activation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302834. [PMID: 37264710 DOI: 10.1002/smll.202302834] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/16/2023] [Indexed: 06/03/2023]
Abstract
Immunotherapy gains increasing focus in treating triple-negative breast cancer (TNBC), while its efficacy is greatly restricted owing to low tumor immunogenicity and immunosuppressive tumor microenvironment (ITM). Herein, a LyP-1 and chondroitin sulfate (CS) dual-modified liposome co-loaded with paclitaxel (PTX) and cryptotanshinone (CTS), namely CS/LyP-1-PC Lip, is engineered for TNBC chemoimmunotherapy via induction of immunogenic cell death (ICD) and inhibition of signal transducer and activator of transcript-3 (STAT3) activation. CS/LyP-1-PC Lip enhances cellular uptake through p32 and CD44 dual receptor-mediated endocytosis. Within the tumor, the CS layer is continuously detached by hyaluronidase to release drugs. Subsequently, CTS sensitizes the cytotoxicity of PTX to 4T1 tumor cells. PTX induces ICD of tumor cells and facilitates infiltration of cytotoxic T lymphocyte to provoke immune response. Meanwhile, the concomitant delivery of CTS inhibits STAT3 activation to decrease infiltration of regulatory T cell, M2-type tumor-associated macrophage, and myeloid-derived suppressor cell, thus reversing ITM. Markedly, the dual-targeting liposome shows superior anti-tumor efficacy in subcutaneous TNBC mice and significant lung metastasis suppression in tumor metastasis model. Overall, this work offers a feasible combination regimen and a promising nanoplatform for the development of TNBC chemoimmunotherapy.
Collapse
Affiliation(s)
- Kaipei Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Lu Yang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Chunmei Yan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yuxin Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qiuxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xing Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Long Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qiang Sun
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Xiaofang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| |
Collapse
|
25
|
Ashique S, Faiyazuddin M, Afzal O, Gowri S, Hussain A, Mishra N, Garg A, Maqsood S, Akhtar MS, Altamimi AS. Advanced nanoparticles, the hallmark of targeted drug delivery for osteosarcoma-an updated review. J Drug Deliv Sci Technol 2023; 87:104753. [DOI: 10.1016/j.jddst.2023.104753] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
26
|
Yuan H, Liu B, Liu F, Li C, Han L, Huang X, Xue J, Qu W, Xu J, Liu W, Feng F, Wang L. Enhanced Anti-Rheumatoid Arthritis Activity of Total Alkaloids from Picrasma Quassioides in Collagen-Induced Arthritis Rats by a Targeted Drug Delivery System. J Pharm Sci 2023; 112:2483-2493. [PMID: 37023852 DOI: 10.1016/j.xphs.2023.03.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 03/30/2023] [Accepted: 03/30/2023] [Indexed: 04/08/2023]
Abstract
New drug delivery systems have rarely been used in the formulation of traditional Chinese medicine, especially those that are crude active Chinese medicinal ingredients. In the present study, hyaluronic acid decorated lipid-polymer hybrid nanoparticles were used to prepare a targeted drug delivery system (TDDS) for total alkaloid extract from Picrasma quassioides (TAPQ) to improve its targeting property and anti-inflammatory activity. Picrasma quassioides, a common-used traditional Chinese medicine (TCM), containing a series of hydrophobic total alkaloids including β-carboline and canthin-6-one alkaloids show great anti-inflammatory activity. However, its high toxicity (IC50= 8.088±0.903 μg/ml), poor water solubility (need to dissolve with 0.8% Tween-80) and poor targeting property severely limits its clinical application. Herein, hyaluronic acid (HA) decorated lipid-polymer hybrid nanoparticles loaded with TAPQ (TAPQ-NPs) were designed to overcome above mentioned deficiencies. TAPQ-NPs have good water solubility, strong anti-inflammatory activity and great joint targeting property. The in vitro anti-inflammatory activity assay showed that the efficacy of TAPQ-NPs was significantly higher than TAPQ(P<0.001). Animal experiments showed that the nanoparticles had good joint targeting property and had strong inhibitory activity against collagen-induced arthritis (CIA). These results indicate that the application of this novel targeted drug delivery system in the formulation of traditional Chinese medicine is feasible.
Collapse
Affiliation(s)
- Haixuan Yuan
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Bowen Liu
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Fulei Liu
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China; The Joint Laboratory of Chinese Pharmaceutical University and Taian City Centrol Hospitol, Taian City Central Hospitol, Taian, 271000, China; Pharmacy Department, Taian City Central Hospitol, Taian, 271000, China
| | - Cong Li
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Lingfei Han
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiaoxian Huang
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Jingwei Xue
- The Joint Laboratory of Chinese Pharmaceutical University and Taian City Centrol Hospitol, Taian City Central Hospitol, Taian, 271000, China; Taian City institute of Digestive Disease, Taian City Central Hospitol, Taian, 271000, China
| | - Wei Qu
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Jian Xu
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Wenyuan Liu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China
| | - Feng Feng
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China; Nanjing Medical University, Nanjing, 210009, China.
| | - Lei Wang
- Department of Resources Science of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
27
|
Koroleva M. Multicompartment colloid systems with lipid and polymer membranes for biomedical applications. Phys Chem Chem Phys 2023; 25:21836-21859. [PMID: 37565484 DOI: 10.1039/d3cp01984e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Multicompartment structures have the potential for biomedical applications because they can act as multifunctional systems and provide simultaneous delivery of drugs and diagnostics agents of different types. Moreover, some of them mimic biological cells to some extent with organelles as separate sub-compartments. This article analyses multicompartment colloidal structures with smaller sub-units covered with lipid or polymer membranes that provide additional protection for the encapsulated substances. Vesosomes with small vesicles encapsulated in the inner pools of larger liposomes are the most studied systems to date. Dendrimer molecules are enclosed by a lipid bilayer shell in dendrosomes. Capsosomes, polymersomes-in-polymer capsules, and cubosomes-in-polymer capsules are composed of sub-compartments encapsulated within closed multilayer polymer membranes. Janus or Cerberus emulsions contain droplets composed of two or three phases: immiscible oils in O/W emulsions and aqueous polymer or salt solutions that are separated into two or three phases and form connected droplets in W/O emulsions. In more cases, the external surface of engulfed droplets in Janus or Cerberus emulsions is covered with a lipid or polymer monolayer. eLiposomes with emulsion droplets encapsulated into a bilayer shell have been given little attention so far, but they have very great prospects. In addition to nanoemulsion droplets, solid lipid nanoparticles, nanostructured lipid carriers and inorganic nanoparticles can be loaded into eLiposomes. Molecular engineering of the external membrane allows the creation of ligand-targeted and stimuli-responsive multifunctional systems. As a result, the efficacy of drug delivery can be significantly enhanced.
Collapse
Affiliation(s)
- Marina Koroleva
- Mendeleev University of Chemical Technology, Miusskaya sq. 9, Moscow 125047.
| |
Collapse
|
28
|
Zong L, Wang Y, Song S, Zhang H, Mu S, Liu W, Feng Y, Wang S, Tu Z, Yuan Q, Li L, Pu X. Formulation and Evaluation on Synergetic Anti-Hepatoma Effect of a Chemically Stable and Release-Controlled Nanoself-Assembly with Natural Monomers. Int J Nanomedicine 2023; 18:3407-3428. [PMID: 37377983 PMCID: PMC10292624 DOI: 10.2147/ijn.s408416] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Introduction Hepatoma is the leading cause of death among liver diseases worldwide. Modern pharmacological studies suggest that some natural monomeric compounds have a significant effect on inhibiting tumor growth. However, poor stability and solubility, and side effects are the main factors limiting the clinical application of natural monomeric compounds. Methods In this paper, drug-co-loaded nanoself-assemblies were selected as a delivery system to improve the chemical stability and solubility of Tanshinone II A and Glycyrrhetinic acid, and to produce a synergetic anti-hepatoma effect. Results The study suggested that the drug co-loaded nanoself-assemblies showed high drug loading capacity, good physical and chemical stability, and controlled release. In vitro cell experiments verified that the drug-co-loaded nanoself-assemblies could increase the cellular uptake and cell inhibitory activity. In vivo studies verified that the drug co-loaded nanoself-assemblies could prolong the MRT0-∞, increase accumulation in tumor and liver tissues, and show strong synergistic anti-tumor effect and good bio-safety in H22 tumor-bearing mice. Conclusion This work indicates that natural monomeric compounds co-loaded nanoself-assemblies would be a potential strategy for the treatment of hepatoma.
Collapse
Affiliation(s)
- Lanlan Zong
- School of Pharmacy and Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, Henan University, Kaifeng, Henan, 475004, People’s Republic of China
| | - Yanling Wang
- School of Pharmacy and Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, Henan University, Kaifeng, Henan, 475004, People’s Republic of China
| | - Shiyu Song
- School of Pharmacy and Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, Henan University, Kaifeng, Henan, 475004, People’s Republic of China
| | - Huiqi Zhang
- School of Pharmacy and Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, Henan University, Kaifeng, Henan, 475004, People’s Republic of China
| | - Shengcai Mu
- School of Pharmacy and Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, Henan University, Kaifeng, Henan, 475004, People’s Republic of China
| | - Wenshang Liu
- School of Pharmacy and Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, Henan University, Kaifeng, Henan, 475004, People’s Republic of China
| | - Yu Feng
- School of Pharmacy and Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, Henan University, Kaifeng, Henan, 475004, People’s Republic of China
| | - Shumin Wang
- School of Pharmacy and Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, Henan University, Kaifeng, Henan, 475004, People’s Republic of China
| | - Ziwei Tu
- School of Pharmacy and Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, Henan University, Kaifeng, Henan, 475004, People’s Republic of China
| | - Qi Yuan
- School of Pharmacy and Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, Henan University, Kaifeng, Henan, 475004, People’s Republic of China
| | - Luhui Li
- Medical school, Henan Technical Institute, Kaifeng, Henan, 475004, People’s Republic of China
| | - Xiaohui Pu
- School of Pharmacy and Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, Henan University, Kaifeng, Henan, 475004, People’s Republic of China
| |
Collapse
|
29
|
Kansız S, Elçin YM. Advanced liposome and polymersome-based drug delivery systems: Considerations for physicochemical properties, targeting strategies and stimuli-sensitive approaches. Adv Colloid Interface Sci 2023; 317:102930. [PMID: 37290380 DOI: 10.1016/j.cis.2023.102930] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 06/10/2023]
Abstract
Liposomes and polymersomes are colloidal vesicles that are self-assembled from lipids and amphiphilic polymers, respectively. Because of their ability to encapsulate both hydrophilic and hydrophobic therapeutics, they are of great interest in drug delivery research. Today, the applications of liposomes and polymersomes have expanded to a wide variety of complex therapeutic molecules, including nucleic acids, proteins and enzymes. Thanks to their chemical versatility, they can be tailored to different drug delivery applications to achieve maximum therapeutic index. This review article evaluates liposomes and polymersomes from a perspective that takes into account the physical and biological barriers that reduce the efficiency of the drug delivery process. In this context, the design approaches of liposomes and polymersomes are discussed with representative examples in terms of their physicochemical properties (size, shape, charge, mechanical), targeting strategies (passive and active) and response to different stimuli (pH, redox, enzyme, temperature, light, magnetic field, ultrasound). Finally, the challenges limiting the transition from laboratory to practice, recent clinical developments, and future perspectives are addressed.
Collapse
Affiliation(s)
- Seyithan Kansız
- Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Ankara University Faculty of Science, Department of Chemistry, Ankara, Turkey
| | - Yaşar Murat Elçin
- Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Ankara University Faculty of Science, Department of Chemistry, Ankara, Turkey; Biovalda Health Technologies, Inc., Ankara, Turkey.
| |
Collapse
|
30
|
Yuan P, Min Y, Zhao Z. Multifunctional nanoparticles for the treatment and diagnosis of osteosarcoma. BIOMATERIALS ADVANCES 2023; 151:213466. [PMID: 37229927 DOI: 10.1016/j.bioadv.2023.213466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/27/2023]
Abstract
Osteosarcoma (OS) is a common primary malignant bone tumor in adolescents. Currently, the commonly used treatment strategies for OS include surgery, chemotherapy and radiotherapy. However, these methods have some problems that cannot be ignored, such as postoperative sequelae and severe side effects. Therefore, in recent years, researchers have been looking for other means to improve the treatment or diagnosis effect of OS and increase the overall survival rate of patients. With the development of nanotechnology, nanoparticles (NPs) have presented excellent properties in improving the therapeutic efficacy of drugs for OS. Nanotechnology makes it possible for NPs to combine various functional molecules and drugs to achieve multiple therapeutic effects. This review presents the important properties of multifunctional NPs for the treatment and diagnosis of OS and focuses on the research progress of common NPs applied for drug or gene delivery, phototherapy and diagnosis of OS, such as carbon-based quantum dots, metal, chitosan and liposome NPs. Finally, the promising prospects and challenges of developing multifunctional NPs with enhanced efficacy are discussed, which lays the foundation and direction for improving the future therapeutic and diagnostic methods of OS.
Collapse
Affiliation(s)
- Ping Yuan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, PR China
| | - Yajun Min
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, PR China
| | - Zheng Zhao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, PR China.
| |
Collapse
|
31
|
Haq Khan ZU, Khan TM, Khan A, Shah NS, Muhammad N, Tahir K, Iqbal J, Rahim A, Khasim S, Ahmad I, Shabbir K, Gul NS, Wu J. Brief review: Applications of nanocomposite in electrochemical sensor and drugs delivery. Front Chem 2023; 11:1152217. [PMID: 37007050 PMCID: PMC10060975 DOI: 10.3389/fchem.2023.1152217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
The recent advancement of nanoparticles (NPs) holds significant potential for treating various ailments. NPs are employed as drug carriers for diseases like cancer because of their small size and increased stability. In addition, they have several desirable properties that make them ideal for treating bone cancer, including high stability, specificity, higher sensitivity, and efficacy. Furthermore, they might be taken into account to permit the precise drug release from the matrix. Drug delivery systems for cancer treatment have progressed to include nanocomposites, metallic NPs, dendrimers, and liposomes. Materials’ mechanical strength, hardness, electrical and thermal conductivity, and electrochemical sensors are significantly improved using nanoparticles (NPs). New sensing devices, drug delivery systems, electrochemical sensors, and biosensors can all benefit considerably from the NPs’ exceptional physical and chemical capabilities. Nanotechnology is discussed in this article from a variety of angles, including its recent applications in the medical sciences for the effective treatment of bone cancers and its potential as a promising option for treating other complex health anomalies via the use of anti-tumour therapy, radiotherapy, the delivery of proteins, antibiotics, and vaccines, and other methods. This also brings to light the role that model simulations can play in diagnosing and treating bone cancer, an area where Nanomedicine has recently been formulated. There has been a recent uptick in using nanotechnology to treat conditions affecting the skeleton. Consequently, it will pave the door for more effective utilization of cutting-edge technology, including electrochemical sensors and biosensors, and improved therapeutic outcomes.
Collapse
Affiliation(s)
- Zia Ul Haq Khan
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
- *Correspondence: Zia Ul Haq Khan, ; Noor Shad Gul,
| | - Taj Malook Khan
- Drug Discovery Research Center, Southwest Medical University, Luzhou, China
- Department of Pharmacology, Laboratory of Cardiovascular Pharmacology, The School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Amjad Khan
- Department of Zoology, University of Lakki Marwat, Lakki Marwat, Pakistan
| | - Noor Samad Shah
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
| | - Nawshad Muhammad
- Department of Dental Materials, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Kamran Tahir
- Institute of Chemical Sciences, Gomal University, Dera Ismail Khan, Pakistan
| | - Jibran Iqbal
- College of Natural and Health Sciences, Zayed University, Abu Dhabi, United Arab Emirates
| | - Abdur Rahim
- Department of Chemistry, COMSATS University Islamabad, Islamabad, Pakistan
| | - Syed Khasim
- Nanotechnology Research Unit, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
- Department of Physics, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Iftikhar Ahmad
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
| | - Khadija Shabbir
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
| | - Noor Shad Gul
- Drug Discovery Research Center, Southwest Medical University, Luzhou, China
- Department of Pharmacology, Laboratory of Cardiovascular Pharmacology, The School of Pharmacy, Southwest Medical University, Luzhou, China
- *Correspondence: Zia Ul Haq Khan, ; Noor Shad Gul,
| | - Jianbo Wu
- Drug Discovery Research Center, Southwest Medical University, Luzhou, China
- Department of Pharmacology, Laboratory of Cardiovascular Pharmacology, The School of Pharmacy, Southwest Medical University, Luzhou, China
| |
Collapse
|
32
|
Hu J, Zheng Y, Wen Z, Fu H, Yang X, Ye X, Zhu S, Kang L, Li X, Yang X, Hu Y. Construction of redox-sensitive liposomes modified by glycyrrhetinic acid and evaluation of anti-hepatocellular carcinoma activity. Chem Phys Lipids 2023; 252:105292. [PMID: 36931583 DOI: 10.1016/j.chemphyslip.2023.105292] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/09/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023]
Abstract
The aim of this study was to construct a bifunctional liposome with hepatic-targeting capacity by modifying with a targeting ligand and an intracellular tumor reduction response functional group to deliver drugs precisely to focal liver tissues and release them in large quantities in hepatocellular carcinoma cells. This could improve drug efficacy and reduce toxic side effects at the same time. First, the bifunctional ligand for liposome was successfully obtained by chemically synthesizing it from the hepatic-targeting glycyrrhetinic acid (GA) molecule, cystamine, and the membrane component cholesterol. Then the ligand was used to modify the liposomes. The particle size, PDI and zeta potential of the liposomes were determined with a nanoparticle sizer, and the morphology was observed by transmission electron microscopy. The encapsulation efficiency and drug release behavior were also determined. Further, the stability in vitro of the liposomes and the changes in the simulated reducing environment were determined. Finally, the antitumor activity in vitro and cellular uptake efficiency of the drug-loaded liposomes were investigated by performing cellular assays. The results showed that the prepared liposomes had a uniform particle size of 143.6 ± 2.86 nm with good stability and an encapsulation rate of 84.3 ± 2.1 %. Moreover, the particle size of the liposomes significantly increased and the structure was destroyed in a DTT reducing environment. Cellular experiments showed that the modified liposoes had better cytotoxic effects on hepatocarcinoma cells than both normal liposomes and free drugs. This study has great potential for tumor therapy and provides novel ideas for the clinical use of oncology drugs in dosage forms.
Collapse
Affiliation(s)
- Jie Hu
- School of Pharmaceutical Science, South-Central MinZu University, Wuhan 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central MinZu University, Wuhan 430074, PR China; Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central MinZu University, Wuhan 430074, China
| | - Yongsheng Zheng
- School of Pharmaceutical Science, South-Central MinZu University, Wuhan 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central MinZu University, Wuhan 430074, PR China; Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central MinZu University, Wuhan 430074, China
| | - Zhijie Wen
- School of Pharmaceutical Science, South-Central MinZu University, Wuhan 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central MinZu University, Wuhan 430074, PR China; Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central MinZu University, Wuhan 430074, China
| | - Hudie Fu
- School of Pharmaceutical Science, South-Central MinZu University, Wuhan 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central MinZu University, Wuhan 430074, PR China; Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central MinZu University, Wuhan 430074, China
| | - Xuedan Yang
- School of Pharmaceutical Science, South-Central MinZu University, Wuhan 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central MinZu University, Wuhan 430074, PR China; Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central MinZu University, Wuhan 430074, China
| | - Xuexin Ye
- School of Pharmaceutical Science, South-Central MinZu University, Wuhan 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central MinZu University, Wuhan 430074, PR China; Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central MinZu University, Wuhan 430074, China
| | - Shengpeng Zhu
- School of Pharmaceutical Science, South-Central MinZu University, Wuhan 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central MinZu University, Wuhan 430074, PR China; Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central MinZu University, Wuhan 430074, China
| | - Li Kang
- School of Pharmaceutical Science, South-Central MinZu University, Wuhan 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central MinZu University, Wuhan 430074, PR China; Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central MinZu University, Wuhan 430074, China
| | - Xiaojun Li
- School of Pharmaceutical Science, South-Central MinZu University, Wuhan 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central MinZu University, Wuhan 430074, PR China; Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central MinZu University, Wuhan 430074, China
| | - Xinzhou Yang
- School of Pharmaceutical Science, South-Central MinZu University, Wuhan 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central MinZu University, Wuhan 430074, PR China; Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central MinZu University, Wuhan 430074, China
| | - Yan Hu
- School of Pharmaceutical Science, South-Central MinZu University, Wuhan 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central MinZu University, Wuhan 430074, PR China; Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central MinZu University, Wuhan 430074, China.
| |
Collapse
|
33
|
Oxygen vacancy-enhanced catalytic activity of hyaluronic acid covered-biomineralization nanozyme for reactive oxygen species-augmented antitumor therapy. Int J Biol Macromol 2023; 236:124003. [PMID: 36907306 DOI: 10.1016/j.ijbiomac.2023.124003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/01/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023]
Abstract
Insufficient hydrogen peroxide content in tumor cells, unsuitable pH and low efficiency of commonly used metal catalysts severely affect the efficiency of chemodynamic therapy, resulting in unsatisfactory efficacy of chemodynamic therapy alone. For this purpose, we designed a composite nanoplatform capable of targeting tumors and selectively degrading in the tumor microenvironment (TME) to address these issues. In this work, we synthesized Au@Co3O4 nanozyme inspired by crystal defect engineering. The addition of Au determines the formation of oxygen vacancies, accelerates electron transfer, and enhances redox activity, thus significantly enhancing the superoxide dismutase (SOD)-like and catalase (CAT)-like catalytic activities of the nanozyme. Subsequently, we camouflaged the nanozyme using a biomineralized CaCO3 shell to avoid damage to normal tissues by the nanozyme while effectively encapsulating the photosensitizer IR820, and finally the tumor targeting ability of the nanoplatform was enhanced by the modification of hyaluronic acid. Under near-infrared (NIR) light irradiation, the Au@Co3O4@CaCO3/IR820@HA nanoplatform not only visualizes the treatment with multimodal imaging, but also plays a photothermal sensitizing role through various strategies, while enhancing the enzyme catalytic activity, cobalt ion-mediated chemodynamic therapy (CDT) and IR820-mediated photodynamic therapy (PDT), and achieving the synergistic enhancement of reactive oxygen species (ROS) generation.
Collapse
|
34
|
Tian H, Cao J, Li B, Nice EC, Mao H, Zhang Y, Huang C. Managing the immune microenvironment of osteosarcoma: the outlook for osteosarcoma treatment. Bone Res 2023; 11:11. [PMID: 36849442 PMCID: PMC9971189 DOI: 10.1038/s41413-023-00246-z] [Citation(s) in RCA: 87] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/17/2022] [Accepted: 12/29/2022] [Indexed: 03/01/2023] Open
Abstract
Osteosarcoma, with poor survival after metastasis, is considered the most common primary bone cancer in adolescents. Notwithstanding the efforts of researchers, its five-year survival rate has only shown limited improvement, suggesting that existing therapeutic strategies are insufficient to meet clinical needs. Notably, immunotherapy has shown certain advantages over traditional tumor treatments in inhibiting metastasis. Therefore, managing the immune microenvironment in osteosarcoma can provide novel and valuable insight into the multifaceted mechanisms underlying the heterogeneity and progression of the disease. Additionally, given the advances in nanomedicine, there exist many advanced nanoplatforms for enhanced osteosarcoma immunotherapy with satisfactory physiochemical characteristics. Here, we review the classification, characteristics, and functions of the key components of the immune microenvironment in osteosarcoma. This review also emphasizes the application, progress, and prospects of osteosarcoma immunotherapy and discusses several nanomedicine-based options to enhance the efficiency of osteosarcoma treatment. Furthermore, we examine the disadvantages of standard treatments and present future perspectives for osteosarcoma immunotherapy.
Collapse
Affiliation(s)
- Hailong Tian
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041 China
| | - Jiangjun Cao
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041 China
| | - Bowen Li
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041 China
| | - Edouard C. Nice
- grid.1002.30000 0004 1936 7857Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800 Australia
| | - Haijiao Mao
- Department of Orthopaedic Surgery, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang, 315020, People's Republic of China.
| | - Yi Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
35
|
Lado-Touriño I, Cerpa-Naranjo A. Coarse-Grained Molecular Dynamics of pH-Sensitive Lipids. Int J Mol Sci 2023; 24:ijms24054632. [PMID: 36902063 PMCID: PMC10003205 DOI: 10.3390/ijms24054632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/20/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
pH-sensitive lipids represent a class of lipids that can be protonated and destabilized in acidic environments, as they become positively charged in response to low-pH conditions. They can be incorporated into lipidic nanoparticles such as liposomes, which are able to change their properties and allow specific drug delivery at the acidic conditions encountered in some pathological microenvironments. In this work, we used coarse-grained molecular-dynamic simulations to study the stability of neutral and charged lipid bilayers containing POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) and various kinds of ISUCA ((F)2-(imidazol-1-yl)succinic acid)-derived lipids, which can act as pH-sensitive molecules. In order to explore such systems, we used a MARTINI-derived forcefield, previously parameterized using all-atom simulation results. We calculated the average area per lipid, the second-rank order parameter and the lipid diffusion coefficient of both lipid bilayers made of pure components and mixtures of lipids in different proportions, under neutral or acidic conditions. The results show that the use of ISUCA-derived lipids disturbs the lipid bilayer structure, with the effect being particularly marked under acidic conditions. Although more-in depth studies on these systems must be carried out, these initial results are encouraging and the lipids designed in this research could be a good basis for developing new pH-sensitive liposomes.
Collapse
|
36
|
Yuan G, Liu Z, Wang W, Liu M, Xu Y, Hu W, Fan Y, Zhang X, Liu Y, Si G. Multifunctional nanoplatforms application in the transcatheter chemoembolization against hepatocellular carcinoma. J Nanobiotechnology 2023; 21:68. [PMID: 36849981 PMCID: PMC9969656 DOI: 10.1186/s12951-023-01820-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/15/2023] [Indexed: 03/01/2023] Open
Abstract
Hepatocellular carcinoma (HCC) has the sixth-highest new incidence and fourth-highest mortality worldwide. Transarterial chemoembolization (TACE) is one of the primary treatment strategies for unresectable HCC. However, the therapeutic effect is still unsatisfactory due to the insufficient distribution of antineoplastic drugs in tumor tissues and the worsened post-embolization tumor microenvironment (TME, e.g., hypoxia and reduced pH). Recently, using nanomaterials as a drug delivery platform for TACE therapy of HCC has been a research hotspot. With the development of nanotechnology, multifunctional nanoplatforms have been developed to embolize the tumor vasculature, creating conditions for improving the distribution and bioavailability of drugs in tumor tissues. Currently, the researchers are focusing on functionalizing nanomaterials to achieve high drug loading efficacy, thorough vascular embolization, tumor targeting, controlled sustained release of drugs, and real-time imaging in the TACE process to facilitate precise embolization and enable therapeutic procedures follow-up imaging of tumor lesions. Herein, we summarized the recent advances and applications of functionalized nanomaterials based on TACE against HCC, believing that developing these functionalized nanoplatforms may be a promising approach for improving the TACE therapeutic effect of HCC.
Collapse
Affiliation(s)
- Gang Yuan
- grid.410578.f0000 0001 1114 4286Department of Intervention Radiology, Traditional Chinese Medicine Hospital Affiliated to Southwest Medical University, Luzhou, 646000 China ,grid.259384.10000 0000 8945 4455State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR China
| | - Zhiyin Liu
- grid.488387.8Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000 China
| | - Weiming Wang
- grid.259384.10000 0000 8945 4455State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR China ,grid.488387.8Department of General Surgery (Vascular Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, 646000 China
| | - Mengnan Liu
- grid.259384.10000 0000 8945 4455State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR China ,grid.488387.8National Traditional Chinese Medicine Clinical Research Base and Department of Cardiovascular Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Yanneng Xu
- grid.410578.f0000 0001 1114 4286Department of Intervention Radiology, Traditional Chinese Medicine Hospital Affiliated to Southwest Medical University, Luzhou, 646000 China ,grid.259384.10000 0000 8945 4455State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR China
| | - Wei Hu
- grid.410578.f0000 0001 1114 4286Department of Intervention Radiology, Traditional Chinese Medicine Hospital Affiliated to Southwest Medical University, Luzhou, 646000 China ,grid.259384.10000 0000 8945 4455State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR China
| | - Yao Fan
- grid.410578.f0000 0001 1114 4286Department of Anus and Intestine Surgery, Traditional Chinese Medicine Hospital Affiliated to Southwest Medical University, Luzhou, 646000 China
| | - Xun Zhang
- grid.410578.f0000 0001 1114 4286Department of Intervention Radiology, Traditional Chinese Medicine Hospital Affiliated to Southwest Medical University, Luzhou, 646000 China
| | - Yong Liu
- Department of General Surgery (Vascular Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
| | - Guangyan Si
- Department of Intervention Radiology, Traditional Chinese Medicine Hospital Affiliated to Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
37
|
Yang Y, Wu S, Zhang Q, Chen Z, Wang C, Jiang S, Zhang Y. A multi-responsive targeting drug delivery system for combination photothermal/chemotherapy of tumor. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023; 34:166-183. [PMID: 35943449 DOI: 10.1080/09205063.2022.2112310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
To achieve efficient delivery and precise release of chemotherapy drugs at tumor sites, an active targeting multi-responsive drug delivery platform was developed. Here, doxorubicin hydrochloride (DOX) was loaded onto polydopamine (PDA), which were coated by the cystamine-modified hyaluronic acid (HA-Cys), designated as DOX@PDA-HA (PDH). The combination of PDA and HA-Cys endowed the nanoplatform photothermal conversion, tumor-targeting, and pH/redox/NIR sensitive drug release capacity. Moreover, HA could be degraded by the excess hyaluronidase (HAase) in the tumor microenvironment (TME), promoting DOX release, and further enhancing the effect of chemotherapy. Experimental results demonstrated PDH good biocompatibility, high loading rate, targeted drug delivery, and efficient tumor cell killing ability. This ingenious strategy based on PDH showed huge potential in photothermal/chemotherapy combination treatment of cancer.
Collapse
Affiliation(s)
- Yuanyuan Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, China
| | - Siqi Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, China
| | - Qinlin Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, China
| | - Zhaoxia Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, China
| | - Caixia Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, China
| | - Sijing Jiang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, China
| | - Yuhong Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, China
| |
Collapse
|
38
|
Hashemi M, Ghadyani F, Hasani S, Olyaee Y, Raei B, Khodadadi M, Ziyarani MF, Basti FA, Tavakolpournegari A, Matinahmadi A, Salimimoghadam S, Aref AR, Taheriazam A, Entezari M, Ertas YN. Nanoliposomes for doxorubicin delivery: Reversing drug resistance, stimuli-responsive carriers and clinical translation. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
39
|
Wang S, Tavakoli S, Parvathaneni RP, Nawale GN, Oommen OP, Hilborn J, Varghese OP. Dynamic covalent crosslinked hyaluronic acid hydrogels and nanomaterials for biomedical applications. Biomater Sci 2022; 10:6399-6412. [PMID: 36214100 DOI: 10.1039/d2bm01154a] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Hyaluronic acid (HA), one of the main components of the extracellular matrix (ECM), is extensively used in the design of hydrogels and nanoparticles for different biomedical applications due to its critical role in vivo, degradability by endogenous enzymes, and absence of immunogenicity. HA-based hydrogels and nanoparticles have been developed by utilizing different crosslinking chemistries. The development of such crosslinking chemistries indicates that even subtle differences in the structure of reactive groups or the procedure of crosslinking may have a profound impact on the intended mechanical, physical and biological outcomes. There are widespread examples of modified HA polymers that can form either covalently or physically crosslinked biomaterials. More recently, studies have been focused on dynamic covalent crosslinked HA-based biomaterials since these types of crosslinking allow the preparation of dynamic structures with the ability to form in situ, be injectable, and have self-healing properties. In this review, HA-based hydrogels and nanomaterials that are crosslinked by dynamic-covalent coupling (DCC) chemistry have been critically assessed.
Collapse
Affiliation(s)
- Shujiang Wang
- Macromolecular Chemistry Division, Department of Chemistry-Ångström Laboratory, Uppsala University, 751 21, Uppsala, Sweden.
| | - Shima Tavakoli
- Macromolecular Chemistry Division, Department of Chemistry-Ångström Laboratory, Uppsala University, 751 21, Uppsala, Sweden.
| | - Rohith Pavan Parvathaneni
- Macromolecular Chemistry Division, Department of Chemistry-Ångström Laboratory, Uppsala University, 751 21, Uppsala, Sweden.
| | - Ganesh N Nawale
- Macromolecular Chemistry Division, Department of Chemistry-Ångström Laboratory, Uppsala University, 751 21, Uppsala, Sweden.
| | - Oommen P Oommen
- Bioengineering and Nanomedicine Group, Faculty of Medicine and Health Technologies, Tampere University, 33720, Tampere, Finland
| | - Jöns Hilborn
- Macromolecular Chemistry Division, Department of Chemistry-Ångström Laboratory, Uppsala University, 751 21, Uppsala, Sweden.
| | - Oommen P Varghese
- Macromolecular Chemistry Division, Department of Chemistry-Ångström Laboratory, Uppsala University, 751 21, Uppsala, Sweden.
| |
Collapse
|
40
|
Muzzio N, Eduardo Martinez-Cartagena M, Romero G. Soft nano and microstructures for the photomodulation of cellular signaling and behavior. Adv Drug Deliv Rev 2022; 190:114554. [PMID: 36181993 PMCID: PMC11610523 DOI: 10.1016/j.addr.2022.114554] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 08/25/2022] [Accepted: 09/23/2022] [Indexed: 01/24/2023]
Abstract
Photoresponsive soft materials are everywhere in the nature, from human's retina tissues to plants, and have been the inspiration for engineers in the development of modern biomedical materials. Light as an external stimulus is particularly attractive because it is relatively cheap, noninvasive to superficial biological tissues, can be delivered contactless and offers high spatiotemporal control. In the biomedical field, soft materials that respond to long wavelength or that incorporate a photon upconversion mechanism are desired to overcome the limited UV-visible light penetration into biological tissues. Upon light exposure, photosensitive soft materials respond through mechanisms of isomerization, crosslinking or cleavage, hyperthermia, photoreactions, electrical current generation, among others. In this review, we discuss the most recent applications of photosensitive soft materials in the modulation of cellular behavior, for tissue engineering and regenerative medicine, in drug delivery and for phototherapies.
Collapse
Affiliation(s)
- Nicolas Muzzio
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, TX 78249, USA.
| | | | - Gabriela Romero
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, TX 78249, USA.
| |
Collapse
|
41
|
Wu X, Wei Z, Feng H, Chen H, Xie J, Huang Y, Wang M, Yao C, Huang J. Targeting Effect of Betulinic Acid Liposome Modified by Hyaluronic Acid on Hepatoma Cells In Vitro. J Pharm Sci 2022; 111:3047-3053. [PMID: 35779664 DOI: 10.1016/j.xphs.2022.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 12/14/2022]
Abstract
Betulinic acid (BA) is a natural pentacyclic triterpenoid with broad-spectrum anticancer activity, which has great development potential as an anti-cancer drug. In this study, a novel hyaluronic acid (HA)-modified BA liposome (BA-L) was developed for use in targeted liver cancer therapy. The size, polymer dispersity index (PDI), zeta potential, and entrapment efficiency were measured. Cell viability, cell migration and clonogenicity, cellular uptake, immunohistochemistry of CD44, and protein expression of ROCK1/IP3/RAS were also investigated. BA, BA-L, and HA-BA-L had no inhibitory effect on the activity of LO2 normal hepatocytes, but they inhibited the proliferation of HepG2 and SMMC-7721 cells in a dose- and time-dependent manner, with HA-BA-L exhibiting the most prominent inhibitory effect. Compared with the BA-L group, the expression of CD44 in HepG2 cells in the HA-BA-L group was decreased. The results of WB showed that BA, BA-L, and HA-BA-L downregulated the expression of ROCK1, IP3, and RAS in HepG2 cells, and the expression level in the HA-BA-L group was significantly decreased. The easily prepared HA-BA-L was demonstrated to be an excellent CD44-mediated intracellular delivery system capable of targeting effects. Further mechanistic research revealed that the inhibition of HA-BA-L on HepG2 cells may be mediated by blocking the ROCK1/IP3/RAS signaling pathways.
Collapse
Affiliation(s)
- Xiaomei Wu
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Department of Pharmacology, Guangxi Medical University, Nanning 530021, Guangxi, PR China
| | - Zhumei Wei
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Department of Pharmacology, Guangxi Medical University, Nanning 530021, Guangxi, PR China
| | - Hui Feng
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Department of Pharmacology, Guangxi Medical University, Nanning 530021, Guangxi, PR China
| | - Hongli Chen
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Department of Pharmacology, Guangxi Medical University, Nanning 530021, Guangxi, PR China
| | - Jiaxiu Xie
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Department of Pharmacology, Guangxi Medical University, Nanning 530021, Guangxi, PR China
| | - Yupeng Huang
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Department of Pharmacology, Guangxi Medical University, Nanning 530021, Guangxi, PR China
| | - Mengyao Wang
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Department of Pharmacology, Guangxi Medical University, Nanning 530021, Guangxi, PR China
| | - Chanjuan Yao
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Department of Pharmacology, Guangxi Medical University, Nanning 530021, Guangxi, PR China
| | - Jianchun Huang
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Department of Pharmacology, Guangxi Medical University, Nanning 530021, Guangxi, PR China.
| |
Collapse
|
42
|
Zhang Y, Li J, Pu K. Recent advances in dual- and multi-responsive nanomedicines for precision cancer therapy. Biomaterials 2022; 291:121906. [DOI: 10.1016/j.biomaterials.2022.121906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 11/03/2022] [Accepted: 11/05/2022] [Indexed: 11/09/2022]
|
43
|
Updates on Responsive Drug Delivery Based on Liposome Vehicles for Cancer Treatment. Pharmaceutics 2022; 14:pharmaceutics14102195. [PMID: 36297630 PMCID: PMC9608678 DOI: 10.3390/pharmaceutics14102195] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/08/2022] [Accepted: 10/13/2022] [Indexed: 11/20/2022] Open
Abstract
Liposomes are well-known nanoparticles with a non-toxic nature and the ability to incorporate both hydrophilic and hydrophobic drugs simultaneously. As modern drug delivery formulations are produced by emerging technologies, numerous advantages of liposomal drug delivery systems over conventional liposomes or free drug treatment of cancer have been reported. Recently, liposome nanocarriers have exhibited high drug loading capacity, drug protection, improved bioavailability, enhanced intercellular delivery, and better therapeutic effect because of resounding success in targeting delivery. The site targeting of smart responsive liposomes, achieved through changes in their physicochemical and morphological properties, allows for the controlled release of active compounds under certain endogenous or exogenous stimuli. In that way, the multifunctional and stimuli-responsive nanocarriers for the drug delivery of cancer therapeutics enhance the efficacy of treatment prevention and fighting over metastases, while limiting the systemic side effects on healthy tissues and organs. Since liposomes constitute promising nanocarriers for site-targeted and controlled anticancer drug release, this review focuses on the recent progress of smart liposome achievements for anticancer drug delivery applications.
Collapse
|
44
|
Abed HF, Abuwatfa WH, Husseini GA. Redox-Responsive Drug Delivery Systems: A Chemical Perspective. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3183. [PMID: 36144971 PMCID: PMC9503659 DOI: 10.3390/nano12183183] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/24/2022] [Accepted: 08/30/2022] [Indexed: 06/16/2023]
Abstract
With the widespread global impact of cancer on humans and the extensive side effects associated with current cancer treatments, a novel, effective, and safe treatment is needed. Redox-responsive drug delivery systems (DDSs) have emerged as a potential cancer treatment with minimal side effects and enhanced site-specific targeted delivery. This paper explores the physiological and biochemical nature of tumors that allow for redox-responsive drug delivery systems and reviews recent advances in the chemical composition and design of such systems. The five main redox-responsive chemical entities that are the focus of this paper are disulfide bonds, diselenide bonds, succinimide-thioether linkages, tetrasulfide bonds, and platin conjugates. Moreover, as disulfide bonds are the most commonly used entities, the review explored disulfide-containing liposomes, polymeric micelles, and nanogels. While various systems have been devised, further research is needed to advance redox-responsive drug delivery systems for cancer treatment clinical applications.
Collapse
Affiliation(s)
- Heba F. Abed
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - Waad H. Abuwatfa
- Department of Chemical Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - Ghaleb A. Husseini
- Department of Chemical Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| |
Collapse
|
45
|
Liu X, Sun S, Wang N, Kang R, Xie L, Liu X. Therapeutic application of hydrogels for bone-related diseases. Front Bioeng Biotechnol 2022; 10:998988. [PMID: 36172014 PMCID: PMC9510597 DOI: 10.3389/fbioe.2022.998988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/29/2022] [Indexed: 01/15/2023] Open
Abstract
Bone-related diseases caused by trauma, infection, and aging affect people’s health and quality of life. The prevalence of bone-related diseases has been increasing yearly in recent years. Mild bone diseases can still be treated with conservative drugs and can be cured confidently. However, serious bone injuries caused by large-scale trauma, fractures, bone tumors, and other diseases are challenging to heal on their own. Open surgery must be used for intervention. The treatment method also faces the problems of a long cycle, high cost, and serious side effects. Studies have found that hydrogels have attracted much attention due to their good biocompatibility and biodegradability and show great potential in treating bone-related diseases. This paper mainly introduces the properties and preparation methods of hydrogels, reviews the application of hydrogels in bone-related diseases (including bone defects, bone fracture, cartilage injuries, and osteosarcoma) in recent years. We also put forward suggestions according to the current development status, pointing out a new direction for developing high-performance hydrogels more suitable for bone-related diseases.
Collapse
Affiliation(s)
- Xiyu Liu
- Third School of Clinical Medicine, Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Shuoshuo Sun
- Third School of Clinical Medicine, Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Nan Wang
- Third School of Clinical Medicine, Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Ran Kang
- Third School of Clinical Medicine, Nanjing University of Traditional Chinese Medicine, Nanjing, China
- Department of Orthopedics, Nanjing Lishui Hospital of Traditional Chinese Medicine, Nanjing, China
- *Correspondence: Ran Kang, ; Lin Xie, ; Xin Liu,
| | - Lin Xie
- Third School of Clinical Medicine, Nanjing University of Traditional Chinese Medicine, Nanjing, China
- *Correspondence: Ran Kang, ; Lin Xie, ; Xin Liu,
| | - Xin Liu
- Third School of Clinical Medicine, Nanjing University of Traditional Chinese Medicine, Nanjing, China
- Department of Orthopedics, Nanjing Lishui Hospital of Traditional Chinese Medicine, Nanjing, China
- *Correspondence: Ran Kang, ; Lin Xie, ; Xin Liu,
| |
Collapse
|
46
|
IL-11Rα-targeted nanostrategy empowers chemotherapy of relapsed and patient-derived osteosarcoma. J Control Release 2022; 350:460-470. [PMID: 36041590 DOI: 10.1016/j.jconrel.2022.08.048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/22/2022]
Abstract
Osteosarcoma (OS) is a rare but frequently lethal bone malignancy in children and adolescents. The adjuvant chemotherapy with doxorubicin (Dox) and cisplatin remains a mainstream clinical practice though it affords only limited clinical benefits due to low tumor deposition, dose-limiting toxicity and high rate of relapse/metastasis. Here, taking advantage of high IL-11Rα expression in the OS patients, we installed IL-11Rα specific peptide (sequence: CGRRAGGSC) onto redox-responsive polymersomes encapsulating Dox (IL11-PDox) to boost the specificity and anti-OS efficacy of chemotherapy. Of note, IL-11Rα peptide at a density of 20% greatly augmented the internalization, apoptotic activity, and migration inhibition of Dox in IL-11Rα-overexpressing 143B OS cells. The active targeting effect of IL-11-PDox was supported in orthotopic and relapsed 143B OS models, as shown by striking repression of tumor growth and lung metastasis and substantial survival benefits over free Dox control. We further verified that IL11-PDox could effectively inhibit patient-derived OS xenografts. IL-11Rα-targeted nanodelivery of chemotherapeutics provides a potential therapeutic strategy for advanced osteosarcoma.
Collapse
|
47
|
Wu H, Gao Y, Ma J, Hu M, Xia J, Bao S, Liu Y, Feng K. Cytarabine delivered by CD44 and bone targeting redox sensitive liposomes for treatment of acute myelogenous leukemia. Regen Biomater 2022; 9:rbac058. [PMID: 36110161 PMCID: PMC9469920 DOI: 10.1093/rb/rbac058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/02/2022] [Accepted: 08/13/2022] [Indexed: 11/14/2022] Open
Abstract
Acute myelogenous leukemia (AML) remains a serious fatal disease for the patients and effective treatment strategies are urgently needed. Based on the characteristics of the AML, we developed the CD44 and bone targeting liposomes delivery system decorated with the redox-cleavable polymer. First, ALN-HA was obtained by amination between alendronate (ALN) and hyaluronic acid (HA), and cholesterol (Chol) was coupled by a disulfide linker (-SS-) with biological reducibility to obtain the goal polymer, ALN-HA-SS-Chol, decorated the liposomes loaded with the Cytarabine (AraC). ALN-HA-SS-AraC-Lip exhibited a spherical morphology with the diameter of 117.5 nm and expanded at the environment of 10 mM dithiothreitol. Besides, compared with other groups, ALN-HA-SS-AraC-Lip showed benign hydroxyapatite affinity in vitro and bone targeting in C57/BL6 mice, also, ALN-HA-SS-AraC-Lip exhibited encouraging antitumor which significantly reduced the white blood cell amount in bone marrow and blood smear caused by AML model, besides, the dual targeting liposomes also prolong the survival time of mice. In conclusion, the bone and CD44 dual targeting liposomes with redox sensitivity could target to the leukemia stem cells regions and then uptake by the tumor cells, which would be a valuable target for the treatment of the AML.
Collapse
Affiliation(s)
- Hao Wu
- Chuzhou University College of Materials & Chemical Engineering, , Chuzhou 239000, China
| | - Yuan Gao
- Beijing Shunyi Hospital Department of Oncology, , NO.3 Guangming South Street, Shunyi District, Beijing 101300, China
| | - Jia Ma
- Beijing Shunyi Hospital Department of Neurology, , NO.3 Guangming South Street, Shunyi District, Beijing 101300, China
| | - Maosong Hu
- Chuzhou University College of Materials & Chemical Engineering, , Chuzhou 239000, China
| | - Jing Xia
- Chuzhou University College of Materials & Chemical Engineering, , Chuzhou 239000, China
| | - Shuting Bao
- Chuzhou University College of Materials & Chemical Engineering, , Chuzhou 239000, China
| | - Yuxi Liu
- Chuzhou University College of Materials & Chemical Engineering, , Chuzhou 239000, China
| | - Kai Feng
- Beijing Shunyi Hospital Department of Neurology, , NO.3 Guangming South Street, Shunyi District, Beijing 101300, China
| |
Collapse
|
48
|
Kwon MJ, Seo Y, Cho H, Kim HS, Oh YJ, Genişcan S, Kim M, Park HH, Joe EH, Kwon MH, Kang HC, Kim BG. Nanogel-mediated delivery of oncomodulin secreted from regeneration-associated macrophages promotes sensory axon regeneration in the spinal cord. Theranostics 2022; 12:5856-5876. [PMID: 35966584 PMCID: PMC9373827 DOI: 10.7150/thno.73386] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/20/2022] [Indexed: 11/06/2022] Open
Abstract
Preconditioning nerve injury enhances axonal regeneration of dorsal root ganglia (DRG) neurons in part by driving pro-regenerative perineuronal macrophage activation. How these macrophages influence the neuronal capacity of axon regeneration remains elusive. We report that oncomodulin (ONCM) is produced from the regeneration-associated macrophages and strongly influences regeneration of DRG sensory axons. We also attempted to promote sensory axon regeneration by nanogel-mediated delivery of ONCM to DRGs. Methods:In vitro neuron-macrophage interaction model and preconditioning sciatic nerve injury were used to verify the necessity of ONCM in preconditioning injury-induced neurite outgrowth. We developed a nanogel-mediated delivery system in which electrostatic encapsulation of ONCM by a reducible epsilon-poly(L-lysine)-nanogel (REPL-NG) enabled a controlled release of ONCM. Results: Sciatic nerve injury upregulated ONCM in DRG macrophages. ONCM in macrophages was necessary to produce pro-regenerative macrophages in the in vitro model of neuron-macrophage interaction and played an essential role in preconditioning-induced neurite outgrowth. ONCM increased neurite outgrowth in cultured DRG neurons by activating a distinct gene set, particularly neuropeptide-related genes. Increasing extracellularly secreted ONCM in DRGs sufficiently enhanced the capacity of neurite outgrowth. Intraganglionic injection of REPL-NG/ONCM complex allowed sustained ONCM activity in DRG tissue and achieved a remarkable long-range regeneration of dorsal column sensory axons beyond spinal cord lesion. Conclusion: NG-mediated ONCM delivery could be exploited as a therapeutic strategy for promoting sensory axon regeneration following spinal cord injury.
Collapse
Affiliation(s)
- Min Jung Kwon
- Department of Brain Science, Ajou University Graduate School of Medicine, Suwon, 16499, Republic of Korea.,AI-Superconvergence KIURI Translational Research Center, Suwon, 16499, Republic of Korea
| | - Yeojin Seo
- Department of Brain Science, Ajou University Graduate School of Medicine, Suwon, 16499, Republic of Korea.,Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, 16499, Republic of Korea
| | - Hana Cho
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Hyung Soon Kim
- Department of Brain Science, Ajou University Graduate School of Medicine, Suwon, 16499, Republic of Korea.,Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, 16499, Republic of Korea
| | - Young Joo Oh
- Department of Brain Science, Ajou University Graduate School of Medicine, Suwon, 16499, Republic of Korea.,Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, 16499, Republic of Korea
| | - Simay Genişcan
- Department of Brain Science, Ajou University Graduate School of Medicine, Suwon, 16499, Republic of Korea.,Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, 16499, Republic of Korea
| | - Minjae Kim
- Department of Microbiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Hee Hwan Park
- Department of Brain Science, Ajou University Graduate School of Medicine, Suwon, 16499, Republic of Korea.,Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, 16499, Republic of Korea
| | - Eun-Hye Joe
- Department of Brain Science, Ajou University Graduate School of Medicine, Suwon, 16499, Republic of Korea.,Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, 16499, Republic of Korea.,Department of Pharmacology, Ajou University School of Medicine, Suwon, 16499, Republic of Korea.,Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon, 16499, Republic of Korea
| | - Myung-Hee Kwon
- Department of Microbiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Han Chang Kang
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Byung Gon Kim
- Department of Brain Science, Ajou University Graduate School of Medicine, Suwon, 16499, Republic of Korea.,Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, 16499, Republic of Korea.,Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon, 16499, Republic of Korea.,Department of Neurology, Ajou University School of Medicine, Suwon, 16499, Republic of Korea.,AI-Superconvergence KIURI Translational Research Center, Suwon, 16499, Republic of Korea
| |
Collapse
|
49
|
Ashrafizadeh M, Delfi M, Zarrabi A, Bigham A, Sharifi E, Rabiee N, Paiva-Santos AC, Kumar AP, Tan SC, Hushmandi K, Ren J, Zare EN, Makvandi P. Stimuli-responsive liposomal nanoformulations in cancer therapy: Pre-clinical & clinical approaches. J Control Release 2022; 351:50-80. [PMID: 35934254 DOI: 10.1016/j.jconrel.2022.08.001] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 07/31/2022] [Accepted: 08/01/2022] [Indexed: 11/30/2022]
Abstract
The site-specific delivery of antitumor agents is of importance for providing effective cancer suppression. Poor bioavailability of anticancer compounds and the presence of biological barriers prevent their accumulation in tumor sites. These obstacles can be overcome using liposomal nanostructures. The challenges in cancer chemotherapy and stimuli-responsive nanocarriers are first described in the current review. Then, stimuli-responsive liposomes including pH-, redox-, enzyme-, light-, thermo- and magneto-sensitive nanoparticles are discussed and their potential for delivery of anticancer drugs is emphasized. The pH- or redox-sensitive liposomes are based on internal stimulus and release drug in response to a mildly acidic pH and GSH, respectively. The pH-sensitive liposomes can mediate endosomal escape via proton sponge. The multifunctional liposomes responsive to both redox and pH have more capacity in drug release at tumor site compared to pH- or redox-sensitive alone. The magnetic field and NIR irradiation can be exploited for external stimulation of liposomes. The light-responsive liposomes release drugs when they are exposed to irradiation; thermosensitive-liposomes release drugs at a temperature of >40 °C when there is hyperthermia; magneto-responsive liposomes release drugs in presence of magnetic field. These smart nanoliposomes also mediate co-delivery of drugs and genes in synergistic cancer therapy. Due to lack of long-term toxicity of liposomes, they can be utilized in near future for treatment of cancer patients.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey.
| | - Masoud Delfi
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte S. Angelo, Via Cintia, Naples 80126, Italy
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey
| | - Ashkan Bigham
- Institute of Polymers, Composites and Biomaterials-National Research Council (IPCB-CNR), Viale J.F. Kennedy 54-Mostra d'Oltremare pad. 20, 80125 Naples, Italy
| | - Esmaeel Sharifi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, 6517838736 Hamadan, Iran
| | - Navid Rabiee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, South Korea; School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal; LAQV, REQUIMTE, Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal
| | - Alan Prem Kumar
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Shing Cheng Tan
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology and zoonosis, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Jun Ren
- Department of Cardiology, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | | | - Pooyan Makvandi
- School of Chemistry, Damghan University, Damghan 36716-41167, Iran; Istituto Italiano di Tecnologia, Center for Materials Interfaces, viale Rinaldo Piaggio 34, 56025, Pontedera, Pisa, Italy.
| |
Collapse
|
50
|
Wei H, Chen F, Chen J, Lin H, Wang S, Wang Y, Wu C, Lin J, Zhong G. Mesenchymal Stem Cell Derived Exosomes as Nanodrug Carrier of Doxorubicin for Targeted Osteosarcoma Therapy via SDF1-CXCR4 Axis. Int J Nanomedicine 2022; 17:3483-3495. [PMID: 35959282 PMCID: PMC9359454 DOI: 10.2147/ijn.s372851] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/27/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose The objective of this study was to investigate the antitumor activity, targeting capability, and mechanism of the developed nanodrug consisting of doxorubicin and exosome (Exo-Dox) derived from mesenchymal stem cells in vitro and in vivo. Methods The exosomes were isolated with Exosome Isolation Kit, and the Exo-Dox was prepared by mixing exosome with Dox-HCl, desalinizing with triethylamine and then dialyzing against PBS overnight. The exosome and Exo-Dox were examined by nanoparticle tracking analysis (NTA) and transmission electron microscopy (TEM). The antitumor activity, targeting capability, and mechanism of the developed Exo-Dox were evaluated by cell viability assay, histological and immunofluorescence analysis and in vivo imaging system. Results NTA results showed the size of the exosomes had increased from 141.6 nm to 178.1 nm after loading with doxorubicin. Compared with free Dox, the Exo-Dox exhibited higher cytotoxicity against osteosarcoma MG63 cells, HOS cells, and 143B cells than free Dox, the half-maximal inhibitory concentrations (IC50) of Dox, Exo-Dox were calculated to be 0.178 and 0.078 μg mL−1 in MG63 cells, 0.294 and 0.109μg mL−1 in HOS cells, 0.315 and 0.123 μg mL−1 in 143B cells, respectively. The in vivo imaging showed that MSC derived Exo could serve as a highly efficient delivery vehicle for targeted drug delivery. The immunohistochemistry and histology analysis indicated that compared with the free Dox group, the Ki67-positive cells and cardiotoxicity in Exo-Dox group were significantly decreased. Conclusion Our results suggested that MSC-derived Exo could be excellent nanocarriers used to deliver chemotherapeutic drug Dox specifically and efficiently in osteosarcoma, resulting in enhanced toxicity against osteosarcoma and less toxicity in heart tissue. We further demonstrated the targeting capability of Exo was due to the chemotaxis of MSC-derived exosomes to osteosarcoma cells via SDF1-CXCR4 axis.
Collapse
Affiliation(s)
- Hongxiang Wei
- Department of Orthopaedics, Fujian Institute of Orthopaedics, the First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, People’s Republic of China
| | - Fei Chen
- Department of Orthopaedics, Fujian Institute of Orthopaedics, the First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, People’s Republic of China
| | - Jinyuan Chen
- The Centralab, the First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, People’s Republic of China
| | - Huangfeng Lin
- Department of Orthopaedics, Fujian Institute of Orthopaedics, the First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, People’s Republic of China
| | - Shenglin Wang
- Department of Orthopaedics, Fujian Institute of Orthopaedics, the First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, People’s Republic of China
| | - Yunqing Wang
- Department of Orthopaedics, Fujian Institute of Orthopaedics, the First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, People’s Republic of China
| | - Chaoyang Wu
- Department of Orthopaedics, Fujian Institute of Orthopaedics, the First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, People’s Republic of China
| | - Jianhua Lin
- Department of Orthopaedics, Fujian Institute of Orthopaedics, the First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, People’s Republic of China
| | - Guangxian Zhong
- Department of Orthopaedics, Fujian Institute of Orthopaedics, the First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, People’s Republic of China
- Correspondence: Guangxian Zhong; Jianhua Lin, Tel/Fax +86 591 87981029, Email ;
| |
Collapse
|